
Lahey/Fujitsu Fortran 95
Language Reference
Revision F

Copyright
Copyright © 1994-2000 by Lahey Computer Systems, Inc. All rights reserved worldwide. This manual
is protected by federal copyright law. No part of this manual may be copied or distributed, transmitted,
transcribed, stored in a retrieval system, or translated into any human or computer language, in any form
or by any means, electronic, mechanical, magnetic, manual, or otherwise, or disclosed to third parties.

Trademarks
Names of Lahey products are trademarks of Lahey Computer Systems, Inc. Other brand and product
names are trademarks or registered trademarks of their respective holders.

Disclaimer
Lahey Computer Systems, Inc. and Fujitsu, Ltd. reserve the right to revise their software and publications
with no obligation to notify any person or any organization of such revision. In no event shall Lahey
Computer Systems, Inc. or Fujitsu, Ltd. be liable for any loss of profit or any other commercial damage,
including but not limited to special, consequential, or other damages.

Lahey Computer Systems, Inc.
 865 Tahoe Boulevard

 P.O. Box 6091
Incline Village, NV 89450-6091

(775) 831-2500
Fax: (775) 831-8123

http://www.lahey.com

Technical Support
(775) 831-2500 (PRO version only)
support@lahey.com (all versions)

Table of Contents

Introduction...vii

Manual Organizationvii
Notational Conventionsviii

Elements of Fortran................................1
Character Set.. 1
Names .. 1
Statement Labels.. 2
Source Form .. 2
Data.. 4
Expressions .. 19
Input/Output... 21
Input/Output Editing...................................... 24
Statements.. 32
Executable Constructs 40
Procedures ... 41
Program Units.. 53
Scope ... 57

Alphabetical Reference........................59
ABS Function .. 59
ACHAR Function .. 59
ACOS Function ... 60
ADJUSTL Function....................................... 60
ADJUSTR Function 61
AIMAG Function .. 61
AINT Function .. 62
ALL Function .. 62
ALLOCATABLE Statement 63
ALLOCATE Statement 64
ALLOCATED Function 66
ANINT Function.. 66
ANY Function ... 67
Arithmetic IF Statement (obsolescent) 68
ASIN Function... 69
Assigned GOTO Statement (obsolescent) 69
ASSIGN Statement (obsolescent) 70
Assignment Statement 70
ASSOCIATED Function 72
ATAN Function ... 72

ATAN2 Function ...73
BACKSPACE Statement73
BIT_SIZE Function..74
BLOCK DATA Statement75
BTEST Function ..75
CALL Statement ..76
CARG Function ...78
CASE Construct ...79
CASE Statement...81
CEILING Function...82
CHAR Function ...83
CHARACTER Statement...............................84
CLOSE Statement ..86
CMPLX Function...87
COMMON Statement88
COMPLEX Statement....................................90
Computed GOTO Statement92
CONJG Function..92
CONTAINS Statement...................................93
CONTINUE Statement94
COS Function...94
COSH Function..95
COUNT Function...95
CPU_TIME Subroutine..................................96
CSHIFT Function...97
CYCLE Statement..98
DATA Statement..98
DATE_AND_TIME Subroutine100
DBLE Function ..102
DEALLOCATE Statement102
DIGITS Function ...103
DIM Function...103
DIMENSION Statement104
DLL_EXPORT Statement105
DLL_IMPORT Statement............................106
DO Construct ...106
DO Statement ...107
DOT_PRODUCT Function..........................108
DOUBLE PRECISION Statement...............109
DPROD Function ...111
Lahey/Fujitsu Fortran 95 Language Reference iii

Contents
DVCHK Subroutine (Windows Only) 111
ELSE IF Statement 112
ELSE Statement .. 112
ELSEWHERE Statement 113
END Statement.. 113
END DO Statement 114
ENDFILE Statement 115
END IF Statement 116
END SELECT Statement 116
END WHERE Statement............................. 117
ENTRY Statement....................................... 117
EOSHIFT Function 119
EPSILON Function 120
EQUIVALENCE Statement........................ 121
ERROR Subroutine 122
EXIT Statement ... 123
EXIT Subroutine ... 123
EXP Function .. 123
EXPONENT Function................................. 124
EXTERNAL Statement 124
FLOOR Function... 125
FLUSH Subroutine...................................... 126
FORALL Construct 126
FORALL Statement 127
FORMAT Statement 128
FRACTION Function.................................. 131
FUNCTION Statement................................ 131
GETCL Subroutine...................................... 133
GETENV Subroutine 133
GOTO Statement ... 134
HUGE Function... 134
IACHAR Function 135
IAND Function.. 135
IBCLR Function .. 136
IBITS Function.. 136
IBSET Function... 137
ICHAR Function ... 137
IEOR Function .. 138
IF Construct ... 138
IF-THEN Statement 140
IF Statement .. 140
IMPLICIT Statement................................... 141
INCLUDE Line ... 143
INDEX Function ... 143

INQUIRE Statement144
INT Function..148
INTEGER Statement149
INTENT Statement151
INTERFACE Statement...............................152
INTRINSIC Statement.................................154
INVALOP Subroutine155
IOR Function ...155
IOSTAT_MSG Subroutine156
ISHFT Function ...156
ISHFTC Function...157
KIND Function ..157
LBOUND Function......................................158
LEN Function...159
LEN_TRIM Function...................................159
LGE Function...160
LGT Function...160
LLE Function ...161
LLT Function ...161
LOG Function ..162
LOG10 Function ..162
LOGICAL Function.....................................163
LOGICAL Statement163
MATMUL Function.....................................165
MAX Function ...166
MAXEXPONENT Function........................167
MAXLOC Function167
MAXVAL Function.....................................168
MERGE Function ..169
MIN Function...170
MINEXPONENT Function170
MINLOC Function.......................................171
MINVAL Function172
MOD Function ...172
MODULE Statement173
MODULE PROCEDURE Statement...........174
MODULO Function.....................................175
MVBITS Subroutine....................................176
NAMELIST Statement176
NDPERR Function (Windows Only)...........177
NDPEXC Subroutine (Windows Only)178
NEAREST Function178
NINT Function...179
NOT Function ..179
iv Lahey/Fujitsu Fortran 95 Language Reference

Contents
NULL Function ... 180
NULLIFY Statement 180
OFFSET Function.. 181
OPEN Statement.. 181
OPTIONAL Statement 184
OVEFL Subroutine (Windows Only).......... 184
PACK Function ... 185
PARAMETER Statement 186
PAUSE Statement (obsolescent) 186
Pointer Assignment Statement..................... 187
POINTER Function 188
POINTER Statement 188
PRECFILL Subroutine 189
PRECISION Function 189
PRESENT Function..................................... 190
PRINT Statement... 190
PRIVATE Statement 193
PRODUCT Function 194
PROGRAM Statement 194
PROMPT Subroutine................................... 195
PUBLIC Statement 195
RADIX Function ... 196
RANDOM_NUMBER Subroutine.............. 197
RANDOM_SEED Subroutine 197
RANGE Function .. 198
READ Statement ... 198
REAL Function.. 201
REAL Statement.. 201
REPEAT Function....................................... 203
RESHAPE Function 204
RETURN Statement 205
REWIND Statement 205
RRSPACING Function................................ 206
SAVE Statement.. 207
SCALE Function ... 208
SCAN Function ... 208
SEGMENT Function 209
SELECT CASE Statement 209
SELECTED_INT_KIND Function 210
SELECTED_REAL_KIND Function.......... 211
SEQUENCE Statement 211
SET_EXPONENT Function........................ 212
SHAPE Function ... 212
SIGN Function... 213

SIN Function ..213

SINH Function ...214
SIZE Function ..214
SPACING Function215
SPREAD Function215
SQRT Function ..216
Statement Function Statement......................217

STOP Statement ...217
SUBROUTINE Statement218
SUM Function..219
SYSTEM Function (Linux only)220
SYSTEM Subroutine220
SYSTEM_CLOCK Subroutine....................221
TAN Function ..222

TANH Function ...222
TARGET Statement223
TIMER Subroutine.......................................223
TINY Function ...224
TRANSFER Function224
TRANSPOSE Function................................225
TRIM Function...226

Type Declaration Statement.........................226
TYPE Statement...226
TYPE Statement...227
UBOUND Function229
UNDFL Subroutine (Windows Only)230
UNPACK Function230

USE Statement ...231
%VAL Function ...232
VERIFY Function ..233
WHERE Construct234
WHERE Statement.......................................236
WRITE Statement ..237
Lahey/Fujitsu Fortran 95 Language Reference v

Contents
Fortran 77 Compatibility 241
Different Interpretation Under Fortran 95... 241
Different Interpretation Under Fortran 90... 241
Obsolescent Features................................... 242

New in Fortran 95 243
Intrinsic Procedures........................... 249
Porting Extensions............................. 271
Glossary .. 275
ASCII Character Set 285
vi Lahey/Fujitsu Fortran 95 Language Reference

Introduction
Lahey/Fujitsu Fortran 95 (LF95) is a complete implementation of the Fortran 95 standard.
Numerous popular extensions are supported.

This manual is intended as a reference to the Fortran 95 language for programmers with expe-
rience in Fortran. For information on creating programs using the LF95 Language System,
see the Lahey/Fujitsu Fortran 95 User’s Guide.

Manual Organization
The manual is organized in six parts:

• Chapter 1, Elements of Fortran, takes an elemental, building-block approach, start-
ing from Fortran’s smallest elements, its character set, and proceeding through
source form, data, expressions, input/output, statements, executable constructs, and
procedures, and ending with program units.

• Chapter 2, Alphabetical Reference, gives detailed syntax and constraints for Fortran
statements, constructs, and intrinsic procedures.

• Appendix A, Fortran 77 Compatibility, discusses issues of concern to programmers
who are compiling their Fortran 77 code with LF95.

• Appendix B, New in Fortran 95, lists Fortran 95 features that were not part of stan-
dard Fortran 77.

• Appendix C, Intrinsic Procedures, is a table containing brief descriptions and spe-
cific names of procedures included with LF95.

• Appendix D, Porting Extensions, lists the various non-standard features provided to
facilitate porting from other systems.

• Appendix E, Glossary, defines various technical terms used in this manual.

• Appendix F, ASCII Chart, details the 128 characters of the ASCII set.
Lahey/Fujitsu Fortran 95 Language Reference vii

Introduction
Notational Conventions
The following conventions are used throughout the manual:

blue text indicates an extension to the Fortran 95 standard.

code is indicated by courier font.

In syntax descriptions, [brackets] enclose optional items. An ellipsis, “...”, following an
item indicates that more items of the same form may appear. Italics indicate text to be
replaced by you. Non-italic letters in syntax descriptions are to be entered exactly as they
appear.
viii Lahey/Fujitsu Fortran 95 Language Reference

1 Elements of Fortran
Character Set
The Fortran character set consists of

• letters:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m n o p q r s t u v w x y z

• digits:

0 1 2 3 4 5 6 7 8 9

• special characters:

<blank> = + - * / () , . ' : ! " % & ; < > ? $

• and the underscore character ‘_’.

Special characters are used as operators, as separators or delimiters, or for grouping.

‘?’ and ‘$’ have no special meaning.

Lower case letters are equivalent to corresponding upper-case letters except in CHARAC-
TER literals.

The underscore character can be used as a non-leading significant character in a name.

Names
Names are used in Fortran to refer to various entities such as variables and program units. A
name starts with a letter or a ‘$’, can be up to 240 characters in length and consists entirely
of letters, digits, underscores, and the ‘$’ character.
Lahey/Fujitsu Fortran 95 Language Reference 1

Chapter 1 Elements of Fortran
Examples of legal Fortran names are:

aAaAa apples_and_oranges r2d2

rose ROSE Rose

The three representations for the names on the line immediately above are equivalent.

The following names are illegal:

_start_with_underscore

2start_with_a_digit

name_tooooooooooooooooooooooooooooooooo_long

illegal_@_character

Statement Labels
Fortran statements can have labels consisting of one to five digits, at least one of which is
non-zero. Leading zeros are not significant in distinguishing statement labels. The following
labels are valid:

123

5000

10000

1

0001

The last two labels are equivalent. The same statement label must not be given to more than
one statement in a scoping unit.

Source Form
Fortran offers two source forms: fixed and free.

Fixed Source Form
Fixed source form is the traditional Fortran source form and is based on the columns of a
punched card. There are restrictions on where statements and labels can appear on a line.
Except in CHARACTER literals, blanks are ignored.
2 Lahey/Fujitsu Fortran 95 Language Reference

Free Source Form
Except within a comment:

• Columns 1 through 5 are reserved for statement labels. Labels can contain blanks.

• Column 6 is used only to indicate a continuation line. If column 6 contains a blank
or zero, column 7 begins a new statement. If column 6 contains any other character,
columns 7 through 72 are a continuation of the previous non-comment line. There
can be up to 19 continuation lines. Continuation lines must not be labeled.

• Columns 7 through 72 are used for Fortran statements.

• Columns after 72 are ignored.

Fixed source form comments are formed by beginning a line with a ‘C’ or a ‘*’ in column 1.
Additionally, trailing comments can be formed by placing a ‘!’ in any column except column
6. A ‘!’ in a CHARACTER literal does not indicate a trailing comment. Comment lines
must not be continued, but a continuation line can contain a trailing comment. An END state-
ment must not be continued.

The ‘;’ character can be used to separate statements on a line. If it appears in a CHARAC-
TER literal or in a comment, the ‘;’ character is not interpreted as a statement separator.

Free Source Form
In free source form, there are no restrictions on where a statement can appear on a line. A
line can be up to 132 characters long. Blanks are used to separate names, constants, or labels
from adjacent names, constants, or labels. Blanks are also used to separate Fortran keywords,
with the following exceptions, for which the blank separator is optional:

• BLOCK DATA
• DOUBLE PRECISION
• ELSE IF
• END BLOCK DATA
• END DO
• END FILE
• END FUNCTION
• END IF
• END INTERFACE
• END MODULE
• END PROGRAM
• END SELECT
• END SUBROUTINE
• END TYPE
• END WHERE
• GO TO
• IN OUT
• SELECT CASE
Lahey/Fujitsu Fortran 95 Language Reference 3

Chapter 1 Elements of Fortran
The ‘!’ character begins a comment except when it appears in a CHARACTER literal. The
comment extends to the end of the line.

The ‘;’ character can be used to separate statements on a line. If it appears in a CHARAC-
TER literal or in a comment, the ‘;’ character is not interpreted as a statement separator.

The ‘&’ character as the last non-comment, non-blank character on a line indicates the line is
to be continued on the next non-comment line. If a name, constant, keyword, or label is split
across the end of a line, the first non-blank character on the next non-comment line must be
the ‘&’ character followed by successive characters of the name, constant, keyword, or label.
If a CHARACTER literal is to be continued, the ‘&’ character ending the line cannot be fol-
lowed by a trailing comment. A free source form statement can have up to 39 continuation
lines.

Comment lines cannot be continued, but a continuation line can contain a trailing comment.
A line cannot contain only an ‘&’ character or contain an ‘&’ character as the only character
before a comment.

Data
Fortran offers the programmer a variety of ways to store and refer to data. You can refer to
data literally, as in the real numbers 4.73 and 6.23E5, the integers -3000 and 65536, or the
CHARACTER literal "Continue (y/n)?". Or, you can store and reference variable data,
using names such as x or y, DISTANCE_FROM_ORIGIN or USER_NAME. Constants such as pi
or the speed of light can be given names and constant values. You can store data in a fixed-
size area in memory, or allocate memory as the program needs it. Finally, Fortran offers var-
ious means of creating, storing, and referring to structured data, through use of arrays,
pointers, and derived types.

Intrinsic Data Types
The five intrinsic data types are INTEGER, REAL, COMPLEX, LOGICAL, and CHARAC-
TER. The DOUBLE PRECISION data type available in Fortran 77 is still supported, but is
considered a subset, or kind, of the REAL data type.

Kind
In Fortran, an intrinsic data type has one or more kinds. In LF95 for the CHARACTER,
INTEGER, REAL, and LOGICAL data types, the kind type parameter (a number used to
refer to a kind) corresponds to the number of bytes used to represent each respective kind.
For the COMPLEX data type, the kind type parameter is the number of bytes used to repre-
sent the real or the imaginary part. Two intrinsic inquiry functions, SELECTED_INT_KIND
4 Lahey/Fujitsu Fortran 95 Language Reference

Kind
and SELECTED_REAL_KIND, are provided. Each returns a kind type parameter based on
the required range and precision of a data object in a way that is portable to other Fortran 90
or 95 systems. The kinds available in LF95 are summarized in the following table:

* default kinds

Table 1: Intrinsic Data Types

Type Kind Type
Parameter Notes

INTEGER 1 Range: -128 to 127

INTEGER 2 Range: -32,768 to 32,767

INTEGER 4* Range: -2,147,483,648 to 2,147,483,647

INTEGER 8 Range: -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

REAL 4* Range: 1.18 * 10-38 to 3.40 * 1038
Precision: 7-8 decimal digits

REAL 8 Range: 2.23 * 10-308 to 1.79 * 10308
Precision: 15-16 decimal digits

REAL 16 Range: 10-4931 to 104932
Precision: approximately 33 decimal digits

COMPLEX 4* Range: 1.18 * 10-38 to 3.40 * 1038
Precision: 7-8 decimal digits

COMPLEX 8 Range: 2.23 * 10-308 to 1.79 * 10308
Precision: 15-16 decimal digits

COMPLEX 16 Range: 10-4931 to 104932
Precision: approximately 33 decimal digits

LOGICAL 1 Values: .TRUE. and .FALSE.

LOGICAL 4* Values: .TRUE. and .FALSE.

CHARACTER 1* ASCII character set
Lahey/Fujitsu Fortran 95 Language Reference 5

Chapter 1 Elements of Fortran
Length
The number of characters in a CHARACTER data object is indicated by its length type
parameter. For example, the CHARACTER literal “Half Marathon” has a length of
thirteen.

Literal Data
A literal datum, also known as a literal, literal constant, or immediate constant, is specified
as follows for each of the Fortran data types. The syntax of a literal constant determines its
intrinsic type.

INTEGER literals
An INTEGER literal consists of one or more digits preceded by an optional sign (+ or -) and
followed by an optional underscore and kind type parameter. If the optional underscore and
kind type parameter are not present, the INTEGER literal is of default kind. Examples of
valid INTEGER literals are

34 -256 345_4 +78_mykind

34 and -256 are of type default INTEGER. 345_4 is an INTEGER of kind 4 (default INTE-
GER in LF95). In the last example, mykind must have been previously declared as a scalar
INTEGER named constant with the value of an INTEGER kind type parameter (1, 2, or 4 in
LF95).

A binary, octal, or hexadecimal constant can appear in a DATA statement. Such constants
are formed by enclosing a series of binary, octal, or hexadecimal digits in apostrophes or quo-
tation marks, and preceding the opening apostrophe or quotation mark with a B, O, or Z for
binary, octal, and hexadecimal representations, respectively. Two valid examples are

B'10101' Z"1AC3"

REAL literals
A REAL literal consists of one or more digits containing a decimal point (the decimal point
can appear before, within, or after the digits), optionally preceded by a sign (+ or -), and
optionally followed by an exponent letter and exponent, optionally followed by an under-
score and kind type parameter. If an exponent letter is present the decimal point is optional.
The exponent letter is E for single precision, D for double precision, or Q for quad precision.
If the optional underscore and kind type parameter are not present, the REAL literal is of
default kind. Examples of valid REAL literals are

-3.45 .0001 34.E-4 1.4_8

The first three examples are of type default REAL. The last example is a REAL of kind 8.
6 Lahey/Fujitsu Fortran 95 Language Reference

Literal Data
COMPLEX literals
A COMPLEX literal is formed by enclosing in parentheses a comma-separated pair of REAL
or INTEGER literals. The first of the REAL or INTEGER literals represents the real part of
the complex number; the second represents the imaginary part. The kind type parameter of
a COMPLEX constant is 16 if either the real or the imaginary part or both are quadruple pre-
cision REAL, 8 if either the real or the imaginary part or both are double-precision REAL,
otherwise the kind type parameter is 4 (default COMPLEX). Examples of valid COMPLEX
literals are

(3.4,-5.45) (-1,-3) (3.4,-5) (-3.d13,6._8)

The first three examples are of default kind, where four bytes are used to represent each part,
real or imaginary, of the complex number. The fourth example uses eight bytes for each part.

LOGICAL literals
A LOGICAL literal is either .TRUE. or .FALSE., optionally followed by an underscore and
a kind type parameter. If the optional underscore and kind type parameter are not present,
the LOGICAL literal is of default kind. Examples of valid LOGICAL literals are:

.false. .true. .true._mykind

In the last example, mykind must have been previously declared as a scalar INTEGER
named constant with the value of a LOGICAL kind type parameter (1 or 4 in LF95). The
first two examples are of type default LOGICAL.

CHARACTER literals
A CHARACTER literal consists of a string of characters enclosed in matching apostrophes
or quotation marks, optionally preceded by a kind type parameter and an underscore.

If a quotation mark is needed within a CHARACTER string enclosed in quotation marks,
double the quotation mark inside the string. The doubled quotation mark is then counted as
a single quotation mark. Similarly, if an apostrophe is needed within a CHARACTER string
enclosed in apostrophes, double the apostrophe inside the string. The double apostrophe is
then counted as a single apostrophe.

Examples of valid CHARACTER literals are

"Hello world"

'don''t give up the ship!'

ASCII_'foobeedoodah'

""

''

ASCII must have been previously declared as a scalar INTEGER named constant with the
value 1 to indicate the kind. The last two examples, which have no intervening characters
between the quotes or apostrophes, are zero-length CHARACTER literals.
Lahey/Fujitsu Fortran 95 Language Reference 7

Chapter 1 Elements of Fortran
Named Data
A named data object, such as a variable, named constant, or function result, is given the prop-
erties of an intrinsic or user-defined data type, either implicitly (based on the first letter of the
name) or through a type declaration statement. Additional information about a named data
object, known as the data object’s attributes, can also be specified, either in a type declaration
statement or in separate statements specific to the attributes that apply.

Once a data object has a name, it can be accessed in its entirety by referring to that name. For
some data objects, such as character strings, arrays, and derived types, portions of the data
object can also be accessed directly. In addition, aliases for a data object or a portion of a
data object, known as pointers, can be established and referred to.

Implicit Typing
In the absence of a type declaration statement, a named data object’s type is determined by
the first letter of its name. The letters I through N begin INTEGER data objects and the other
letters begin REAL data objects. These implicit typing rules can be customized or disabled
using the IMPLICIT statement. IMPLICIT NONE can be used to disable all implicit typing
for a scoping unit.

Type Declaration Statements
A type declaration statement specifies the type, type parameters, and attributes of a named
data object or function. A type declaration statement is available for each intrinsic type,
INTEGER, REAL (and DOUBLE PRECISION), COMPLEX, LOGICAL, or CHARAC-
TER, as well as for derived types (see “Derived Types” on page 16).

Attributes
Besides type and type parameters, a data object or function can have one or more of the fol-
lowing attributes, which can be specified in a type declaration statement or in a separate
statement particular to the attribute:

• DIMENSION — the data object is an array (see “DIMENSION Statement” on page
104).

• PARAMETER — the data object is a named constant (see “PARAMETER State-
ment” on page 186).

• POINTER — the data object is to be used as an alias for another data object of the
same type, kind, and rank (see “POINTER Statement” on page 188).

• TARGET — the data object that is to be aliased by a POINTER data object (see
“TARGET Statement” on page 223).

• EXTERNAL — the name is that of an external procedure (see “EXTERNAL State-
ment” on page 124).
8 Lahey/Fujitsu Fortran 95 Language Reference

Substrings
• ALLOCATABLE — the data object is an array that is not of fixed size, but is to have
memory allocated for it as specified during execution of the program (see “ALLO-
CATABLE Statement” on page 63).

• INTENT — the dummy argument value will not change in a procedure (INTENT
(IN)), will not be provided an initial value by the calling subprogram (INTENT
(OUT)), or both an initial value will be provided and a new value may result
(INTENT (IN OUT)) (see “INTENT Statement” on page 151).

• PUBLIC — the named data object or procedure in a MODULE program unit is
accessible in a program unit that uses that module (see “PUBLIC Statement” on page
195).

• PRIVATE — the named data object or procedure in a MODULE program unit is
accessible only in the current module (see “PRIVATE Statement” on page 193).

• INTRINSIC — the name is that of an intrinsic function (see “INTRINSIC Statement”
on page 154).

• OPTIONAL — the dummy argument need not have a corresponding actual argu-
ment in a reference to the procedure in which the dummy argument appears (see
“OPTIONAL Statement” on page 184).

• SAVE — the data object retains its value, association status, and allocation status
after a RETURN or END statement (see “SAVE Statement” on page 207).

• SEQUENCE — the order of the component definitions in a derived-type definition
is the storage sequence for objects of that type (see “SEQUENCE Statement” on
page 211).

• DLLEXPORT (Windows only) — the name is an external procedure, a module, or a
common block name, that to be a DLL (see “DLL_EXPORT Statement” on page
105).

• DLLIMPORT (Windows only) — the name is an external procedure, a module name
is an external procedure, a module, or a common block name, that to use a DLL (see
“DLL_IMPORT Statement” on page 106).

Substrings
A character string is a sequence of characters in a CHARACTER data object. The characters
in the string are numbered from left to right starting with one. A contiguous part of a char-
acter string, called a substring, can be accessed using the following syntax:

string ([lower-bound] : [upper-bound])

Where:
string is a string name or a CHARACTER literal.

lower-bound is the lower bound of a substring of string.
Lahey/Fujitsu Fortran 95 Language Reference 9

Chapter 1 Elements of Fortran
upper-bound is the upper bound of a substring of string.

If absent, lower-bound and upper-bound are given the values one and the length of the string,
respectively. A substring has a length of zero if lower-bound is greater than upper-bound.
lower-bound must not be less than one.

For example, if abc_string is the name of the string "abcdefg",

abc_string(2:4) is “bcd”
abc_string(2:) is “bcdefg”
abc_string(:5) is “abcde”
abc_string(:) is “abcdefg”
abc_string(3:3) is “c”
“abcdef”(2:4) is “bcd”
“abcdef”(3:2) is a zero-length string

Arrays
An array is a set of data, all of the same type and type parameters, arranged in a rectangular
pattern of one or more dimensions. A data object that is not an array is a scalar. Arrays can
be specified by using the DIMENSION statement or by using the DIMENSION attribute in
a type declaration statement. An array has a rank that is equal to the number of dimensions
in the array; a scalar has rank zero. The array’s shape is its extent in each dimension. The
array’s size is the number of elements in the array. In the following example

integer, dimension (3,2) :: i

i has rank 2, shape (3,2), and size 6.

Array References
A whole array is referenced by the name of the array. Individual elements or sections of an
array are referenced using array subscripts.

Syntax:
array [(subscript-list)]

Where:
array is the name of the array.
subscript-list is a comma-separated list of
element-subscript
or subscript-triplet
or vector-subscript
element-subscript is a scalar INTEGER expression.
subscript-triplet is [element-subscript] : [element-subscript] [: stride]
stride is a scalar INTEGER expression.
vector-subscript is a rank one INTEGER array expression.

The subscripts in subscript-list each refer to a dimension of the array. The left-most subscript
refers to the first dimension of the array.
10 Lahey/Fujitsu Fortran 95 Language Reference

Arrays
Array Elements
If each subscript in an array subscript list is an element subscript, then the array reference is
to a single array element. Otherwise, it is to an array section (see “Array Sections” on page
11).

Array Element Order
The elements of an array form a sequence known as array element order. The position of an
element of an array in the sequence is:

Where:
si is the subscript in the ith dimension.

ji is the lower bound of the ith dimension.

di is the size of the ith dimension.

n is the rank of the array.

Another way of describing array element order is that the subscript of the leftmost dimension
changes most rapidly as one goes from first element to last in array element order. For exam-
ple, in the following code

integer, dimension(2,3) :: a

the order of the elements is a(1,1), a(2,1), a(1,2), a(2,2), a(1,3), a(2,3). When
performing input/output on arrays, array element order is used.

Array Sections
You can refer to a selected portion of an array as an array. Such a portion is called an array
section. An array section has a subscript list that contains at least one subscript that is either
a subscript triplet or a vector subscript (see the examples under “Subscript Triplets” and
“Vector Subscripts” below). Note that an array section with only one element is not a scalar.

Subscript Triplets
The three components of a subscript triplet are the lower bound of the array section, the upper
bound, and the stride (the increment between successive subscripts in the sequence), respec-
tively. Any or all three can be omitted. If the lower bound is omitted, the declared lower
bound of the dimension is assumed. If the upper bound is omitted, the upper bound of the
dimension is assumed. If the stride is omitted, a stride of one is assumed. Valid examples of
array sections using subscript triplets are:

a(2:8:2) ! a(2), a(4), a(6), a(8)

b(1,3:1:-1) ! b(1,3), b(1,2), b(1,1)

c(:,:,:) ! c

1 s1 j1–()+() s2 j2–() d1×() … sn jn–() dn 1– dn 2– … d1×××()+ + +
Lahey/Fujitsu Fortran 95 Language Reference 11

Chapter 1 Elements of Fortran
Vector Subscripts
A vector (one-dimensional array) subscript can be used to refer to a section of a whole array.
Consider the following example:

integer :: vector(3) = (/3,8,12/)

real :: whole(3,15)

...

print*, whole(3,vector)

Here the array vector is used as a subscript of whole in the PRINT statement, which prints
the values of elements (3,3), (3,8), and (3,12).

Arrays and Substrings
A CHARACTER array section or array element can have a substring specifier following the
subscript list. If a whole array or an array section has a substring specifier, then the reference
is an array section. For example,

character (len=10), dimension (10,10) :: my_string

my_string(3:8,:) (2:4) = 'abc'

assigns 'abc' to the array section made up of characters 2 through 4 of rows 3 through 8 of
the CHARACTER array my_string.

Dynamic Arrays
An array can be fixed in size at compile time or can assume a size or shape at run time in a
number of ways:

• allocatable arrays and array pointers can be allocated as needed with an ALLO-
CATE statement, and deallocated with a DEALLOCATE statement. An array
pointer assumes the shape of its target when used in a pointer assignment statement
(see “Allocatable Arrays” on page 13 and “Array Pointers” on page 13). Allocat-
able arrays and array pointers together are known as deferred-shape arrays.

• A dummy array can assume a size and shape based on the size and shape of the cor-
responding actual argument (see “Assumed-Shape Arrays” on page 14).

• A dummy array can be of undeclared size (“Assumed-Size Arrays” on page 14).

• An array can have variable dimensions based on the values of dummy arguments
(“Adjustable and Automatic Arrays” on page 15).

12 Lahey/Fujitsu Fortran 95 Language Reference

Dynamic Arrays
Allocatable Arrays
The ALLOCATABLE attribute can be given to an array in a type declaration statement or in
an ALLOCATABLE statement. An allocatable array must be declared with the deferred-
shape specifier, ‘:’, for each dimension. For example,

integer, allocatable :: a(:), b(:,:,:)

declares two allocatable arrays, one of rank one and the other of rank three.

The bounds, and thus the shape, of an allocatable array are determined when the array is allo-
cated with an ALLOCATE statement. Continuing the previous example,

allocate (a(3), b(1,3,-3:3))

allocates an array of rank one and size three and an array of rank three and size 21 with the
lower bound -3 in the third dimension.

Memory for allocatable arrays is returned to the system using the DEALLOCATE statement.

Array Pointers
The POINTER attribute can be given to an array in a type declaration statement or in a
POINTER statement. An array pointer, like an allocatable array, is declared with the
deferred-shape specifier, ‘:’, for each dimension. For example

integer, pointer, dimension(:,:) :: c

declares a pointer array of rank two. An array pointer can be allocated in the same way an
allocatable array can. Additionally, the shape of a pointer array can be set when the pointer
becomes associated with a target in a pointer assignment statement. The shape then becomes
that of the target.

integer, target, dimension(2,4) :: d
integer, pointer, dimension(:,:) :: c

c => d

In the above example, the array c becomes associated with array d and assumes the shape of
d.
Lahey/Fujitsu Fortran 95 Language Reference 13

Chapter 1 Elements of Fortran
Assumed-Shape Arrays
An assumed-shape array is a dummy array that assumes the shape of the corresponding
actual argument. The lower bound of an assumed-shape array can be declared and can be
different from that of the actual argument array. An assumed-shape specification is

[lower-bound] :

for each dimension of the assumed-shape array. For example
...

integer :: a(3,4)

...

call zee(a)

...

subroutine zee(x)

implicit none

integer, dimension(-1:,:) :: x

...

Here the dummy array x assumes the shape of the actual argument a with a new lower bound
for dimension one.

The interface for an assumed-shape array must be explicit (see “Explicit Interfaces” on page
50).

Assumed-Size Arrays
An assumed-size array is a dummy array that’s size is not known. All bounds except the
upper bound of the last dimension are specified in the declaration of the dummy array. In
the declaration, the upper bound of the last dimension is an asterisk. The two arrays have the
same initial array element, and are storage associated.

You must not refer to an assumed-size array in a context where the shape of the array must
be known, such as in a whole array reference or for many of the transformational array intrin-
sic functions. A function result can not be an assumed-size array.

...

integer a

dimension a(4)

...

call zee(a)

...

subroutine zee(x)

integer, dimension(-1:*) :: x

...

In this example, the size of dummy array x is not known.
14 Lahey/Fujitsu Fortran 95 Language Reference

Array Constructors
Adjustable and Automatic Arrays
You can establish the shape of an array based on the values of dummy arguments. If such an
array is a dummy array, it is called an adjustable array. If the array is not a dummy array it
is called an automatic array. Consider the following example:

integer function bar(i, k)
integer :: i,j,k
dimension i(k,3), j(k)
...

Here the shapes of arrays i and j depend on the value of the dummy argument k. i is an
adjustable array and j is an automatic array.

Array Constructors
An array constructor is an unnamed array.

Syntax:
(/ constructor-values /)

Where:
constructor-values is a comma-separated list of
expr
or ac-implied-do

expr is an expression.

ac-implied-do is (constructor-values, ac-implied-do-control)

ac-implied-do-control is do-variable = do-expr, do-expr [, do-expr]

do-variable is a scalar INTEGER variable.

do-expr is a scalar INTEGER expression.

An array constructor is a rank-one array. If a constructor element is itself array-valued, the
values of the elements, in array-element order, specify the corresponding sequence of ele-
ments of the array constructor. If a constructor value is an implied-do, it is expanded to form
a sequence of values under the control of the do-variable as in the DO construct (see “DO
Construct” on page 106).

integer, dimension(3) :: a, b=(/1,2,3/), c=(/(i, i=4,6)/)
a = b + c + (/7,8,9/) ! a is assigned (/12,15,18/)

An array constructor can be reshaped with the RESHAPE intrinsic function and can then be
used to initialize or represent arrays of rank greater than one. For example

real,dimension(2,2) :: a = reshape((/1,2,3,4/),(/2,2/))

assigns (/1,2,3,4/) to a in array-element order after reshaping it to conform with the
shape of a.
Lahey/Fujitsu Fortran 95 Language Reference 15

Chapter 1 Elements of Fortran
Derived Types
Derived types are user-defined data types based on the intrinsic types, INTEGER, REAL,
COMPLEX, LOGICAL, and CHARACTER. Where an array is a set of data all of the same
type, a derived type can be composed of a combination of intrinsic types or other derived
types. A data object of derived type is called a structure.

Derived-Type Definition
A derived type must be defined before objects of the derived type can be declared. A derived
type definition specifies the name of the new derived type and the names and types of its
components.

Syntax:
derived-type-statement
[private-sequence-statement]
type-definition-statement
[type-definition-statement]

...
END TYPE [type-name]

Where:
derived-type-statement is a derived type statement.

private-sequence-statement is a PRIVATE statement.
or a SEQUENCE statement.

type-definition-statement is an INTEGER, REAL, COMPLEX, DOUBLE PRECISION,
LOGICAL, CHARACTER or TYPE statement.

A type definition statement in a derived type definition can have only the POINTER and
DIMENSION attributes. It cannot be a function. It can be given a default initialization value,
in which case the component acquires the SAVE attribute. A component array must be a
deferred-shape array if the POINTER attribute is present, otherwise it must have an explicit
shape.

type coordinates

real :: latitude, longitude

end type coordinates

type place

character(len=20) :: name

type(coordinates) :: location

end type place

type link

integer :: j

type (link), pointer :: next

end type link
16 Lahey/Fujitsu Fortran 95 Language Reference

Structure Constructors
In the example, type coordinates is a derived type with two REAL components: lati-
tude and longitude. Type place has two components: a CHARACTER of length twenty,
name, and a structure of type coordinates named location. Type link has two compo-
nents: an INTEGER, j, and a structure of type link, named next, that is a pointer to the
same derived type. A component structure can be of the same type as the derived type itself
only if it has the POINTER attribute. In this way, linked lists, trees, and graphs can be
formed.

There are two ways to use a derived type in more than one program unit. The preferred way
is to define the derived type in a module (see “Module Program Units” on page 55) and use
the module wherever the derived type is needed. Another method, avoiding modules, is to
use a SEQUENCE statement in the derived type definition, and to define the derived type in
exactly the same way in each program unit the type is used. This could be done using an
include file. Components of a derived type can be made inaccessible to other program units
by using a PRIVATE statement before any component definition statements.

Declaring Variables of Derived Type
Variables of derived type are declared with the TYPE statement. The following are examples
of declarations of variables for each of the derived types defined above:

type(coordinates) :: my_coordinates
type(place) :: my_town
type(place), dimension(10) :: cities
type(link) :: head

Component References
Components of a structure are referenced using the percent sign ‘%’ operator. For example,
latitude in the structure my_coordinates, above, is referenced as
my_coordinates%latitude. latitude in type coordinates in structure my_town is
referenced as my_town%coordinates%latitude. If the variable is an array of structures,
as in cities, above, array sections can be referenced, such as

cities(:,:)%name

which references the component name for all elements of cities, and

cities(1,1:2)%coordinates%latitude

which references element latitude of type coordinates for elements (1,1) and (1,2)
only of cities. Note that in the first example, the syntax

cities%name

is equivalent and is an array section.

Structure Constructors
A structure constructor is an unnamed structure.
Lahey/Fujitsu Fortran 95 Language Reference 17

Chapter 1 Elements of Fortran
Syntax:
type-name (expr-list)

Where:
type-name is the name of the derived type.

expr-list is a list of expressions.

Each expression in expr-list must agree in number and order with the corresponding compo-
nents of the derived type. Where necessary, intrinsic type conversions are performed. For
non-pointer components, the shape of the expression must agree with that of the component.

type mytype ! derived-type definition

integer :: i,j

character(len=40) :: string

end type mytype

type (mytype) :: a ! derived-type declaration

a = mytype (4, 5.0*2.3, 'abcdefg')

In this example, the second expression in the structure constructor is converted to type default
INTEGER when the assignment is made.

Pointers
In Fortran, a pointer is an alias. The variable it aliases is its target. Pointer variables must
have the POINTER attribute; target variables must have either the TARGET attribute or the
POINTER attribute.

Associating a Pointer with a Target
A pointer can only be associated with a variable that has the TARGET attribute or the
POINTER attribute. Such an association can be made in one of two ways:

• explicitly with a pointer assignment statement.

• implicitly with an ALLOCATE statement.

Once an association between pointer and target has been made, any reference to the pointer
applies to the target.

Declaring Pointers and Targets
A variable can be declared to have the POINTER or TARGET attribute in a type declaration
statement or in a POINTER or TARGET statement. When declaring an array to be a pointer,
you must declare the array with a deferred shape.
18 Lahey/Fujitsu Fortran 95 Language Reference

Expressions
Example:
integer, pointer :: a, b(:,:)

integer, target :: c

a => c ! pointer assignment statement

! a is an alias for c

allocate (b(3,2)) ! allocate statement

! an unnamed target for b is

! created with the shape (3,2)

In this example, an explicit association is created between a and c through the pointer assign-
ment statement. Note that a has been previously declared a pointer, c has been previously
declared a target, and a and c agree in type, kind, and rank. In the ALLOCATE statement,
a target array is allocated and b is made to point to it. The array b was declared with a
deferred shape, so that the target array could be allocated with any rank two shape.

Expressions
An expression is formed from operands, operators, and parentheses. Evaluation of an expres-
sion produces a value with a type, type parameters (kind and, if CHARACTER, length), and
a shape. Some examples of valid Fortran expressions are:

5

n

(n+1)*y

"to be" // ’ or not to be’ // text(1:23)

(-b + (b**2-4*a*c)**.5) / (2*a)

b%a - a(1:1000:10)

sin(a) .le. .5

l .my_binary_operator. r + .my_unary_operator. m

The last example uses defined operations (see “Defined Operations” on page 51).

All array-valued operands in an expression must have the same shape. A scalar is conform-
able with an array of any shape. Array-valued expressions are evaluated element-by-element
for corresponding elements in each array and a scalar in the same expression is treated like
an array where all elements have the value of the scalar. For example, the expression

a(2:4) + b(1:3) + 5

would perform

a(2) + b(1) + 5

a(3) + b(2) + 5

a(4) + b(3) + 5
Lahey/Fujitsu Fortran 95 Language Reference 19

Chapter 1 Elements of Fortran
Expressions are evaluated according to the rules of operator precedence, described below. If
there are multiple contiguous operations of the same precedence, subtraction and division are
evaluated from left to right, exponentiation is evaluated from right to left, and other opera-
tions can be evaluated either way, depending on how the compiler optimizes the expression.
Parentheses can be used to enforce a particular order of evaluation.

A specification expression is a scalar INTEGER expression that can be evaluated on entry to
the program unit at the time of execution. An initialization expression is an expression that
can be evaluated at compile time.

Intrinsic Operations
The intrinsic operators, in descending order of precedence are:

 Note: all operators within a given cell in the table are of equal precedence

Table 2: Intrinsic Operators

Operator Represents Operands

** exponentiation two numeric

* and / multiplication and division two numeric

+ and - unary addition and subtraction one numeric

+ and - binary addition and subtraction two numeric

// concatenation two CHARACTER

.EQ. and ==
.NE. and /=

.LT. and <

.LE. and <=
.GT. and >

.GE. and >=

equal to
not equal to

less than

less than or equal to
greater than

greater than or equal to

two numeric or two
CHARACTER
–––––––––––

two non-COMPLEX
numeric or two CHAR-

ACTER

.NOT. logical negation one LOGICAL

.AND. logical conjunction two LOGICAL

.OR. logical inclusive disjunction two LOGICAL

.EQV. and
.NEQV.

logical equivalence and non-equiv-
alence two LOGICAL
20 Lahey/Fujitsu Fortran 95 Language Reference

Input/Output
If an operation is performed on operands of the same type, the result is of that type and has
the greater of the two kind type parameters.

If an operation is performed on numeric operands of different types, the result is of the higher
type, where COMPLEX is higher than REAL and REAL is higher than INTEGER.

If an operation is performed on numeric or LOGICAL operands of the same type but different
kind, the result has the kind of the operand offering the greater precision.

The result of a concatenation operation has a length that is the sum of the lengths of the
operands.

INTEGER Division
The result of a division operation between two INTEGER operands is the integer closest to
the mathematical quotient and between zero and the mathematical quotient, inclusive. For
example, 7/5 evaluates to 1 and -7/5 evaluates to -1.

Input/Output
Fortran input and output are performed on logical units. A unit is

• a non-negative INTEGER associated with a physical device such as a disk file, the
console, or a printer. The unit must be connected to a file or device in an OPEN state-
ment, except in the case of pre-connected files.

• an asterisk, ‘*’, indicating the standard input and standard output devices, usually the
keyboard and monitor, that are preconnected.

• a CHARACTER variable corresponding to the name of an internal file.

Fortran statements are available to connect (OPEN) or disconnect (CLOSE) files and devices
from input/output units; transfer data (PRINT, READ, WRITE); establish the position within
a file (REWIND, BACKSPACE, ENDFILE); and inquire about a file or device or its con-
nection (INQUIRE).

Pre-Connected Input/Output Units
Input/output units 5, 6 and * are automatically connected when used. Unit 5 is connected to
the standard input device, usually the keyboard, and unit 6 is connected to the standard output
device, usually the monitor. Unit * is always connected to the standard input and standard
output devices.
Lahey/Fujitsu Fortran 95 Language Reference 21

Chapter 1 Elements of Fortran
Files
Fortran treats all physical devices, such as disk files, the console, printers, and internal files,
as files. A file is a sequence of zero or more records. The data format (either formatted or
unformatted), file access type (either direct or sequential) and record length determine the
structure of the file.

File Position
Certain input/output statements affect the position within an external file. Prior to execution
of a data transfer statement, a direct file is positioned at the beginning of the record indicated
by the record specifier REC= in the data transfer statement. By default, a sequential file is
positioned after the last record read or written. However, if non-advancing input/output is
specified using the ADVANCE= specifier, it is possible to read or write partial records and
to read variable-length records and be notified of their length.

An ENDFILE statement writes an endfile record after the last record read or written and posi-
tions the file after the endfile record. A REWIND statement positions the file at its initial
point. A BACKSPACE statement moves the file position back one record.

If an error condition occurs, the position of the file is indeterminate.

If there is no error, and an endfile record is read or written, the file is positioned after the end-
file record. The file must be repositioned with a REWIND or BACKSPACE statement
before it is read from or written to again.

For non-advancing (partial record) input/output, if there is no error and no end-of-file condi-
tion, but an end-of-record condition occurs, the file is positioned after the record just read. If
there is no end-of-record condition the file position is unchanged.

File Types
The type of file to be accessed is specified in the OPEN statement using the FORM= and
ACCESS= specifiers (see “OPEN Statement” on page 181).

Formatted Sequential
• variable-length records terminated by end of line
• stored as CHARACTER data
• can be used with devices or disk files
• records must be processed in order
• files can be printed or displayed easily
• usually slowest

Formatted Direct
• fixed-length records - record zero is a header
• stored as CHARACTER data
• disk files only
• records can be accessed in any order
22 Lahey/Fujitsu Fortran 95 Language Reference

Files
• not easily processed outside of LF95

• same speed as formatted sequential disk files

Unformatted Sequential

• variable length records separated by record marker

• stored as binary data

• disk files only

• records must be processed in order

• faster than formatted files

• not easily read outside of LF95

Unformatted Direct

• fixed-length records - record zero is a header

• stored as binary data

• disk files only

• records can be accessed in any order

• fastest

• not easily read outside of LF95

Binary (or Transparent)

• stored as binary data without record markers or header

• record length one byte but end-of-record restrictions do not apply

• records can be processed in any order

• can be used with disk files or other physical devices

• good for files that are accessed outside of LF95

• fast and compact

See “File Formats” in the User's Guide for more information.

Internal Files
An internal file is always a formatted sequential file and consists of a single CHARACTER
variable. If the CHARACTER variable is array-valued, each element of the array is treated
as a record in the file. This feature allows conversion from internal representation (binary,
unformatted) to external representation (ASCII, formatted) without transferring data to an
external device.
Lahey/Fujitsu Fortran 95 Language Reference 23

Chapter 1 Elements of Fortran
Carriage Control
The first character of a formatted record sent to a terminal device, such as the console or a
printer, is used for carriage control and is not printed. The remaining characters are printed
on one line beginning at the left margin. The carriage control character is interpreted as
follows:

Input/Output Editing
Fortran provides extensive capabilities for formatting, or editing, of data. The editing can be
explicit, using a format specification; or implicit, using list-directed input/output, in which
data are edited using a predetermined format (see “List-Directed Formatting” on page 30).
A format specification is a default CHARACTER expression and can appear

• directly as the FMT= specifier value.

• in a FORMAT statement whose label is the FMT= specifier value.

• in a FORMAT statement whose label was assigned to a scalar default INTEGER
variable that appears as the FMT= specifier value.

The syntax for a format specification is

 ([format-items])

where format-items includes editing information in the form of edit descriptors. See “FOR-
MAT Statement” on page 128 for detailed syntax.

Table 3: Carriage Control

Character Vertical Spacing Before Printing

0 Two Lines

1 To First Line of Next Page

+ None

Blank or Any
Other Character One Line
24 Lahey/Fujitsu Fortran 95 Language Reference

Format Control
Format Control
A correspondence is established between a format specification and items in a READ,
WRITE or PRINT statement’s input/output list in which the edit descriptors and input/output
list are both interpreted from left to right. Each effective edit descriptor is applied to the cor-
responding data entity in the input/output list. Each instance of a repeated edit descriptor is
an edit descriptor in effect. Three exceptions to this rule are

1. COMPLEX items in the input/output list require the interpretation of two F, E, EN,
ES, D or G edit descriptors.

2. Control and character string edit descriptors do not correspond to items in the input/
output list.

3. If the end of a complete format is encountered and there are remaining items in the
input/output list, format control reverts to the beginning of the format item termi-
nated by the last preceding right parenthesis, if it exists, and to the beginning of the
format otherwise. If format control reverts to a parenthesis preceded by a repeat
specification, the repeat specification is reused.

Data Edit Descriptors
Data edit descriptors control conversion of data to or from its internal representation.

Numeric Editing
The I, B, O, Z, Q, F, E, EN, ES, D, and G edit descriptors can be used to specify the input/
output of INTEGER, REAL, and COMPLEX data. The following general rules apply:

• On input, leading blanks are not significant.

• On output, the representation is right-justified in the field.

• On output, if the number of characters produced exceeds the field width the entire
field is filled with asterisks.

INTEGER Editing (I, B, O, and Z)
The Iw, Iw.m, Bw, Bw.m, Ow, Ow.m, Zw, and Zw.m edit descriptors indicate the manner of
editing for INTEGER data. The w indicates the width of the field on input, including a sign
(if present). The m indicates the minimum number of digits on output; m must not exceed w
unless w is zero. The output width is padded with blanks if the number is smaller than the
field, unless w is zero. If w is zero then a suitable width will be used to show all digits without
any padding blanks. Note that an input width must always be specified.

REAL Editing (Q, F, D, and E)
The Qw.d, Fw.d, Ew.d, Dw.d, Ew.dEe, EN, and ES edit descriptors indicate the manner of
editing of REAL and COMPLEX data.
Lahey/Fujitsu Fortran 95 Language Reference 25

Chapter 1 Elements of Fortran
Q, F, D, E, EN, and ES editing are identical on input. The w indicates the width of the field;
the d indicates the number of digits in the fractional part. The field consists of an optional
sign, followed by one or more digits that can contain a decimal point. If the decimal point is
omitted, the rightmost d digits are interpreted as the fractional part. An exponent can be
included in one of the following forms:

• An explicitly signed INTEGER constant.

• Q, E, or D followed by an optionally signed INTEGER constant.

F editing, the output field consists of zero or more blanks followed by a minus sign or an
optional plus sign (see S, SP, and SS Editing), followed by one or more digits that contain a
decimal point and represent the magnitude. The field is modified by the established scale fac-
tor (see P Editing) and is rounded to d decimal digits. If w is zero then a suitable width will
be used to show all digits and sign without any padding blanks.

For Q, E, and D editing, the output field consists of the following, in order:

1. zero or more blanks

2. a minus or an optional plus sign (see S, SP, and SS Editing)

3. a zero (depending on scale factor, see P Editing)

4. a decimal point

5. the d most significant digits, rounded

6. a Q, E, or a D

7. a plus or a minus sign

8. an exponent of e digits, if the extended Ew.dEe form is used, and two digits
otherwise.

For Q, E, and D editing, the scale factor k controls the position of the decimal point. If
, the output field contains exactly leading zeros and significant digits

after the decimal point. If , the output field contains exactly k significant digits
to the left of the decimal point and significant digits to the right of the decimal point.
Other values of k are not permitted.

EN Editing
The EN edit descriptor produces an output field in engineering notation such that the decimal
exponent is divisible by three and the absolute value of the significand is greater than or equal
to 1 and less than 1000, except when the output value is zero. The scale factor has no effect
on output.

The forms of the edit descriptor are ENw.d and ENw.dEe indicating that the external field
occupies w positions, the fractional part of which consists of d digits and the exponent part e
digits.

d– k< 0≤ k d k–
0 k d 2+< <

d k– 1+
26 Lahey/Fujitsu Fortran 95 Language Reference

Data Edit Descriptors
On input, EN editing is the same as F editing.

ES Editing
The ES edit descriptor produces an output field in the form of a real number in scientific nota-
tion such that the absolute value of the significand is greater than or equal to 1 and less than
10, except when the output value is zero. The scale factor has no effect on output.

The forms of the edit descriptor are ESw.d and ESw.dEe indicating that the external field
occupies w positions, the fractional part of which consists of d digits and the exponent part e
digits.

On input, ES editing is the same as F editing.

COMPLEX Editing
COMPLEX editing is accomplished by using two REAL edit descriptors. The first of the edit
descriptors specifies the real part; the second specifies the imaginary part. The two edit
descriptors can be different. Control edit descriptors can be processed between the edit
descriptor for the real part and the edit descriptor for the imaginary part. Character string edit
descriptors can be processed between the two edit descriptors on output only.

LOGICAL Editing (L)
The Lw edit descriptor indicates that the field occupies w positions. The specified input/out-
put list item must be of type LOGICAL.

The input field consists of optional blanks, optionally followed by a decimal point, followed
by a T for true or F for false. The T or F can be followed by additional characters in the field.
Note that the logical constants .TRUE. and .FALSE. are acceptable input forms. If a pro-
cessor is capable of representing letters in both upper and lower case, a lower-case letter is
equivalent to the corresponding upper-case letter in a LOGICAL input field.

The output field consists of w - 1 blanks followed by a T or F, depending on whether the value
of the internal data object is true or false, respectively.

CHARACTER Editing (A)
The A[w] edit descriptor is used with an input/output list item of type CHARACTER.

If a field width w is specified with the A edit descriptor, the field consists of w characters. If
a field width w is not specified with the A edit descriptor, the number of characters in the field
is the length of the corresponding list item.

Let len be the length of the list item. On input, if w is greater than or equal to len, the right-
most len characters will be taken from the field; if w is less than len, the w characters are left-
justified and padded with len-w trailing blanks.

On output, the list item is padded with leading blanks if w is greater than len. If w is less than
or equal to len, the output field consists of the leftmost w characters of the list item.
Lahey/Fujitsu Fortran 95 Language Reference 27

Chapter 1 Elements of Fortran
Generalized Editing (G)
The Gw.d and Gw.dEe edit descriptors can be used with an input/output list item of any
intrinsic type.

These edit descriptors indicate that the external field occupies w positions, the fractional part
of which consists of a maximum of d digits and the exponent part e digits. d and e have no
effect when used with INTEGER, LOGICAL, or CHARACTER data.

Generalized Integer Editing
With INTEGER data, the Gw.d and Gw.dEe edit descriptors follow the rules for the Iw edit
descriptor.

Generalized Real and Complex Editing
The form and interpretation of the input field is the same as for F editing.

The method of representation in the output field depends on the magnitude of the data object
being edited. If the decimal point falls just before, within, or just after the d significant digits
to be printed, then the output is as for the F edit descriptor; otherwise, editing is as for the E
edit descriptor.

Note that the scale factor k (see “P Editing” on page 29) has no effect unless the magnitude
of the data object to be edited is outside the range that permits effective use of F editing.

Generalized Logical Editing
With LOGICAL data, the Gw.d and Gw.dEe edit descriptors follow the Lw edit descriptor
rules.

Generalized Character Editing
With CHARACTER data, the Gw.d and Gw.dEe edit descriptors follow the Aw edit descrip-
tor rules.

Control Edit Descriptors
Control edit descriptors affect format control or the conversions performed by subsequent
data edit descriptors.

Position Editing (T, TL, TR, and X)
The Tn, TLn, TRn, and nX edit descriptors control the character position in the current record
to or from which the next character will be transferred. The new position can be in either
direction from the current position. This makes possible the input of the same record twice,
possibly with different editing. It also makes skipping characters in a record possible.

The Tn edit descriptor tabs to character position n from the beginning of the record. The TLn
and TRn edit descriptors tab n characters left or right, respectively, from the current position.
The nX edit descriptor tabs n characters right from the current position.

If the position is changed to beyond the length of the current record, the next data transfer to
or from the record causes the insertion of blanks in the character positions not previously
filled.
28 Lahey/Fujitsu Fortran 95 Language Reference

Control Edit Descriptors
Slash Editing
The slash edit descriptor terminates data transfer to or from the current record. The file posi-
tion advances to the beginning of the next record. On output to a file connected for sequential
access, a new record is written and the new record becomes the last record in the file.

Colon Editing
The colon edit descriptor terminates format control if there are no more items in the input/
output list. The colon edit descriptor has no effect if there are more items in the input/output
list.

S, SP, and SS Editing
The S, SP, and SS edit descriptors control whether an optional plus is to be transmitted in
subsequent numeric output fields. SP causes the optional plus to be transmitted. SS causes
it not to be transmitted. S returns optional pluses to the processor default (no pluses).

P Editing
The kP edit descriptor sets the value of the scale factor to k. The scale factor affects the Q,
F, E, EN, ES, D, or G editing of subsequent numeric quantities as follows:

• On input (provided that no exponent exists in the field) the scale factor causes the
externally represented number to be equal to the internally represented number mul-
tiplied by 10k. The scale factor has no effect if there is an exponent in the field.

• On output, with E and D editing, the significand part of the quantity to be produced
is multiplied by 10k and the exponent is reduced by k.

• On output, with G editing, the effect of the scale factor is suspended unless the mag-
nitude of the data object to be edited is outside the range that permits the use of F
editing. If the use of E editing is required, the scale factor has the same effect as with
E output editing.

• On output, with EN and ES editing, the scale factor has no effect.

• On output, with F editing, the scale factor effect is that the externally represented
number equals the internally represented number times 10k.

BN and BZ Editing
The BN and BZ edit descriptors are used to specify the interpretation, by numeric edit
descriptors, of non-leading blanks in subsequent numeric input fields. If a BN edit descriptor
is encountered in a format, blanks in subsequent numeric input fields are ignored. If a BZ
edit descriptor is encountered, blanks in subsequent numeric input fields are treated as zeros.
Lahey/Fujitsu Fortran 95 Language Reference 29

Chapter 1 Elements of Fortran
Character String Edit Descriptors
The character string edit descriptors cause literal CHARACTER data to be output. They
must not be used for input.

CHARACTER String Editing
The CHARACTER string edit descriptor causes characters to be output from a string, includ-
ing blanks. Enclosing characters are either apostrophes or quotation marks.

For a CHARACTER string edit descriptor, the width of the field is the number of characters
contained in, but not including, the delimiting characters. Within the field, two consecutive
delimiting characters (apostrophes, if apostrophes are the delimiters; quotation marks, if quo-
tation marks are the delimiters) are counted as a single character. Thus an apostrophe or
quotation mark character can be output as part of a CHARACTER string edit descriptor
delimited by the same character.

H Editing (obsolescent)
The cH edit descriptor causes character information to be written from the next c characters
(including blanks) following the H of the cH edit descriptor in the list of format items itself.
The c characters are called a Hollerith constant.

List-Directed Formatting
List-directed formatting is indicated when an input/output statement uses an asterisk instead
of an explicit format. For example,

read*, a

print*, x,y,z
read (unit=1, fmt=*) i,j,k

all use list-directed formatting.

List-Directed Input
List-directed records consist of a sequence of values and value separators. Values are either
null or any of the following forms:

c

r*c

r*

Where:
c is a literal constant or a non-delimited CHARACTER string.

r is a positive INTEGER literal constant with no kind type parameter specified.

r*c is equivalent to r successive instances of c.
30 Lahey/Fujitsu Fortran 95 Language Reference

List-Directed Formatting
r* is equivalent to r successive instances of null.

Separators are either commas or slashes with optional preceding or following blanks; or one
or more blanks between two non-blank values. A slash separator causes termination of the
input statement after transfer of the previous value.

Editing occurs based on the type of the list item as explained below. On input the following
formatting applies:

List-Directed Output
For list-directed output the following formatting applies:

Table 4: List-Directed Input Editing

Type Editing

INTEGER I

REAL F

COMPLEX As for COMPLEX literal constant

LOGICAL L

CHARACTER

As for CHARACTER string. CHARACTER string
can be continued from one record to the next.

Delimiting apostrophes or quotation marks are not
required if the CHARACTER string does not cross a
record boundary and does not contain value separa-

tors or CHARACTER string delimiters, or begin
with r*.

Table 5: List-Directed Output Editing

Type Editing

INTEGER Gw

REAL Gw.d

COMPLEX (Gw.d, Gw.d)

LOGICAL T for value true and F for value false

CHARACTER As CHARACTER string, except as overridden by
the DELIM= specifier
Lahey/Fujitsu Fortran 95 Language Reference 31

Chapter 1 Elements of Fortran
Namelist Formatting
Namelist formatting is indicated by an input/output statement with an NML= specifier.
Namelist input and output consists of

1. optional blanks

2. the ampersand character followed immediately by the namelist group name specified
in the namelist input/output statement

3. one or more blanks

4. a sequence of zero or more name-value subsequences, and

5. a slash indicating the end of the namelist record.

The characters in namelist records form a sequence of name-value subsequences. A name-
value subsequence is a data object or subobject previously declared in a NAMELIST state-
ment to be part of the namelist group, followed by an equals, followed by one or more values
and value separators.

Formatting for namelist records is the same as for list-directed records.

Example:
integer :: i,j(10)
real :: n(5)
namelist /my_namelist/ i,j,n
read(*,nml=my_namelist)

If the input records are

&my_namelist i=5, n(3)=4.5,
j(1:4)=4*0/

then 5 is stored in i, 4.5 in n(3), and 0 in elements 1 through 4 of j.

Statements
A brief description of each statement follows. For complete syntax and rules, see Chapter 2,
“Alphabetical Reference.”

Fortran statements can be grouped into five categories. They are

• Control Statements

• Specification Statements

• Input/Output Statements

• Assignment and Storage Statements

• Program Structure Statements
32 Lahey/Fujitsu Fortran 95 Language Reference

Control Statements
Control Statements
Arithmetic IF (obsolescent)
Execution of an arithmetic IF statement causes evaluation of an expression followed by a
transfer of control. The branch target statement identified by the first, second, or third label
in the arithmetic IF statement is executed next if the value of the expression is less than zero,
equal to zero, or greater than zero, respectively.

Assigned GOTO (obsolescent)
The assigned GOTO statement causes a transfer of control to the branch target statement indi-
cated by a variable that was assigned a statement label in an ASSIGN statement. If the
parenthesized list of labels is present, the variable must be one of the labels in the list.

CALL
The CALL statement invokes a subroutine and passes to it a list of arguments.

CASE
Execution of a SELECT CASE statement causes a case expression to be evaluated. The
resulting value is called the case index. If the case index is in the range specified with a
CASE statement’s case selector, the block following the CASE statement, if any, is executed.

Computed GOTO
The computed GOTO statement causes transfer of control to one of a list of labeled
statements.

CONTINUE
Execution of a CONTINUE statement has no effect.

CYCLE
The CYCLE statement curtails the execution of a single iteration of a DO loop.

DO
The DO statement begins a DO construct. A DO construct specifies the repeated execution
(loop) of a sequence of executable statements or constructs.

ELSE IF
The ELSE IF statement controls conditional execution of a nested IF block in an IF construct
where all previous IF expressions are false.

ELSE
The ELSE statement controls conditional execution of a block of code in an IF construct
where all previous IF expressions are false.

ELSEWHERE
The ELSEWHERE statement controls conditional execution of a block of assignment state-
ments for elements of an array for which the WHERE construct’s mask expression is false.

END DO
The END DO statement ends a DO construct.

END FORALL
The END FORALL statement ends a FORALL construct.
Lahey/Fujitsu Fortran 95 Language Reference 33

Chapter 1 Elements of Fortran
END IF
The END IF statement ends an IF construct.

END SELECT
The END SELECT statement ends a CASE construct.

END WHERE
The END WHERE statement ends a WHERE construct.

ENTRY
The ENTRY statement permits one program unit to define multiple procedures, each with a
different entry point.

EXIT
The EXIT statement terminates a DO loop.

FORALL
The FORALL statement begins a FORALL construct. The FORALL construct controls mul-
tiple assignments, masked array (WHERE) assignments, and nested FORALL constructs and
statements.

GOTO
The GOTO statement transfers control to a statement identified by a label.

IF
The IF statement controls whether or not a single executable statement is executed.

IF-THEN
The IF-THEN statement begins an IF construct.

PAUSE (Obsolescent)
The PAUSE statement temporarily suspends execution of the program.

RETURN
The RETURN statement completes execution of a subroutine or function and returns control
to the statement following the procedure invocation.

SELECT CASE
The SELECT CASE statement begins a CASE construct. It contains an expression that,
when evaluated, produces a case index. The case index is used in the CASE construct to
determine which block in a CASE construct, if any, is executed.

STOP
The STOP statement terminates execution of the program.

WHERE
The WHERE statement is used to mask the assignment of values in array assignment state-
ments. The WHERE statement can begin a WHERE construct that contains zero or more
assignment statements, or can itself contain an assignment statement.
34 Lahey/Fujitsu Fortran 95 Language Reference

Specification Statements
Specification Statements
ALLOCATABLE
The ALLOCATABLE statement declares allocatable arrays. The shape of an allocatable
array is determined when space is allocated for it by an ALLOCATE statement.

CHARACTER
The CHARACTER statement declares entities of type CHARACTER.

COMMON
The COMMON statement provides a global data facility. It specifies blocks of physical stor-
age, called common blocks, that can be accessed by any scoping unit in an executable
program.

COMPLEX
The COMPLEX statement declares names of type COMPLEX.

DATA
The DATA statement provides initial values for variables. It is not executable.

Derived-Type Definition Statement
The derived-type definition statement begins a derived-type definition.

DIMENSION
The DIMENSION statement specifies the shape of an array.

DLL_EXPORT (Windows only)
The DLLEXPORT statement declares to create a DLL.

DLL_IMPORT (Windows only)
The DLLIMPORT statement declares to use a DLL.

DOUBLE PRECISION
The DOUBLE PRECISION statement declares names of type double precision REAL.

EQUIVALENCE
The EQUIVALENCE statement specifies that two or more objects in a scoping unit share the
same storage.

EXTERNAL
The EXTERNAL statement specifies external procedures. Specifying a procedure name as
EXTERNAL permits the name to be used as an actual argument.

IMPLICIT
The IMPLICIT statement specifies, for a scoping unit, a type and optionally a kind or a
CHARACTER length for each name beginning with a letter specified in the statement. Alter-
nately, it can specify that no implicit typing is to apply in the scoping unit.

INTEGER
The INTEGER statement declares names of type INTEGER.

INTENT
The INTENT statement specifies the intended use of a dummy argument.
Lahey/Fujitsu Fortran 95 Language Reference 35

Chapter 1 Elements of Fortran
INTRINSIC
The INTRINSIC statement specifies a list of names that represent intrinsic procedures.
Doing so permits a name that represents a specific intrinsic function to be used as an actual
argument.

LOGICAL
The LOGICAL statement declares names of type LOGICAL.

NAMELIST
The NAMELIST statement specifies a list of variables which can be referred to by one name
for the purpose of performing input/output.

MODULE PROCEDURE
The MODULE PROCEDURE statement specifies that the names in the statement are part of
a generic interface.

OPTIONAL
The OPTIONAL statement specifies that any of the dummy arguments specified need not be
associated with an actual argument when the procedure is invoked.

PARAMETER
The PARAMETER statement specifies named constants.

POINTER
The POINTER statement specifies a list of variables that have the POINTER attribute.

PRIVATE
The PRIVATE statement specifies that the names of entities are accessible only within the
current module.

PUBLIC
The PUBLIC statement specifies that the names of entities are accessible anywhere the mod-
ule in which the PUBLIC statement appears is used.

REAL
The REAL statement declares names of type REAL.

SAVE
The SAVE statement specifies that all objects in the statement retain their association, allo-
cation, definition, and value after execution of a RETURN or subprogram END statement.

SEQUENCE
The SEQUENCE statement can only appear in a derived type definition. It specifies that the
order of the component definitions is the storage sequence for objects of that type.

TARGET
The TARGET statement specifies a list of object names that have the target attribute and thus
can have pointers associated with them.

TYPE
The TYPE statement specifies that all entities whose names are declared in the statement are
of the derived type named in the statement.
36 Lahey/Fujitsu Fortran 95 Language Reference

Input/Output Statements
USE
The USE statement specifies that a specified module is accessible by the current scoping unit.
It also provides a means of renaming or limiting the accessibility of entities in the module.

Input/Output Statements
BACKSPACE
The BACKSPACE statement positions the file before the current record, if there is a current
record, otherwise before the preceding record.

CLOSE
The CLOSE statement terminates the connection of a specified input/output unit to an exter-
nal file.

ENDFILE
The ENDFILE statement writes an endfile record as the next record of the file. The file is
then positioned after the endfile record, which becomes the last record of the file.

FORMAT
The FORMAT statement provides explicit information that directs the editing between the
internal representation of data and the characters that are input or output.

INQUIRE
The INQUIRE statement enables the program to make inquiries about a file’s existence, con-
nection, access method or other properties.

OPEN
The OPEN statement connects or reconnects an external file and an input/output unit.

PRINT
The PRINT statement transfers values from an output list to an input/output unit.

READ
The READ statement transfers values from an input/output unit to the entities specified in an
input list or a namelist group.

REWIND
The REWIND statement positions the specified file at its initial point.

WRITE
The WRITE statement transfers values to an input/output unit from the entities specified in
an output list or a namelist group.

Assignment and Storage Statements
ALLOCATE
For an allocatable array the ALLOCATE statement defines the bounds of each dimension
and allocates space for the array.
Lahey/Fujitsu Fortran 95 Language Reference 37

Chapter 1 Elements of Fortran
For a pointer the ALLOCATE statement creates an object that implicitly has the TARGET
attribute and associates the pointer with that target.

ASSIGN (obsolescent)
Assigns a statement label to an INTEGER variable.

Assignment
Assigns the value of the expression on the right side of the equal sign to the variable on the
left side of the equal sign.

DEALLOCATE
The DEALLOCATE statement deallocates allocatable arrays and pointer targets and disas-
sociates pointers.

NULLIFY
The NULLIFY statement disassociates pointers.

Pointer Assignment
The pointer assignment statement associates a pointer with a target.

Program Structure Statements
BLOCK DATA
The BLOCK DATA statement begins a block data program unit.

CONTAINS
The CONTAINS statement separates the body of a main program, module, or subprogram
from any internal or module subprograms it contains.

END
The END statement ends a program unit, module subprogram, interface, or internal
subprogram.

FUNCTION
The FUNCTION statement begins a function subprogram, and specifies its return type and
name (the function name by default), its dummy argument names, and whether it is recursive.

INTERFACE
The INTERFACE statement begins an interface block. An interface block specifies the
forms of reference through which a procedure can be invoked. An interface block can be
used to specify a procedure interface, a defined operation, or a defined assignment.

MODULE
The MODULE statement begins a module program unit.

PROGRAM
The PROGRAM statement specifies a name for the main program.

Statement Function
A statement function is a function defined by a single statement.
38 Lahey/Fujitsu Fortran 95 Language Reference

Statement Order
SUBROUTINE
The SUBROUTINE statement begins a subroutine subprogram and specifies its dummy
argument names and whether it is recursive.

Statement Order
There are restrictions on where a given statement can appear in a program unit or subpro-
gram. In general,

• USE statements come before specification statements;

• specification statements appear before executable statements, but FORMAT,
DATA, and ENTRY statements can appear among the executable statements; and

• module procedures and internal procedures appear following a CONTAINS
statement.

The following table summarizes statement order rules. Vertical lines separate statements
that can be interspersed. Horizontal lines separate statements that cannot be interspersed.

Statements are restricted in what scoping units (see “Scope” on page 57) they may appear,
as follows:

Table 6: Statement Order

PROGRAM, FUNCTION, SUBROUTINE, MODULE,
or BLOCK DATA statement

USE statements

FORMAT
and

ENTRY
statements

IMPLICIT NONE

PARAMETER
statements

IMPLICIT
statements

PARAMETER
and DATA
statements

Derived-type definitions,
interface blocks,

type declaration statements,
statement function statements,
and specification statements

DATA statements Executable statements

CONTAINS statement

Internal subprograms or module subprograms

END statement
Lahey/Fujitsu Fortran 95 Language Reference 39

Chapter 1 Elements of Fortran
• An ENTRY statement may only appear in an external subprogram or module
subprogram.

• A USE statement may not appear in a BLOCK DATA program unit.
• A FORMAT statement may not appear in a module scoping unit, BLOCK DATA

program unit, or interface body.
• A DATA statement may not appear in an interface body.
• A derived-type definition may not appear in a BLOCK DATA program unit.
• An interface block may not appear in a BLOCK DATA program unit.
• A statement function may not appear in a module scoping unit, BLOCK DATA pro-

gram unit, or interface body.
• An executable statement may not appear in a module scoping unit, a BLOCK DATA

program unit, or an interface body.
• A CONTAINS statement may not appear in a BLOCK DATA program unit, an inter-

nal subprogram, or an interface body.

Executable Constructs
Executable constructs control the execution of blocks of statements and nested constructs.

• The CASE and IF constructs control whether a block will be executed (see “CASE
Construct” on page 79 and “IF Construct” on page 138).

• The DO construct controls how many times a block will be executed (see “DO Con-
struct” on page 106).

• The FORALL construct controls multiple assignments, masked array (WHERE)
assignments, and nested FORALL constructs and statements (see “FORALL Con-
struct” on page 126).

• The WHERE construct controls which elements of an array will be affected by a
block of assignment statements (see “WHERE Construct” on page 234).

Construct Names
Optional construct names can be used with CASE, IF, DO, and FORALL constructs. Use of
construct names can add clarity to a program. For the DO construct, construct names enable
a CYCLE or EXIT statement to leave a DO nesting level other than the current one. All con-
struct names must match for a given construct. For example, if a SELECT CASE statement
has a construct name, the corresponding CASE and END SELECT statements must have the
same construct name.
40 Lahey/Fujitsu Fortran 95 Language Reference

Procedures
Procedures
Fortran has two varieties of procedures: functions and subroutines. Procedures are further
categorized in the following table:

Intrinsic procedures are built-in procedures that are provided by the Fortran processor.

An external procedure is defined in a separate program unit and can be separately compiled.
It is not necessarily coded in Fortran. External procedures and intrinsic procedures can be
referenced anywhere in the program.

An internal procedure is contained within another program unit. It can only be referenced
from within the containing program unit.

Internal and external procedures can be referenced recursively if the RECURSIVE keyword
is included in the procedure definition.

Table 7: Procedures

Functions

Intrinsic Func-
tions

Generic Intrinsic
Functions

Specific Intrinsic
Functions

External Func-
tions

Generic External
Functions

Specific External
Functions

Internal Functions

Statement Functions

Subroutines

Intrinsic
Subroutines

Generic Intrinsic
Subroutines

Specific Intrinsic
Subroutines

External Sub-
routines

Generic External
Subroutines

Specific External
Subroutines

Internal Subroutines
Lahey/Fujitsu Fortran 95 Language Reference 41

Chapter 1 Elements of Fortran
Intrinsic and external procedures can be either specific or generic. A generic procedure has
specific versions, which can be referenced by the generic name. The specific version used is
determined by the type, kind, and rank of the arguments.

Additionally, procedures can be elemental or non-elemental. An elemental procedure can
take as an argument either a scalar or an array. If the procedure takes an array as an argument,
it operates on each element in the array as if it were a scalar.

Each of the various kinds of Fortran procedures is described in more detail below.

Intrinsic Procedures
Intrinsic procedures are built-in procedures provided by the Fortran processor. Fortran has
over one hundred standard intrinsic procedures. Each is documented in detail in the Alpha-
betical Reference. A table is provided in “Intrinsic Procedures” on page 249.

Subroutines
A subroutine is a self-contained procedure that is invoked using a CALL statement. For
example,

program main

implicit none

interface ! an explicit interface is provided

subroutine multiply(x, y)

implicit none

real, intent(in out) :: x

real, intent(in) :: y

end subroutine multiply

end interface

real :: a, b

a = 4.0

b = 12.0

call multiply(a, b)

print*, a

end program main

subroutine multiply(x, y)

implicit none

real, intent(in out) :: x

real, intent(in) :: y

multiply = x*y

end subroutine multiply
42 Lahey/Fujitsu Fortran 95 Language Reference

Functions
This program calls the subroutine multiply and passes two REAL actual arguments, a and
b. The subroutine multiply’s corresponding dummy arguments, x and y, refer to the same
storage as a and b in main. When the subroutine returns, a has the value 48.0 and b is
unchanged.

The syntax for a subroutine definition is

subroutine-stmt
[use-stmts]
[specification-part]
[execution-part]
[internal-subprogram-part]
end-subroutine-stmt

Where:
subroutine-stmt is a SUBROUTINE statement.

use-stmts is zero or more USE statements.

specification-part is zero or more specification statements.

execution part is zero or more executable statements.

internal-subprogram-part is
CONTAINS
procedure-definitions

procedure-definitions is one or more procedure definitions.

end-subroutine-stmt is
END [SUBROUTINE [subroutine-name]]

subroutine-name is the name of the subroutine.

Functions
A function is a procedure that produces a single scalar or array result. It is used in an expres-
sion in the same way a variable is. For example, in the following program,
Lahey/Fujitsu Fortran 95 Language Reference 43

Chapter 1 Elements of Fortran
program main
implicit none
interface ! an explicit interface is provided

function square(x)
implicit none
real, intent(in) :: x
real :: square

end function square
end interface
real :: a, b=3.6, c=3.8, square
a = 3.7 + b + square(c) + sin(4.7)
print*, a
stop

end program main

function square(x)
implicit none
real, intent(in) :: x
real :: square
square = x*x
return

end function square

square(c) and sin(4.7) are function references.

The syntax for a function reference is

function-name (actual-arg-list)

Where:
function-name is the name of the function.

actual-arg-list is a list of actual arguments.

A function can be defined as an internal or external function or as a statement function.
44 Lahey/Fujitsu Fortran 95 Language Reference

Functions
External Functions

External functions can be called from anywhere in the program. The syntax for an external
function definition is

function-stmt

[use-stmts]

[specification-part]

[execution-part]

[internal-subprogram-part]

end-function-stmt

Where:

function-stmt is a FUNCTION statement.

use-stmts is zero or more USE statements.

specification-part is zero or more specification statements.

execution part is zero or more executable statements.

internal-subprogram-part is

CONTAINS

procedure-definitions

procedure-definitions is one or more procedure definitions.

end-function-stmt is

END [FUNCTION [function-name]]

function-name is the name of the function.

Statement Functions

A statement function (see “Statement Function Statement” on page 217) is a function defined
on a single line with a single expression. It can only be referenced within the program unit
in which it is defined. A statement function is best used where speed is more important than
reusability in other locations, and where the function can be expressed in a single expression.
The following is an example equivalent to the external function example in “Functions” on
page 43:
Lahey/Fujitsu Fortran 95 Language Reference 45

Chapter 1 Elements of Fortran
program main

real :: a, b=3.6, c=3.8, square

square(x) = x*x

a = 3.7 + b + square(c) + sin(4.7)

print*, a

end

Internal Procedures
A procedure can contain other procedures, which can be referenced only from within the host
procedure. Such procedures are known as internal procedures. An internal procedure is
specified within the host procedure following a CONTAINS statement, which must appear
after all the executable code of the containing subprogram. The form of an internal procedure
is the same as that of an external procedure.

Example:
subroutine external ()

...

call internal () ! reference to internal procedure

...

contains

subroutine internal () ! only callable from external()

...

end subroutine internal

end subroutine external

Names from the host procedure are accessible to the internal procedure. This is called host
association.

Recursion
A Fortran procedure can reference itself, either directly or indirectly, only if the RECUR-
SIVE keyword is specified in the procedure definition. A function that calls itself directly
must use the RESULT option (see “FUNCTION Statement” on page 131).

Pure Procedures
Fortran procedures can be specified as PURE, meaning that there is no chance that the pro-
cedure would have any side effect on data outside the procedure. Only pure procedures can
be used in specification expressions. The PURE keyword must be used in the procedure
declaration.
46 Lahey/Fujitsu Fortran 95 Language Reference

Elemental Procedures
Elemental Procedures
Fortran procedures can be elemental, meaning that they work on each element of an array
argument as if the argument were a scalar. The ELEMENTAL keyword must be used in the
procedure declaration. Note that all elemental procedures are also pure procedures.

Procedure Arguments
Arguments provide a means of passing information between a calling procedure and a pro-
cedure it calls. The calling procedure provides a list of actual arguments. The called
procedure accepts a list of dummy arguments.

Argument Intent
Because Fortran passes arguments by reference, unwanted side effects can occur when an
actual argument’s value is changed by the called procedure. To protect the program from
such unwanted side effects, the INTENT attribute is provided. A dummy argument can have
one of the following attributes:

• INTENT (IN), when it is to be used to input data to the procedure and not to return
results to the calling subprogram;

• INTENT (OUT), when it is to be used to return results but not to input data; and

• INTENT (IN OUT), when it is to be used for inputting data and returning a result.
This is the default argument intent.

The INTENT attribute is specified for dummy arguments using the INTENT statement or in
a type declaration statement.

Keyword Arguments
Using keyword arguments, the programmer can specify explicitly which actual argument
corresponds to which dummy argument, regardless of position in the actual argument list. To
do so, specify the dummy argument name along with the actual argument, using the follow-
ing syntax:

keyword = actual-arg

Where:
keyword is the dummy argument name.

actual-arg is the actual argument.

Example:
...
call zee(c=1, b=2, a=3)
...

subroutine zee(a,b,c)
...
Lahey/Fujitsu Fortran 95 Language Reference 47

Chapter 1 Elements of Fortran
In the example, the actual arguments are provided in reverse order.

A procedure reference can use keyword arguments for zero, some, or all of the actual argu-
ments (see “Optional Arguments” below). For those arguments not having keywords, the
order in the actual argument list determines the correspondence with the dummy argument
list. Keyword arguments must appear after any non-keyword arguments.

Note that for a procedure invocation to use keyword arguments an explicit interface must be
present (see “Procedure Interfaces” on page 49).

Optional Arguments
An actual argument need not be provided for a corresponding dummy argument with the
OPTIONAL attribute. To make an argument optional, specify the OPTIONAL attribute for
the dummy argument, either in a type declaration statement or with the OPTIONAL
statement.

An optional argument at the end of a dummy argument list can simply be omitted from the
corresponding actual argument list. Keyword arguments must be used to omit other optional
arguments, unless all of the remaining arguments in the reference are omitted. For example,

subroutine zee(a, b, c)

implicit none

real, intent(in), optional :: a, c

real, intent(in out) :: b

...

end subroutine zee

In the above subroutine, a and c are optional arguments. In the following calls, various com-
binations of optional arguments are omitted:

call zee(b=3.0) ! a and c omitted, keyword necessary

call zee(2.0, 3.0) ! c omitted

call zee(b=3.0, c=8.5) ! a omitted, keywords necessary

It is usually necessary in a procedure body to know whether or not an optional argument has
been provided. The PRESENT intrinsic function takes as an argument the name of an
optional argument and returns true if the argument is present and false otherwise. A dummy
argument or procedure that is not present must not be referenced except as an argument to
the PRESENT function or as an optional argument in a procedure reference.

Note that for a procedure to have optional arguments an explicit interface must be present
(see “Procedure Interfaces” on page 49). Many of the Fortran intrinsic procedures have
optional arguments.
48 Lahey/Fujitsu Fortran 95 Language Reference

Procedure Interfaces
Alternate Returns (obsolescent)
A procedure can be made to return to a labeled statement in the calling subprogram using an
alternate return. The syntax for an alternate return dummy argument is

*

The syntax for an alternate return actual argument is

* label

Where:
label is a labelled executable statement in the calling subprogram.

An argument to the RETURN statement is used in the called subprogram to indicate which
alternate return in the dummy argument list to take. For example,

...

call zee(a,b,*200,c,*250)

...

subroutine zee(a, b, *, c, *)

...

return 2 ! returns to label 250 in calling procedure

...

return 1 ! returns to label 200 in calling procedure

return ! normal return

Dummy Procedures
A dummy argument can be the name of a procedure that is to be referenced in the called sub-
program or is to appear in an interface block or in an EXTERNAL or INTRINSIC statement.
The corresponding actual argument must not be the name of an internal procedure or state-
ment function.

Procedure Interfaces
A procedure interface is all the characteristics of a procedure that are of interest to the Fortran
processor when the procedure is invoked. These characteristics include the name of the pro-
cedure, the number, order, type parameters, shape, and intent of the arguments; whether the
arguments are optional, and whether they are pointers; and, if the reference is to a function,
the type, type parameters, and rank of the result, and whether it is a pointer. If the function
result is not a pointer, its shape is an important characteristic. The interface can be explicit,
in which case the Fortran processor has access to all characteristics of the procedure inter-
face, or implicit, in which case the Fortran processor must make assumptions about the
interface.
Lahey/Fujitsu Fortran 95 Language Reference 49

Chapter 1 Elements of Fortran
Explicit Interfaces
It is desirable, to avoid errors, to create explicit interfaces whenever possible. In each of the
following cases, an explicit interface is mandatory:

If a reference to a procedure appears
• with a keyword argument,
• as a defined assignment,
• in an expression as a defined operator, or
• as a reference by its generic name;

or if the procedure has
• an optional dummy argument,
• an array-valued result,
• a dummy argument that is an assumed-shape array, a pointer, or a target,
• a CHARACTER result whose length type parameter value is neither assumed nor

constant, or
• a result that is a pointer.

An interface is always explicit for intrinsic procedures, internal procedures, and module pro-
cedures. A statement function’s interface is always implicit. In other cases, explicit
interfaces can be established using an interface block:

Syntax:
interface-stmt
[interface-body] ...
[module procedure statement] ...
end-interface statement

Where:
interface-stmt is an INTERFACE statement.

interface-body is
function-stmt
[specification-part]
end stmt

or
subroutine-stmt
[specification-part]
end-stmt

module-procedure-stmt is a MODULE PROCEDURE statement.

end-interface-stmt is an END INTERFACE statement.

function-stmt is a FUNCTION statement.

subroutine-stmt is a SUBROUTINE statement.

specification-part is the specification part of the procedure.
50 Lahey/Fujitsu Fortran 95 Language Reference

Procedure Interfaces
end-stmt is an END statement.

Example:
interface

subroutine x(a, b, c)
implicit none
real, intent(in), dimension (2,8) :: a
real, intent(out), dimension (2,8) :: b, c
end subroutine x

function y(a, b)
implicit none
logical, intent (in) :: a, b

end function y
end interface

In this example, explicit interfaces are provided for the procedures x and y. Any errors in
referencing these procedures in the scoping unit of the interface block will be diagnosed at
compile time.

Generic Interfaces
An INTERFACE statement with a generic-name (see “INTERFACE Statement” on page
152) specifies a generic interface for each of the procedures in the interface block. In this
way external generic procedures can be created, analogous to intrinsic generic procedures.

Example:
interface swap ! generic swap routine

subroutine real_swap(x, y)
implicit none
real, intent (in out) :: x, y

end subroutine real_swap
subroutine int_swap(x, y)

implicit none
integer, intent (in out) :: x, y

end subroutine int_swap
end interface

Here the generic procedure swap can be used with both the REAL and INTEGER types.

Defined Operations
Operators can be extended and new operators created for user-defined and intrinsic data
types. This is done using interface blocks with INTERFACE OPERATOR (see “INTER-
FACE Statement” on page 152).

A defined operation has the form

operator operand

for a defined unary operation, and
Lahey/Fujitsu Fortran 95 Language Reference 51

Chapter 1 Elements of Fortran
operand operator operand

for a defined binary operation, where operator is one of the intrinsic operators or a user-
defined operator of the form

.operator-name.

where .operator-name. consists of one to 31 letters.

For example, either

a .intersection. b

or

a * b

might be used to indicate the intersection of two sets. The generic interface block might look
like

interface operator (.intersection.)

function set_intersection (a, b)

implicit none

type (set), intent (in) :: a, b, set_intersection

end function set_intersection

end interface

for the first example, and

interface operator (*)

function set_intersection (a, b)

implicit none

type (set), intent (in) :: a, b, set intersection

end function set_intersection

end interface

for the second example. The function set_intersection would then contain the code to
determine the intersection of a and b.

The precedence of a defined operator is the same as that of the corresponding intrinsic oper-
ator if an intrinsic operator is being extended. If a user-defined operator is used, a unary
defined operation has higher precedence than any other operation, and a binary defined oper-
ation has a lower precedence than any other operation.

An intrinsic operation (such as addition) cannot be redefined for valid intrinsic operands. For
example, it is illegal to redefine plus to mean minus for numeric types.

The functions specified in the interface block take either one argument, in the case of a
defined unary operator, or two arguments, for a defined binary operator. The operand or
operands in a defined operation become the arguments to a function specified in the interface
block, depending on their type, kind, and rank. If a defined binary operation is performed,
52 Lahey/Fujitsu Fortran 95 Language Reference

Program Units
the left operand corresponds to the first argument and the right operand to the second argu-
ment. Both unary and binary defined operations for a particular operator may be specified in
the same interface block.

Defined Assignment
The assignment operator may be extended using an interface block with INTERFACE
ASSIGNMENT (see “INTERFACE Statement” on page 152). The mechanism is similar to
that used to resolve a defined binary operation (see “Defined Operations” on page 51), with
the variable on the left side of the assignment corresponding to the first argument of a sub-
routine in the interface block and the data object on the right side corresponding to the second
argument. The first argument must be INTENT (OUT) or INTENT (IN OUT); the second
argument must be INTENT (IN).

Example:
interface assignment (=) ! use = for integer to

! logical array

subroutine integer_to_logical_array (b, n)

implicit none

logical, intent (out) :: b(:)

integer, intent (in) :: n

end subroutine integer_to_logical_array

end interface

Here the assignment operator is extended to convert INTEGER data to a LOGICAL array.

Program Units
Program units are the smallest elements of a Fortran program that may be separately com-
piled. There are five kinds of program units:

• Main Program

• External Function Subprogram

• External Subroutine Subprogram

• Block Data Program Unit

• Module Program Unit

External Functions and Subroutines are described in “Functions” on page 43 and “Intrinsic
Procedures” on page 42.
Lahey/Fujitsu Fortran 95 Language Reference 53

Chapter 1 Elements of Fortran
Main Program
Execution of a Fortran program begins with the first executable statement in the main pro-
gram and ends with a STOP statement anywhere in the program or with the END statement
of the main program.

The form of a main program is

[program-stmt]
[use-stmts]
[specification-part]
[execution-part]
[internal-subprogram-part]
end-stmt

Where:
program-stmt is a PROGRAM statement.

use-stmts is one or more USE statements.

specification-part is one or more specification statements or interface blocks.

execution-part is one or more executable statements, other than RETURN or ENTRY
statements.

internal-subprogram is one or more internal procedures.

end-stmt is an END statement.

Block Data Program Units
A block data program unit provides initial values for data in one or more named common
blocks. Only specification statements may appear in a block data program unit. A block data
program unit may be referenced only in EXTERNAL statements in other program units.

The form of a block data program unit is

block-data-stmt
[specification-part]
end-stmt

Where:
block-data-stmt is a BLOCK DATA statement.

specification-part is one or more specification statements, other than ALLOCATABLE,
INTENT, PUBLIC, PRIVATE, OPTIONAL, and SEQUENCE.

end-stmt is an END statement.
54 Lahey/Fujitsu Fortran 95 Language Reference

Module Program Units
Module Program Units
Module program units provide a means of packaging anything that is required by more than
one scoping unit (a scoping unit is a program unit, subprogram, derived type definition, or
procedure interface body, excluding any scoping units it contains). Modules may contain
type specifications, interface blocks, executable code in module subprograms, and references
to other modules. The names in a module can be specified PUBLIC (accessible wherever the
module is used) or PRIVATE (accessible only in the scope of the module itself). Typical
uses of modules include

• declaration and initialization of data to be used in more than one subprogram without
using common blocks.

• specification of explicit interfaces for procedures.

• definition of derived types and creation of reusable abstract data types (derived types
and the procedures that operate on them).

In LF95, any module program units must appear before any other program units in a source
file.

The form of a module program unit is

module-stmt
[use-stmts]
[specification-part]
[module-subprogram-part]
end-stmt

Where:
module-stmt is a MODULE statement.

use-stmts is one or more USE statements.

specification-part is one or more interface blocks or specification statements other than
OPTIONAL or INTENT.

module-subprogram part is CONTAINS, followed by one or more module procedures.

end-stmt is an END statement.

Example:
module example

implicit none

integer, dimension(2,2) :: bar1=1, bar2=2

type phone_number !derived type definition

integer :: area_code,number

end type phone_number
Lahey/Fujitsu Fortran 95 Language Reference 55

Chapter 1 Elements of Fortran
interface !explicit interfaces

function test(sample,result)

implicit none

real :: test

integer, intent(in) :: sample,result

end function test

function count(total)

implicit none

integer :: count

real,intent(in) :: total

end function count

end interface

interface swap !generic interface

module procedure swap_reals,swap_integers

end interface

contains

function swap_reals !module procedure

...

end function swap_reals

function swap_integers !module procedure

...

end function swap_integers

end module example

Module Procedures
Module procedures have the same rules and organization as external procedures. They are
analogous to internal procedures, however, in that they have access to the data of the host
module. Only program units that use the host module have access to the module’s module
procedures. Procedures may be made local to the module by specifying the PRIVATE
attribute in a PRIVATE statement or in a type declaration statement within the module.

Using Modules
Information contained in a module may be made available within another program unit via
the USE statement. For example,

use set_module

would give the current scoping unit access to the names in module set_module. If a name
in set_module conflicts with a name in the current scoping unit, an error occurs only if that
name is referenced. To avoid such conflicts, the USE statement has an aliasing facility:

use set_module, a => b

Here the module entity b would be known as a in the current scoping unit.
56 Lahey/Fujitsu Fortran 95 Language Reference

Scope
Another way of avoiding name conflicts, if the module entity name is not needed in the cur-
rent scoping unit, is with the ONLY form of the USE statement:

use set_module, only : c, d

Here, only the names c and d are accessible to the current scoping unit.

Forward references to modules are not allowed in LF95. That is, if a module is used in the
same source file in which it resides, the module program unit must appear before its use.

Scope
Names of program units, common blocks, and external procedures have global scope. That
is, they may be referenced from anywhere in the program. A global name must not identify
more than one global entity in a program.

Names of statement function dummy arguments have statement scope. The same name may
be used for a different entity outside the statement, and the name must not identify more than
one entity within the statement.

Names of implied-do variables in DATA statements and array constructors have a scope of
the implied-do list. The same name may be used for a different entity outside the implied-
DO list, and the name must not identify more than one entity within the implied-DO list.

Other names have local scope. The local scope, called a scoping unit, is one of the following:

• a derived-type definition, excluding the name of the derived type.

• an interface body, excluding any derived-type definitions or interface bodies within
it.

• a program unit or subprogram, excluding derived-type component definitions, inter-
face bodies, and subprograms contained within it.

Names in a scoping unit may be referenced from a scoping unit contained within it, except
when the same name is declared in the inner, contained scoping unit. This is known as host
association. For example,
Lahey/Fujitsu Fortran 95 Language Reference 57

Chapter 1 Elements of Fortran
subroutine external ()
implicit none
integer :: a, b
...

contains

subroutine internal ()
implicit none
integer :: a
...
a=b ! a is the local a;

! b is available by host association
...

end subroutine internal

...
end subroutine external

In the statement a=b, above, a is the a declared in subroutine internal, not the a declared
in subroutine external. b is available from external by host association.

Data Sharing
To make an entity available to more than one program unit, pass it as an argument, place it
in a common block (see “COMMON Statement” on page 88), or declare it in a module and
use the module (see “Module Program Units” on page 55).
58 Lahey/Fujitsu Fortran 95 Language Reference

2 Alphabetical
Reference
ABS Function

Description
Absolute value.

Syntax
ABS (a)

Arguments
a must be of type REAL, INTEGER, or COMPLEX.

Result
If a is of type INTEGER or REAL, the result is of the same type as a and has the value |a|; if
a is COMPLEX with value (x,y), the result is a REAL representation of .

Example
x = abs(-4.2) ! x is assigned the value 4.2

ACHAR Function

Description
Character in a specified position of the ASCII collating sequence.

x2 y2+
Lahey/Fujitsu Fortran 95 Language Reference 59

Chapter 2 Alphabetical Reference
Syntax
ACHAR (i)

Arguments
i must be of type INTEGER.

Result
A CHARACTER of length one that is the character in position (i) of the ASCII collating
sequence.

Example
c = achar(65) ! c is assigned the value 'A'

ACOS Function
Description
Arccosine.

Syntax
ACOS (x)

Arguments
x must be of type REAL and must be within the range .

Result
A REAL representation, expressed in radians, of the arccosine of x.

Example
r = acos(.5) ! r is assigned the value 1.04720

ADJUSTL Function
Description
Adjust to the left, removing leading blanks and inserting trailing blanks.

1– x 1≤ ≤
60 Lahey/Fujitsu Fortran 95 Language Reference

ADJUSTR Function
Syntax
ADJUSTL (string)

Arguments
string must be of type CHARACTER.

Result
A CHARACTER of the same length and kind as string. Its value is the same as that of string
except that any leading blanks have been deleted and the same number of trailing blanks has
been inserted.

Example
adjusted = adjustl(' string')

! adjusted is assigned the value 'string '

ADJUSTR Function
Description
Adjust to the right, removing trailing blanks and inserting leading blanks.

Syntax
ADJUSTR (string)

Arguments
string must be of type CHARACTER.

Result
A CHARACTER of the same length and kind as string. Its value is the same as that of string
except that any trailing blanks have been deleted and the same number of leading blanks has
been inserted.

Example
adjusted = adjustr('string ')

! adjusted is assigned the value ' string'

AIMAG Function
Description
Imaginary part of a complex number.
Lahey/Fujitsu Fortran 95 Language Reference 61

Chapter 2 Alphabetical Reference
Syntax
AIMAG (z)

Arguments
z must be of type COMPLEX.

Result
A REAL with the same kind as z. If z has the value (x,y) then the result has the value y.

Example
r = aimag(-4.2,5.1) ! r is assigned the value 5.1

AINT Function
Description
Truncation to a whole number.

Syntax
AINT (a, kind)

Required Arguments
a must be of type REAL.

Optional Arguments
kind must be a scalar INTEGER expression that can be evaluated at compile time.

Result
A REAL value with the kind specified by kind, if present; otherwise with the kind of a. The
result is equal to the value of a without its fractional part.

Example
r = aint(-7.32,2) ! r is assigned the value -7.0

! with kind 2

ALL Function
Description
Determine whether all values in a mask are true along a given dimension.
62 Lahey/Fujitsu Fortran 95 Language Reference

ALLOCATABLE Statement
Syntax
ALL (mask, dim)

Required Arguments
mask must be of type LOGICAL. It must not be scalar.

Optional Arguments
dim must be a scalar of type INTEGER with a value within the range , where n is
the rank of mask. The corresponding actual argument must not be an optional dummy
argument.

Result
The result is of type LOGICAL with the same kind as MASK. Its value and rank are com-
puted as follows:

1. If dim is absent or mask has rank one, the result is scalar. The result has the value
true if all elements of mask are true.

2. If dim is present or mask has rank two or greater, the result is an array of rank n-1 and
of shape where is the shape
of mask and n is the rank of mask. The result has the value true for each correspond-
ing vector in mask that evaluates to true for all elements in that vector.

Example
integer, dimension (2,3) :: a, b
logical, dimension (2) :: c
logical, dimension (3) :: d
logical :: e
a = reshape((/1,2,3,4,5,6/), (/2,3/))

! represents |1 3 5|
|2 4 6|

b = reshape((/1,2,3,5,6,4/), (/2,3/))
! represents |1 3 6|

|2 5 4|
e = all(a==b) ! e is assigned the value false
d = all(a==b, 1)! d is assigned the value true,false,

! false
c = all(a==b, 2)! c is assigned the value false,false

ALLOCATABLE Statement
Description
The ALLOCATABLE statement declares allocatable arrays. The shape of an allocatable
array is determined when space is allocated for it by an ALLOCATE statement.

1 x n≤ ≤

d1 d2 … ddim 1– ddim 1+ … dn, , , , , ,() d1 d2 … dn, , ,()
Lahey/Fujitsu Fortran 95 Language Reference 63

Chapter 2 Alphabetical Reference
Syntax
ALLOCATABLE [::] array-name [(deferred-shape)] [, array-name (deferred-
shape)] ...

Where:
array-name is the name of an array.

deferred-shape is : [, :] ... where the number of colons is equal to the rank of array-name.

Remarks
If the DIMENSION of array-name is specified elsewhere in the scoping unit, it must be spec-
ified as a deferred-shape.

Example
integer :: a, b, c(:,:,:) ! rank of c is specified

dimension b(:,:) ! rank of b is specified

allocatable a(:), b, c ! rank of a is specified,

! a,b, and c are allocatable

allocate (a(2), b(3,-1:1), c(10,10,10))

! shapes specified,

! space allocated

...

deallocate (a,b,c) ! space deallocated

ALLOCATE Statement
Description
For an allocatable array the ALLOCATE statement defines the bounds of each dimension
and allocates space for the array.

For a pointer the ALLOCATE statement creates an object that implicitly has the TARGET
attribute and associates the pointer with that target.

Syntax
ALLOCATE (allocation-list [, STAT = stat-variable])

Where:
allocation-list is a comma-separated list of pointers or allocatable arrays and, for each allo-
catable array, a list of dimension bounds, ([lower-bound :] upper-bound [, ...])

upper bound and lower-bound are scalar INTEGER expressions.

stat-variable is a scalar INTEGER variable.
64 Lahey/Fujitsu Fortran 95 Language Reference

ALLOCATE Statement
Remarks
If the optional STAT= is present and the ALLOCATE statement succeeds, stat-variable is
assigned the value zero. If STAT= is present and the ALLOCATE statement fails, stat-vari-
able is assigned the number of the error message generated at runtime.

If an error condition occurs during execution of an ALLOCATE statement that does not con-
tain the STAT= specifier, execution of the executable program is terminated.

For an allocatable array:
1. Subsequent redefinition of lower-bound or upper-bound does not affect the array

bounds.

2. If lower-bound is omitted, the default value is one.

3. If upper-bound is less than lower-bound, the extent of that dimension is zero and the
array has zero size.

4. The allocatable array can be of type CHARACTER with zero length.

5. Allocating a currently allocated allocatable array causes an error condition in the
ALLOCATE statement.

6. The ALLOCATED intrinsic function can be used to determine whether an allocat-
able array is currently allocated.

For a pointer:
1. If a pointer that is currently associated with a target is allocated, a new pointer target

is created and the pointer is associated with that target.

2. The ASSOCIATED intrinsic function can be used to determine whether a pointer is
currently associated with a target.

3. A function whose result is a pointer must cause the pointer to be associated or
dissociated.

Example
logical :: l,m

integer, pointer :: i

integer, allocatable, dimension (:,:) :: j

l = associated (i) ! l is assigned the value false

m = allocated (j) ! m is assigned the value false

allocate (j(4,-2:3))! shape of J defined,

! space allocated

allocate (i) ! i points to unnamed target

l = associated (i) ! l is assigned the value true

m = allocated (j) ! m is assigned the value true

...

deallocate (i,j) ! space deallocated
Lahey/Fujitsu Fortran 95 Language Reference 65

Chapter 2 Alphabetical Reference
ALLOCATED Function
Description
Indicate whether an allocatable array has been allocated.

Syntax
ALLOCATED (array)

Arguments
array must be an allocatable array.

Result
The result is a scalar of default LOGICAL type. It has the value true if array is currently
allocated and false if array is not currently allocated. The result is undefined if the allocation
status of array is undefined.

Example
integer, allocatable :: i(:,:)

allocate (i(2,3))

l = allocated (i) ! l is assigned the value true

ANINT Function
Description
REAL representation of the nearest whole number.

Syntax
ANINT (a, kind)

Required Arguments
a must be of type REAL.

Optional Arguments
kind must be a scalar INTEGER expression that can be evaluated at compile time.

Result
The result is of type REAL. If kind is present, the kind is that specified by kind; otherwise,
it is the kind of a. If a > 0, the result has the value INT(a + 0.5); if , the result has the
value INT(a - 0.5).

a 0≤
66 Lahey/Fujitsu Fortran 95 Language Reference

ANY Function
Example
x = anint (7.73) ! x is assigned the value 8.0

ANY Function
Description:
Determine whether any values are true in a mask along a given dimension.

Syntax
ANY (mask, dim)

Required Arguments
mask must be of type LOGICAL. It must not be scalar.

Optional Arguments
dim must be a scalar of type INTEGER with a value within the range , where n is
the rank of mask. The corresponding actual argument must not be an optional dummy
argument.

Result
The result is of type LOGICAL with the same kind as mask. Its value and rank are computed
as follows:

1. If dim is absent or mask has rank one, the result is scalar. The result has the value
true if any elements of mask are true.

2. If dim is present or mask has rank two or greater, the result is an array of rank n-1 and
of shape where is the shape
of mask and n is the rank of mask. The result has the value true for each correspond-
ing vector in mask that evaluates to true for any element in that vector.

1 x n≤ ≤

d1 d2 … ddim 1– ddim 1+ … dn, , , , , ,() d1 d2 … dn, , ,()
Lahey/Fujitsu Fortran 95 Language Reference 67

Chapter 2 Alphabetical Reference
Example
integer, dimension (2,3) :: a, b
logical, dimension (2) :: c
logical, dimension (3) :: d
logical :: e
a = reshape((/1,2,3,4,5,6/), (/2,3/))

! represents |1 3 5|
|2 4 6|

b = reshape((/1,2,3,5,6,4/), (/2,3/))
! represents |1 3 6|

|2 5 4|
e = any(a==b) ! e is assigned the value true
d = any(a==b, 1)! d is assigned the value true, true,

! false
c = any(a==b, 2)! c is assigned the value true, true

Arithmetic IF Statement (obsolescent)
Description
Execution of an arithmetic IF statement causes evaluation of an expression followed by a
transfer of control. The branch target statement identified by the first, second, or third label
is executed next if the value of the expression is less than zero, equal to zero, or greater than
zero, respectively.

Syntax
IF (expr) label, label, label

Where:
expr is a scalar numeric expression.

label is a statement label.

Remarks
Each label must be the label of a branch target statement that appears in the same scoping
unit as the arithmetic IF statement.

expr must not be of type COMPLEX.

The same label can appear more than once in one arithmetic IF statement.

Example
if (b) 10,20,30 ! goto 10 if b<0

! goto 20 if b=0
! goto 30 if b>0
68 Lahey/Fujitsu Fortran 95 Language Reference

ASIN Function
ASIN Function
Description
Arcsine.

Syntax
ASIN (x)

Arguments
x must be of type REAL and must be in the range .

Result
The result has the same kind as x. Its value is a REAL representation of the arcsine of x,
expressed in radians.

Example
r = asin(.5) ! r is assigned the value 0.523599

Assigned GOTO Statement (obsolescent)
Description
The assigned GOTO statement causes a transfer of control to the branch target statement indi-
cated by a variable that was assigned a statement label in an ASSIGN statement. If the
parenthesized list of labels is present, the variable must be one of the labels in the list.

Syntax
GOTO assign-variable [[,] (labels)]

Where:
assign-variable is a scalar INTEGER variable that was assigned a label in an ASSIGN
statement.

labels is a comma-separated list of statement labels.

Remarks
At the time of execution of the GOTO statement, assign-variable must be defined with the
value of a label of a branch target statement in the same scoping unit.

Example
assign 100 to i
goto i

100 continue

1– x 1≤ ≤
Lahey/Fujitsu Fortran 95 Language Reference 69

Chapter 2 Alphabetical Reference
ASSIGN Statement (obsolescent)
Description
Assigns a statement label to an INTEGER variable.

Syntax
ASSIGN label TO assign-variable

Where:
label is a statement label.

assign-variable is a scalar INTEGER variable.

Remarks
assign-variable must be a named variable of default INTEGER kind. It must not be a struc-
ture component or an array element.

label must be the target of a branch target statement or the label of a FORMAT statement in
the same scoping unit.

When defined with an INTEGER value, assign-variable must not be used as a label.

When assigned a label, assign-variable must not be used as anything except a label.

Example
assign 100 to i

goto i

100 continue

Assignment Statement
Description
Assigns the value of the expression on the right side of the equal sign to the variable on the
left side of the equal sign.

Syntax
variable = expression

Where:
variable is a scalar variable, an array, or a variable of derived type.

expression is an expression whose result is conformable with variable.
70 Lahey/Fujitsu Fortran 95 Language Reference

Assignment Statement
Remarks
A numeric variable can only be assigned a numeric; a CHARACTER variable can only be
assigned a CHARACTER with the same kind; a LOGICAL variable can only be assigned a
LOGICAL; and a derived type variable can only be assigned the same derived type.

Evaluation of expression takes place before the assignment. If the kind of expression is dif-
ferent from that of variable, the result of expression undergoes an implicit type conversion
to the kind and type of variable. Precision can be lost.

If expression is array-valued, then variable must be an array. If expression is scalar and vari-
able is an array, all elements of variable are assigned the value of expression.

If variable is a pointer, it must be associated with a target. The target is assigned the value
of expression.

If variable and expression are of CHARACTER type with different lengths, expression is
truncated if longer than variable, and padded on the right with blanks if expression is shorter
than variable.

Example
real :: a=1.5, b(10)

integer :: i=2, j(10)

character (len = 5) :: string5 = "abcde"

character (len = 7) :: string7 = "cdefghi"

type person

integer :: age

character (len = 25) :: name

end type person

type (person) :: person1, person2

i = a ! i is assigned int(a)

i = j ! error

j = i ! each element in j assigned

! the value 2

j = b ! each element in j assigned

! corresponding value in b

! converted to integer

string5 = string7 ! string5 is assigned "cdefg"

string7 = string5 ! string7 is assigned "abcde "

person1 % age = 5

person1 % name = "john"

person2 = person1 ! each component of person2 is

! assigned the value of the

! corresponding component

! of person1
Lahey/Fujitsu Fortran 95 Language Reference 71

Chapter 2 Alphabetical Reference
ASSOCIATED Function
Description
Indicate whether a pointer is associated with a target.

Syntax
ASSOCIATED (pointer, target)

Required Arguments
pointer must be a pointer whose pointer association status is not undefined.

Optional Arguments
target must be a pointer or target. If it is a pointer, its pointer association status must not be
undefined.

Result
The result is of type default LOGICAL. If target is absent, the result is true if pointer is cur-
rently associated with a target and false if it is not. If target is present and is a target, the
result is true if pointer is currently associated with target and false if it is not. If target is
present and is a pointer, the result is true if both pointer and target are currently associated
with the same target and false if they are not.

Example
real, pointer :: a, b, e

real, target :: c, f

logical :: l

a => c

b => c

e => f

l = associated (a) ! l is assigned the value true

l = associated (a, c) ! l is assigned the value true

l = associated (a, b) ! l is assigned the value true

l = associated (a, f) ! l is assigned the value false

l = associated (a, e) ! l is assigned the value false

ATAN Function
Description
Arctangent.
72 Lahey/Fujitsu Fortran 95 Language Reference

ATAN2 Function
Syntax
ATAN (x)

Arguments
x must be of type REAL.

Result
The result is a REAL representation of the arctangent of x, expressed in radians, that lies
within the range .

Example
a = atan(.5) ! a is assigned the value 0.463648

ATAN2 Function
Description
Arctangent of y/x (principal value of the argument of the complex number (x,y)).

Syntax
ATAN2 (y, x)

Arguments
y must be of type REAL.

x must be of the same kind as y. If y has the value zero, x must not have the value zero.

Result
The result is of the same kind as x. Its value is a REAL representation, expressed in radians,
of the argument of the complex number (x,y).

Example
x = atan2 (1, 1) ! x is assigned the value 0.785398

BACKSPACE Statement
Description
The BACKSPACE statement positions the file before the current record if there is a current
record, otherwise before the preceding record.

π 2⁄– x π 2⁄≤ ≤
Lahey/Fujitsu Fortran 95 Language Reference 73

Chapter 2 Alphabetical Reference
Syntax
BACKSPACE unit-number

or
BACKSPACE (position-spec-list)

Where:
unit-number is a scalar INTEGER expression corresponding to the input/output unit number
of an external file.

position-spec-list is [[UNIT =] unit-number][, ERR = label][, IOSTAT = stat] where
UNIT=, ERR=, and IOSTAT= can be in any order but if UNIT= is omitted, then unit-number
must be first.

label is a statement label that is branched to if an error condition occurs during execution of
the statement.

stat is a variable of type INTEGER that is assigned a positive value if an error condition
occurs, a negative value if an end-of-file or end-of-record condition occurs, and zero
otherwise.

Remarks
If there is no current record and no preceding record, the file position is left unchanged.

If the preceding record is an endfile record, the file is positioned before the endfile record.

If the BACKSPACE statement causes the implicit writing of an endfile record, the file is
positioned before the record that precedes the endfile record.

Backspacing a file that is connected but does not exist is prohibited.

Backspacing over records using list-directed or namelist formatting is prohibited.

Example
backspace 10 ! file connected to unit 10 backspaced

backspace (10, err = 100)

! file connected to unit 10 backspaced

! on error goto label 100

BIT_SIZE Function
Description
Size, in bits, of a data object of type INTEGER.
74 Lahey/Fujitsu Fortran 95 Language Reference

BLOCK DATA Statement
Syntax
BIT_SIZE (i)

Arguments
i must be of type INTEGER.

Result
The result has the same kind as i. Its value is equal to the number of bits in i.

Example
integer :: i, m

integer, dimension (2) :: j, n

m = bit_size (i) ! m is assigned the value 32

n = bit_size (j) ! n is assigned the value [32 32]

BLOCK DATA Statement
Description
The BLOCK DATA statement begins a block data program unit.

Syntax
BLOCK DATA [block-data-name]

Where:
block-data-name is an optional name given to the block data program unit.

Example
block data mydata

common /d/ a, b, c

data a/1.0/, b/2.0/, c/3.0/

end block data mydata

BTEST Function
Description
Test a bit of an INTEGER data object.
Lahey/Fujitsu Fortran 95 Language Reference 75

Chapter 2 Alphabetical Reference
Syntax
BTEST (i, pos)

Arguments
i must be of type INTEGER.

pos must be of type INTEGER. It must be non-negative and less than BIT_SIZE (i). Bits
are numbered from least significant to most significant, beginning with 0.

Result
The result is of type default LOGICAL. It has the value true if bit pos has the value 1 and
false if bit pos has the value zero.

Example
l = btest (1, 0) ! l is assigned the value true

l = btest (4, 1) ! l is assigned the value false

l = btest (32, 5) ! l is assigned the value true

CALL Statement
Description
The CALL statement invokes a subroutine and passes to it a list of arguments.

Syntax
CALL subroutine-name [([actual-arg-list])]

Where:
subroutine-name is the name of a subroutine.

actual-arg-list is [[keyword =] actual-arg] [, ...]

keyword is the name of a dummy argument to subroutine-name.

actual-arg is an expression, a variable, a procedure name, or an alternate-return-spec.

alternate-return-spec is *label

label is a statement label.

Remarks
General:
actual-arg-list defines the correspondence between the actual-args supplied and the dummy
arguments of the subroutine.
76 Lahey/Fujitsu Fortran 95 Language Reference

CALL Statement
If keyword = is present, the actual argument is passed to the dummy argument whose name
is the same as keyword. If a keyword = is absent, the actual argument is passed to the dummy
argument in the corresponding position in the dummy argument list.

keyword = must appear with an actual-arg unless no previous keyword = has appeared in the
actual-arg-list.

keyword = can only appear if the interface of the procedure is explicit in the scoping unit.

An actual-arg can be omitted if the corresponding dummy argument has the OPTIONAL
attribute. Each actual-arg must be associated with a corresponding dummy argument.

Data objects as arguments:
An actual argument must be of the same kind as the corresponding dummy argument.

If the dummy argument is an assumed-shape array of type default CHARACTER, its length
must agree with that of the corresponding actual argument.

The total length of a dummy argument of type default CHARACTER must be less than or
equal to that of the corresponding actual argument.

If the dummy argument is a pointer, the actual argument must be a pointer and the types, type
parameters, and ranks must agree. At the invocation of the subroutine, the dummy argument
pointer receives the pointer association status of the actual argument. At the end of the sub-
routine, the actual argument receives the pointer association status of the dummy argument.

If the actual argument has the TARGET attribute, any pointers associated with it remain asso-
ciated with the actual argument. If the dummy argument has the TARGET attribute, any
pointers associated with it become undefined when the subroutine completes.

The ranks of dummy arguments and corresponding actual arguments must agree unless the
actual argument is an element of an array that is not an assumed-shape or pointer array, or a
substring of such an element.

Procedures as arguments:
If a dummy argument is a dummy procedure, the associated actual argument must be the spe-
cific name of an external, module, dummy, or intrinsic procedure.

The intrinsic functions AMAX0, AMAX1, AMIN0, AMIN1, CHAR, DMAX1, DMIN1,
FLOAT, ICHAR, IDINT, IFIX, INT, LGE, LGT, LLE, LLT, MAX0, MAX1, MIN0, MIN1,
REAL, and SNGL are not permitted as actual arguments.

If a generic intrinsic function name is also a specific name, only the specific procedure is
associated with the dummy argument.

If a dummy procedure has an implicit interface either the name of the dummy argument is
explicitly typed or the procedure is referenced as a function. The dummy procedure must not
be called as a subroutine and the actual argument must be a function or dummy procedure.

If a dummy procedure has an implicit interface and the procedure is called as a subroutine,
the actual argument must be a subroutine or a dummy procedure.
Lahey/Fujitsu Fortran 95 Language Reference 77

Chapter 2 Alphabetical Reference
Alternate returns as arguments:
If a dummy argument is an asterisk, the corresponding actual argument must be an alternate-
return-spec. The label in the alternate-return-spec must identify an executable construct in
the scoping unit containing the procedure reference.

Example
...
call alpha (x, y)
...
subroutine alpha (a, b)

implicit none
real, intent(in) :: a
real, intent(out) :: b
...

end subroutine alpha

CARG Function
Description
Pass item to a procedure as a C data type by value. CARG can only be used as an actual
argument.

Syntax
CARG (item)

Arguments
item can be a named data object of any intrinsic type except COMPLEX and four-byte LOG-
ICAL. It is the data object for which to return a value. item is an INTENT(IN) argument.
78 Lahey/Fujitsu Fortran 95 Language Reference

CASE Construct
Result
The result is the value of item. Its C data type is as follows:

Example
i = my_c_function(carg(a)) ! a is passed by value

CASE Construct
Description
The CASE construct is used to select between blocks of executable code based on the value
of an expression.

Table 8: CARG result types

Fortran Type Fortran Kind C type

INTEGER 1 signed char

INTEGER 2 signed short int

INTEGER 4 signed long int

REAL 4 float

COMPLEX 4

must not be passed by value; if
passed by reference (without
CARG) it is a pointer to a structure
of the form:

 struct complex {
 float real_part;
 float imaginary_part;};

LOGICAL 1 unsigned char

LOGICAL 4 must not be passed by value or by
reference

CHARACTER 1 char *
Lahey/Fujitsu Fortran 95 Language Reference 79

Chapter 2 Alphabetical Reference
Syntax
[construct-name :] SELECT CASE (case-expr)
CASE (case-selector [, case-selector] ...) [construct-name]

block
...

[CASE DEFAULT [construct-name]]
block
...

END SELECT [construct-name]

Where:
construct-name is an optional name for the CASE construct

case-expr is a scalar expression of type INTEGER, LOGICAL, or CHARACTER

case-selector is case-value
or : case-value
or case-value :
or case-value : case-value

case-value is a constant scalar LOGICAL, INTEGER, or CHARACTER expression.

block is a sequence of zero or more statements or executable constructs.

Remarks
Execution of a SELECT CASE statement causes the case expression to be evaluated (see
SELECT CASE). The resulting value is called the case index. If the case index is in the
range specified with a CASE statement’s case-selector, the block following the CASE state-
ment, if any, is executed. The case-selector is evaluated as follows:

case-value means equal to case-value;

: case-value means less than or equal to case-value;

case-value : means greater than or equal to case-value; and

case-value : case-value means greater than or equal to the left case-value, and less than
or equal to the right case-value.

The block following a CASE DEFAULT, if any, is executed if the case index matches none
of the case-values in the case construct. CASE DEFAULT can appear before, among, or
after other CASE statements, or can be omitted.

Each case-value must be of the same kind as the case construct’s case index.

The ranges of case-values in a case construct must not overlap.

Only one CASE DEFAULT is allowed in a given case construct.
80 Lahey/Fujitsu Fortran 95 Language Reference

CASE Statement
If the SELECT CASE statement is identified by a construct-name, the corresponding END
SELECT statement must be identified by the same construct name. If the SELECT CASE
statement is not identified by a construct-name, the corresponding END SELECT statement
must not be identified by a construct-name. If a CASE statement is identified by a construct-
name, the corresponding SELECT CASE statement must specify the same construct-name.

Example
select case (i)

case (:-2)

print*, "i is less than or equal to -2"

case (0)

print*, "i is equal to 0"

case (1:97)

print*, "i is in the range 1 to 97, inclusive"

case default

print*, "i is either -1 or greater than 97"

end select

CASE Statement

Description
Execution of a SELECT CASE statement causes the case expression to be evaluated (see
SELECT CASE). The resulting value is called the case index. If the case index is in the
range specified with a CASE statement's case-selector, the block following the CASE state-
ment, if any, is executed. The case-selector is evaluated as follows:

case-value means equal to case-value;

: case-value means less than or equal to case-value;

case-value : means greater than or equal to case-value; and

case-value : case-value means greater than or equal to the left case-value, and less than
or equal to the right case-value.

The block following a CASE DEFAULT, if any, is executed if the case index matches none
of the case-values in the case construct.
Lahey/Fujitsu Fortran 95 Language Reference 81

Chapter 2 Alphabetical Reference
Syntax
CASE (case-selector [, case-selector] ...) [construct-name]

or
CASE DEFAULT [construct-name]

Where:
case-selector is case-value
or : case-value
or case-value :
or case-value : case-value

case-value is a constant scalar LOGICAL, INTEGER, or CHARACTER expression.

construct-name is an optional name assigned to the construct.

Remarks
Each case-value must be of the same kind as the case construct's case index.

The ranges of case-values in a case construct must not overlap.

Only one CASE DEFAULT is allowed in a given case construct.

If a CASE statement is identified by a construct-name, the corresponding SELECT CASE
statement must specify the same construct-name.

Example
select case (i)

case (:-2)

print*, "i is less than or equal to -2"

case (0)

print*, "i is equal to 0"

case (1:97)

print*, "i is in the range 1 to 97, inclusive"

case default

print*, "i is either -1 or greater than 97"

end select

CEILING Function
Description
Smallest INTEGER greater than or equal to a number.
82 Lahey/Fujitsu Fortran 95 Language Reference

CHAR Function
Syntax
CEILING (a, kind)

Required Arguments
a must be of type REAL.

Optional Arguments
kind must be a scalar INTEGER expression that can be evaluated at compile time.

Result
The result is an INTEGER whose value is the smallest integer greater than or equal to a. If
kind is present, the kind is that specified by kind. If kind is absent, the kind is that of the
default REAL type.

Example
i = ceiling (-4.7) ! i is assigned the value -4
i = ceiling (4.7) ! i is assigned the value 5

CHAR Function
Description
Given character in the collating sequence of a given character set.

Syntax
CHAR (i, kind)

Required Arguments
i must be of type INTEGER. It must be positive and not greater than the number of characters
in the collating sequence of the character set specified by kind.

Optional Arguments
kind must be a scalar INTEGER expression that can be evaluated at compile time.

Result
The result is a CHARACTER of length one corresponding to the ith character of the given
character set. If kind is present, the kind is that specified by kind. If kind is absent, the kind
is that of the default CHARACTER type.

Example
c = char(65) ! char is assigned the value 'A'

! with ASCII the default character type
Lahey/Fujitsu Fortran 95 Language Reference 83

Chapter 2 Alphabetical Reference
CHARACTER Statement
Description
The CHARACTER statement declares entities of type CHARACTER.

Syntax
CHARACTER [char-selector] [, attribute-list ::] entity [, entity] ...

Where:
char-selector is length-selector
or (LEN = type-param, KIND = kind-param)
or (type-param, KIND = kind-param)
or (KIND = kind-param, LEN = type-param,)

length-selector is ([LEN =] type-param)
or * char-length

char-length is (type-param)
or scalar-int-literal-constant

type-param is specification-expr
or *

specification-expr is a scalar INTEGER expression that can be evaluated on entry to the pro-
gram unit.

kind-param is a scalar INTEGER expression that can be evaluated at compile time.

attribute-list is a comma-separated list from the following attributes: PARAMETER, ALLO-
CATABLE, DIMENSION(array-spec), EXTERNAL, INTENT (IN) or INTENT (OUT) or
INTENT (IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE,
TARGET.

entity is entity-name [(array-spec)] [* char-length] [= initialization-expr]
or function-name [(array-spec)] [* char-length]

array-spec is an array specification

initialization-expr is a CHARACTER-valued expression that can be evaluated at compile
time

entity-name is the name of a data object being declared

function-name is the name of a function being declared

Remarks
If char-length is not specified, the length is one.

An asterisk can be used for char-length only in the following ways:
84 Lahey/Fujitsu Fortran 95 Language Reference

CHARACTER Statement
1. If the entity is a dummy argument. The dummy argument assumes the length of the
associated actual argument.

2. To declare a named constant. The length is that of the constant value.

3. In an external function, as the length of the function result. In this case, the function
name must be declared in the calling scoping unit with a length other than *, or access
such a definition by host or use association. The length of the result variable is
assumed from this definition.

char-length for CHARACTER-valued statement functions and statement function dummy
arguments must be a constant INTEGER expression.

The optional comma following * char-length in a char-selector is permitted only if no double
colon appears in the statement.

The value of kind must specify a character set that is valid for this compiler.

char-length must not include a kind parameter.

The * char-length in entity specifies the length of a single entity and overrides the length
specified in char-selector.

The same attribute must not appear more than once in a CHARACTER statement.

function-name must be the name of an external, intrinsic, or statement function, or a function
dummy procedure.

The = initialization-expr must appear if the statement contains a PARAMETER attribute.

If = initialization-expr appears, a double colon must appear before the list of entities. Each
entity has the SAVE attribute, unless it is in a named common block.

The = initialization-expr must not appear if entity-name is a dummy argument, a function
result, an object in a named common block unless the type declaration is in a block data pro-
gram unit, an object in blank common, an allocatable array, a pointer, an external name, an
intrinsic name, or an automatic object.

An array declared with a POINTER or an ALLOCATABLE attribute must be specified with
a deferred shape.

An array-spec for a function-name that does not have the POINTER attribute or the ALLO-
CATABLE attribute must be specified with an explicit shape.

An array-spec for a function-name that does have the POINTER attribute or the ALLOCAT-
ABLE attribute must be specified with a deferred shape.

If the POINTER attribute is specified, the TARGET, INTENT, EXTERNAL, or INTRINSIC
attribute must not be specified.

If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or
PARAMETER attribute must not be specified.
Lahey/Fujitsu Fortran 95 Language Reference 85

Chapter 2 Alphabetical Reference
The PARAMETER attribute must not be specified for dummy arguments, pointers, allocat-
able arrays, functions, or objects in a common block.

The INTENT and OPTIONAL attributes can be specified only for dummy arguments.

An entity must not have the PUBLIC attribute if its type has the PRIVATE attribute.

The SAVE attribute must not be specified for an object that is in a common block, a dummy
argument, a procedure, a function result, or an automatic data object.

An entity must not have the EXTERNAL attribute if it has the INTRINSIC attribute.

An entity in a CHARACTER statement must not have the EXTERNAL or INTRINSIC
attribute specified unless it is a function.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute.

An entity must not be given explicitly any attribute more than once in a scoping unit.

If char-length is a non-constant expression, the length is declared at the entry of the proce-
dure and is not affected by any redefinition of the variables in the specification expression
during execution of the procedure.

Example
character (len=2) :: x,y,z ! x,y,z of length 2

character(len = *) :: d ! length of dummy d

! determined when

! procedure invoked

CLOSE Statement
Description
The CLOSE statement terminates the connection of a specified unit to an external file.

Syntax
CLOSE (close-spec-list)

Where:
close-spec-list is a comma-separated list of close-specs.

close-spec is [UNIT =] external-file-unit
or IOSTAT = iostat
or ERR = label
or STATUS = status

external-file-unit is the input/output unit number of an external file.
86 Lahey/Fujitsu Fortran 95 Language Reference

CMPLX Function
iostat is a scalar default INTEGER variable. If present, it is assigned the number of the error
message generated at runtime if an error occurs in executing the CLOSE statement and the
program is not terminated; if no error occurs it is assigned the value zero.

label is the label of a branch target statement to which the program branches if there is an
error in executing the CLOSE statement.

status is a CHARACTER expression that evaluates to either 'KEEP' or 'DELETE'.

Remarks
external-file-unit is required. If UNIT = is omitted, external-file-unit must be the first spec-
ifier in close-spec-list.

A specifier must not appear more than once in a CLOSE statement.

STATUS = 'KEEP' must not be specified for a file whose status prior to execution of a
CLOSE statement is SCRATCH. If KEEP is specified for a file that exists, the file continues
to exist after a CLOSE statement. This is the default behavior.

If STATUS = 'DELETE' is specified, the file will not exist after execution of the CLOSE
statement.

Example
close (8, status = 'keep') ! unit 8 closed and kept

close (err = 200, unit = 9) ! unit 9 closed; if error

! occurs, branch to label

! 200

CMPLX Function
Description
Convert to type COMPLEX.

Syntax
CMPLX (x, y, kind)

Required Arguments
x must be of type REAL, INTEGER, or COMPLEX.

Optional Arguments
y must be of type REAL or INTEGER. If x is of type COMPLEX, y must not be present.

kind must be a scalar INTEGER expression that can be evaluated at compile time.
Lahey/Fujitsu Fortran 95 Language Reference 87

Chapter 2 Alphabetical Reference
Result
The result is of type COMPLEX. If kind is present the result is of kind kind; otherwise, it is
of default kind. The value of the result is the complex number whose real part has the value
of x, if x is an INTEGER or a REAL; whose real part has the value of the real part of x, if x
is of type COMPLEX; and whose imaginary part has the value of y, if present, and zero
otherwise.

Example
y = cmplx (3.2, 4.7) ! y is assigned (3.2, 4.7)
z = cmplx (3.2) ! z is assigned (3.2, 0.0)

COMMON Statement
Description
The COMMON statement provides a global data facility. It specifies blocks of physical stor-
age, called common blocks, that can be accessed by any scoping unit in an executable
program.

Syntax
COMMON [/ [common-name] /] common-object-list [[,] / [common-name] /
common-object-list] ...

Where:
common-name is the name of a common block being declared.

common-object-list is a comma-separated list of data objects that are declared to be in the
common block.

Remarks
If common-name is present, all data objects in the corresponding common-object-list are
specified to be in the named common block named common-name. If common-name is omit-
ted, all data objects in the first common-object-list are specified to be in blank common.

For each common block, a storage sequence is formed of storage sequences of all data objects
in the common block, in the order they appear in common-object-lists in the scoping unit. If
any storage sequence is associated by equivalence association with the storage sequence of
the common block, the sequence can be extended only by adding storage units beyond the
last storage unit.

Within an executable program, the storage sequences of all common blocks with the same
name (or all blank commons) have the same first storage unit. This results in the association
of objects in different scoping units.

A blank common has the same properties as a named common, except:
88 Lahey/Fujitsu Fortran 95 Language Reference

COMMON Statement
1. Execution of a RETURN or END statement can cause data objects in a named com-
mon to become undefined unless the common block name has been declared in a
SAVE statement.

2. Named common blocks of the same name must be the same size in all scoping units
of a program in which they appear, but blank commons can be of different sizes.

3. A data object in a named common can be initially defined in a DATA or type decla-
ration statement in a block data program unit, but data objects in a blank common
must not be initially defined.

A common block name or blank common can appear multiple times in one or more COM-
MON statements in a scoping unit. In such case, the common-object-list is treated as a
continuation of the common-object-list for that common block.

A given data object can appear only once in all common-object-lists in a scoping unit.

A data object in a common-object-list must not be a dummy argument, an allocatable array,
an automatic object, a function name, an entry name, or a result name.

Each bound in an array-valued data object in a common-object-list must be a constant spec-
ification expression.

If a data object in a common-object-list is of a derived type, the derived type must have the
sequence attribute.

A pointer must only become associated with pointers of the same type, kind, length, and rank.

Default-type, non-pointer data objects must only become associated with default-type, non-
pointer data objects.

Non-default-type, non-pointer intrinsic data objects must only become associated with non-
default-type, non-pointer intrinsic data objects.

Default CHARACTER data objects must not become associated with default REAL, DOU-
BLE PRECISION, INTEGER, COMPLEX, DOUBLE COMPLEX, or LOGICAL data
objects.

Derived type data objects in which all components are of default numeric or LOGICAL types
can become associated with data objects of default numeric or LOGICAL types.

Derived type data objects in which all components are of default CHARACTER type can
become associated with data objects of type CHARACTER.

An EQUIVALENCE statement must not cause the storage sequences of two different com-
mon blocks to become associated.

An EQUIVALENCE statement must not cause storage units to be added before the first stor-
age unit of the common block.
Lahey/Fujitsu Fortran 95 Language Reference 89

Chapter 2 Alphabetical Reference
Example
common /first/ a,b,c ! a, b, and c are in named

! common first
common d,e,f, /second/, g ! d, e, and f are in blank

! common, g is in named
! common second

common /first/ h ! h is also in first

COMPLEX Statement
Description
The COMPLEX statement declares entities of type COMPLEX.

Syntax
COMPLEX [kind-selector] [[, attribute-list] ::] entity [, entity] ...

Where:
kind-selector is ([KIND =] scalar-int-initialization-expr)

scalar-int-initialization-expr is a scalar INTEGER expression that can be evaluated at com-
pile time.

attribute-list is a comma-separated list from the following attributes: PARAMETER, ALLO-
CATABLE, DIMENSION(array-spec), EXTERNAL, INTENT (IN) or INTENT (OUT) or
INTENT (IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE,
TARGET.

entity is entity-name [(array-spec)] [= initialization-expr]
or function-name [(array-spec)]

array-spec is an array specification.

initialization-expr is an expression that can be evaluated at compile time.

entity-name is the name of a data object being declared.

function-name is the name of a function being declared.

Remarks
The same attribute must not appear more than once in a COMPLEX statement.

function-name must be the name of an external, intrinsic, or statement function, or a function
dummy procedure.

= initialization-expr must appear if the statement contains a PARAMETER attribute.

If = initialization-expr appears, a double colon must appear before the list of entities. Each
entity has the SAVE attribute, unless it is in a named common block.
90 Lahey/Fujitsu Fortran 95 Language Reference

COMPLEX Statement
= initialization-expr must not appear if entity-name is a dummy argument, a function result,
an object in a named common block unless the type declaration is in a block data program
unit, an object in blank common, an allocatable array, a pointer, an external name, an intrin-
sic name, or an automatic object.

An array declared with a POINTER or an ALLOCATABLE attribute must be specified with
a deferred shape.

An array-spec for a function-name that does not have the POINTER attribute or the ALLO-
CATABLE attribute must be specified with an explicit shape.

An array-spec for a function-name that does have the POINTER attribute or the ALLOCAT-
ABLE attribute ust be specified with a deferred shape.

If the POINTER attribute is specified, the TARGET, INTENT, EXTERNAL, or INTRINSIC
attribute must not be specified.

If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or
PARAMETER attribute must not be specified.

The PARAMETER attribute must not be specified for dummy arguments, pointers, allocat-
able arrays, functions, or objects in a common block.

The INTENT and OPTIONAL attributes can be specified only for dummy arguments.

An entity must not have the PUBLIC attribute if its type has the PRIVATE attribute.

The SAVE attribute must not be specified for an object that is in a common block, a dummy
argument, a procedure, a function result, or an automatic data object.

An entity must not have the EXTERNAL attribute if it has the INTRINSIC attribute.

An entity in a COMPLEX statement must not have the EXTERNAL or INTRINSIC attribute
specified unless it is a function.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute.

An entity must not be given explicitly any attribute more than once in a scoping unit.

Example
complex :: a, b, c ! a, b, and c are of type complex

complex, dimension (2, 4) :: d

! d is a 2 by 4 array of complex

complex :: e = (2.0, 3.14159)

! complex e is initialized
Lahey/Fujitsu Fortran 95 Language Reference 91

Chapter 2 Alphabetical Reference
Computed GOTO Statement
Description
The computed GOTO statement causes transfer of control to one of a list of labeled
statements.

Syntax
GO TO (labels) [,] scalar-int-expr

Where:
labels is a comma-separated list of labels.

scalar-int-expr is a scalar INTEGER expression.

Remarks
Execution of a computed GOTO statement causes evaluation of scalar-int-expr. If this value
is i such that , where n is the number of labels in labels, a transfer of control occurs
so that the next statement executed is the one identified by the ith label in labels. If i is less
than 1 or greater than n, the execution sequence continues as though a CONTINUE statement
were executed.

Each label in labels must be the label of a branch target statement in the current scoping unit.

Example
goto (10,20,30) i

10 a = a+1 ! if i=1 control transfers here

20 a = a+1 ! if i=2 control transfers here

30 a = a+1 ! if i=3 control transfers here

CONJG Function
Description
Conjugate of a complex number.

Syntax
CONJG (z)

Arguments
z must be of type COMPLEX.

1 i n≤ ≤
92 Lahey/Fujitsu Fortran 95 Language Reference

CONTAINS Statement
Result
The result is of type COMPLEX and of the same kind as z. Its value is the same as that of z
with the imaginary part negated.

Example
x = conjg (2.1, -3.2) ! x is assigned

! the value (2.1, 3.2)

CONTAINS Statement
Description
The CONTAINS statement separates the body of a main program, module, or subprogram
from any internal or module subprograms it contains.

Syntax
CONTAINS

Remarks
The CONTAINS statement is not executable.

Internal procedures cannot contain other internal procedures.

Example
subroutine outside (a)

implicit none

real, intent(in) :: a

integer :: i, j

real :: x

...

call inside (i)

x = sin (3.89) ! not the intrinsic sin()

...

contains

subroutine inside (k) ! not available outside outside()

implicit none

integer, intent(in) :: k

...

end subroutine inside
Lahey/Fujitsu Fortran 95 Language Reference 93

Chapter 2 Alphabetical Reference
function sin (m) ! not available outside outside()

implicit none

real :: sin

real, intent(in) :: m

...

end function sin

end subroutine outside

CONTINUE Statement
Description
Execution of a CONTINUE statement has no effect.

Syntax
CONTINUE

Example
do 10 i=1,100

...

10 continue

COS Function
Description
Cosine.

Syntax
COS (x)

Arguments
x must be of type REAL or COMPLEX.

Result
The result is of the same type and kind as x. Its value is a REAL or COMPLEX representa-
tion of the cosine of x.

Example
r = cos(.5) ! r is assigned the value 0.877583
94 Lahey/Fujitsu Fortran 95 Language Reference

COSH Function
COSH Function
Description
Hyperbolic cosine.

Syntax
COSH (x)

Arguments
x must be of type REAL.

Result
The result is of the same type and kind as x. Its value is a REAL representation of the hyper-
bolic cosine of x.

Example
r = cosh(.5) ! r is assigned the value 1.12763

COUNT Function
Description
Count the number of true elements in a mask along a given dimension.

Syntax
COUNT (mask, dim)

Required Arguments
mask must be of type LOGICAL. It must not be scalar.

Optional Arguments
dim must be a scalar of type INTEGER with a value within the range , where n
is the rank of mask. The corresponding actual argument must not be an optional dummy
argument.

Result
The result is of type default INTEGER. Its value and rank are computed as follows:

1. If dim is absent or mask has rank one, the result is scalar. The result is the number
of elements for which mask is true.

1 dim n≤ ≤
Lahey/Fujitsu Fortran 95 Language Reference 95

Chapter 2 Alphabetical Reference
2. If dim is present or mask has rank two or greater, the result is an array of rank n-1 and
of shape where is the shape
of mask and n is the rank of mask. The result is the number of true elements for each
corresponding vector in mask.

Example
integer, dimension (2,3) :: a, b

integer, dimension (2) :: c

integer, dimension (3) :: d

integer :: e

a = reshape((/1,2,3,4,5,6/), (/2,3/))

! represents |1 3 5|

|2 4 6|

b = reshape((/1,2,3,5,6,4/), (/2,3/))

! represents |1 3 6|

|2 5 4|

e = count(a==b) ! e is assigned the value 3

d = count(a==b, 1)! d is assigned the value 2,1,0

c = count(a==b, 2)! c is assigned the value 2,1

CPU_TIME Subroutine

Description
Processor Time.

Syntax
CPU_TIME (time)

Required Arguments
time must be a scalar REAL. It is an INTENT (OUT) argument that is assigned the processor
time in seconds. Note that CPU_TIME only reflects the actual CPU time when the applica-
tion is compiled for Windows and run on NT or when the application is compiled for Linux
and run from Linux. Otherwise, CPU_TIME behaves like SYSTEM_CLOCK.

d1 d2 … ddim 1– ddim 1+ … dn, , , , , ,() d1 d2 … dn, , ,()
96 Lahey/Fujitsu Fortran 95 Language Reference

CSHIFT Function
Example
call cpu_time(start_time)

x = cos(2.0)

call cpu_time(end_time)

cos_time = end_time - start_time

! time to calculate and store the cosine of 2.0

CSHIFT Function
Description
Circular shift of all rank one sections in an array. Elements shifted out at one end are shifted
in at the other. Different sections can be shifted by different amounts and in different direc-
tions by using an array-valued shift.

Syntax
CSHIFT (array, shift, dim)

Required Arguments
array can be of any type. It must not be scalar.

shift must be of type INTEGER and must be scalar if array is of rank one; otherwise it must
be scalar or of rank n-1 and of shape , where

 is the shape of array.

Optional Arguments
dim must be a scalar INTEGER with a value in the range , where n is the rank of
array. If dim is omitted, it is as if it were present with the value one.

Result
The result is of the same type, kind, and shape as array.

If array is of rank one, the value of the result is the value of array circularly shifted shift ele-
ments. A shift of n performed on array gives a result value of array(1 + MODULO(i + n -
1, SIZE(array))) for element i.

If array is of rank two or greater, each complete vector along dimension dim is circularly
shifted shift elements. shift can be array-valued.

d1 d2 … ddim 1– ddim 1+ … dn, , , , , ,()
d1 d2 … dn, , ,()

1 dim n≤ ≤
Lahey/Fujitsu Fortran 95 Language Reference 97

Chapter 2 Alphabetical Reference
Example
integer, dimension (2,3) :: a, b
integer, dimension (3) :: c, d
integer :: e
a = reshape((/1,2,3,4,5,6/), (/2,3/))

! represents |1 3 5|
|2 4 6|

c = (/1,2,3/)
b = cshift(a,1) ! b is assigned the value |2 4 6|

! |1 3 5|
b = cshift(a,-1,2)! b is assigned the value |3 5 1|

! |4 6 2|
b = cshift(a,c,1) ! b is assigned the value |2 3 5|

! |1 4 6|
d = cshift(c,2) ! c is assigned the value |3 1 2|

CYCLE Statement
Description
The CYCLE statement curtails the execution of a single iteration of a DO loop.

Syntax
CYCLE [do-construct-name]

Where:
do-construct-name is the name of a DO construct that contains the CYCLE statement. If do-
construct-name is omitted, it is as if do-construct-name were the name of the innermost DO
construct in which the CYCLE statement appears.

Example
outer: do i=1, 10
inner: do j=1, 10

if (i>a) cycle outer
if (j>b) cycle ! cycles to inner
...

enddo inner
enddo outer

DATA Statement
Description
The DATA statement provides initial values for variables.
98 Lahey/Fujitsu Fortran 95 Language Reference

DATA Statement
Syntax
DATA data-stmt-set [[,] data-stmt-set] ...

Where:
data-stmt-set is object-list / value-list /

object-list is a comma-separated list of variable names or implied-dos.

value-list is a comma-separated list of [repeat *] data-constant

repeat is a scalar INTEGER constant.

data-constant is a scalar constant (either literal or named)
or a structure constructor.

implied-do is (implied-do-object-list , implied-do-var = expr, expr[, expr])

implied-do-object-list is a comma-separated list of array elements, scalar structure compo-
nents, or implied-dos.

implied-do-var is a scalar INTEGER variable.

expr is a scalar INTEGER expression.

Remarks
object-list is expanded to form a sequence of scalar variables. An array whose unqualified
name appears in an object-list is equivalent to a complete sequence of its array elements in
array element order. An array section is equivalent to the sequence of its array elements in
array element order. An implied-do is expanded to form a sequence of array elements and
structure components, under the control of the implied-do-var, as in the DO construct.

value-list is expanded to form a sequence of scalar constant values. Each such value must be
a constant that is either previously defined or made accessible by a use association or host
association. repeat indicates the number of times the following constant is to be included in
the sequence; omission of repeat has the effect of a repeat factor of 1.

The expanded sequences of scalar variables and constant values are in one-to-one correspon-
dence. Each constant specifies the initial value for the corresponding variable. The lengths
of the two expanded sequences must be the same.

A variable, or part of a variable, must not be initialized more than once in an executable
program.

A variable whose name is included in an object-list must not be: a dummy argument made
accessible by use association or host association; in a named common block unless the
DATA statement is in a block data program unit; in a blank common block; a function name;
a function result name; an automatic object; a pointer; or an allocatable array.

In an array element or a scalar structure component that is in an implied-do-object-list, any
subscript must be an expression whose primaries are either constants or implied-do-vars of
the containing implied-dos, and each operation must be intrinsic.
Lahey/Fujitsu Fortran 95 Language Reference 99

Chapter 2 Alphabetical Reference
expr must involve as primaries only constants or implied-do-vars of the containing implied-
dos, and each operation must be intrinsic.

The value of the constant must be compatible with its corresponding variable according to
the rules of intrinsic assignment, and the variable becomes initially defined with the value of
the constant in accordance with the rules of intrinsic assignment.

Example
real :: a
integer, dimension (-3:3) :: smallarray

integer, dimension (10000) :: bigarray
data a /3.78/, smallarray /7 * 1/

! assigns 3.78 to a and 1 to each
! element of smallarray

data (bigarray(i), i=1,10000,2) /5000*6/
! assigns 6 to each element that
! has an odd subscript value

DATE_AND_TIME Subroutine
Description
Date and real-time clock data.

Syntax
DATE_AND_TIME (date, time, zone, values)

Optional Arguments
date must be scalar and of type default CHARACTER, and must be of length at least eight
in order to contain the complete value. It is an INTENT (OUT) argument. Its leftmost eight
characters are set to a value of the form ccyymmdd, where cc is the century, yy the year within
the century, mm the month within the year, and dd the day within the month. If there is no
date available, they are set to blank.

time must be scalar and of type default CHARACTER, and must be of length at least ten in
order to contain the complete value. It is an INTENT (OUT) argument. Its leftmost ten char-
acters are set to a value of the form hhmmss.sss, where hh is the hour of the day, mm is the
minutes of the hour, and ss.sss is the seconds and milliseconds of the minute. If there is no
clock available, they are set to blank.

zone must be scalar and of type default CHARACTER, and must be of length at least five in
order to contain the complete value. It is an INTENT (OUT) argument. Its leftmost five
characters are set to a value of the form +-hhmm, where hh and mm are the time difference
with respect to Coordinated Universal Time (UTC, also known as Greenwich Mean Time) in
100 Lahey/Fujitsu Fortran 95 Language Reference

DATE_AND_TIME Subroutine
hours and parts of an hour expressed in minutes, respectively. If there is no clock available,
they are set to blank. To use the zone argument, you must first set the environment variable
TZ as follows:

set TZ=ZZZ[+/-]d[d][LLL]

where ZZZ is a three-character string representing the name of the current time zone; [+/-
]d[d] is a required field containing an optionally signed number with one or two digits rep-
resenting the local time zone’s difference from UTC in hours (negative numbers adjust
eastward from UTC); and [LLL] is an optional three-character field that represents the local
time zone’s daylight savings time. If [LLL] is present then 1 is added to [+/-]d[d]. ZZZ and
LLL (if present) must be uppercase. For example, "TZ=PST-8PDT" would be used on the
west coast of the United States during the portion of the year when daylight savings is in
effect, and "TZ=PST-8" during the rest of the year. If the TZ environment variable is not set
or is set using an invalid format then zone will be set to blanks.

values must be of type default INTEGER and of rank one. It is an INTENT (OUT) argument.
Its size must be at least eight. The values returned in VALUES are as follows:

values (1) the year (for example, 1990), or -huge(0) if there is no date available.

values (2) the month of the year, or -huge(0) if there is no date available.

values (3) the day of the month, or -huge(0) if there is no date available.

values (4) the time difference with respect to Coordinated Universal Time (UTC) in minutes,
or -huge(0) if this information is not available.

values (5) the hour of the day, in the range of 0 to 23, or -huge(0) if there is no clock.

values (6) the minutes of the hour, in the range of 0 to 59, or -huge(0) if there is no clock.

values (7) the seconds of the minute, in the range 0 to 60, or -huge(0) if there is no clock.

values (8) the milliseconds of the second, in the range 0 to 999, or -huge(0) if there is no
clock.

 Example
! called in Incline Village, NV on February 3, 1993

! at 10:41:04.1

integer :: dt(8)

character (len=10) :: time, date, zone

call date_and_time (date, time, zone, dt)

! date is assigned the value "19930203"

! time is assigned the value "104104.100"

! zone is assigned the value "-800"

! dt is assigned the value: 1993,2,3,

! -480,10,41,4,100.
Lahey/Fujitsu Fortran 95 Language Reference 101

Chapter 2 Alphabetical Reference
DBLE Function
Description
Convert to double-precision REAL type.

Syntax
DBLE (a)

Arguments
a must be of type INTEGER, REAL or COMPLEX.

Result
The result is of double-precision REAL type. Its value is a double precision representation
of a. If a is of type COMPLEX, the result is a double precision representation of the real part
of a.

Example
double precision d

d = dble (1) ! d is assigned the value 1.00000000000000

DEALLOCATE Statement
Description
The DEALLOCATE statement deallocates allocatable arrays and pointer targets and disas-
sociates pointers.

Syntax
DEALLOCATE (object-list [, STAT = stat-variable])

Where:
object-list is a comma-separated list of pointers or allocatable arrays.

stat-variable is a scalar INTEGER variable.

Remarks
If the optional STAT= is present and the DEALLOCATE statement succeeds, stat-variable
is assigned the value zero. If STAT= is present and the DEALLOCATE statement fails, stat-
variable is assigned the number of the error message generated at runtime.

If an error condition occurs during execution of a DEALLOCATE statement that does not
contain the STAT= specifier, the executable program is terminated.
102 Lahey/Fujitsu Fortran 95 Language Reference

DIGITS Function
Deallocating an allocatable array that is not currently allocated or a pointer that is disassoci-
ated or whose target was not allocated causes an error condition in the DEALLOCATE
statement.

If a pointer is currently associated with an allocatable array, the pointer must not be
deallocated.

Deallocating an allocatable array or pointer with the TARGET attribute causes the pointer
association status of any pointer associated with it to become undefined.

Example
deallocate (a, b, stat=s) ! causes a and b to be

! deallocated. If success-

! ful, s is assigned 0

DIGITS Function
Description
Number of significant binary digits.

Syntax
DIGITS (x)

Arguments
x must be of type INTEGER or REAL. It can be scalar or array-valued.

Result
The result is of type default INTEGER. Its value is the number of significant binary digits
in x.

Example
real :: r

integer :: i

i = digits (r) ! i is assigned the value 24

DIM Function
Description
The difference between two numbers if the difference is positive; zero otherwise.
Lahey/Fujitsu Fortran 95 Language Reference 103

Chapter 2 Alphabetical Reference
Syntax
DIM (x, y)

Arguments
x must be of type INTEGER or REAL.

y must be of the same type and kind as x.

Result
The result is of the same type as x. Its value is x - y if x is greater than y and zero otherwise.

Example
z = dim(1.1, 0.8) ! z is assigned the value 0.3
z = dim(0.8, 1.1) ! z is assigned the value 0.0

DIMENSION Statement
Description
The DIMENSION statement specifies the shape of an array.

Syntax
DIMENSION [::] array-name (array-spec) [, array-name (array-spec)] ...

Where:
array-name is the name of an array.

array-spec is explicit-shape-specs
or assumed-shape-specs
or deferred-shape-specs
or assumed-size-spec

explicit-shape-specs is a comma-separated list of [lower-bound :] upper-bound that specifies
the shape and bounds of an explicit-shape array.

assumed-shape-specs is a comma-separated list of [lower-bound] : that, with the dimensions
of the corresponding actual argument, specifies the shape and bounds of an assumed-shape
array.

deferred-shape-specs is a comma-separated list of colons that specifies the rank of a
deferred-shape array.

assumed-size-spec is [explicit-shape-specs,] [lower-bound :] *

assumed-size-spec specifies the shape of a dummy argument array whose size is assumed
from the corresponding actual argument array.
104 Lahey/Fujitsu Fortran 95 Language Reference

DLL_EXPORT Statement
lower-bound is a scalar INTEGER expression that can be evaluated on entry to the program
unit that specifies the lower bound of a given dimension of the array.

upper-bound is a scalar INTEGER expression that can be evaluated on entry to the program
unit that specifies the upper bound of a given dimension of the array.

Example
dimension a(3,2,1) ! a is a 3x2x1 array

dimension b(-3:3) ! b is a 7-element vector with a

! lower bound of -3

dimension c(:,:,:) ! c is an assumed-shape or

! deferred-shape array of

! rank 3

dimension d(*) ! d is an assumed-size array

DLL_EXPORT Statement
Description
The DLL_EXPORT statement specifies which procedures should be available in a dynamic-
link library.

Syntax
DLLEXPORT dll-export-names

Where:

dll-export-names is a list of procedures defined in the current scoping unit.

Remarks
The procedures in dll-export-names must not be module procedures.

Example
function half(x)

implicit none

integer :: half

dll_export half

half = x/2

return

end function half
Lahey/Fujitsu Fortran 95 Language Reference 105

Chapter 2 Alphabetical Reference
DLL_IMPORT Statement
Description
The DLL_IMPORT statement specifies which procedures are to be imported from a
dynamic-link library.

Syntax
DLL_IMPORT dll-import-names

Where:

dll-import-names is a comma-separated list of procedure names.

Example
program main

implicit none

integer :: foo, i

dll_import foo

i = half(i)

stop

end program main

DO Construct
Description
The DO construct specifies the repeated execution (loop) of a sequence of statements or exe-
cutable constructs.

Syntax
do-statement

block
do-termination

Where:
do-statement is a DO statement

block is a sequence of zero or more statements or executable constructs.

do-termination is END DO [construct-name]
or label action-stmt

action-stmt statement is an action statement other than a GOTO, RETURN, STOP, EXIT,
CYCLE, assigned GOTO, arithmetic IF, or END statement.
106 Lahey/Fujitsu Fortran 95 Language Reference

DO Statement
Remarks
If a construct name is specified in the DO statement, the same construct name must be spec-
ified in a corresponding END DO statement.

Ending a DO construct with a labeled action statement is obsolescent.

Example
do i=1,100 ! iterates 100 times

do while (a>b) ! iterates while a>b

do 10 j=1,100,3 ! iterates 33 times

...

10 continue

end do

end do

The CYCLE statement can be used to curtail execution of the current iteration of a DO loop.
The EXIT statement can be used to exit a DO loop altogether.

DO Statement
Description
The DO statement begins a DO construct. The DO construct specifies the repeated execution
(loop) of a sequence of executable statements or constructs.

Syntax
[construct-name :] DO [label] [loop-control]

Where:
construct-name is an optional name given to the DO construct.

label is the optional label of a statement that terminates the DO construct.

loop-control is [,] do-variable = expr, expr [, expr]
or [,] WHILE (while-expr)

do-variable is a scalar variable of type INTEGER, default REAL, or default double-precision
REAL.

expr is a scalar expression of type INTEGER, default REAL, or default double-precision
REAL. The first expr is the initial value of do-variable; the second expr is the final value of
do-variable; the third expr is the increment value for do-variable.

while-expr is a scalar LOGICAL expression.
Lahey/Fujitsu Fortran 95 Language Reference 107

Chapter 2 Alphabetical Reference
Remarks
When a DO statement is executed, a DO construct becomes active. The expressions in loop-
control are evaluated, and, if do-variable is present, it is assigned an initial value and an iter-
ation count is established for the construct based on the expressions. An iteration count of
zero is possible. Note that because the iteration count is established before execution of the
loop, changing the do-variable within the range of the loop has no effect on the number of
iterations. If loop-control is WHILE (while-expr), while-expr is evaluated and if false, the
loop terminates and the DO construct becomes inactive. If there is no loop-control it is as if
the iteration count were effectively infinite.

Use of default or double-precision REAL for the do-variable is obsolescent.

Example
do i=1,100 ! iterates 100 times

do while (a>b) ! iterates while a>b

do 10 j=1,100,3 ! iterates 33 times each time

! this do construct is entered

...

10 continue

end do

end do

DOT_PRODUCT Function
Description
Dot-product multiplication of vectors.

Syntax
DOT_PRODUCT (vector_a, vector_b)

Arguments
vector_a must be of type INTEGER, REAL, COMPLEX, or LOGICAL. It must be array-
valued and of rank one.

vector_b must be of numeric type if vector_a is of numeric type and of type LOGICAL if
vector_a is of type LOGICAL. It must be array-valued, of rank one, and of the same size as
vector_a.

Result
If the arguments are of type LOGICAL, then the result is scalar and of type default LOGI-
CAL. Its value is ANY (vector_a .AND. vector_b). If the vectors have size zero, the result
has the value false.
108 Lahey/Fujitsu Fortran 95 Language Reference

DOUBLE PRECISION Statement
If the arguments are of different numeric type, then the result type is that of the argument with
the higher type, where COMPLEX is higher than REAL, and REAL is higher than INTE-
GER. If both arguments are of the same type, the result kind is the kind of the argument that
offers the greater range. The result value is SUM (vector_a * vector_b) if vector_a is of type
REAL or INTEGER. The result value is SUM (CONJG (vector_a) * vector_b) if vector_a
is of type COMPLEX.

Example
i = dot_product((/3,4,5/),(/6,7,8/))

! i is assigned the value 86

DOUBLE PRECISION Statement
Description
The DOUBLE PRECISION statement declares entities of type double precision REAL.

Syntax
DOUBLE PRECISION [[, attribute-list] ::] entity [, entity] ...

Where:
attribute-list is a comma-separated list from the following attributes: PARAMETER, ALLO-
CATABLE, DIMENSION(array-spec), EXTERNAL, INTENT (IN) or INTENT (OUT) or
INTENT (IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE,
TARGET.

entity is entity-name [(array-spec)] [= initialization-expr]
or function-name [(array-spec)]

array-spec is an array specification.

initialization-expr is an expression that can be evaluated at compile time.

entity-name is the name of a data object being declared.

function-name is the name of a function being declared.

Remarks
The same attribute must not appear more than once in a DOUBLE PRECISION statement.

function-name must be the name of an external, intrinsic, or statement function, or a function
dummy procedure.

The = initialization-expr must appear if the statement contains a PARAMETER attribute.

If = initialization-expr appears, a double colon must appear before the list of entities. Each
entity has the SAVE attribute, unless it is in a named common block.
Lahey/Fujitsu Fortran 95 Language Reference 109

Chapter 2 Alphabetical Reference
The = initialization-expr must not appear if entity-name is a dummy argument, a function
result, an object in a named common block unless the type declaration is in a block data pro-
gram unit, an object in blank common, an allocatable array, a pointer, an external name, an
intrinsic name, or an automatic object.

The ALLOCATABLE attribute can be used only when declaring an array that is not a
dummy argument or a function result.

An array declared with a POINTER or an ALLOCATABLE attribute must be specified with
a deferred shape.

An array-spec for a function-name that does not have the POINTER attribute must be spec-
ified with an explicit shape.

An array-spec for a function-name that does have the POINTER attribute must be specified
with a deferred shape.

If the POINTER attribute is specified, the TARGET, INTENT, EXTERNAL, or INTRINSIC
attribute must not be specified.

If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or
PARAMETER attribute must not be specified.

The PARAMETER attribute must not be specified for dummy arguments, pointers, allocat-
able arrays, functions, or objects in a common block.

The INTENT and OPTIONAL attributes can be specified only for dummy arguments.

An entity must not have the PUBLIC attribute if its type has the PRIVATE attribute.

The SAVE attribute must not be specified for an object that is in a common block, a dummy
argument, a procedure, a function result, or an automatic data object.

An entity must not have the EXTERNAL attribute if it has the INTRINSIC attribute.

An entity in a DOUBLE PRECISION statement must not have the EXTERNAL or INTRIN-
SIC attribute specified unless it is a function.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute.

An entity must not be given explicitly any attribute more than once in a scoping unit.

Example
double precision a, b, c ! a, b, and c are of type

! double precision

double precision, dimension (2, 4) :: d

! d is a 2 by 4 array

! of double precision

double precision :: e = 2.0d0

! e is initialized
110 Lahey/Fujitsu Fortran 95 Language Reference

DPROD Function
DPROD Function
Description
Double-precision REAL product.

Syntax
DPROD (x, y)

Arguments
x must be of type default REAL.

y must be of type default REAL.

Result
The result is of type double-precision REAL. Its value is a double-precision representation
of the product of x and y.

Example
dub = dprod (3.e2, 4.4e4) ! dub is assigned 13.2d6

DVCHK Subroutine (Windows Only)
Description
The initial invocation of the DVCHK subroutine masks the divide-by-zero interrupt on the
floating-point unit. lflag must be set to true on the first invocation. Subsequent invocations
return true or false in the lflag variable if the exception has occurred or not occurred, respec-
tively. DVCHK will not check or mask zero divided by zero. Use INVALOP to check for a
zero divided by zero.

Syntax
DVCHK (lflag)

Arguments
lflag must be of type LOGICAL. It is assigned the value true if a divide-by-zero exception
has occurred, and false otherwise.

Example
call dvchk (lflag) ! mask the divide-by-zero interrupt
Lahey/Fujitsu Fortran 95 Language Reference 111

Chapter 2 Alphabetical Reference
ELSE IF Statement
Description
The ELSE IF statement controls conditional execution of a block of code in an IF construct
where all previous IF expressions are false.

Syntax
ELSE IF (expr) THEN [construct-name]

Where:
expr is a scalar LOGICAL expression.

construct-name is the optional name given to the IF construct.

Example
if (i>-1) then

print*, b

else if (i<j) then ! executed only if true and previous
! if expression was false

print*, c
end if

ELSE Statement
Description
The ELSE statement controls precedes a block of code to be executed in an IF construct
where all previous IF expressions are false.

Syntax
ELSE [construct-name]

Where:
construct-name is the optional name given to the IF construct.

Example
if (i>j) then

print*, a
else if (i<j) then

print*, b
else ! executed if previous if expressions were false

print*, c
end if
112 Lahey/Fujitsu Fortran 95 Language Reference

ELSEWHERE Statement
ELSEWHERE Statement
Description
The ELSEWHERE statement controls conditional execution of a block of assignment state-
ments for elements of an array for which the WHERE construct’s mask expression is false
(see “WHERE Construct” beginning on page 234).

Syntax
ELSEWHERE [(mask-expr)]

Where:
mask-expr is a LOGICAL expression.

Example
where (b>c) ! begin where construct

b = -1
elsewhere (b=c)

b = 1
elsewhere !b=0

b = 999
end where

END Statement
Description
The END statement ends a program unit, module subprogram, or internal subprogram.

Syntax
END [class [name]]

Where:
class is either PROGRAM, FUNCTION, SUBROUTINE, MODULE, INTERFACE or
BLOCK DATA.

name is the name of the program unit, module subprogram, or internal subprogram.

Remarks
Each program unit, module subprogram, or internal subprogram must have exactly one END
statement.

The END PROGRAM, END FUNCTION, and END SUBROUTINE statements are execut-
able and can be branch target statements. The END MODULE, END INTERFACE, and
END BLOCK DATA statements are non-executable.
Lahey/Fujitsu Fortran 95 Language Reference 113

Chapter 2 Alphabetical Reference
Executing an END FUNCTION or END SUBROUTINE statement is equivalent to executing
a return statement in a subprogram.

Executing an END PROGRAM statement terminates the executing program.

name can be used only if a name was given to the program unit, module subprogram, or inter-
nal subprogram in a PROGRAM, FUNCTION, SUBROUTINE, MODULE, or BLOCK
DATA statement. name cannot be used with an END INTERFACE statement.

If name is present, it must be identical to the name specified in the PROGRAM, FUNCTION,
SUBROUTINE, MODULE, or BLOCK DATA statement.

Example
program names

call joe
call bill
call fred

end program names ! program and names are optional

subroutine joe
end subroutine joe ! ok end statement

subroutine bill
end subroutine ! also ok end statement

subroutine fred
end ! also ok end statement

END DO Statement
Description
The END DO statement ends a DO construct.

Syntax
END DO [construct-name]

Where:
construct-name is the name of the DO construct.

Remarks
If the DO statement of the DO construct is identified by a construct-name, the corresponding
END DO statement must specify the same construct-name. If the DO statement is not iden-
tified by a construct-name, the END DO statement must not specify a construct-name.

If the DO statement specifies a label, the corresponding END DO statement must be identi-
fied with the same label.
114 Lahey/Fujitsu Fortran 95 Language Reference

ENDFILE Statement
Example
named: do i=1,10

labeled: do 10 j=1,10

do k=1,10

...

end do

10 end do labeled

end do named

ENDFILE Statement
Description
The ENDFILE statement writes an endfile record as the next record of the file. The file is
then positioned after the endfile record, which becomes the last record of the file.

Syntax
ENDFILE unit-number

or
ENDFILE (position-spec-list)

Where:
unit-number is a scalar INTEGER expression corresponding to the input/output unit number
of an external file.

position-spec-list is [[UNIT =] unit-number][, ERR = label][, IOSTAT = stat] where
UNIT=, ERR=, and IOSTAT= can be in any order but if UNIT= is omitted, then unit-number
must be first.

label is a statement label that is branched to if an error condition occurs during execution of
the statement.

stat is a variable of type INTEGER that is assigned a positive value if an error condition
occurs, a negative value if an end-of-file or end-of-record condition occurs, and zero other-
wise. If stat is present and error, end-of-file, or end-of-record condition occurs, execution is
not terminated.

Remarks
After execution of an ENDFILE statement, a BACKSPACE or REWIND statement must be
executed to reposition the file before any data transfer statement or subsequent ENDFILE
statement.

An ENDFILE statement on a file that is connected but does not yet exist causes the file to be
created before writing the endfile record.
Lahey/Fujitsu Fortran 95 Language Reference 115

Chapter 2 Alphabetical Reference
Example
endfile 8 ! writes an endfile record to the file

! connected to unit 8

END IF Statement
Description
The END IF statement ends an IF construct.

Syntax
END IF [construct-name]

Where:
construct-name is the name of the IF construct.

Remarks
If the IF statement of the IF construct is identified by a construct-name, the corresponding
END IF statement must specify the same construct-name. If the IF statement is not identified
by a construct-name, the END IF statement must not specify construct-name.

Example
if (a.gt.b) then

c = 1

d = 2

end if

END SELECT Statement
Description
The END SELECT statement ends a CASE construct.

Syntax
END SELECT [construct-name]

Where:
construct-name is the name of the CASE construct.
116 Lahey/Fujitsu Fortran 95 Language Reference

END WHERE Statement
Remarks
If the SELECT CASE statement of the CASE construct is identified by a construct-name, the
corresponding END SELECT statement must specify the same construct-name. If the
SELECT CASE statement is not identified by a construct-name, the END SELECT state-
ment must not specify construct-name.

Example
select case (i)
case (:-1)

print*, "negative"
case (0)

print*, "zero"
case (1:)

print*, "positive"
end select

END WHERE Statement
Description
The END WHERE statement ends a WHERE construct.

Syntax
END WHERE

Example
where (c > d) ! c and d are arrays

c = 1
d = 2

end where

ENTRY Statement
Description
The ENTRY statement permits one program unit to define multiple procedures, each with a
different entry point.

Syntax
ENTRY entry-name [([dummy-arg-list]) [RESULT (result-name)]]

Where:
entry-name is the name of the entry.
Lahey/Fujitsu Fortran 95 Language Reference 117

Chapter 2 Alphabetical Reference
dummy-arg-list is a comma-separated list of dummy arguments or * alternate return
indicators.

result-name is the name of the result.

Remarks
An ENTRY statement can appear only in an external subprogram or module subprogram. An
ENTRY statement must not appear within an executable construct.

ENTRY statement in a function
If the ENTRY statement is contained in a function subprogram, an additional function is
defined by that subprogram. The name of the function is entry-name and its result variable
is result-name or is entry-name if no result-name is provided. The characteristics of the func-
tion result are specified by specifications of the result variable.

If RESULT is specified, entry-name must not appear in any specification statement in the
scoping unit of the function program.

RESULT can be present only if the ENTRY statement is contained in a function subprogram.

If RESULT is specified, result-name must not be the same as entry-name.

ENTRY statement in a subroutine
A dummy argument can be an alternate return indicator only if the ENTRY statement is con-
tained in a subroutine subprogram.

If the ENTRY statement is contained in a subroutine subprogram, an additional subroutine is
defined by that subprogram. The name of the subroutine is entry-name. The dummy argu-
ments of the subroutine are those specified on the ENTRY statement.

Example
program main

i=2

call square(i)

j=2

call quad(j)

print*, i,j ! prints 4 16

end program main

subroutine quad(k)

k=k*k

entry square(k)

k=k*k

return

end subroutine quad
118 Lahey/Fujitsu Fortran 95 Language Reference

EOSHIFT Function
EOSHIFT Function
Description
End-off shift of all rank one sections in an array. Elements are shifted out at one end and
copies of boundary values are shifted in at the other. Different sections can be shifted by dif-
ferent amounts and in different directions by using an array-valued shift.

Syntax
EOSHIFT (array, shift, boundary, dim)

Required Arguments
array can be of any type. It must not be scalar.

shift must be of type INTEGER and must be scalar if array is of rank one; otherwise it must
be scalar or of rank n-1 and of shape , where

 is the shape of array.

Optional Arguments
boundary must be of the same type and kind as array. If array is of type CHARACTER,
boundary must have the same length as array. It must be scalar if array is of rank one; oth-
erwise it must be scalar or of rank n-1 and of shape .
boundary can be omitted, in which case the default values are zero for numeric types, blanks
for CHARACTER, and false for LOGICAL.

dim must be a scalar INTEGER with a value in the range , where n is the rank of
array. If dim is omitted, it is as if it were present with a value of one.

Result
The result is of the same type, kind and shape as array.

Element of the result has the value
array where sh is shift or
shift provided the inequality

holds and is otherwise boundary or
boundary .

d1 d2 … ddim 1– ddim 1+ … dn, , , , , ,()
d1 d2 … dn, , ,()

d1 d2 … ddim 1– ddim 1+ … dn, , , , , ,()

1 dim n≤ ≤

s1 s2 … sn, , ,()
s1 s2 … sdim 1– sdim sh+ sdim 1+ … sn, , , , , , ,()

s1 s2 … sdim 1– sdim 1+ … sn, , , , , ,()
lbound array dim,() sdim sh+ ubound array dim,()≤ ≤

s1 s2 … sdim 1– sdim 1+ … sn, , , , , ,()
Lahey/Fujitsu Fortran 95 Language Reference 119

Chapter 2 Alphabetical Reference
Example
integer, dimension (2,3) :: a, b
integer, dimension (3) :: c, d
integer :: e
a = reshape((/1,2,3,4,5,6/), (/2,3/))

! represents |1 3 5|
|2 4 6|

c = (/1,2,3/)
b = eoshift(a,1) ! b is assigned the value |0 0 0|

! |1 3 5|
b = eoshift(a,-1,0,2) ! b assigned the value |3 5 0|

! |4 6 0|
b = eoshift(a,-c,1)! b is assigned the value |2 1 1|

! |1 1 1|
d = eoshift(c,2) ! c is assigned the value |3 0 0|

EPSILON Function
Description
Positive value that is almost negligible compared to unity; smallest x such that 1+x is not
equal to 1.

Syntax
EPSILON (x)

Arguments
x must be of type REAL. It can be scalar or array-valued.

Result
The result is a scalar value of the same kind as x. Its value is 21-p, where p is the number of
bits in the fraction part of the physical representation of x.
120 Lahey/Fujitsu Fortran 95 Language Reference

EQUIVALENCE Statement
Example
! reasonably safe compare of two default REALs

function equals (a, b)

implicit none

logical :: equals

real, intent(in) :: a, b

real :: eps

eps = abs(a) * epsilon(a) ! scale epsilon

if (eps == 0) then

eps = tiny (a) ! if eps underflowed to 0

! use a very small

! positive value for epsilon

end if

if (abs(a-b) > eps) then

equals = .false. ! not equal if difference>eps

return

else

equals = .true. ! equal otherwise

return

endif

end function equals

EQUIVALENCE Statement
Description
The EQUIVALENCE statement is used to specify that two or more objects in a scoping unit
share the same storage.

Syntax
EQUIVALENCE equivalence-sets

Where:
equivalence-sets is a comma-separated list of (equivalence-objects)

equivalence-objects is a comma-separated list of variables, array elements, or substrings.

Remarks
If the equivalenced objects have different types or kinds, the EQUIVALENCE statement
does not cause any type conversion or imply mathematical equivalence.

If a scalar and an array-valued object are equivalenced, the scalar does not have array prop-
erties and the array does not have scalar properties.
Lahey/Fujitsu Fortran 95 Language Reference 121

Chapter 2 Alphabetical Reference
An equivalence-object must not be a dummy argument, a pointer, an allocatable array, an
object of a non-sequence derived type or of a sequence derived type containing a pointer at
any level of component selection, an automatic object, a function name, an entry name, a
result name, a named constant, a structure component, or a subobject of any of the preceding
objects.

If an equivalence-object is of a derived type that is not a numeric sequence or CHARACTER
sequence type, all of the objects in the equivalence set must be of the same type.

If an equivalence-object is of an intrinsic type other than default INTEGER, default REAL,
double precision REAL, default COMPLEX, default LOGICAL, or default CHARACTER,
all of the objects in equivalence-set must be of the same type with the same kind value.

A data object of type default CHARACTER can be equivalenced only with other objects of
type default CHARACTER. The lengths of the equivalenced objects are not required to be
the same.

An EQUIVALENCE statement must not specify that the same storage unit is to occur more
than once in a storage sequence.

Example
equivalence (a,b,c(2)) ! a, b, and c(2) share the

! same storage

ERROR Subroutine
Description
Print a message to the console, then continue processing.

Syntax
ERROR (message)

Arguments
message must be of type CHARACTER. It is an INTENT(IN) argument that is the message
to be printed. Note that to generate a subprogram traceback you must specify the -trace com-
piler switch.

Example
call error(’error’) ! prints the string ’error’

! followed by a subprogram

! traceback
122 Lahey/Fujitsu Fortran 95 Language Reference

EXIT Statement
EXIT Statement
Description
The EXIT statement terminates a DO loop.

Syntax
EXIT [do-construct-name]

Where:
do-construct-name is the name of a DO construct that contains the EXIT statement. If do-
construct-name is omitted, it is as if do-construct-name were the name of the innermost DO
construct in which the EXIT statement appears.

Example
outer: do i=1, 10
inner: do j=1, 10

if (i>a) exit outer
if (j>b) exit ! exits inner
...

enddo inner
enddo outer

EXIT Subroutine
Description
Terminate the program and set the system error level.

Syntax
EXIT (ilevel)

Arguments
ilevel must be of type INTEGER. It is the system error level set on program termination.

Example
call exit(3) ! exit -- system error level 3

EXP Function
Description
Exponential.
Lahey/Fujitsu Fortran 95 Language Reference 123

Chapter 2 Alphabetical Reference
Syntax
EXP (x)

Arguments
x must be of type REAL or COMPLEX.

Result
The result is of the same type as x. Its value is a REAL or COMPLEX representation of ex.
If x is of type COMPLEX, its imaginary part is treated as a value in radians.

Example
a = exp(2.0) ! a is assigned the value 7.38906

EXPONENT Function
Description
Exponent part of the model representation of a number.

Syntax
EXPONENT (x)

Arguments
x must be of type REAL.

Result
The result is of type default INTEGER. Its value is the value of the exponent part of the
model representation of x.

Example
i = exponent(3.8) ! i is assigned 2

i = exponent(-4.3)! i is assigned 3

EXTERNAL Statement
Description
The EXTERNAL statement specifies external procedures. Specifying a procedure name as
EXTERNAL permits the name to be used as an actual argument.
124 Lahey/Fujitsu Fortran 95 Language Reference

FLOOR Function
Syntax
EXTERNAL [::] external-name-list

Where:
external-name-list is a comma-separated list of external procedures, dummy procedures, or
block data program units.

Remarks
If an intrinsic procedure name appears in an EXTERNAL statement, the intrinsic procedure
is not available in the scoping unit and the name is that of an external procedure.

A name can appear only once in all of the EXTERNAL statements in a scoping unit.

Example
subroutine fred (a, b, sin)
external sin ! sin is the name of an external

! procedure, not the intrinsic sin()
call bill (a, sin)

! sin can be passed as an actual arg

FLOOR Function
Description
Greatest INTEGER less than or equal to a number.

Syntax
FLOOR (a, kind)

Required Arguments
a must be of type REAL.

Optional Arguments
kind must be a scalar INTEGER expression that can be evaluated at compile time.

Result
The result is of type default INTEGER. Its value is equal to the greatest INTEGER less than
or equal to a. If kind is present, the kind is that specified by kind. If kind is absent, the kind
is that of the default REAL type.

Example
i = floor(-2.1) ! i is assigned the value -3
j = floor(2.1) ! j is assigned the value 2
Lahey/Fujitsu Fortran 95 Language Reference 125

Chapter 2 Alphabetical Reference
FLUSH Subroutine
Description
Empty the buffer for an input/output unit by writing to its corresponding file. Note that this
does not flush the file buffer.

Syntax
FLUSH (iunit)

Arguments
iunit must be of type INTEGER. It is an INTENT(IN) argument that is the unit number of
the file whose buffer is to be emptied.

Example
call flush(11) ! empty buffer for unit 11

FORALL Construct
Description
The FORALL construct controls the execution of assignment and pointer assignment state-
ments with selection by sets of index values and an optional mask expression.

Syntax
[construct-name:] FORALL (forall-triplets [, mask])

[forall-body]

END FORALL [construct-name]

Where:
construct-name is an optional name for the FORALL construct name.

forall-triplets is a comma-separated list of index-name = subscript : subscript [: stride]

index-name is a named scalar variable of type INTEGER.

subscript is an array index.

stride is an array stride.

mask is a scalar expression of type LOGICAL.

forall-body is zero or more assignment or pointer assignment statements, WHERE state-
ments or construct, or FORALL statements or constructs.
126 Lahey/Fujitsu Fortran 95 Language Reference

FORALL Statement
Remarks
If the FORALL construct has a construct-name, the same construct-name must appear at the
beginning and end of the construct.

Any procedure referenced in mask or in forall-body must be a pure procedure.

If mask is not present it is as if it were present with the value .TRUE..

Example
real :: a(10,10), b(10,10) = 1.0

...

forall (i=1:10, j=1:10, b(i,j) /= 0.0)

a(i,j) = real(i+j-2)

b(i,J) = a(i,j) + b(i,j) * real(i*j)

end forall

FORALL Statement
Description
The FORALL statement controls the execution of an assignment or pointer assignment state-
ment with selection by sets of index values and an optional mask expression.

Syntax
FORALL (forall-triplets [, mask]) forall-assignment-stmt

Where:
forall-triplets is a comma-separated list of index-name = subscript : subscript [: stride]

index-name is a named scalar variable of type INTEGER.

subscript is an array index.

stride is an array stride.

mask is a scalar expression of type LOGICAL.

forall-assignment-stmt is an assignment statement or a pointer assignment statement.

Remarks
Any procedure referenced in mask or in forall-assignment-stmt must be a pure procedure.

If mask is not present it is as if it were present with the value .TRUE..
Lahey/Fujitsu Fortran 95 Language Reference 127

Chapter 2 Alphabetical Reference
Example
integer, dimension(3,3) :: a

forall (i=1:n-1, j=1:n, j>i) a(i,j) = a(j,i)

! assigns the transpose of the lower triangle of array a

! (the section below the main diagonal) to the upper

! triangle of a

FORMAT Statement
Description
The FORMAT statement provides explicit information that directs the editing between the
internal representation of data and the characters that are input or output.

Syntax
FORMAT ([format-items])

Where:
format-items is a comma-separated list of [r]data-edit-descriptor, control-edit-descriptor, or
char-string-edit-descriptor, or [r](format-items)

data-edit-descriptor is Iw[.m]
or Bw[.m]
or Ow[.m]
or Zw[.m]
or Fw.d
or Ew.d[Ee]
or ENw.d[Ee]
or ESw.d[Ee]
or Gw.d[Ee]
or Lw
or A[w]
or Dw.d

w, m, d, and e are INTEGER literal constants that represent field width, digits, digits after the
decimal point, and exponent digits, respectively.
128 Lahey/Fujitsu Fortran 95 Language Reference

FORMAT Statement
control-edit-descriptor is Tn

or TLn

or TRn

or nX

or S

or SP

or SS

or BN

or BZ

or [r]/

or :

or kP

char-string-edit-descriptor is a CHARACTER literal constant or cHrep-chars

rep-chars is a string of characters.

c is the number of characters in rep-chars

r, k, and n are positive INTEGER literal constants used to specify a number of repetitions of
the data-edit-descriptor, char-string-edit-descriptor, control-edit-descriptor, or (format-
items)

Remarks
The FORMAT statement must be labeled.

The comma between edit descriptors may be omitted in the following cases:

• between the scale factor (P) and the numeric edit descriptors F, E, EN, ES, D, or G.

• before a new record indicated by a slash when there is no repeat factor present.

• after the slash for a new record.

• before or after the colon edit descriptor.

Edit descriptors may be nested within parentheses and may be preceded by a repeat factor.
A parenthesized list of edit descriptors may also be preceded by a repeat factor, indicating
that the entire list is to be repeated.
Lahey/Fujitsu Fortran 95 Language Reference 129

Chapter 2 Alphabetical Reference
The edit descriptors
I (decimal INTEGER),
B (binary INTEGER),
O (octal INTEGER),
Z (hexadecimal INTEGER),
F (REAL or COMPLEX, no exponent on output),
E and D (REAL or COMPLEX, exponent on output),
EN (engineering notation),
ES (scientific notation),
G (generalized),
L (LOGICAL),
A (CHARACTER),
T (position from beginning of record),
TL (position left from current position),
TR (position right from current position),
X (position forward from current position),
S (default plus production on output),
SP (force plus production on output),
SS (suspend plus production on output),
BN (ignore non-leading blanks on input),
BZ (non-leading blanks are zeros on input),
/ (end of current record),
: (terminate format control), and
P (scale factor)
indicate the manner of data editing.

Descriptions of each edit descriptor are provided in “Input/Output Editing” beginning on
page 24.

The comma used to separate items in format-items can be omitted between a P edit descriptor
and an immediately following F, E, EN, ES, D, or G edit descriptor; before a slash edit
descriptor when the optional repeat specification is not present; after a slash edit descriptor;
and before or after a colon edit descriptor.

Within a CHARACTER literal constant, if a delimiter character itself appears, either an apos-
trophe or quote, it must be as a consecutive pair without any blanks. Each such pair
represents a single occurrence of the delimiter character.

Example
a = 123.45

write (7,10) a

write (7,20) a

10 format (e11.5) ! 0.12345E+03

20 format (2p, e12.5) ! 12.3450E+01
130 Lahey/Fujitsu Fortran 95 Language Reference

FRACTION Function
FRACTION Function
Description
Fraction part of the physical representation of a number.

Syntax
FRACTION (x)

Arguments
x must be of type REAL.

Result
The result is of the same kind as x. Its value is the value of the fraction part of the physical
representation of x.

Example
a = fraction(3.8) ! a is assigned the value 0.95

FUNCTION Statement
Description
The FUNCTION statement begins a function subprogram, and specifies its return type and
name (the function name by default), its dummy argument names, and whether it is recursive.

Syntax
[PURE][ELEMENTAL][RECURSIVE] [type-spec] FUNCTION function-
name ([dummy-arg-names]) [RESULT (result-name)]

Where:
type-spec is INTEGER [kind-selector]
or REAL [kind-selector]
or DOUBLE PRECISION
or COMPLEX [kind-selector]
or CHARACTER [char-selector]
or LOGICAL [kind-selector]
or TYPE (type-name)

kind-selector is ([KIND =] kind)
Lahey/Fujitsu Fortran 95 Language Reference 131

Chapter 2 Alphabetical Reference
char-selector is (LEN = length [, KIND = kind])
or (length [,[KIND =] kind])
or (KIND = kind [, LEN = length])
or * char-length [,]

kind is a scalar INTEGER expression that can be evaluated at compile time.

length is a scalar INTEGER expression
or *

char-length is a scalar INTEGER literal constant
or (*)

function-name is the name of the function.

dummy-arg-names is a comma-separated list of dummy argument names.

result-name is the name of the result variable.

Remarks
PURE, ELEMENTAL, RECURSIVE, and type-spec can be in any order.

A pure function has the prefix PURE or ELEMENTAL.

An ELEMENTAL function has the prefix ELEMENTAL.

A pure function must not contain any operation that could conceivably result in an assign-
ment or pointer assignment to a common variable, a variable accessed by use or host
association, or an INTENT (IN) dummy argument; nor shall a pure function contain any
operation that could conceivably perform any external file I/O or STOP operation.

The specification of a pure function must specify that all dummy arguments have INTENT
(IN) except procedure arguments and arguments with the POINTER attribute.

Local variables of pure functions must not have the SAVE attribute, either by explicit decla-
ration or by initialization in a type declaration or DATA statement.

The result and dummy arguments of elemental functions must be scalar and must not have
the POINTER attribute.

Dummy arguments of elemental functions must not appear in any specification expressions
except as the argument to one of the intrinsic functions BIT_SIZE, KIND, LEN, or the
numeric inquiry functions.

Dummy arguments of elemental functions must not be dummy procedures.

The keyword RECURSIVE must be present if the function directly or indirectly calls itself
or a function defined by an ENTRY statement in the same subprogram. RECURSIVE must
also be present if a function defined by an ENTRY statement directly or indirectly calls itself,
another function defined by an ENTRY statement, or the function defined by the FUNC-
TION statement.
132 Lahey/Fujitsu Fortran 95 Language Reference

GETCL Subroutine
A function that calls itself directly must use the RESULT option.

If the function result is array-valued or a pointer, this must be specified in the specification
of the result variable in the function body.

Example
integer function sum(i,j) result(k)

GETCL Subroutine
Description
Get command line.

Syntax
GETCL (result)

Arguments
result must be of type CHARACTER. It is an INTENT(OUT) argument that is assigned the
characters on the system command line beginning with the first non-white-space character
after the program name.

Example
call getcl(cl) ! cl is assigned the command line

GETENV Subroutine
Description
Get the specified environment variable.

Syntax
GETENV(variable, value)

Arguments
variable must be of type default CHARACTER. It is an INTENT(IN) argument which spec-
ifies the environment variable to check.

value must be of type default CHARACTER. It is an INTENT(OUT) argument which
returns the value of the environment variable variable.
Lahey/Fujitsu Fortran 95 Language Reference 133

Chapter 2 Alphabetical Reference
Example
character (len=80) :: mypath
call getenv(’path’, mypath)

GOTO Statement
Description
The GOTO statement transfers control to a statement identified by a label.

Syntax
GOTO label

Where:
label is the label of a branch target statement.

Remarks
label must be the label of a branch target statement in the same scoping unit as the GOTO
statement.

Example
a = b
goto 10 ! branches to 10
b = c ! never executed

10 c = d

HUGE Function
Description
Largest representable number of data type.

Syntax
HUGE (x)

Arguments
x must be of type REAL or INTEGER.

Result
The result is of the same type and kind as x. Its value is the value of the largest number in
the data type of x.
134 Lahey/Fujitsu Fortran 95 Language Reference

IACHAR Function
Example
a = huge(4.1) ! a is assigned the value 0.340282E+39

IACHAR Function
Description
Position of a character in the ASCII collating sequence.

Syntax
IACHAR (c)

Arguments
c must be of type default CHARACTER and of length one.

Result
The result is of type default INTEGER. Its value is the position of c in the ASCII collating
sequence and is in the range .

Example
i = iachar('c') ! i is assigned the value 99

IAND Function
Description
Bit-wise logical AND.

Syntax
IAND (i, j)

Arguments
i must be of type INTEGER.

j must be of type INTEGER and of the same kind as i.

Result
The result is of type INTEGER. Its value is the value obtained by performing a bit-wise log-
ical AND of i and j.

0 iachar c() 127≤ ≤
Lahey/Fujitsu Fortran 95 Language Reference 135

Chapter 2 Alphabetical Reference
Example
i=53 ! i = 00110101 binary (lowest-order byte)
j=45 ! j = 00101101 binary (lowest-order byte)
k=iand(i,j) ! k = 00100101 binary (lowest-order byte)

! k = 37 decimal

IBCLR Function
Description
Clear one bit to zero.

Syntax
IBCLR (i, pos)

Arguments
i must be of type INTEGER.

pos must be of type INTEGER. It must be non-negative and less than the number of bits in i.

Result
The result is of type INTEGER and of the same kind as i. Its value is the value of i except
that bit pos is set to zero. Note that the lowest order pos is zero.

Example
i = ibclr (37,2) ! i is assigned the value 33

IBITS Function
Description
Extract a sequence of bits.

Syntax
IBITS (i, pos, len)

Arguments
i must be of type INTEGER.

pos must be of type INTEGER. It must be non-negative and pos+len must be less than or
equal to the number of bits in i.

len must be of type INTEGER and non-negative.
136 Lahey/Fujitsu Fortran 95 Language Reference

IBSET Function
Result
The result is of type INTEGER and of the same kind as i. Its value is the value of the
sequence of len bits beginning with pos, right adjusted with all other bits set to 0. Note that
the lowest order pos is zero.

Example
i = ibits (37,2,2) ! i is assigned the value 1

IBSET Function
Description
Set a bit to one.

Syntax
IBSET (i, pos)

Arguments
i must be of type INTEGER.

pos must be of type INTEGER. It must be non-negative and less than the number of bits in i.

Result
The result is of type INTEGER and of the same kind as i. Its value is the value of i except
that bit pos is set to one. Note that the lowest order pos is zero.

Example
i = ibset (37,1) ! i is assigned the value 39

ICHAR Function
Description
Position of a character in the processor collating sequence associated with the kind of the
character.

Syntax
ICHAR (c)

Arguments
c must be of type CHARACTER and of length one.
Lahey/Fujitsu Fortran 95 Language Reference 137

Chapter 2 Alphabetical Reference
Result
The result is of type default INTEGER. Its value is the position of c in the processor collating
sequence associated with the kind of c and is in the range , where n is
the number of characters in the collating sequence.

Example
i = ichar('c') ! i is assigned the value 99 for

! character c in the ASCII

! collating sequence

IEOR Function
Description
Bit-wise logical exclusive OR.

Syntax
IEOR (i, j)

Arguments
i must be of type INTEGER.

j must be of type INTEGER and of the same kind as i.

Result
The result is of type INTEGER. Its value is the value obtained by performing a bit-wise log-
ical exclusive OR of i and j.

Example
i=53 ! i = 00110101 binary (lowest-order byte)

j=45 ! j = 00101101 binary (lowest-order byte)

k=ieor(i,j) ! k = 00011000 binary (lowest-order byte)

! k = 24 decimal

IF Construct
Description
The IF construct controls which, if any, of one or more blocks of statements or executable
constructs will be executed.

0 ichar c() n 1–≤ ≤
138 Lahey/Fujitsu Fortran 95 Language Reference

IF Construct
Syntax
[construct-name:] IF (expr) THEN

block
[ELSE IF (expr) THEN [construct-name]

block]
...
[ELSE [construct-name]

block]
END IF [construct-name]

Where:
construct-name is an optional name for the construct.

expr is a scalar LOGICAL expression.

block is a sequence of zero or more statements or executable constructs.

Remarks
At most one of the blocks contained within the IF construct is executed. If there is an ELSE
statement in the construct, exactly one of the blocks contained within the construct will be
executed. The exprs are evaluated in the order of their appearance in the construct until a true
value is found or an ELSE statement or END IF statement is encountered. If a true value or
an ELSE statement is found, the block immediately following is executed and this completes
the execution of the construct. The exprs in any remaining ELSE IF statements of the IF con-
struct are not evaluated. If none of the evaluated expressions is true and there is no ELSE
statement, the execution of the construct is completed without the execution of any block
within the construct.

If the IF statement specifies a construct name, the corresponding END IF statement must
specify the same construct name. If the IF statement does not specify a construct name, the
corresponding END IF statement must not specify a construct name.

Example
if (a>b) then

c = d

else if (a<b) then

d = c

else ! a=b

stop

end if
Lahey/Fujitsu Fortran 95 Language Reference 139

Chapter 2 Alphabetical Reference
IF-THEN Statement
Description
The IF-THEN statement begins an IF construct.

Syntax
[construct-name:] IF (expr) THEN

Where:
construct-name is an optional name for the IF construct.

expr is a scalar LOGICAL expression.

Remarks
At most one of the blocks contained within the IF construct is executed. If there is an ELSE
statement in the construct, exactly one of the blocks contained within the construct will be
executed. The exprs are evaluated in the order of their appearance in the construct until a true
value is found or an ELSE statement or END IF statement is encountered. If a true value or
an ELSE statement is found, the block immediately following is executed and this completes
the execution of the construct. The exprs in any remaining ELSE IF statements of the IF con-
struct are not evaluated. If none of the evaluated expressions is true and there is no ELSE
statement, the execution of the construct is completed without the execution of any block
within the construct.

Example
if (a>b) then

c = d

else

d = c

end if

IF Statement
Description
The IF statement controls whether or not a single executable statement is executed.

Syntax
IF (expr) action-statement

Where:
expr is a scalar LOGICAL expression.
140 Lahey/Fujitsu Fortran 95 Language Reference

IMPLICIT Statement
action-statement is an executable statement other than another IF or the END statement of a
program, function, or subroutine.

Remarks
Execution of an IF statement causes evaluation of expr. If the value of expr is true, action-
statement is executed. If the value is false, action-statement is not executed.

Example
if (a >= b) a = -a

IMPLICIT Statement
Description
The IMPLICIT statement specifies, for a scoping unit, a type and optionally a kind or a
CHARACTER length for each name beginning with a letter specified in the IMPLICIT state-
ment. Alternately, it can specify that no implicit typing is to apply in the scoping unit.

Syntax
IMPLICIT implicit-specs

or
IMPLICIT NONE

Where:
implicit-specs is a comma-separated list of type-spec (letter-specs)

type-spec is INTEGER [kind-selector]
or REAL [kind-selector]
or DOUBLE PRECISION
or COMPLEX [kind-selector]
or CHARACTER [char-selector]
or LOGICAL [kind-selector]
or TYPE (type-name)

kind-selector is ([KIND =] kind)

char-selector is (LEN = length [, KIND = kind])
or (length [,[KIND =] kind])
or (KIND = kind [, LEN = length])
or * char-length [,]

type-name is the name of a user-defined type.

kind is a scalar INTEGER expression that can be evaluated at compile time.
Lahey/Fujitsu Fortran 95 Language Reference 141

Chapter 2 Alphabetical Reference
length is a scalar INTEGER expression

or *

char-length is a scalar INTEGER literal constant

or (*)

letter-specs is a comma-separated list of letter[-letter]

letter is one of the letters A-Z.

Remarks
A letter-spec consisting of two letters separated by a minus is equivalent to writing a list con-
taining all of the letters in alphabetical order in the alphabetic sequence from the first letter
through the second letter. The same letter must not appear as a single letter or be included in
a range of letters more than once in all of the IMPLICIT statements in a scoping unit.

In the absence of an implicit statement, a program unit is treated as if it had a host with the
declaration

implicit integer (i-n), real (a-h, o-z)

IMPLICIT NONE specifies the null mapping for all the letters. If a mapping is not specified
for a letter, the default is the mapping in the host scoping unit.

If IMPLICIT NONE is specified in a scoping unit, it must precede any PARAMETER state-
ments that appear in the scoping unit and there must be no other IMPLICIT statements in the
scoping unit.

Any data entity that is not explicitly declared by a type declaration statement, is not an intrin-
sic function, and is not made accessible by use association or host association is declared
implicitly to be of the type (and type parameters, kind and length) mapped from the first letter
of its name, provided the mapping is not null.

An explicit type specification in a FUNCTION statement overrides an IMPLICIT statement
for the name of that function subprogram.

Example
implicit character (c), integer (a-b, d-z)

! specifies that all data objects

! beginning with c are implicitly of

! type character, and other data

! objects are of type integer
142 Lahey/Fujitsu Fortran 95 Language Reference

INCLUDE Line
INCLUDE Line
Description
The INCLUDE line causes text in another file to be processed as if the text therein replaced
the INCLUDE line. The INCLUDE line is not a Fortran statement.

Syntax
INCLUDE filename

Where:
filename is a CHARACTER literal constant that corresponds to a file that contains source text
to be included in place of the INCLUDE line.

Remarks
The INCLUDE line must be the only non-blank text on this source line other than an optional
trailing comment. A statement label or additional statements are not allowed on the line.

Example
include "types.for" ! include a file named types.for

! in place of this INCLUDE line

INDEX Function
Description
Starting position of a substring within a string.

Syntax
INDEX (string, substring, back)

Required Arguments
string must be of type CHARACTER.

substring must be of type CHARACTER with the same kind as string.

Optional Arguments
back must be of type LOGICAL.

Result
The result is of type default INTEGER. If back is absent or false, the result value is the posi-
tion number in string where the first instance of substring begins or zero if there is no such
value or if string is shorter than substring. If substring is of zero length, the result value is
one.
Lahey/Fujitsu Fortran 95 Language Reference 143

Chapter 2 Alphabetical Reference
If back is present and true, the result value is the position number in string where the last
instance of substring begins. If string is shorter than substring or if substring is not in string,
zero is returned. If substring is of zero length, LEN(string)+1 is returned.

Example
i = index('mississippi', 'si')

! i is assigned the value 4
i = index('mississippi', 'si', back=.true.)

! i is assigned the value 7

INQUIRE Statement
Description
The INQUIRE statement enables the program to make inquiries about a file’s existence, con-
nection, access method or other properties.
144 Lahey/Fujitsu Fortran 95 Language Reference

INQUIRE Statement
Syntax
INQUIRE (inquire-specs)

or
INQUIRE (IOLENGTH = iolength) output-items

Where:
inquire-specs is a comma-separated list of
[UNIT =] external-file-unit
or FILE = file-name-expr
or IOSTAT = iostat
or ERR = label
or EXIST = exist
or OPENED = opened
or NUMBER = number
or NAMED = named
or NAME = name
or ACCESS = access
or SEQUENTIAL = sequential
or DIRECT = direct
or FORM = form
or FORMATTED = formatted
or UNFORMATTED = unformatted
or RECL = recl
or NEXTREC = nextrec
or BLANK = blank
or POSITION = position
or ACTION = action
or READ = read
or WRITE = write
or READWRITE = readwrite
or DELIM = delim
or PAD = pad
or FLEN = flen
or BLOCKSIZE = blocksize
or CONVERT =file-format
or CARRIAGECONTROL = carriagecontrol

external-file-unit is a scalar INTEGER expression that evaluates to the input/output unit
number of an external file.

file-name-expr is a scalar CHARACTER expression that evaluates to the name of a file.

iostat is a scalar default INTEGER variable that is assigned a positive value if an error con-
dition occurs, a negative value if an end-of-file or end-of-record condition occurs, and zero
otherwise.
Lahey/Fujitsu Fortran 95 Language Reference 145

Chapter 2 Alphabetical Reference
label is the statement label of the statement branched to if an error occurs.

exist is a scalar default LOGICAL variable that is assigned the value true if the file specified
in the FILE= specifier exists or the input/output unit specified in the UNIT= specifier exists,
and false otherwise.

opened is a scalar default LOGICAL variable that is assigned the value true if the file or
input/output unit specified is connected, and false otherwise.

number is a scalar default INTEGER variable that is assigned the value of the input/output
unit of the external file or -1 if the file is not connected or does not exist.

named is a scalar default LOGICAL variable that is assigned the value true if the file has a
name and false otherwise.

name is a scalar default CHARACTER variable that is assigned the name of the file, if the
file has a name, otherwise it becomes undefined.

access is a scalar default CHARACTER variable that evaluates to SEQUENTIAL if the file
is connected for sequential access, DIRECT if the file is connected for direct access, TRANS-
PARENT if the file is connected for transparent access, or UNDEFINED if the file is not
connected.

sequential is a scalar default CHARACTER variable that is assigned the value YES if
sequential access is an allowed access method for the file, NO if sequential access is not
allowed, and UNKNOWN if the file is not connected or does not exist.

direct is a scalar default CHARACTER variable that is assigned the value YES if direct
access is an allowed access method for the file, NO if direct access is not allowed, and
UNKNOWN if the file is not connected or does not exist.

form is a scalar default CHARACTER variable that is assigned the value FORMATTED if
the file is connected for formatted input/output, UNFORMATTED if the file is connected for
unformatted input/output, and UNDEFINED if there is no connection.

formatted is a scalar default CHARACTER variable that is assigned the value YES if format-
ted is an allowed form for the file, NO if formatted is not allowed, and UNKNOWN if the
file is not connected or does not exist.

unformatted is a scalar default CHARACTER variable that is assigned the value YES if
unformatted is an allowed form for the file, NO if unformatted is not allowed, and
UNKNOWNif the file is not connected or does not exist.

recl is a scalar default INTEGER variable that evaluates to the record length in bytes for a
file connected for direct access, or the maximum record length in bytes for a file connected
for sequential access, or zero if the file is not connected or does not exist.

nextrec is a scalar default INTEGER variable that is assigned the value n+1, where n is the
number of the last record read or written on the file connected for direct access. If the file
has not been written to or read from since becoming connected, the value 1 is assigned. If
the file is not connected for direct access, the value becomes zero.
146 Lahey/Fujitsu Fortran 95 Language Reference

INQUIRE Statement
blank is a scalar default CHARACTER variable that evaluates to NULL if null blank control
is in effect, ZERO if zero blank control is in effect, and UNDEFINED if the file is not con-
nected for formatted input/output or does not exist.

position is a scalar default CHARACTER variable that evaluates to REWIND if the newly
opened sequential access file is positioned at its initial point; APPEND if it is positioned
before the endfile record if one exists and at the file terminal point otherwise; ASIS if the
position is after the endfile record; and UNDEFINED if the file is not connected or does not
exist.

action is a scalar default CHARACTER variable that evaluates to READ if the file is con-
nected for input only, WRITE if the file is connected for output only, READWRITE if the
file is connected for input and output, and UNDEFINED if the file is not connected or does
not exist.

read is a scalar default CHARACTER variable that is assigned the value YES if READ is an
allowed action on the file, NO if READ is not an allowed action of the file, and UNKNOWN
if the file is not connected or does not exist.

write is a scalar default CHARACTER variable that is assigned the value YES if WRITE is
an allowed action on the file, NO if WRITE is not an allowed action of the file, and
UNKNOWN if the file is not connected or does not exist.

readwrite is a scalar default CHARACTER variable that is assigned the value YES if READ-
WRITE is an allowed action on the file, NO if READWRITE is not an allowed action of the
file, and UNKNOWN if the file is not connected or does not exist.

delim is a scalar default CHARACTER variable that evaluates to APOSTROPHE if the apos-
trophe will be used to delimit character constants written with list-directed or namelist
formatting, QUOTE if the quotation mark will be used, NONE if neither quotation marks nor
apostrophes will be used, and UNDEFINED if the file is not connected or does not exist.

pad is a scalar default CHARACTER variable that evaluates to YES if the formatted input
record is padded with blanks or if the file is not connected or does not exist, and NO
otherwise.

flen is a scalar default INTEGER variable that is assigned the length of the file in bytes.

blocksize is a scalar default INTEGER variable that evaluates to the size, in bytes, of the I/O
buffer. This value may be internally adjusted to a record size boundary if the unit has been
connected for direct access and therefore may no agree with the BLOCKSIZE specifier spec-
ified in an OPEN Statement. The value is zero if the file is not connected or does not exist.

file-format is a scalar default CHARACTER variable that evaluates to BIG_ENDIAN if big
endian conversion is in effect, LITTLE_ENDIAN if little endian conversion is in effect, IBM
if IBM style conversion is in effect, and NATIVE if no conversion is in effect.

carriagecontrol is a scalar default CHARACTER variable that evaluates to FORTRAN if the
first character of a formatted sequential record is to be used for carriage control, and LIST
otherwise.
Lahey/Fujitsu Fortran 95 Language Reference 147

Chapter 2 Alphabetical Reference
iolength is a scalar default INTEGER variable that is assigned a value that would result from
the use of output-items in an unformatted output statement. The value can be used as a
RECL= specifier in an OPEN statement that connects a file for unformatted direct access
when there are input/output statements with the same list of output-items.

output-items is a comma-separated list of items used with iolength as explained immediately
above.

Remarks
inquire-specs must contain one FILE= specifier or one UNIT= specifier, but not both, and at
most one of each of the other specifiers.

In the inquire by unit form of the INQUIRE statement, if the optional characters UNIT= are
omitted from the unit specifier, the unit specifier must be the first item in inquire-specs.

When a returned value of a specifier other than the NAME= specifier is of type CHARAC-
TER and the processor is capable of representing letters in both upper and lower case, the
value returned is in upper case.

If an error condition occurs during execution of an INQUIRE statement, all of the inquiry
specifier variables become undefined, except for the variable in the IOSTAT= specifier (if
any).

Example
inquire (unit=8, access=acc, err=200)

! what access method for unit 8? goto 200 on error
inquire (this_unit, opened=opnd, direct=dir)

! is unit this_unit open? direct access allowed?
inquire (file="myfile.dat", recl=record_length)

! what is the record length of file "myfile.dat"?

INT Function
Description
Convert to INTEGER type.

Syntax
INT (a, kind)

Required Arguments
a must be of type INTEGER, REAL, or COMPLEX.

Optional Arguments
kind must be a scalar INTEGER expression that can be evaluated at compile time.
148 Lahey/Fujitsu Fortran 95 Language Reference

INTEGER Statement
Result
The result is of type INTEGER. If kind is present, the kind is that specified by kind. The
result's value is the value of a without its fractional part. If a is of type COMPLEX, the
result's value is the value of the real part of a without its fractional part.

Example
b = int(-3.6) ! b is assigned the value -3

INTEGER Statement
Description
The INTEGER statement declares entities of type INTEGER.

Syntax
INTEGER [kind-selector] [[, attribute-list] ::] entity [, entity] ...

Where:
kind-selector is ([KIND =] scalar-int-initialization-expr)

scalar-int-initialization-expr is a scalar INTEGER expression that can be evaluated at com-
pile time.

attribute-list is a comma-separated list from the following attributes: PARAMETER, ALLO-
CATABLE, DIMENSION(array-spec), EXTERNAL, INTENT (IN) or INTENT (OUT) or
INTENT (IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE,
TARGET.

entity is entity-name [(array-spec)] [= initialization-expr]
or function-name [(array-spec)]

array-spec is an array specification.

initialization-expr is an expression that can be evaluated at compile time.

entity-name is the name of a data object being declared.

function-name is the name of a function being declared.

Remarks
The same attribute must not appear more than once in a INTEGER statement.

function-name must be the name of an external, intrinsic, or statement function, or a function
dummy procedure.

The = initialization-expr must appear if the statement contains a PARAMETER attribute.
Lahey/Fujitsu Fortran 95 Language Reference 149

Chapter 2 Alphabetical Reference
If = initialization-expr appears, a double colon must appear before the list of entities. Each
entity has the SAVE attribute, unless it is in a named common block.

The = initialization-expr must not appear if entity-name is a dummy argument, a function
result, an object in a named common block unless the type declaration is in a block data pro-
gram unit, an object in blank common, an allocatable array, a pointer, an external name, an
intrinsic name, or an automatic object.

An array declared with a POINTER or an ALLOCATABLE attribute must be specified with
a deferred shape.

An array-spec for a function-name that does not have the POINTER attribute or the ALLO-
CATABLE attribute must be specified with an explicit shape.

An array-spec for a function-name that does have the POINTER attribute or the ALLOCAT-
ABLE attribute must be specified with a deferred shape.

If the POINTER attribute is specified, the TARGET, INTENT, EXTERNAL, or INTRINSIC
attribute must not be specified.

If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or
PARAMETER attribute must not be specified.

The PARAMETER attribute must not be specified for dummy arguments, pointers, allocat-
able arrays, functions, or objects in a common block.

The INTENT and OPTIONAL attributes can be specified only for dummy arguments.

An entity must not have the PUBLIC attribute if its type has the PRIVATE attribute.

The SAVE attribute must not be specified for an object that is in a common block, a dummy
argument, a procedure, a function result, or an automatic data object.

An entity must not have the EXTERNAL attribute if it has the INTRINSIC attribute.

An entity in a INTEGER statement must not have the EXTERNAL or INTRINSIC attribute
specified unless it is a function.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute.

An entity must not be explicitly given any attribute more than once in a scoping unit.
150 Lahey/Fujitsu Fortran 95 Language Reference

INTENT Statement
Example
integer :: a, b, c ! a, b, and c are of type integer
integer, dimension (2, 4) :: d

! d is a 2 by 4 array of integers

integer :: e = 2 ! integer e is initialized

INTENT Statement
Description
The INTENT statement specifies the intended use of a dummy argument.

Syntax
INTENT (intent-spec) [::] dummy-args

Where:
intent-spec is IN
or OUT
or IN OUT

dummy-args is a comma-separated list of dummy arguments.

Remarks
The INTENT (IN) attribute specifies that the dummy argument is intended to receive data
from the invoking scoping unit. The dummy argument must not be redefined or become
undefined during the execution of the procedure.

The INTENT (OUT) attribute specifies that the dummy argument is intended to return data
to the invoking scoping unit. Any actual argument that becomes associated with such a
dummy argument must be definable.

The INTENT (IN OUT) attribute specifies that the dummy argument is intended for use both
to receive data from and to return data to the invoking scoping unit. Any actual argument
that becomes associated with such a dummy argument must be definable.

The INTENT statement must not specify a dummy argument that is a dummy procedure or a
dummy pointer.

Example
subroutine ex (a, b, c)

real :: a, b, c

intent (in) a

intent (out) b

intent (in out) c
Lahey/Fujitsu Fortran 95 Language Reference 151

Chapter 2 Alphabetical Reference
INTERFACE Statement
Description
The INTERFACE statement begins an interface block. An interface block specifies the
forms of reference through which a procedure can be invoked. An interface block can be
used to specify a procedure interface, a defined operation, or a defined assignment.

Syntax
INTERFACE [generic-spec]

Where:
generic-spec is generic-name
or OPERATOR (defined-operator)
or ASSIGNMENT (=)

generic-name is the name of a generic procedure.

defined-operator is one of the intrinsic operators
or .operator-name.

operator-name is a user-defined name for the operation, consisting of one to 31 letters.

Remarks
Procedure interface

A procedure interface consists of the characteristics of the procedure, the name of the proce-
dure, the name and characteristics of each dummy argument, and the procedure's generic
identifiers, if any.

An interface statement with a generic-name specifies a generic interface for each of the pro-
cedures in the interface block.

Defined operations

If OPERATOR is specified in an INTERFACE statement, all of the procedures specified in
the interface block must be functions that can be referenced as defined operations. In the case
of functions of two arguments, infix binary operator notation is implied. In the case of func-
tions of one argument, prefix operator notation is implied. OPERATOR must not be
specified for functions with no arguments or for functions with more than two arguments.
The dummy arguments must be non-optional dummy data objects and must be specified with
INTENT (IN) and the function result must not have assumed CHARACTER length. If the
operator is an intrinsic-operator, the number of function arguments must be consistent with
the intrinsic uses of that operator.
152 Lahey/Fujitsu Fortran 95 Language Reference

INTERFACE Statement
A given defined operator may, as with generic names, apply to more than one function, in
which case it is generic in exact analogy to generic procedure names. For intrinsic operator
symbols, the generic properties include the intrinsic operations they represent. Because both
forms of each relational operator have the same interpretation, extending one form (such as
<=) has the effect of defining both forms (<= and .LE.).

Defined assignments

If ASSIGNMENT is specified in an INTERFACE statement, all the procedures in the inter-
face block must be subroutines that can be referenced as defined assignments. Each of these
subroutines must have exactly two dummy arguments. Each argument must be non-optional.
The first argument must have INTENT (OUT) or INTENT (IN OUT) and the second argu-
ment must have INTENT (IN). A defined assignment is treated as a reference to the
subroutine, with the left-hand side as the first argument and the expression to the right of the
equals the second argument. The ASSIGNMENT generic specification specifies that the
assignment operation is extended or redefined if both sides of the equals sign are of the same
derived type.

Example
interface ! interface without generic specification

subroutine ex (a, b, c)

implicit none

real, dimension (2,8) :: a, b, c

intent (in) a

intent (out) b

end subroutine ex

function why (t, f)

implicit none

logical, intent (in) :: t, f

logical :: why

end function why

end interface

interface swap ! generic swap routine

subroutine real_swap(x, y)

implicit none

real, intent (in out) :: x, y

end subroutine real_swap

subroutine int_swap(x, y)

implicit none

integer, intent (in out) :: x, y

end subroutine int_swap

end interface
Lahey/Fujitsu Fortran 95 Language Reference 153

Chapter 2 Alphabetical Reference
interface operator (*) ! use * for set intersection

function set_intersection (a, b)

use set_module ! contains definition of type set

implicit none

type (set), intent (in) :: a, b

type (set) :: set_intersection

end function set_intersection

end interface

interface assignment (=) ! use = for integer to bit

subroutine integer_to_bit (n, b)

implicit none

integer, intent (in) :: n

logical, intent (out) :: b(:)

end subroutine integer_to_bit

end interface

INTRINSIC Statement
Description
The INTRINSIC statement specifies a list of names that represent intrinsic procedures.
Doing so permits a name that represents a specific intrinsic function to be used as an actual
argument.

Syntax
INTRINSIC [::] intrinsic-procedure-names

Where:
intrinsic-procedure-names is a comma-separated list of intrinsic procedures.

Remarks
The appearance of a generic intrinsic function name in an INTRINSIC statement does not
cause that name to lose its generic property.

If the specific name of an intrinsic function is used as an actual argument, the name must
either appear in an INTRINSIC statement or be given the intrinsic attribute in a type decla-
ration statement in the scoping unit.

Only one appearance of a name in all of the INTRINSIC statements in a scoping unit is
permitted.

A name must not appear in both an EXTERNAL and an INTRINSIC statement in the same
scoping unit.
154 Lahey/Fujitsu Fortran 95 Language Reference

INVALOP Subroutine
Example
intrinsic dlog, dabs ! dlog and dabs allowed as

! actual arguments

call zee (a, b, dlog)

INVALOP Subroutine
Description
The initial invocation of the INVALOP subroutine masks the invalid operator interrupt on
the floating-point unit. lflag must be set to true on the first invocation. Subsequent invoca-
tions return true or false in the lflag variable if the exception has occurred or not occurred,
respectively.

Syntax
INVALOP (lflag)

Arguments
lflag must be of type LOGICAL. It is assigned the value true if an invalid operation excep-
tion has occurred, and false otherwise.

Example
call invalop (lflag) ! mask the invalid operation interrupt

IOR Function
Description
Bit-wise logical inclusive OR.

Syntax
IOR (i, j)

Arguments
i must be of type INTEGER.

j must be of type INTEGER and of the same kind as i.

Result
The result is of type INTEGER and of the same kind as i.
Lahey/Fujitsu Fortran 95 Language Reference 155

Chapter 2 Alphabetical Reference
Example
i=53 ! i = 00110101 binary (lowest-order byte)
j=45 ! j = 00101101 binary (lowest-order byte)
k=ior(i,j) ! k = 00111101 binary (lowest-order byte)

! k = 61 decimal

IOSTAT_MSG Subroutine
Description
Get a runtime I/O error message then continue processing.

Syntax
IOSTAT_MSG (iostat, message)

Arguments
iostat must be of type INTEGER. It is an INTENT(IN) argument that passes the IOSTAT
value from a preceding input/output statement.

message must be of type CHARACTER. It is an INTENT(OUT) argument that is assigned
the runtime error message corresponding to the IOSTAT value in iostat. A CHARACTER
length of 256 is sufficient for all runtime errors at this time. However, longer CHARACTER
lengths may be used.

Example
call iostat_msg(iostat,msg) ! msg is assigned

! the runtime error message
! corresponding to iostat

ISHFT Function
Description
Bit-wise shift.

Syntax
ISHFT (i, shift)

Arguments
i must be of type INTEGER.

shift must be of type INTEGER. Its absolute value must be less than or equal to the number
of bits in i.
156 Lahey/Fujitsu Fortran 95 Language Reference

ISHFTC Function
Result
The result is of type INTEGER and of the same kind as i. Its value is the value of i shifted
by shift positions; if shift is positive, the shift is to the left, if shift is negative, the shift is to
the right. Bits shifted out are lost.

Example
i = ishft(3,2) ! i is assigned the value 12

ISHFTC Function
Description
Bit-wise circular shift of rightmost bits.

Syntax
ISHFTC (i, shift, size)

Required Arguments
i must be of type INTEGER.

shift must be of type INTEGER. The absolute value of shift must be less than or equal to size.

Optional Arguments
size must be of type INTEGER. The value of size must be positive and must not be greater
than BIT_SIZE (i). If absent, it is as if size were present with the value BIT_SIZE (i).

Result
The result is of type INTEGER and of the same kind as i. Its value is equal to the value of i
with its rightmost size bits circularly shifted left by shift positions.

Example
i = ishftc(13,-2,3) ! i is assigned the value 11

KIND Function
Description
Kind type parameter.
Lahey/Fujitsu Fortran 95 Language Reference 157

Chapter 2 Alphabetical Reference
Syntax
KIND (x)

Arguments
x can be of any intrinsic type.

Result
The result is a default scalar INTEGER. Its value is equal to the kind type parameter value
of x.

Example
i = kind (0.0) ! i is assigned the value 4

LBOUND Function
Description
Lower bounds of an array or a dimension of an array.

Syntax
LBOUND (array, dim)

Required Arguments
array can be of any type. It must not be a scalar and must not be a pointer that is disassociated
or an allocatable array that is not allocated.

Optional Arguments
dim must of type INTEGER and must be a dimension of array.

Result
The result is of type default INTEGER. If dim is present, the result is a scalar with the value
of the lower bound of dim. If dim is absent, the result is an array of rank one with values
corresponding to the lower bounds of each dimension of array.

The lower bound of an array section is always one. The lower bound of a zero-sized dimen-
sion is also always one.

Example
integer, dimension (3,-4:0) :: i
integer :: k,j(2)
j = lbound (i) ! j is assigned the value [1 -4]
k = lbound (i, 2) ! k is assigned the value -4
158 Lahey/Fujitsu Fortran 95 Language Reference

LEN Function
LEN Function
Description
Length of a CHARACTER data object.

Syntax
LEN (string)

Arguments
string must be of type CHARACTER. It can be scalar or array-valued.

Result
The result is a scalar default INTEGER. Its value is the number of characters in string or in
an element of string if string is array-valued.

Example
i = len ('zee') ! i is assigned the value 3

LEN_TRIM Function
Description
Length of a CHARACTER entity without trailing blanks.

Syntax
LEN_TRIM (string)

Arguments
string must be of type CHARACTER. It can be scalar or array-valued.

Result
The result is a scalar default INTEGER. Its value is the number of characters in string (or in
an element of string if string is array-valued) minus the number of trailing blanks.

Example
i = len_trim ('zee ') ! i is assigned the value 3

i = len_trim (' ') ! i is assigned the value zero
Lahey/Fujitsu Fortran 95 Language Reference 159

Chapter 2 Alphabetical Reference
LGE Function
Description
Test whether a string is lexically greater than or equal to another string based on the ASCII
collating sequence.

Syntax
LGE (string_a, string_b)

Arguments
string_a must be of type default CHARACTER.

string_b must be of type default CHARACTER.

Result
The result is of type default LOGICAL. Its value is true if string_b precedes string_a in the
ASCII collating sequence, or if the strings are the same ignoring trailing blanks; otherwise
the result is false. If both strings are of zero length the result is true.

Example
l = lge('elephant', 'horse') ! l is assigned the

! value false

LGT Function
Description
Test whether a string is lexically greater than another string based on the ASCII collating
sequence.

Syntax
LGT (string_a, string_b)

Arguments
string_a must be of type default CHARACTER.

string_b must be of type default CHARACTER.

Result
The result is of type default LOGICAL. Its value is true if string_b precedes string_a in the
ASCII collating sequence; otherwise the result is false. If both strings are of zero length the
result is false.
160 Lahey/Fujitsu Fortran 95 Language Reference

LLE Function
Example
l = lgt('elephant', 'horse') ! l is assigned the

! value false

LLE Function
Description
Test whether a string is lexically less than or equal to another string based on the ASCII col-
lating sequence.

Syntax
LLE (string_a, string_b)

Arguments
string_a must be of type default CHARACTER.

string_b must be of type default CHARACTER.

Result
The result is of type default LOGICAL. Its value is true if string_a precedes string_b in the
ASCII collating sequence, or if the strings are the same ignoring trailing blanks; otherwise
the result is false. If both strings are of zero length the result is true.

Example
l = lle('elephant', 'horse') ! l is assigned the

! value true

LLT Function
Description
Test whether a string is lexically less than another string based on the ASCII collating
sequence.

Syntax
LLT (string_a, string_b)

Arguments
string_a must be of type default CHARACTER.

string_b must be of type default CHARACTER.
Lahey/Fujitsu Fortran 95 Language Reference 161

Chapter 2 Alphabetical Reference
Result
The result is of type default LOGICAL. Its value is true if string_a precedes string_b in the
ASCII collating sequence; otherwise the result is false. If both strings are of zero length the
result is false.

Example
l = llt('elephant', 'horse') ! l is assigned the

! value true

LOG Function
Description
Natural logarithm.

Syntax
LOG (x)

Arguments
x must be of type REAL or COMPLEX. If x is REAL, it must be greater than zero. If x is
COMPLEX, it must not be equal to zero.

Result
The result is of the same type and kind as x. Its value is equal to a REAL representation of
logex if x is REAL. Its value is equal to the principal value with imaginary part in the range

 if x is COMPLEX.

Example
x = log (3.7) ! x is assigned the value 1.30833

LOG10 Function
Description
Common logarithm.

Syntax
LOG10 (x)

Arguments
x must be of type REAL. The value of x must be greater than zero.

ω
π– ω π≤<
162 Lahey/Fujitsu Fortran 95 Language Reference

LOGICAL Function
Result
The result is of the same type and kind as x. Its value is equal to a REAL representation of
log10x.

Example
x = log10 (3.7) ! x is assigned the value 0.568202

LOGICAL Function
Description
Convert between kinds of LOGICAL.

Syntax
LOGICAL (l, kind)

Required Arguments
l must be of type LOGICAL.

Optional Arguments
kind must be a scalar INTEGER expression that can be evaluated at compile time.

Result
The result is of type LOGICAL. If kind is present, the result kind is that of kind; otherwise
it is of default LOGICAL kind. The result value is that of l.

Example
l = logical (.true., 4) ! l is assigned the value

! true with kind 4

LOGICAL Statement
Description
The LOGICAL statement declares entities of type LOGICAL.

Syntax
LOGICAL [kind-selector] [[, attribute-list] ::] entity [, entity] ...

Where:
kind-selector is ([KIND =] scalar-int-initialization-expr)
Lahey/Fujitsu Fortran 95 Language Reference 163

Chapter 2 Alphabetical Reference
scalar-int-initialization-expr is a scalar INTEGER expression that can be evaluated at com-
pile time.

attribute-list is a comma-separated list from the following attributes: PARAMETER, ALLO-
CATABLE, DIMENSION(array-spec), EXTERNAL, INTENT (IN) or INTENT (OUT) or
INTENT (IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE,
TARGET.

entity is entity-name [(array-spec)] [= initialization-expr]
or function-name [(array-spec)]

array-spec is an array specification.

initialization-expr is an expression that can be evaluated at compile time.

entity-name is the name of a data object being declared.

function-name is the name of a function being declared.

Remarks
The same attribute must not appear more than once in a LOGICAL statement.

function-name must be the name of an external, intrinsic, or statement function, or a function
dummy procedure.

The = initialization-expr must appear if the statement contains a PARAMETER attribute.

If = initialization-expr appears, a double colon must appear before the list of entities. Each
entity has the SAVE attribute, unless it is in a named common block.

The = initialization-expr must not appear if entity-name is a dummy argument, a function
result, an object in a named common block unless the type declaration is in a block data pro-
gram unit, an object in blank common, an allocatable array, a pointer, an external name, an
intrinsic name, or an automatic object.

An array declared with a POINTER or an ALLOCATABLE attribute must be specified with
a deferred shape.

An array-spec for a function-name that does not have the POINTER attribute or the ALLO-
CATABLE attribute must be specified with an explicit shape.

An array-spec for a function-name that does have the POINTER attribute or the ALLOCAT-
ABLE attribute must be specified with a deferred shape.

If the POINTER attribute is specified, the TARGET, INTENT, EXTERNAL, or INTRINSIC
attribute must not be specified.

If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or
PARAMETER attribute must not be specified.

The PARAMETER attribute must not be specified for dummy arguments, pointers, allocat-
able arrays, functions, or objects in a common block.
164 Lahey/Fujitsu Fortran 95 Language Reference

MATMUL Function
The INTENT and OPTIONAL attributes can be specified only for dummy arguments.

An entity must not have the PUBLIC attribute if its type has the PRIVATE attribute.

The SAVE attribute must not be specified for an object that is in a common block, a dummy
argument, a procedure, a function result, or an automatic data object.

An entity must not have the EXTERNAL attribute if it has the INTRINSIC attribute.

An entity in a LOGICAL statement must not have the EXTERNAL or INTRINSIC attribute
specified unless it is a function.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute.

Example
logical :: a, b, c ! a, b, and c are of type logical

logical, dimension (2, 4) :: d

! d is a 2 by 4 array of logical

logical :: e = .true. ! logical e is initialized

MATMUL Function
Description
Matrix multiplication.

Syntax
MATMUL (matrix_a, matrix_b)

Arguments
matrix_a must be of type INTEGER, REAL, COMPLEX, or LOGICAL. It must be array-
valued and of rank one or two if matrix_b is of rank two, and of rank two if matrix_b is of
rank one..

matrix_b must be of numerical type if matrix_a is of numerical type and of type LOGICAL
if matrix_a is of type LOGICAL. It must be array-valued and of rank one or two, if matrix_a
is of rank two, and of rank two if matrix_a is of rank one. The size of the first dimension
must be the same as the size of the last dimension of matrix_a.

Result
If the arguments are of the same numeric type, the result is of that type. If their kinds are the
same the result kind is that of the arguments. If their kind is different, the result kind is that
of the argument with the greater kind parameter.
Lahey/Fujitsu Fortran 95 Language Reference 165

Chapter 2 Alphabetical Reference
If the arguments are of different numeric type and one is of type COMPLEX, then the result
is of type COMPLEX. If the arguments are of different numeric type, and neither is of type
COMPLEX, the result is of type REAL.

If the arguments are of type LOGICAL, the result is of type LOGICAL. If their kinds are the
same the result kind is that of the arguments. If their kind is different, the result kind is that
of the argument with the greater kind parameter.

The value and shape of the result are as follows:

If matrix_a has shape (n, m) and matrix_b has shape (m, k), the result has shape (n, k). Ele-
ment (i, j) of the result has the value SUM(matrix_a(i, :) * matrix_b(:, j)) if the arguments are
of numeric type and has the value ANY(matrix_a(i, :) * matrix_b(:, j)) if the arguments are
of type LOGICAL.

If matrix_a has shape (m) and matrix_b has shape (m, k), the result has shape (k). Element
(j) of the result has the value SUM(matrix_a(:) * matrix_b(:, j)) if the arguments are of
numeric type and has the value ANY(matrix_a(:) * matrix_b(:, j)) if the arguments are of type
LOGICAL.

If matrix_a has shape (n, m) and matrix_b has shape (m), the result has shape (n). Element
(i, j) of the result has the value SUM(matrix_a(i, :) * matrix_b(:)) if the arguments are of
numeric type and has the value ANY(matrix_a(i, :) * matrix_b(:)) if the arguments are of type
LOGICAL.

Example
integer a(2,3), b(3), c(2)
a = reshape((/1,2,3,4,5,6/), (/2,3/))

! represents |1 3 5|
|2 4 6|

b = (/1,2,3/) ! represents [1,2,3]
c = matmul(a, b) ! c = [22,28]

MAX Function
Description
Maximum value.

Syntax
MAX (a1, a2, a3, ...)

Arguments
The arguments must be of type INTEGER or REAL and must all be of the same type and
kind.
166 Lahey/Fujitsu Fortran 95 Language Reference

MAXEXPONENT Function
Result
The result is of the same type and kind as the arguments. Its value is the value of the largest
argument.

Example
k = max(-14,3,0,-2,19,1) ! k is assigned the value 19

MAXEXPONENT Function
Description
Maximum binary exponent of data type.

Syntax
MAXEXPONENT (x)

Arguments
x must be of type REAL. It can be scalar or array-valued.

Result
The result is a scalar default INTEGER. Its value is the largest permissible binary exponent
in the data type of x.

Example
real :: r

integer :: i

i = maxexponent (r) ! i is assigned the value 128

MAXLOC Function
Description
Location of the first element in array having the maximum value of the elements identified
by mask.

Syntax
MAXLOC (array, dim, mask)

Required Arguments
array must be of type INTEGER or REAL. It must not be scalar.
Lahey/Fujitsu Fortran 95 Language Reference 167

Chapter 2 Alphabetical Reference
Optional Arguments
dim must be a scalar INTEGER in the range , where n is the rank of array. The
corresponding dummy argument must not be an optional dummy argument.

mask must be of type LOGICAL and must be conformable with array.

Result
The result is of type default INTEGER. If dim is present, the result is an array of rank n-1
where n is the rank of array. The result values are the locations having the maximum value
along dimension dim.

If dim is absent, the result is an array of rank one whose element values are the values of the
subscripts of the first element in array to have the maximum value of all of the elements of
array.

If mask is present, the elements of array for which mask is false are not considered.

Example
integer, dimension(1) :: i

i = maxloc ((/3,0,4,4/)) ! i is assigned the value [3]

MAXVAL Function
Description
Maximum value of elements of an array, along a given dimension, for which a mask is true.

Syntax
MAXVAL (array, dim, mask)

Required Arguments
array must be of type INTEGER or REAL. It must not be scalar.

Optional Arguments
dim must be a scalar INTEGER in the range , where n is the rank of array. The
corresponding dummy argument must not be an optional dummy argument.

mask must be of type LOGICAL and must be conformable with array.

Result
The result is of the same type and kind as array. It is scalar if dim is absent or if array has
rank one; otherwise the result is an array of rank n-1 and of shape

 where is the shape of array. If dim

1 dim n≤ ≤

1 dim n≤ ≤

d1 d2 … ddim 1– ddim 1+ … dn, , , , , ,() d1 d2 … dn, , ,()
168 Lahey/Fujitsu Fortran 95 Language Reference

MERGE Function
is absent, the value of the result is the maximum value of all the elements of array. If dim is
present, the value of the result is the maximum value of all elements of array along dimen-
sion dim. If mask is present, the elements of array for which mask is false are not considered.

Example
integer, dimension (2,2) :: m = reshape((/1,2,3,4/),(/2,2/))

! m is the array |1 3|

! |2 4|

i = maxval(m) ! i is assigned 4

j = maxval(m,dim=1) ! j is assigned [2,4]

k = maxval(m,mask=m<3) ! k is assigned 2

MERGE Function
Description
Choose alternative values based on the value of a mask.

Syntax
MERGE (tsource, fsource, mask)

Arguments
tsource can be of any type.

fsource must be of the same type and type parameters as tsource.

mask must be of type LOGICAL.

Result
The result is of the same type and type parameters as tsource. Its value is tsource if mask is
true, and fsource otherwise.

Example
integer, dimension (2,2) :: m = reshape((/1,2,3,4/),(/2,2/))

integer, dimension (2,2) :: n = reshape((/3,3,3,3/),(/2,2/))

! m is the array |1 3|

! |2 4|

! n is the array |3 3|

! |3 3|

r = merge(m,n,m<n) ! r is assigned (/1,2,3,3/)
Lahey/Fujitsu Fortran 95 Language Reference 169

Chapter 2 Alphabetical Reference
MIN Function

Description
Minimum value.

Syntax
MIN (a1, a2, a3, ...)

Arguments
The arguments must be of type INTEGER or REAL and must all be of the same type and
kind.

Result
The result is of the same type and kind as the arguments. Its value is the value of the smallest
argument.

Example
k = min(-14,3,0,-2,19,1) ! k is assigned the value -14

MINEXPONENT Function

Description
Minimum binary exponent of data type.

Syntax
MINEXPONENT (x)

Arguments
x must be of type REAL. It can be scalar or array-valued.

Result
The result is a scalar default INTEGER. Its value is the most negative permissible binary
exponent in the data type of x.
170 Lahey/Fujitsu Fortran 95 Language Reference

MINLOC Function
Example
real :: r

integer :: i

i = minexponent (r) ! i is assigned the value -126

MINLOC Function
Description
Location of the first element in array having the minimum value of the elements identified
by mask.

Syntax
MINLOC (array, dim, mask)

Required Arguments
array must be of type INTEGER or REAL. It must not be scalar.

Optional Arguments
dim must be a scalar INTEGER in the range , where n is the rank of array. The
corresponding dummy argument must not be an optional dummy argument.

mask must be of type LOGICAL and must be conformable with array.

Result
The result is of type default INTEGER. If dim is present, the result is an array of rank n-1
where n is the rank of array. The result values are the locations having the minimum value
along dimension dim.

If dim is absent, the result is an array of rank one whose element values are the values of the
subscripts of the first element in array to have the minimum value of all of the elements of
array.

If mask is present, the elements of array for which mask is false are not considered.

Example
integer, dimension(1) :: i

i = minloc ((/3,0,4,4/)) ! i is assigned the value [2]

1 dim n≤ ≤
Lahey/Fujitsu Fortran 95 Language Reference 171

Chapter 2 Alphabetical Reference
MINVAL Function
Description
Minimum value of elements of an array, along a given dimension, for which a mask is true.

Syntax
MINVAL (array, dim, mask)

Required Arguments
array must be of type INTEGER or REAL. It must not be scalar.

Optional Arguments
dim must be a scalar INTEGER in the range , where n is the rank of array. The
corresponding dummy argument must not be an optional dummy argument.

mask must be of type LOGICAL and must be conformable with array.

Result
The result is of the same type and kind as array. It is scalar if dim is absent or if array has
rank one; otherwise the result is an array of rank n-1 and of shape

 where is the shape of array. If dim
is absent, the value of the result is the minimum value of all the elements of array. If dim is
present, the value of the result is the minimum value of all elements of array along dimension
dim. If mask is present, the elements of array for which mask is false are not considered.

Example
integer, dimension (2,2) :: m = reshape((/1,2,3,4/),(/2,2/))

! m is the array |1 3|

! |2 4|

i = minval(m) ! i is assigned 1

j = minval(m,dim=1) ! j is assigned [1,3]

k = minval(m,mask=m>3) ! k is assigned 4

MOD Function
Description
Remainder.

1 dim n≤ ≤

d1 d2 … ddim 1– ddim 1+ … dn, , , , , ,() d1 d2 … dn, , ,()
172 Lahey/Fujitsu Fortran 95 Language Reference

MODULE Statement
Syntax
MOD (a, p)

Arguments
a must be of type INTEGER or REAL.

p must be of the same type and kind as a. Its value must not be zero.

Result
The result is the same type and kind as a. Its value is a - INT(a / p) * p.

Example
r = mod(23.4,4.0) ! r is assigned the value 3.4

i = mod(-23,4) ! i is assigned the value -3

j = mod(23,-4) ! j is assigned the value 3

k = mod(-23,-4) ! k is assigned the value -3

MODULE Statement

Description
The MODULE statement begins a module program unit.

Syntax
MODULE module-name

Where:

module-name is the name of the module.

Remarks
The module name must not be the same as the name of another program unit, an external pro-
cedure, or a common block within the executable program, nor be the same as any local name
in the module.

In LF95, a module program unit must be compiled before it is used.
Lahey/Fujitsu Fortran 95 Language Reference 173

Chapter 2 Alphabetical Reference
Example
module m

implicit none
type mytype ! mytype available anywhere m is used

real :: a, b(2,4)
integer :: n,o,p

end type mytype
end module m
subroutine zee ()

use m
implicit none
type (mytype) bee, dee
...

end subroutine zee

MODULE PROCEDURE Statement
Description
The MODULE PROCEDURE statement specifies that the names in the module-procedure-
list are part of a generic interface.

Syntax
MODULE PROCEDURE module-procedure-list

Where:
module-procedure-list is a list of module procedures accessible by host or use association.

Remarks
A MODULE PROCEDURE statement can only appear in a generic interface block within a
module or within a program unit that accesses a module by use association.
174 Lahey/Fujitsu Fortran 95 Language Reference

MODULO Function
Example
module names

implicit none

interface bill

module procedure fred, jim

end interface

contains

function fred ()

...

end function fred

function jim ()

...

end function jim

end module names

MODULO Function
Description
Modulo.

Syntax
MODULO (a, p)

Arguments
a must be of type INTEGER or REAL.

p must be of the same type and kind as a. Its value must not be zero.

Result
The result is the same type and kind as a. If a is a REAL, the result value is a - FLOOR(a /
p) * p. If a is an INTEGER, MODULO(a, p) has the value r such that a = q * p + r, where q
is an INTEGER and r is nearer to zero than p.

Example
r = modulo(23.4,4.0) ! r is assigned the value 3.4

i = modulo(-23,4) ! i is assigned the value 1

j = modulo(23,-4) ! j is assigned the value -1

k - modulo(-23,-4) ! k is assigned the value -3
Lahey/Fujitsu Fortran 95 Language Reference 175

Chapter 2 Alphabetical Reference
MVBITS Subroutine
Description
Copy a sequence of bits from one INTEGER data object to another.

Syntax
MVBITS (from, frompos, len, to, topos)

Arguments
from must be of type INTEGER. It is an INTENT(IN) argument.

frompos must be of type INTEGER and must be non-negative. It is an INTENT(IN) argu-
ment. frompos + len must be less than or equal to BIT_SIZE(from).

len must be of type INTEGER and must be non-negative. It is an INTENT(IN) argument.

to must be a variable of type INTEGER with the same kind as from. It can be the same vari-
able as from. It is an INTENT(IN OUT) argument. to is set by copying len bits, starting at
position frompos, from from, to to, starting at position topos.

topos must be of type INTEGER and must be non-negative. It is an INTENT(IN) argument.
topos + len must be less than or equal to BIT_SIZE(to).

Example
i = 17; j = 3

call mvbits (i,3,3,j,1) ! j is assigned the value 5

NAMELIST Statement
Description
The NAMELIST statement specifies a list of variables which can be referred to by one name
for the purpose of performing input/output.

Syntax
NAMELIST /namelist-name/ namelist-group [[,] /namelist-name/ namelist-group]
...

Where:
namelist-name is the name of a namelist group.

namelist-group is a list of variable names.
176 Lahey/Fujitsu Fortran 95 Language Reference

NDPERR Function (Windows Only)
Remarks
A name in a namelist-group must not be the name of an array dummy argument with a non-
constant bound, a variable with a non-constant character length, an automatic object, a
pointer, a variable of a type that has an ultimate component that is a pointer, or an allocatable
array.

If a namelist-name has the public attribute, no item in the namelist-group can have the PRI-
VATE attribute.

The order in which the variables appear in a NAMELIST statement determines the order in
which the variables’ values will appear on output.

Example
namelist /mylist/ x, y, z

NDPERR Function (Windows Only)
Description
Report floating point exceptions.

Syntax
NDPERR (lvar)

Arguments
lvar must be of type LOGICAL. If lvar is true, NDPERR clears floating-point exception bits.
If lvar is false, NDPERR does not clear floating-point exception bits.

Result
The result is of type default INTEGER. Its value is the INTEGER value of the combination
of the following bits, where a bit set to one indicates an exception has occurred:

Table 9: NDPERR bits

Bit Exception

0 Invalid Operation

1 Denormalized Number

2 Divide by Zero

3 Overflow

4 Underflow
Lahey/Fujitsu Fortran 95 Language Reference 177

Chapter 2 Alphabetical Reference
Example
exc = ndperr (.true.)

! exc is assigned the bits for floating-point exceptions

! that have occurred. Exception bits are cleared.

NDPEXC Subroutine (Windows Only)
Description
Mask all floating point exceptions.

Remarks
To mask specific exceptions use the subroutines INVALOP (invalid operator), OVEFL
(overflow), UNDFL (underflow), and DVCHK (divide by zero).

The precision exception is always masked.

Example
call ndpexc () ! mask floating-point exceptions

NEAREST Function
Description
Nearest number of a given data type in a given direction.

Syntax
NEAREST (x, s)

Arguments
x must be of type REAL.

s must be of type REAL and must be non-zero.

Result
The result is of the same type and kind as x. Its value is the nearest distinct number, in the
data type of x, from x in the direction of the infinity with the same sign as s.
178 Lahey/Fujitsu Fortran 95 Language Reference

NINT Function
Example
a = nearest (34.3, -2.0) ! a is assigned 34.2999954223624

NINT Function
Description
Nearest INTEGER.

Syntax
NINT (a, kind)

Required Arguments
a must be of type REAL.

Optional Arguments
kind must be a scalar INTEGER expression that can be evaluated at compile time.

Result
The result is of type INTEGER. If kind is present the result kind is kind; otherwise it is the
default INTEGER kind. If a > 0, the result has the value

INT(a + 0.5); if , the result has the value INT(a - 0.5).

Example
i = nint (7.73) ! i is assigned the value 8
i = nint (-4.2) ! i is assigned the value -4
i = nint (-7.5) ! i is assigned the value -8
i = nint (2.50) ! i is assigned the value 3

NOT Function
Description
Bit-wise logical complement.

Syntax
NOT (i)

Arguments
i must be of type INTEGER.

a 0≤
Lahey/Fujitsu Fortran 95 Language Reference 179

Chapter 2 Alphabetical Reference
Result
The result is of the same type and kind as i. Its value is the value of i with each of its bits
complemented (zeros changed to ones and ones changed to zeros).

Example
i = not(5) ! i is assigned the value -6

NULL Function
Description
Returns a disassociated pointer.

Syntax
NULL (mold)

Optional Argument
mold must be a pointer and may be of any type. mold must be present when a reference to
NULL() appears as an actual argument in a reference to a generic procedure if the type, type
parameters, or rank is required to resolve the generic reference.

Result
A disassociated pointer of the same type, type parameters, and rank as the pointer that
becomes associated with the result.

Example
real, pointer, dimension(:) :: a => null() ! a is disassociated

NULLIFY Statement
Description
The NULLIFY statement disassociates pointers.

Syntax
NULLIFY (pointers)

Where:
pointers is a comma-separated list of variables or structure components having the POINTER
attribute.
180 Lahey/Fujitsu Fortran 95 Language Reference

OFFSET Function
Example
real, pointer :: a, b, c
real, target :: t, u, v
a=>t; b=>u; c=>v ! a, b, and c are associated
nullify (a, b, c) ! a, b, and c are disassociated

OFFSET Function
Description
Get the offset portion of the memory address of a variable, substring, array reference, or
external subprogram.

Syntax
OFFSET (item)

Arguments
item can be of any type. It is the name for which to return an offset. item must have the
EXTERNAL attribute.

Result
The result is of type INTEGER. It is the offset portion of the memory address of item.

Example
i = offset(a) ! get the offset portion of the address of a

OPEN Statement
Description
The OPEN statement connects or reconnects an external file and an input/output unit.
Lahey/Fujitsu Fortran 95 Language Reference 181

Chapter 2 Alphabetical Reference
Syntax
OPEN (connect-specs)

Where:
connect-specs is a comma-separated list of
[UNIT =] external-file-unit
or IOSTAT = iostat
or ERR = label
or FILE = file-name-expr
or STATUS = status
or ACCESS = access
or FORM = form
or RECL = recl
or BLANK = blank
or POSITION = position
or ACTION = action
or DELIM = delim
or PAD = pad
or BLOCKSIZE = blocksize
or CONVERT =file-format
or CARRIAGECONTROL = carriagecontrol

external-file-unit is a scalar INTEGER expression that evaluates to the input/output unit
number of an external file.

file-name-expr is a scalar CHARACTER expression that evaluates to the name of a file.

iostat is a scalar default INTEGER variable that is assigned a positive value if an error con-
dition occurs, a negative value if an end-of-file or end-of-record condition occurs, and zero
otherwise.

label is the statement label of the statement that is branched to if an error occurs.

status is a scalar default CHARACTER expression. It must evaluate to NEW if the file does
not exist and is to be created; REPLACE if the file is to overwrite an existing file of the same
name or create a new one if the file does not exist; SCRATCH if the file is to be deleted at
the end of the program or the execution of a CLOSE statement; OLD, if the file is to be
opened but not replaced; and UNKNOWN otherwise. The default is UNKNOWN.

access is a scalar default CHARACTER expression. It must evaluate to SEQUENTIAL if
the file is to be connected for sequential access, DIRECT if the file is to be connected for
direct access, or TRANSPARENT if the file is to be connected for binary (transparent)
access. The default value is SEQUENTIAL
182 Lahey/Fujitsu Fortran 95 Language Reference

OPEN Statement
form is a scalar default CHARACTER expression. It must evaluate to FORMATTED if the
file is to be connected for formatted input/output, UNFORMATTED if the file is to be con-
nected for unformatted input/output, or BINARY if the file is to be connected for binary
(transparent) access. The default value is UNFORMATTED, for a file connected for direct
access, and FORMATTED, for a file connected for sequential access.

recl is a scalar default INTEGER expression. It must evaluate to the record length in bytes
for a file connected for direct access, or the maximum record length in bytes for a file con-
nected for sequential access.

blank is a scalar default CHARACTER expression. It must evaluate to NULL if null blank
control is to be used and ZERO if zero blank control is to be used. The default value is
NULL. This specifier is only permitted for a file being connected for formatted input/output.

position is a scalar default CHARACTER expression. It must evaluate to REWIND if the
newly opened sequential access file is to be positioned at its initial point; APPEND if it is to
be positioned before the endfile record if one exists and at the file terminal point otherwise;
and ASIS if the position is to be left unchanged. The default is ASIS.

action is a scalar default CHARACTER expression. It must evaluate to READ if the file is
to be connected for input only, WRITE if the file is to be connected for output only, and
READWRITE if the file is to be connected for input and output. The default value is
READWRITE.

delim is a scalar default CHARACTER expression. It must evaluate to APOSTROPHE if
the apostrophe will be used to delimit character constants written with list-directed or namel-
ist formatting, QUOTE if the quotation mark will be used, and NONE if neither quotation
marks nor apostrophes will be used. The default value is NONE. This specifier is permitted
only for formatted files and is ignored on input.

pad is a scalar default CHARACTER expression. It must evaluate to YES if the formatted
input record is to be padded with blanks and NO otherwise. The default value is YES.

blocksize is a scalar default INTEGER expression. It must evaluate to the size, in bytes, of
the input/output buffer.

file-format is a scalar default CHARACTER variable that evaluates to BIG_ENDIAN if big
endian conversion is to occur, LITTLE_ENDIAN if little endian conversion is to occur, IBM
if IBM style conversion is to occur, and NATIVE if no conversion is to occur.

carriagecontrol is a scalar default CHARACTER expression. It must evaluate to FORTRAN
if the first character of a formatted sequential record is to be used for carriage control, and
LIST otherwise. Non-storage devices default to FORTRAN; disk files to LIST

Remarks
The OPEN statement can be used to connect an existing file to an input/output unit, create a
file that is preconnected, create a file and connect it to an input/output unit, or change certain
characteristics of a connection between a file and an input/output unit.
Lahey/Fujitsu Fortran 95 Language Reference 183

Chapter 2 Alphabetical Reference
If the optional characters UNIT= are omitted from the unit specifier, the unit specifier must
be the first item in the connect-spec-list.

If the file to be connected to the input/output unit is the same as the file to which the unit is
already connected, only the BLANK=, DELIM=, PAD=, ERR=, and IOSTAT= specifiers
can have values different from those currently in effect.

If a file is already connected to an input/output unit, execution of an OPEN statement on that
file and a different unit is not permitted.

FILE= is optional if it is the second argument and the first argument is a unit number with no
UNIT=.

Example
open (8, file='info.dat',status='new')

OPTIONAL Statement
Description
The OPTIONAL statement specifies that any of the dummy arguments specified need not be
associated with an actual argument when the procedure is invoked.

Syntax
OPTIONAL [::] dummy-arg-names

Where:
dummy-arg-names is a comma-separated list of dummy argument names.

Example
subroutine a(b,c)

real, optional, intent(in) :: c
! c need not be provided when calling a

real, intent(out) :: b
...

OVEFL Subroutine (Windows Only)
Description
The initial invocation of the OVEFL subroutine masks the overflow interrupt on the floating-
point unit. lflag must be set to true on the first invocation. Subsequent invocations return
true or false in the lflag variable if the exception has occurred or not occurred, respectively.
184 Lahey/Fujitsu Fortran 95 Language Reference

PACK Function
Syntax
OVEFL (lflag)

Arguments
lflag must be of type LOGICAL. It is assigned the value true if an overflow exception has
occurred, and false otherwise.

Example
call ovefl (lflag) ! mask the overflow interrupt

PACK Function
Description
Pack an array into a vector under control of a mask.

Syntax
PACK (array, mask, vector)

Required Arguments
array can be of any type. It must not be scalar.

mask must be of type LOGICAL and must be conformable with array.

Optional Arguments
vector must be of the same type and kind as array and must have rank one. It must have at
least as many elements as there are true elements in array. If mask is scalar with value true,
vector must have at least as many elements as array.

Result
The result is an array of rank one with the same type and kind as array. If vector is present,
the result size is the size of vector. If vector is absent, the result size is the number of true
elements in mask unless mask is scalar with the value true, in which case the size is the size
of array.

The value of element i of the result is the ith true element of mask, in array-element order. If
vector is present and is larger than the number of true elements in mask, the elements of the
result beyond the number of true elements in mask are filled with values from the correspond-
ing elements of vector.
Lahey/Fujitsu Fortran 95 Language Reference 185

Chapter 2 Alphabetical Reference
Example
integer, dimension(3,3) :: c
c = reshape((/0,3,2,4,3,2,5,1,2/),(/3,3/))
! represents the array |0 4 5|
! |3 3 1|
! |2 2 2|
integer, dimension(6) :: d
integer, dimension(9) :: e
d = pack(c,mask=c.ne.2)! d is assigned [0 3 4 3 5 1]
e = pack(c,mask=.true.)! e is assigned [0 3 2 4 3 2 5 1 2]

PARAMETER Statement
Description
The PARAMETER statement specifies named constants.

Syntax
PARAMETER (named-constant-defs)

Where:
named-constant-defs is a comma separated list of constant-name = init-expr

constant-name is the name of a constant being specified.

init-expr is an expression that can be evaluated at compile time.

Remarks
Each named constant becomes defined with the value of init-expr.

Example
parameter (freezing_point = 32.0, conv_factor = 9/5)

PAUSE Statement (obsolescent)
Description
The PAUSE statement temporarily suspends execution of the program.

Syntax
PAUSE [pause-code]

Where:
pause-code is a scalar CHARACTER constant or a series of 1 to 5 digits.
186 Lahey/Fujitsu Fortran 95 Language Reference

Pointer Assignment Statement
Remarks
When a PAUSE statement is reached, the optional pause-code and the string "Press enter

to continue" are displayed. The program resumes execution when the <ENTER> key is
pressed.

Example
pause !"Press enter to continue" is displayed

Pointer Assignment Statement
Description
The pointer assignment statement associates a pointer with a target.

Syntax
pointer => target

Where:
pointer is a variable having the POINTER attribute.

target is a variable or expression having the TARGET attribute or the POINTER attribute or
a subobject of a variable having the TARGET attribute.

Remarks
If target is not a pointer, pointer becomes associated with target. If target is a pointer that is
associated, pointer becomes associated with the same object as target. If target is disassoci-
ated, pointer becomes disassociated. If target’s association status is undefined, pointer’s
also becomes undefined.

Pointer assignment of a pointer component of a structure can also take place by derived type
intrinsic assignment or by a defined assignment.

A pointer also becomes associated with a target through allocation of the pointer.

Any previous association between pointer and a target is broken.

target must be of the same type, kind, and rank as pointer.

target must not be an array section with a vector subscript.

If target is an expression, it must deliver a pointer result.

Example
real, pointer :: a
real, target :: b = 5.0
a => b ! a is an alias for b
Lahey/Fujitsu Fortran 95 Language Reference 187

Chapter 2 Alphabetical Reference
POINTER Function
Description
Get the memory address of a variable, substring, array reference, or external subprogram.

Syntax
POINTER (item)

Arguments
item can be of any type. It is the name for which to return an address. item must have the
EXTERNAL attribute.

Result
The result is of type INTEGER. It is the address of item.

Example
i = pointer(a) ! get the address of a

POINTER Statement
Description
The POINTER statement specifies a list of variables that have the POINTER attribute.

Syntax
POINTER [::] variable-name [(deferred-shape)] [, variable-name [(deferred-
shape)]] ...

Where:
variable-name is the name of a variable.

deferred-shape is : [, :] ... where the number of colons is equal to the rank of variable-name.

Remarks
A pointer must not be referenced or defined unless it is first associated with a target through
a pointer assignment or an ALLOCATE statement.

The INTENT attribute must not be specified for variable-name.

If the DIMENSION attribute is specified elsewhere in the scoping unit, the array must have
a deferred shape.
188 Lahey/Fujitsu Fortran 95 Language Reference

PRECFILL Subroutine
Example
real :: next, previous, value

pointer :: next, previous

PRECFILL Subroutine
Description
Set fill character for numeric fields that are wider than supplied numeric precision. The
default is ’0’.

Syntax
PRECFILL (filchar)

Arguments
filchar must be of type CHARACTER. It is an INTENT(IN) argument whose first character
becomes the new precision fill character.

Example
call precfill(’*’) ! ’*’ is the new precision fill character

PRECISION Function
Description
Decimal precision of data type.

Syntax
PRECISION (x)

Arguments
x must be of type REAL or COMPLEX.

Result
The result is of type default INTEGER. Its value is equal to the number of decimal digits of
precision in the data type of x.
Lahey/Fujitsu Fortran 95 Language Reference 189

Chapter 2 Alphabetical Reference
Example
i = precision (4.2) ! i is assigned the value 6

PRESENT Function

Description
Determine whether an optional argument is present.

Syntax
PRESENT (a)

Arguments
a must be an optional argument of the procedure in which the PRESENT function appears.

Result
The result is a scalar default LOGICAL. Its value is true if the actual argument correspond-
ing to a was provided in the invocation of the procedure in which the PRESENT function
appears and false otherwise.

Example
call zee(a, b)

...

subroutine zee (x,y,z)

implicit none

real, intent(in out) :: x, y

real, intent (in), optional :: z

r = present(z) ! r is assigned the value false

PRINT Statement

Description
The PRINT statement transfers values from an output list to an input/output unit.
190 Lahey/Fujitsu Fortran 95 Language Reference

PRINT Statement
Syntax
PRINT format [, outputs]

Where:
format is format-expr
or label
or *
or assigned-label

format-expr is a default CHARACTER expression that evaluates to ([format-items])

label is a statement label of a FORMAT statement.

assigned-label is a scalar default INTEGER variable that was assigned the label of a FOR-
MAT statement in the same scoping unit.

outputs is a comma-separated list of expr
or io-implied-do

expr is an expression.

io-implied-do is (outputs, implied-do-control)

implied-do-control is do-variable = start, end [, increment]

start, end, and increment are scalar numeric expressions of type INTEGER, REAL or double-
precision REAL.

do-variable is a scalar variable of type INTEGER, REAL or double-precision REAL.

format-items is a comma-separated list of [r]data-edit-descriptor, control-edit-descriptor, or
char-string-edit-descriptor, or [r](format-items)

data-edit-descriptor is Iw[.m]
or Bw[.m]
or Ow[.m]
or Zw[.m]
or Fw.d
or Ew.d[Ee]
or ENw.d[Ee]
or ESw.d[Ee]
or Gw.d[Ee]
or Lw
or A[w]
or Dw.d

w, m, d, and e are INTEGER literal constants that represent field width, digits, digits after the
decimal point, and exponent digits, respectively
Lahey/Fujitsu Fortran 95 Language Reference 191

Chapter 2 Alphabetical Reference
control-edit-descriptor is Tn
or TLn
or TRn
or nX
or S
or SP
or SS
or BN
or BZ
or [r]/
or :
or kP

char-string-edit-descriptor is a CHARACTER literal constant or cHrep-chars

rep-chars is a string of characters

c is the number of characters in rep-chars

r, k, and n are positive INTEGER literal constants that are used to specify a number of repe-
titions of the data-edit-descriptor, char-string-edit-descriptor, control-edit-descriptor, or
(format-items)

Remarks
The do-variable of an implied-do-control that is contained within another io-implied-do must
not appear as the do-variable of the containing io-implied-do.

If an array appears as an output item, it is treated as if the elements are specified in array-
element order.

If a derived type object appears as an output item, it is treated as if all of the components are
specified in the same order as in the definition of the derived type.

The comma used to separate items in format-items can be omitted between a P edit descriptor
and an immediately following F, E, EN, ES, D, or G edit descriptor; before a slash edit
descriptor when the optional repeat specification is not present; after a slash edit descriptor;
and before or after a colon edit descriptor.

Within a CHARACTER literal constant, if an apostrophe or quotation mark appears, it must
be as a consecutive pair without any blanks. Each such pair represents a single occurrence
of the delimiter character.

Example
print*,"hello world"

print 100, i,j,k

100 format (3i8)
192 Lahey/Fujitsu Fortran 95 Language Reference

PRIVATE Statement
PRIVATE Statement
Description
The PRIVATE statement specifies that the names of entities are accessible only within the
current module.

Syntax
PRIVATE [[::] access-ids]

Where:
access-ids is a comma-separated list of
use-name
or generic-spec

use-name is a name previously declared in the module.

generic-spec is generic-name
or OPERATOR (defined-operator)
or ASSIGNMENT (=)

generic-name is the name of a generic procedure.

defined-operator is one of the intrinsic operators
or .op-name.

op-name is a user-defined name for the operation.

Remarks
The PRIVATE statement is permitted only in a module. If the PRIVATE statement appears
without a list of objects, it sets the default accessibility of named items in the module to pri-
vate. Otherwise, it makes the accessibility of the objects specified private.

If the PRIVATE statement appears in a derived type definition, the entities within the derived
type definition are accessible only in the current module. Within a derived type definition,
the PRIVATE statement must not appear with a list of access-ids.

Example
module ex

implicit none
public ! default accessibility is public
real :: a, b, c
private a ! a is not accessible outside module

! b and c are accessible outside module
type zee

private
integer :: l,m ! l and m are private

end type zee
end module ex
Lahey/Fujitsu Fortran 95 Language Reference 193

Chapter 2 Alphabetical Reference
PRODUCT Function
Description
Product of elements of an array, along a given dimension, for which a mask is true.

Syntax
PRODUCT (array, dim, mask)

Required Arguments
array must be of type INTEGER, REAL or COMPLEX. It must not be scalar.

Optional Arguments
dim must be a scalar INTEGER in the range , where n is the rank of array. The
corresponding dummy argument must not be an optional dummy argument.

mask must be of type LOGICAL and must be conformable with array.

Result
The result is of the same type and kind as array. It is scalar if dim is absent or if array has
rank one; otherwise the result is an array of rank n-1 and of shape

 where is the shape of array. If dim
is absent, the value of the result is the product of the values of all the elements of array. If
dim is present, the value of the result is the product of the values of all elements of array
along dimension dim. If mask is present, the elements of array for which mask is false are
not considered.

Example
integer, dimension (2,2) :: m = reshape((/1,2,3,4/),(/2,2/))

! m is the array |1 3|

! |2 4|

i = product(m) ! i is assigned 24

j = product(m,dim=1) ! j is assigned [2,12]

k = product(m,mask=m>2) ! k is assigned 12

PROGRAM Statement
Description
The PROGRAM statement specifies a name for the main program unit.

1 dim n≤ ≤

d1 d2 … ddim 1– ddim 1+ … dn, , , , , ,() d1 d2 … dn, , ,()
194 Lahey/Fujitsu Fortran 95 Language Reference

PROMPT Subroutine
Syntax
PROGRAM program-name

Where:
program-name is the name given to the main program.

Remarks
program-name is global to the entire executable program. It must not be the same as the
name of another program unit, external procedure, or common block in the executable pro-
gram, nor the same as any local name in the main program.

Example
program zyx

PROMPT Subroutine
Description
Set prompt for subsequent READ statements. Fortran default is no prompt.

Syntax
PROMPT (message)

Arguments
message must be of type CHARACTER. It is an INTENT(IN) argument that is the prompt
for subsequent READ statements.

Example
call prompt(’?’) ! ? is the new READ prompt

PUBLIC Statement
Description
The PUBLIC statement specifies that the names of entities are accessible anywhere the mod-
ule in which the PUBLIC statement appears is used.
Lahey/Fujitsu Fortran 95 Language Reference 195

Chapter 2 Alphabetical Reference
Syntax
PUBLIC [[::] access-ids]

Where:
access-ids is a comma-separated list of use-name
or generic-spec

use-name is a name previously declared in the module.

generic-spec is generic-name
or OPERATOR (defined-operator)
or ASSIGNMENT (=)

generic-name is the name of a generic procedure.

defined-operator is one of the intrinsic operators
or .op-name.

op-name is a user-defined name for the operation.

Remarks
The PUBLIC statement is permitted only in a module. The default accessibility of names in
a module is public. If the PUBLIC statement appears without a list of objects, it confirms the
default accessibility. If a list of objects is present, the PUBLIC statement makes the acces-
sibility of the objects specified public.

Example
module zee

implicit none
private ! default accessibility is now private
real :: a, b, c
public a ! a is now accessible outside module

end module zee

RADIX Function
Description
Number base of the physical representation of a number.

Syntax
RADIX (x)

Arguments
x must be of type INTEGER or REAL.
196 Lahey/Fujitsu Fortran 95 Language Reference

RANDOM_NUMBER Subroutine
Result
The result is a default INTEGER scalar whose value is the number base of the physical rep-
resentation of x. In LF95 this value is two for all kinds of INTEGERs and REALs.

Example
i = radix(2.3) ! i is assigned the value 2

RANDOM_NUMBER Subroutine
Description
Uniformly distributed pseudorandom number or numbers in the range . The gen-
erator uses a multiplicative congruential algorithm with a period of approximately

Syntax
RANDOM_NUMBER (harvest)

Arguments
harvest must be of type REAL. It is an INTENT(OUT) argument. It can be a scalar or an
array variable. Its value is one or several pseudorandom numbers uniformly distributed in
the range .

Example
real, dimension(8) :: x
call random_number(x) ! each element of x is assigned

! a pseudorandom number

RANDOM_SEED Subroutine
Description
Set or query the pseudorandom number generator used by RANDOM_NUMBER. If no
argument is present, the processor sets the seed to a predetermined value.

Syntax
RANDOM_SEED (size, put, get)

Optional Arguments
size must be a scalar of type default INTEGER. It is an INTENT(OUT) variable. It is set to
the number of default INTEGERs the processor uses to hold the seed. For LF95 this value
is one.

0 x 1<≤
238

0 x 1<≤
Lahey/Fujitsu Fortran 95 Language Reference 197

Chapter 2 Alphabetical Reference
put must be a default INTEGER array of rank one and size greater than or equal to size. It is
an INTENT(IN) argument and is used by the processor to set the seed value.

get must be a default INTEGER array of rank one and size greater than or equal to size. It is
an INTENT(OUT) argument and is set by the processor to the current value of the seed.

Exactly one or zero arguments must be present.

Example
call random_seed ! initialize the generator

call random_seed(size=k) ! k set to size of seed

call random_seed(put=seed(1:k)) ! set user seed

call random_seed(get=old(1:k)) ! get current seed

RANGE Function
Description
Decimal range of the data type of a number.

Syntax
RANGE (x)

Arguments
x must be of numeric type.

Result
The result is a scalar default INTEGER. If x is of type INTEGER, the result value is INT
(LOG10 (huge)), where huge is the largest positive integer in the data type of x. If x is of type
REAL or COMPLEX, the result value is INT (MIN (LOG10 (huge), - LOG10 (tiny))), where
huge and tiny are the largest and smallest positive numbers in the data type of x.

Example
i = range(4.2) ! i is assigned the value 37

READ Statement
Description
The READ statement transfers values from an input/output unit to the entities specified in an
input list or a namelist group.
198 Lahey/Fujitsu Fortran 95 Language Reference

READ Statement
Syntax
READ (io-control-specs) [inputs]

or
READ format [, inputs]

Where:
inputs is a comma-separated list of variable
or io-implied-do

variable is a variable.

io-implied-do is (inputs, implied-do-control)

implied-do-control is do-variable = start, end [, increment]

start, end, and increment are scalar numeric expressions of type INTEGER, REAL or double-
precision REAL.

do-variable is a scalar variable of type INTEGER, REAL or double-precision REAL.

io-control-specs is a comma-separated list of
[UNIT =] io-unit
or [FMT =] format
or [NML =] namelist-group-name
or REC = record
or IOSTAT = stat
or ERR = errlabel
or END = endlabel
or EOR = eorlabel
or ADVANCE = advance
or SIZE = size

io-unit is an external file unit
or *

format is a format specification (see “Input/Output Editing” beginning on page 24).

namelist-group-name is the name of a namelist group.

record is the number of the direct access record that is to be read.

stat is a scalar default INTEGER variable that is assigned a positive value if an error condi-
tion occurs, a negative value if an end-of-file or end-of-record condition occurs, and zero
otherwise.

errlabel is a label that is branched to if an error condition occurs and no end-of-record con-
dition or end-of-file condition occurs during execution of the statement.

endlabel is a label that is branched to if an end-of-file condition occurs and no error condition
occurs during execution of the statement.
Lahey/Fujitsu Fortran 95 Language Reference 199

Chapter 2 Alphabetical Reference
eorlabel is a label that is branched to if an end-of-record condition occurs and no error con-
dition or end-of-file condition occurs during execution of the statement.

advance is a scalar default CHARACTER expression that evaluates to NO if non-advancing
input/output is to occur, and YES if advancing input/output is to occur. The default value is
YES.

size is a scalar default INTEGER variable that is assigned the number of characters trans-
ferred by data edit descriptors during execution of the current non-advancing input/output
statement.

Remarks
io-control-specs must contain exactly one io-unit, and must not contain both a format and a
namelist-group-name.

A namelist-group-name must not appear if inputs is present.

If the optional characters UNIT= are omitted before io-unit, io-unit must be the first item in
io-control-specs. If the optional characters FMT= are omitted before format, format must be
the second item in io-control-specs. If the optional characters NML= are omitted before
namelist-group-name, namelist-group-name must be the second item in io-control-specs.

If io-unit is an internal file, io-control-specs must not contain a REC= specifier or a namelist-
group-name.

If the REC= specifier is present, an END= specifier must not appear, a namelist-group-name
must not appear, and format must not be an asterisk indicating list-directed I/O.

An ADVANCE= specifier can appear only in formatted sequential I/O with an explicit for-
mat specification (format-expr) whose control list does not contain an internal file specifier.
If an EOR= or SIZE= specifier is present, an ADVANCE= specifier must also appear with
the value NO.

The do-variable of an implied-do-control that is contained within another io-implied-do must
not appear as the do-variable of the containing io-implied-do.

Example
read*, a,b,c ! read into a, b, and c using list-

! directed i/o

read (3, fmt= "(e7.4)") x

! read in x from unit 3 using e format

read 10, i,j,k

! read in i, j, and k using format at

! label 10
200 Lahey/Fujitsu Fortran 95 Language Reference

REAL Function
REAL Function
Description
Convert to REAL type.

Syntax
REAL (a, kind)

Required Arguments
a must be of type INTEGER, REAL, or COMPLEX.

Optional Arguments
kind must be a scalar INTEGER expression that can be evaluated at compile time.

Result
The result is of type REAL. If kind is present, the kind is that specified by kind. The result’s
value is a REAL representation of a. If a is of type COMPLEX, the result’s value is a REAL
representation of the real part of a.

Example
b = real(-3) ! b is assigned the value -3.0

REAL Statement
Description
The REAL statement declares entities of type REAL.

Syntax
REAL [kind-selector] [[, attribute-list] ::] entity [, entity] ...

Where:
kind-selector is ([KIND =] scalar-int-initialization-expr)

scalar-int-initialization-expr is a scalar INTEGER expression that can be evaluated at com-
pile time.

attribute-list is a comma-separated list from the following attributes: PARAMETER, ALLO-
CATABLE, DIMENSION(array-spec), EXTERNAL, INTENT (IN) or INTENT (OUT) or
INTENT (IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE,
TARGET.

entity is entity-name [(array-spec)] [= initialization-expr]
or function-name [(array-spec)]
Lahey/Fujitsu Fortran 95 Language Reference 201

Chapter 2 Alphabetical Reference
array-spec is an array specification.

initialization-expr is an expression that can be evaluated at compile time.

entity-name is the name of a data object being declared.

function-name is the name of a function being declared.

Remarks
The same attribute must not appear more than once in a REAL statement.

function-name must be the name of an external, intrinsic, or statement function, or a function
dummy procedure.

The = initialization-expr must appear if the statement contains a PARAMETER attribute.

If = initialization-expr appears, a double colon must appear before the list of entities. Each
entity has the SAVE attribute, unless it is in a named common block.
202 Lahey/Fujitsu Fortran 95 Language Reference

REPEAT Function
The = initialization-expr must not appear if entity-name is a dummy argument, a function
result, an object in a named common block unless the type declaration is in a block data pro-
gram unit, an object in a blank common, an allocatable array, a pointer, an external name, an
intrinsic name, or an automatic object.

An array declared with a POINTER or an ALLOCATABLE attribute must be specified with
a deferred shape.

An array-spec for a function-name that does not have the POINTER attribute or the ALLO-
CATABLE attribute must be specified with an explicit shape.

An array-spec for a function-name that does have the POINTER attribute or the ALLOCAT-
ABLE attribute must be specified with a deferred shape.

If the POINTER attribute is specified, the TARGET, INTENT, EXTERNAL, or INTRINSIC
attribute must not be specified.

If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or
PARAMETER attribute must not be specified.

The PARAMETER attribute must not be specified for dummy arguments, pointers, allocat-
able arrays, functions, or objects in a common block.

The INTENT and OPTIONAL attributes can be specified only for dummy arguments.

An entity must not have the PUBLIC attribute if its type has the PRIVATE attribute.

The SAVE attribute must not be specified for an object that is in a common block, a dummy
argument, a procedure, a function result, or an automatic data object.

An entity must not have the EXTERNAL attribute if it has the INTRINSIC attribute.

An entity in a REAL statement must not have the EXTERNAL or INTRINSIC attribute spec-
ified unless it is a function.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute.

An entity must not be explicitly given any attribute more than once in a scoping unit.

Example
real :: a, b, c ! a, b, and c are of type real
real, dimension (2, 4) :: d

! d is a 2 by 4 array of real
real :: e = 2.0 ! real e is initialized

REPEAT Function
Description
Concatenate copies of a string.
Lahey/Fujitsu Fortran 95 Language Reference 203

Chapter 2 Alphabetical Reference
Syntax
REPEAT (string, ncopies)

Arguments
string must be scalar and of type CHARACTER

ncopies must be a scalar non-negative INTEGER.

Result
The result is a scalar of type CHARACTER with length equal to ncopies times the length of
string. Its value is equal to the concatenation of ncopies copies of string.

Example
character (len=6) :: n
n = repeat('ho',3) ! n is assigned the value 'hohoho'

RESHAPE Function
Description
Construct an array of a specified shape from a given array.

Syntax
RESHAPE (source, shape, pad, order)

Required Arguments
source can be of any type and must be array-valued. If pad is absent or of size zero, the size
of source must be greater than or equal to the product of the values of the elements of shape.

shape must be an INTEGER array of rank one and of constant size. Its size must be positive
and less than or equal to seven. It must not have any negative elements.

Optional Arguments
pad must be array-valued and of the same type and type parameters as source.

order must be of type INTEGER and of the same shape as shape. Its value must be a permu-
tation of (1, 2, ..., n), where n is the size of shape. If order is absent, it is as if it were present
with the value (1, 2, ..., n).

Result
The result is an array of shape shape with the same type and type parameters as source. The
elements of the result, taken in permuted subscript order, order(1), ..., order(n), are those of
source in array element order followed if necessary by elements of one or more copies of pad
in array element order.
204 Lahey/Fujitsu Fortran 95 Language Reference

RETURN Statement
Example
x = reshape((/1,2,3,4/), (/3,2/), pad=(/0/))

! x is assigned |1 4|
! |2 0|
! |3 0|

RETURN Statement
Description
The RETURN statement completes execution of a procedure and transfers control back to the
statement following the procedure invocation.

Syntax
RETURN [scalar-int-expr]

Where:
scalar-int-expr is a scalar INTEGER expression.

Remarks
If scalar-int-expr is present and has a value n between 1 and the number of asterisks in the
subprogram's dummy argument list, the CALL statement that invoked the subroutine trans-
fers control to the statement identified by the nth alternate return specifier in the actual
argument list.

Example
subroutine zee (a, b)

implicit none
real, intent(in out) :: a, b
...
if (a>b) then

return ! subroutine completed
else

a=a*b
return ! subroutine completed

end if
end subroutine zee

REWIND Statement
Description
The REWIND statement positions the specified file at its initial point.
Lahey/Fujitsu Fortran 95 Language Reference 205

Chapter 2 Alphabetical Reference
Syntax
REWIND unit-number

or
REWIND (position-spec-list)

Where:
unit-number is a scalar INTEGER expression corresponding to the input/output unit number
of an external file.

position-spec-list is [[UNIT =] unit-number][, ERR = label][, IOSTAT = stat] where
UNIT=, ERR=, and IOSTAT= can be in any order but if UNIT= is omitted, then unit-number
must be first.

label is a statement label that is branched to if an error condition occurs during execution of
the statement.

stat is a variable of type INTEGER that is assigned a positive value if an error condition
occurs, a negative value if an end-of-file or end-of-record condition occurs, and zero
otherwise.

Remarks
Rewinding a file that is connected but does not exist has no effect.

Example
rewind 10 ! file connected to unit 10 rewound
rewind (10, err = 100)

! file connected to unit 10 rewound
! on error goto label 100

RRSPACING Function
Description
Reciprocal of relative spacing near a given number; x divided by SPACING(x).

Syntax
RRSPACING (x)

Arguments
x must be of type REAL.

Result
The result is of the same type and kind as x. Its value is the reciprocal of the spacing, near x,
of REAL numbers of the kind of x.
206 Lahey/Fujitsu Fortran 95 Language Reference

SAVE Statement
Example
r = rrspacing(-4.7) ! r is assigned the value 0.985662E+07

SAVE Statement
Description
The SAVE statement specifies that all objects in the statement retain their association, allo-
cation, definition, and value after execution of a RETURN or END statement of a
subprogram.

Syntax
SAVE [[::] saved-entities]

Where:
saved-entities is a comma-separated list of object-name
or / common-block-name /

object-name is the name of a data object.

common-block-name is the name of a common block.

Remarks
Objects declared with the SAVE attribute in a subprogram are shared by all instances of the
subprogram.

The SAVE attribute must not be specified for an object that is in a common block, a dummy
argument, a procedure, a function result, or an automatic data object.

A SAVE statement without a saved-entities list specifies that all allowable objects in the
scoping unit have the SAVE attribute.

If a common block is specified in a SAVE statement other than in the main program, it must
be specified in every scoping unit in which it appears except in the main program.

A SAVE statement in the main program has no effect.

Example
save i,j,/myblock/,k ! i,j,k and common block

! myblock have the save

! attribute
Lahey/Fujitsu Fortran 95 Language Reference 207

Chapter 2 Alphabetical Reference
SCALE Function
Description
Multiply a number by a power of two.

Syntax
SCALE (x, i)

Arguments
x must be of type REAL.

i must be of type INTEGER.

Result
The result is of the same type and kind as x. Its value is .

Example
x = scale(1.5,3) ! x is assigned the value 12.0

SCAN Function
Description
Scan a string for any one of a set of characters.

Syntax
SCAN (string, set, back)

Required Arguments
string must be of type CHARACTER.

set must be of the same kind and type as string.

Optional Arguments
back must be of type LOGICAL.

Result
The result is of type default INTEGER. If back is absent, or if it is present with the value
false, the value of the result is the position number of the leftmost character in string that is
in set. If back is present with the value true, the value of the result is the position number of
the rightmost character in string that is in set.

x 2i×
208 Lahey/Fujitsu Fortran 95 Language Reference

SEGMENT Function
Example
i = scan ("Lalalalala","la") ! i is assigned the

! value 2
i = scan ("LalalaLALA","la",back=.true.)

! i is assigned the
! value 6

SEGMENT Function
Description
Get the segment portion of the memory address of a variable, substring, array reference, or
external subprogram.

Syntax
SEGMENT (item)

Arguments
item can be of any type. It is the name for which to return a segment. item must have the
EXTERNAL attribute.

Result
The result is of type INTEGER. It is the segment portion of the memory address of item.

Example
i = segment(a) ! get the segment portion of the address of a

SELECT CASE Statement
Description
The SELECT CASE statement begins a CASE construct. It contains an expression that,
when evaluated, produces a case index. The case index is used in the CASE construct to
determine which block in a CASE construct, if any, is executed.

Syntax
[construct-name :] SELECT CASE (case-expr)

Where:
construct-name is an optional name for the CASE construct.

case-expr is a scalar expression of type INTEGER, LOGICAL, or CHARACTER.
Lahey/Fujitsu Fortran 95 Language Reference 209

Chapter 2 Alphabetical Reference
Remarks
If the SELECT CASE statement is identified by a construct-name, the corresponding END
SELECT statement must be identified by the same construct name. If the SELECT CASE
statement is not identified by a construct-name, the corresponding END SELECT statement
must not be identified by a construct name. If a CASE statement is identified by a construct-
name, the corresponding SELECT CASE statement must specify the same construct-name.

Example
select case (i+j)

case (:-1)
... ! executed if i+j<0

case (0)
... ! executed if i+j==0

case (1,4,7)
... ! executed if i+j==(1 or 4 or 7)

case default
... ! executed if none of the other case

! selectors match i+j
end select

SELECTED_INT_KIND Function
Description
Kind type parameter of an INTEGER data type that represents all integer values n with

.

Syntax
SELECTED_INT_KIND (r)

Arguments
r must be a scalar INTEGER.

Result
The result is a scalar of type default INTEGER. Its value is equal to the kind type parameter
of the INTEGER data type that accommodates all values n with . If no such
kind is available, the result is -1. If more than one kind is available, the return value is the
value of the kind type parameter of the kind with the smallest decimal exponent range.

Example
integer (kind=selected_int_kind(3)) :: i,j
! i and j are of a data type with a decimal range of
! at least -1000 to 1000

10– r n 10r< <

10– r n 10r< <
210 Lahey/Fujitsu Fortran 95 Language Reference

SELECTED_REAL_KIND Function
SELECTED_REAL_KIND Function
Description
Kind type parameter of a REAL data type with decimal precision of at least p digits and a
decimal exponent range of at least r.

Syntax
SELECTED_REAL_KIND (p, r)

Optional Arguments
p must be a scalar INTEGER.

r must be a scalar INTEGER.

Result
The result is a scalar of type default INTEGER. Its value is equal to the kind type parameter
of the REAL data type with decimal precision of at least p digits and a decimal exponent
range of at least r. If no such kind is available the result is -1 if the precision is not available,
-2 if the range is not available, and -3 if neither is available. If more than one kind is avail-
able, the return value is the value of the kind type parameter of the kind with the smallest
decimal precision.

Example
real, (kind=selected_real_kind(3,3)) :: a,b

! a and b are of a data type with a decimal range of

! at least -1000 to 1000 and a precision of at least

! 3 decimal digits

SEQUENCE Statement
Description
The SEQUENCE statement can only appear in a derived type definition. It specifies that the
order of the component definitions is the storage sequence for objects of that type.

Syntax
SEQUENCE

Remarks
If a derived type definition contains a SEQUENCE statement, the derived type is a sequence
type.
Lahey/Fujitsu Fortran 95 Language Reference 211

Chapter 2 Alphabetical Reference
If SEQUENCE is present in a derived type definition, all derived types specified in compo-
nent definitions must be sequence types.

Example
type zee

sequence ! zee is a sequence type
real :: a,b,c ! a,b,c is the storage sequence for zee

end type zee

SET_EXPONENT Function
Description
Model representation of a number with exponent part set to a power of two.

Syntax
SET_EXPONENT (x, i)

Arguments
x must be of type REAL.

i must be of type INTEGER.

Result
The result is of the same type and kind as x. Its value is the FRACTION(x)*2i.

Example
a = set_exponent (4.6, 2) ! a is assigned 2.3

SHAPE Function
Description
Shape of an array.

Syntax
SHAPE (source)

Arguments
source can be of any type and can be array-valued or scalar. It must not be an assumed-size
array. It must not be a pointer that is disassociated or an allocatable array that is not allocated.
212 Lahey/Fujitsu Fortran 95 Language Reference

SIGN Function
Result
The result is a default INTEGER array of rank one whose size is the rank of source and whose
value is the shape of source.

Example
i = shape(b(1:9,-2:3,10))! i is assigned the value

! (/9,6,10/)

SIGN Function
Description
Transfer of sign.

Syntax
SIGN (a, b)

Arguments
a must be of type INTEGER or REAL.

b must be of the same type and kind as a.

Result
The result is of the same type and kind as a. Its value is the , if b is greater than or equal
to positive zero; and , if b is less than or equal to negative zero.

Example
a = sign (30,-2) ! a is assigned the value -30

SIN Function
Description
Sine.

Syntax
SIN (x)

Arguments
x must be of type REAL or COMPLEX.

a
a–
Lahey/Fujitsu Fortran 95 Language Reference 213

Chapter 2 Alphabetical Reference
Result
The result is of the same type and kind as x. Its value is a REAL or COMPLEX representa-
tion of the sine of x.

Example
r = sin(.5) ! r is assigned the value 0.479426

SINH Function
Description
Hyperbolic sine.

Syntax
SINH (x)

Arguments
x must be of type REAL.

Result
The result is of the same type and kind as x. Its value is a REAL representation of the hyper-
bolic sine of x.

Example
r = sinh(.5) ! r is assigned the value 0.521095

SIZE Function
Description
Size of an array or a dimension of an array.

Syntax
SIZE (array, dim)

Required Arguments
array can be of any type. It must not be a scalar and must not be a pointer that is disassociated
or an allocatable array that is not allocated.
214 Lahey/Fujitsu Fortran 95 Language Reference

SPACING Function
Optional Arguments
dim must of type INTEGER and must be a dimension of array. If array is assumed-size, dim
must be present and less than the rank of array

Result
The result is a scalar of type default INTEGER. If dim is present, the result is the extent of
dimension dim of array. If dim is absent, the result is the number of elements in array.

Example
integer, dimension (3,-4:0) :: i

integer :: k,j

j = size (i) ! j is assigned the value 15

k = size (i, 2) ! k is assigned the value 5

SPACING Function
Description
Absolute spacing near a given number; the difference between x and the next representable
number whose absolute value is greater than that of x.

Syntax
SPACING (x)

Arguments
x must be of type REAL.

Result
The result is of the same type and kind as x. Its value is the spacing of REAL values, of the
kind of x, near x.

Example
x = spacing(4.7) ! x is assigned the value 0.476837E-06

SPREAD Function
Description
Adds a dimension to an array by adding copies of a data object along a given dimension.
Lahey/Fujitsu Fortran 95 Language Reference 215

Chapter 2 Alphabetical Reference
Syntax
SPREAD (source, dim, ncopies)

Arguments
source can be of any type and can be scalar or array-valued. Its rank must be less than seven.

dim must be a scalar of type INTEGER with a value in the range , where n
is the rank of source.

ncopies must be a scalar of type INTEGER.

Result
The result is an array of the same type and kind as source and of rank n + 1, where n is the
rank of source. If source is scalar, the shape of the result is MAX(ncopies, 0) and each ele-
ment of the result has a value equal to source. If source is array-valued with shape (d1, d2, ...,
dn), the shape of the result is (d1, d2, ..., ddim-1, MAX(ncopies, 0), ddim-1, ..., dn) and the element
of the result with subscripts (r1, r2, ..., rn+1) has the value source(r1, r2, ..., rdim-1, rdim+1, ..., rn+1).

Example
real, dimension(2) :: b=(/1,2/)

real, dimension(2,3) :: a

a = spread(b,2,3) ! a is assigned |1 1 1|

|2 2 2|

SQRT Function
Description
Square Root.

Syntax
SQRT (x)

Arguments
x must be of type REAL or COMPLEX. If x is REAL, its value must be greater than or equal
to zero.

Result
The result is of the same kind and type as x. If x is of type REAL, the result value is a REAL
representation of the square root of x. If x is of type COMPLEX, the result value is the prin-
cipal value with the real part greater than or equal to zero. When the real part of the result is
zero, the imaginary part is greater than or equal to zero.

1 dim n 1+≤ ≤
216 Lahey/Fujitsu Fortran 95 Language Reference

Statement Function Statement
Example
x = sqrt(16.0) ! x is assigned the value 4.0

Statement Function Statement
Description
A statement function is a function defined by a single statement.

Syntax
function-name ([dummy-args]) = scalar-expr

Where:
function-name is the name of the function being defined.

dummy-args is a comma-separated list of dummy argument names.

scalar-expr is a scalar expression.

Remarks
scalar-expr can be composed only of literal or named constants, scalar variables, array ele-
ments, references to functions and function dummy procedures, and intrinsic operators.

If a reference to a statement function appears in scalar-expr, its definition must have been
provided earlier in the scoping unit and must not be the name of the statement function being
defined.

Each scalar variable reference in scalar-expr must be either a reference to a dummy argument
of the statement function or a reference to a variable local to the same scoping unit as the
statement function statement.

The dummy arguments have a scope of the statement function statement.

A statement function must not be supplied as a procedure argument.

Example
mean(a,b) = (a + b) / 2

c = mean(2.0,3.0) ! c is assigned the value 2.5

STOP Statement
Description
The STOP statement terminates execution of the program.
Lahey/Fujitsu Fortran 95 Language Reference 217

Chapter 2 Alphabetical Reference
Syntax
STOP [stop-code]

Where:
stop-code is a scalar CHARACTER constant or a series of 1 to 5 digits.

Remarks
When a STOP statement is reached, the optional stop-code is displayed.

Example
if (a>b) then

stop ! program execution terminated

end if

SUBROUTINE Statement
Description
The SUBROUTINE statement begins a subroutine subprogram and specifies its dummy
argument names and whether it is recursive.

Syntax
[PURE] [ELEMENTAL] [RECURSIVE] SUBROUTINE subroutine-name ([
dummy-arg-names])

Where:
subroutine-name is the name of the subroutine.

dummy-arg-names is a comma-separated list of dummy argument names.

Remarks
PURE, ELEMENTAL, and RECURSIVE can be in any order.

A pure subroutine has the prefix PURE or ELEMENTAL.

An ELEMENTAL subroutine has the prefix ELEMENTAL.

A pure subroutine must not contain any operation that could conceivably result in an assign-
ment or pointer assignment to a common variable, a variable accessed by use or host
association, or an INTENT (IN) dummy argument; nor shall a pure subroutine contain any
operation that could conceivably perform any external file I/O or STOP operation.

The specification of a pure subroutine must specify the intents of all dummy arguments
except procedure arguments, alternate return indicators, and arguments with the POINTER
attribute.
218 Lahey/Fujitsu Fortran 95 Language Reference

SUM Function
Local variables of pure subroutines must not have the SAVE attribute, either by explicit dec-
laration or by initialization in a type declaration or DATA statement.

Dummy arguments of elemental subroutines must be scalar and must not have the POINTER
attribute. They must not appear in any specification expressions except as the argument to
one of the intrinsic functions BIT_SIZE, KIND, LEN, or the numeric inquiry functions.

Dummy arguments of elemental subroutines must not be dummy procedures.

The keyword RECURSIVE must be present if the subroutine directly or indirectly calls itself
or a subroutine defined by an ENTRY statement in the same subprogram. RECURSIVE
must also be present if a subroutine defined by an ENTRY statement directly or indirectly
calls itself, another subroutine defined by an ENTRY statement, or the subroutine defined by
the SUBROUTINE statement.

Example
pure subroutine zee (bar1, bar2)

SUM Function
Description
Sum of elements of an array, along a given dimension, for which a mask is true.

Syntax
SUM (array, dim, mask)

Required Arguments
array must be of type INTEGER, REAL, or COMPLEX. It must not be scalar.

Optional Arguments
dim must be a scalar INTEGER in the range , where n is the rank of array. The
corresponding dummy argument must not be an optional dummy argument.

mask must be of type LOGICAL and must be conformable with array.

Result
The result is of the same type and kind as array. It is scalar if dim is absent or if array has
rank one; otherwise the result is an array of rank n-1 and of shape

 where is the shape of array. If dim
is absent, the value of the result is the sum of the values of all the elements of array. If dim
is present, the value of the result is the sum of the values of all elements of array along dimen-
sion dim. If mask is present, the elements of array for which mask is false are not considered.

1 dim n≤ ≤

d1 d2 … ddim 1– ddim 1+ … dn, , , , , ,() d1 d2 … dn, , ,()
Lahey/Fujitsu Fortran 95 Language Reference 219

Chapter 2 Alphabetical Reference
Example
integer, dimension (2,2) :: m = reshape((/1,2,3,4/),(/2,2/))

! m is the array |1 3|

! |2 4|

i = sum(m) ! i is assigned 10

j = sum(m,dim=1) ! j is assigned [3,7]

k = sum(m,mask=m>2) ! k is assigned 7

SYSTEM Function (Linux only)
Description
Execute a system command as if from the system command line.

Syntax
SYSTEM (cmd)

Arguments
cmd must be of type CHARACTER. It is an INTENT(IN) argument that is a system com-
mand to be executed as if it were typed on the system command line.

Result
The result is of type default INTEGER. The value of the result is the exit status of the system
command.

 Example
if (system("ls > current.dir") /= 0) write(*,*) "Error"

! puts a listing of the current directory into

! the file ’current.dir’

SYSTEM Subroutine
Description
Execute a system command as if from the system command line.
220 Lahey/Fujitsu Fortran 95 Language Reference

SYSTEM_CLOCK Subroutine
Syntax (Windows)
SYSTEM (cmd, dosbox, spawn)

Syntax (Linux)
SYSTEM (cmd)

Required Arguments
cmd must be of type CHARACTER. Its length must not be greater than 122. It is an
INTENT(IN) argument that is a system command to be executed as if it were typed on the
system command line.

Optional Arguments
dosbox must be of type LOGICAL. It is an INTENT(IN) argument that has the value true if
a new DOS box is to be opened (required for internal commands like DIR) and false
otherwise.

spawn must be of type LOGICAL. It is an INTENT(IN) argument that has the value true if
the command or program to be executed is to be spawned as a separate process and false
otherwise.

Example
call system("dir > current.dir")

! puts a listing of the current directory into

! the file ’current.dir’

SYSTEM_CLOCK Subroutine
Description
INTEGER data from the real-time clock.

Syntax
SYSTEM_CLOCK (count, count_rate, count_max)

Optional Arguments
count must be a scalar of type default INTEGER. It is an INTENT (OUT) argument. Its
value is set to the current value of the processor clock or to

-HUGE(0) if no clock is available.

count_rate must be a scalar of type default INTEGER. It is an INTENT (OUT) argument.
It is set to the number of processor clock counts per second, or to zero if there is no clock.
Lahey/Fujitsu Fortran 95 Language Reference 221

Chapter 2 Alphabetical Reference
count_max must be a scalar of type default INTEGER. It is an INTENT (OUT) argument.
It is set to the maximum value that count can have, or zero if there is no clock.

Example
call system_clock(c, cr, cm) ! c is set to current

! value of processor
! clock. cr is set to
! the count_rate, and cm
! is set to the
! count_max

TAN Function
Description
Tangent.

Syntax
TAN (x)

Arguments
x must be of type REAL.

Result
The result is of the same type and kind as x. Its value is a REAL representation of the tangent
of x.

Example
r = tan(.5) ! r is assigned the value 0.546302

TANH Function
Description
Hyperbolic tangent.

Syntax
TANH (x)

Arguments
x must be of type REAL.
222 Lahey/Fujitsu Fortran 95 Language Reference

TARGET Statement
Result
The result is of the same type and kind as x. Its value is a REAL representation of the hyper-
bolic tangent of x.

Example
r = tanh(.5) ! r is assigned the value 0.462117

TARGET Statement
Description
The TARGET statement specifies a list of object names that have the target attribute and thus
can have pointers associated with them.

Syntax
TARGET [::] object-name [(array-spec)] [, object-name [(array-spec)]] ...

Where:
object-name is the name of a data object.

array-spec is an array specification.

Example
target a,b,c ! a,b, and c have the target attribute

TIMER Subroutine
Description
Hundredths of seconds elapsed since midnight.

Syntax
TIMER (iticks)

Arguments
iticks must be of type default INTEGER. It is assigned the hundredths of a second elapsed
since midnight on the system clock.
Lahey/Fujitsu Fortran 95 Language Reference 223

Chapter 2 Alphabetical Reference
Example
call timer (iticks)

TINY Function
Description
Smallest representable positive number of data type.

Syntax
TINY (x)

Arguments
x must be of type REAL.

Result
The result is a scalar of the same type and kind as x. Its value is the smallest positive number
in the data type of x.

Example
a = tiny (4.0) ! a is assigned 0.117549E-37

TRANSFER Function
Description
Interpret the physical representation of a number with the type and type parameters of a given
number.

Syntax
TRANSFER (source, mold, size)

Required Arguments
source can be of any type.

mold can be of any type.

Optional Arguments
size must be a scalar of type INTEGER. The corresponding actual argument must not be a
optional dummy argument.
224 Lahey/Fujitsu Fortran 95 Language Reference

TRANSPOSE Function
Result
The result is of the same type and type parameters as mold. If mold is a scalar and size is
absent the result is a scalar. If mold is array-valued and size is absent, the result is array val-
ued and of rank one. Its size is as small as possible such that it is not shorter than source. If
size is present, the result is array-valued of rank one and of size size.

If the physical representation of the result is the same length as the physical representation of
source, the physical representation of the result is that of source. If the physical representa-
tion of the result is longer than that of source, the physical representation of the leading part
of the result is that of source and the trailing part is undefined. If the physical representation
of the result is shorter than that of source, the physical representation of the result is the lead-
ing part of source.

Example
real :: a
integer :: i
a = transfer(i,a) ! a is assigned the physical

! representation of i

TRANSPOSE Function
Description
Transpose an array of rank two.

Syntax
TRANSPOSE (matrix)

Arguments
matrix can be of any type. It must be of rank two.

Result
The result is of the same type, kind, and rank as matrix. Its shape is (n, m), where (m, n) is
the shape of matrix. Element (i, j) of the result has the value matrix(j, i).
Lahey/Fujitsu Fortran 95 Language Reference 225

Chapter 2 Alphabetical Reference
Example
integer, dimension(2,3):: a = reshape((/1,2,3,4,5,6/),(/2,3/))
! represents the matrix |1 3 5|

|2 4 6|
integer, dimension(3,2) :: b
b = transpose(a) ! b is assigned the value
! |1 2|
! |3 4|
! |5 6|

TRIM Function
Description
Omit trailing blanks.

Syntax
TRIM (string)

Arguments
string must be of type CHARACTER and must be scalar.

Result
The result is of the same type and kind as string. Its value and length are those of string with
trailing blanks removed.

Example
shorter = trim("longer ")

! shorter is assigned the value "longer"

Type Declaration Statement
See INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, CHARACTER, or
TYPE statement.

TYPE Statement
Description
This form of the TYPE statement begins a derived type definition.
226 Lahey/Fujitsu Fortran 95 Language Reference

TYPE Statement
Syntax
TYPE [[, access-spec] ::] type-name

Where:
access-spec is PUBLIC
or PRIVATE

type-name is the name of the derived type being defined.

Remarks
access-spec is permitted only if the derived type definition is within the specification part of
a module.

If a component of a derived type is of a type declared to be private, either the definition must
contain the PRIVATE statement or the derived type must be private.

type-name must not be the name of an intrinsic type nor of another accessible derived type
name.

Example
type coordinates

real :: x , y = 40.0 ! default value for y specified
end type coordinates

TYPE Statement
Description
This form of the TYPE statement specifies that all entities whose names are declared in the
statement are of the derived type named in the statement.

Syntax
TYPE (type-name) [, attribute-list ::] entity [, entity] ...

Where:
type-name is the name of a derived type previously defined in a derived-type definition.

attribute-list is a comma-separated list from the following attributes: PARAMETER, ALLO-
CATABLE, DIMENSION(array-spec), EXTERNAL, INTENT (IN) or INTENT (OUT) or
INTENT (IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE,
TARGET.

entity is entity-name [(array-spec)] [= initialization-expr]
or function-name [(array-spec)]

array-spec is an array specification.
Lahey/Fujitsu Fortran 95 Language Reference 227

Chapter 2 Alphabetical Reference
initialization-expr is an expression that can be evaluated at compile time.

entity-name is the name of a data object being declared.

function-name is the name of a function being declared.

Remarks
The same attribute must not appear more than once in a TYPE statement.

function-name must be the name of an external, statement, or intrinsic function, or a function
dummy procedure.

The = initialization-expr must appear if the statement contains a PARAMETER attribute.

If = initialization-expr appears, a double colon must appear before the list of entities. Each
entity has the SAVE attribute, unless it is in a named common block.

The = initialization-expr must not appear if entity-name is a dummy argument, a function
result, an object in a named common block unless the type declaration is in a block data pro-
gram unit, an object in blank common, an allocatable array, a pointer, an external name, an
intrinsic name, or an automatic object.

The ALLOCATABLE attribute can be used only when declaring an array that is not a
dummy argument or a function result.

An array declared with a POINTER or an ALLOCATABLE attribute must be specified with
a deferred shape.

An array-spec for a function-name that does not have the POINTER attribute must be spec-
ified with an explicit shape.

An array-spec for a function-name that does have the POINTER attribute must be specified
with a deferred shape.

If the POINTER attribute is specified, the TARGET, INTENT, EXTERNAL, or INTRINSIC
attribute must not be specified.

If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or
PARAMETER attribute must not be specified.

The PARAMETER attribute must not be specified for dummy arguments, pointers, allocat-
able arrays, functions, or objects in a common block.

The INTENT and OPTIONAL attributes can be specified only for dummy arguments.

An entity must not have the PUBLIC attribute if its type has the PRIVATE attribute.

The SAVE attribute must not be specified for an object that is in a common block, a dummy
argument, a procedure, a function result, or an automatic data object.

An entity must not have the EXTERNAL attribute if it has the INTRINSIC attribute.
228 Lahey/Fujitsu Fortran 95 Language Reference

UBOUND Function
An entity in a TYPE statement must not have the EXTERNAL or INTRINSIC attribute spec-
ified unless it is a function.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute.

An entity must not be given explicitly any attribute more than once in a scoping unit.

Example
type zee

real :: a, b

integer :: i

end type zee

type (zee) :: a, b, c ! a, b, and c are of type zee

type (zee), dimension (2, 4) :: d

! d is a 2 by 4 array of type zee

type (zee) :: e = zee(2.0, 3.5, -1)

! e is initialized

UBOUND Function
Description
Upper bounds of an array or a dimension of an array.

Syntax
UBOUND (array, dim)

Required Arguments
array can be of any type. It must not be a scalar and must not be a pointer that is disassociated
or an allocatable array that is not allocated.

Optional Arguments
dim must of type INTEGER and must be a dimension of array.

Result
The result is of type default INTEGER. If dim is present, the result is a scalar with the value
of the upper bound of array. If dim is absent, the result is an array of rank one with values
corresponding to the upper bounds of each dimension of array.

The result is zero for zero-sized dimensions.
Lahey/Fujitsu Fortran 95 Language Reference 229

Chapter 2 Alphabetical Reference
Example
integer, dimension (3,-4:0) :: i
integer :: k, j(2)
j = ubound (i) ! j is assigned the value [3,0]
k = ubound (i, 2) ! k is assigned the value 0

UNDFL Subroutine (Windows Only)
Description
The initial invocation of the UNDFL subroutine masks the underflow interrupt on the float-
ing-point unit. lflag must be set to true on the first invocation. Subsequent invocations
return true or false in the lflag variable if the exception has occurred or not occurred,
respectively.

Syntax
UNDFL (lflag)

Arguments
lflag must be of type LOGICAL. It is assigned the value true if an underflow exception has
occurred, and false otherwise.

Example
call undfl (lflag) ! mask the underflow interrupt

UNPACK Function
Description
Unpack an array of rank one into an array under control of a mask.

Syntax
UNPACK (vector, mask, field)

Arguments
vector can be of any type. It must be of rank one. Its size must be at least as large as the
number of true elements in mask.

mask must be of type LOGICAL. It must be array-valued.

field must be of the same type and type parameters as vector. It must be conformable with
mask.
230 Lahey/Fujitsu Fortran 95 Language Reference

USE Statement
Result
The result is an array of the same type and type parameters as vector and the same shape as
mask. The element of the result that corresponds to the ith element of mask, in array-element
order, has the value vector(i) for i = 1, 2, ..., t, where t is the number of true values in mask.
Each other element has the value field if field is scalar or the corresponding element in field,
if field is an array.

Example
integer, dimension(9) :: c = (/0,3,2,4,3,2,5,1,2/)
logical, dimension(2,2) :: d
integer, dimension(2,2) :: e
d = reshape((/.false.,.true.,.true.,.false./), (/2, 2/))
e = unpack(c,mask=d,field=-1)
! e is assigned |-1 3|
! | 0 -1|

USE Statement
Description
The USE specifies that a specified module is accessible by the current scoping unit. It also
provides a means of renaming or limiting the accessibility of entities in the module.

Syntax
USE module [, rename-list]

or
USE module, ONLY: [only-list]

Where:
module is the name of a module.

rename-list is a comma-separated list of local-name => use-name

only-list is a comma-separated list of access-id
or [local-name => use-name]

local-name is the local name for the entity specified by use-name

use-name is the name of an entity in the specified module

access-id is use-name
or generic-spec

generic-spec is generic-name
or OPERATOR (defined-operator)
or ASSIGNMENT (=)
Lahey/Fujitsu Fortran 95 Language Reference 231

Chapter 2 Alphabetical Reference
generic-name is the name of a generic procedure.

defined-operator is one of the intrinsic operators
or .op-name.

op-name is a user-defined name for the operation.

Remarks
If no local-name is specified, the local name is use-name.

A USE statement without ONLY provides access to all PUBLIC entities in the specified
module.

A USE statement with ONLY provides access only to those entities that appear in the only-
list.

If more than one USE statement appears in a scoping unit, the rename-lists and only-lists are
treated as one concatenated rename-list.

If two or more generic interfaces that are accessible in the same scoping unit have the same
name, same operator, or are assignments, they are interpreted as a single generic interface.

Two or more accessible entities, other than generic interfaces, can have the same name only
if no entity is referenced by this name in the scoping unit.

An entity can be accessed by more than one local-name.

A local-name must not be respecified with differing attributes in the scoping unit that con-
tains the USE statement, except that it can appear in a PUBLIC or PRIVATE statement in the
scoping unit of a module.

Forward references to modules are not allowed in LF95. That is, if a module is used in the
same source file in which it resides, the module program unit must appear before its use.

Example
use my_lib, aleph => alpha

! use all public entities in my_lib, and
! refer to alpha as aleph locally to prevent
! conflict with alpha in this_module below

use this_module, only: alpha, beta, operator(+)
! use only alpha, beta, and the defined
! operator (+) from this_module

%VAL Function
Description
Pass an item to a procedure by value. %VAL can only be used as an actual argument.
232 Lahey/Fujitsu Fortran 95 Language Reference

VERIFY Function
Syntax
%VAL (item)

Arguments
item can be a named data object of type INTEGER, REAL, or LOGICAL. It is the data object
for which to return an address. item is an INTENT(IN) argument.

Result
The result is the value of item. Its C data type is as follows:

Example
i = my_c_function(val(a)) ! a is passed by value

VERIFY Function
Description
Verify that a set of characters contains all the characters in a string.

Table 10: VAL result types

Fortran Type Fortran Kind C type

INTEGER 1 long int

INTEGER 2 long int

INTEGER 4 long int

REAL 4 float

COMPLEX 4

must not be passed by value; if
passed by reference (without

CARG) it is a pointer to a structure
of the form:

struct complex {
float real_part;

float imaginary_part;};

LOGICAL 1 unsigned long

LOGICAL 4 unsigned long

CHARACTER 1 must not be passed by value with
VAL
Lahey/Fujitsu Fortran 95 Language Reference 233

Chapter 2 Alphabetical Reference
Syntax
VERIFY (string, set, back)

Required Arguments
string must be of type CHARACTER.

set must be of the same kind and type as string.

Optional Arguments
back must be of type LOGICAL.

Result
The result is of type default INTEGER. If back is absent, or if it is present with the value
false, the value of the result is the position number of the leftmost character in string that is
not in set. If back is present with the value true, the value of the result is the position number
of the rightmost character in string that is not in set. The value of the result is zero if each
character in string is in set, or if string has length zero.

Example
i = verify ("Lalalalala","l") ! i is assigned the

! value 1
i = verify ("LalalaLALA","LA",back=.true.)

! i is assigned the
! value 6

WHERE Construct
Description
The WHERE construct controls which elements of an array will be affected by a block of
assignment statements. This is also known as masked array assignment.
234 Lahey/Fujitsu Fortran 95 Language Reference

WHERE Construct
Syntax
WHERE (mask-expr)

[assignment-stmt]
[assignment-stmt]
...

[ELSEWHERE (mask-expr)]
[assignment-stmt]
[assignment-stmt]
...

[ELSEWHERE]
[assignment-stmt]
[assignment-stmt]
...

END WHERE

Where:
mask-expr is a LOGICAL expression.

assignment-stmt is an assignment statement.

Remarks
The variable on the left-hand side of assignment-stmt must have the same shape as mask-
expr.

When assignment-stmt is executed, the right-hand side of the assignment is evaluated for all
elements where mask-expr is true and the result assigned to the corresponding elements of
the left-hand side.

If a non-elemental function reference occurs in the right-hand side of assignment-stmt, the
function is evaluated without any masked control by the mask-expr.

mask-expr is evaluated at the beginning of the masked array assignment and the result value
governs the masking of assignments in the WHERE statement or construct. Subsequent
changes to entities in mask-expr have no effect on the masking.

assignment-stmt must not be a defined assignment.

There can be multiple ELSEWHERE statements with mask-exprs.

Example
where (b>c) ! begin where construct

b = -1

elsewhere

b = 1

end where
Lahey/Fujitsu Fortran 95 Language Reference 235

Chapter 2 Alphabetical Reference
WHERE Statement
Description
The WHERE statement is used to mask the assignment of values in array assignment state-
ments. The WHERE statement can begin a WHERE construct that contains zero or more
assignment statements, or can itself contain an assignment statement.

Syntax
WHERE (mask-expr) [assignment-stmt]

Where:
mask-expr is a LOGICAL expression.

assignment-stmt is an assignment statement.

Remarks
If the WHERE statement contains no assignment-stmt, it specifies the beginning of a
WHERE construct.

The variable on the left-hand side of assignment-stmt must have the same shape as mask-
expr.

When assignment-stmt is executed, the right-hand side of the assignment is evaluated for all
elements where mask-expr is true and the result assigned to the corresponding elements of
the left-hand side.

If a non-elemental function reference occurs in the right-hand side of assignment-stmt, the
function is evaluated without any masked control by the mask-expr.

mask-expr is evaluated at the beginning of the masked array assignment and the result value
governs the masking of assignments in the WHERE statement or construct. Subsequent
changes to entities in mask-expr have no effect on the masking.

assignment-stmt must not be a defined assignment.

Example
! a, b, and c are arrays

where (a>b) a = -1 ! where statement

where (b>c) ! begin where construct

b = -1

elsewhere

b = 1

end where
236 Lahey/Fujitsu Fortran 95 Language Reference

WRITE Statement
WRITE Statement
Description
The WRITE statement transfers values to an input/output unit from the entities specified in
an output list or a namelist group.

Syntax
WRITE (io-control-specs) [outputs]

Where:
outputs is a comma-separated list of expr
or io-implied-do

expr is a variable.

io-implied-do is (outputs, implied-do-control)

implied-do-control is do-variable = start, end [, increment]

start, end, and increment are scalar numeric expressions of type INTEGER, REAL or double-
precision REAL.

do-variable is a scalar variable of type INTEGER, REAL or double-precision REAL.

io-control-specs is a comma-separated list of
[UNIT =] io-unit
or [FMT =] format
or [NML =] namelist-group-name
or REC = record
or IOSTAT = stat
or ERR = errlabel
or END = endlabel
or EOR = eorlabel
or ADVANCE = advance
or SIZE = size

io-unit is an external file unit
or *

format is a format specification (see “Input/Output Editing” beginning on page 24).

namelist-group-name is the name of a namelist group.

record is the number of the direct-access record that is to be written.

stat is a scalar default INTEGER variable that is assigned a positive value if an error condi-
tion occurs and zero otherwise.

errlabel is a label that is branched to if an error condition occurs and no end-of-record con-
dition or end-of-file condition occurs during execution of the statement.
Lahey/Fujitsu Fortran 95 Language Reference 237

Chapter 2 Alphabetical Reference
endlabel is a label that is branched to if an end-of-file condition occurs and no error condition
occurs during execution of the statement.

eorlabel is a label that is branched to if an end-of-record condition occurs and no error con-
dition or end-of-file condition occurs during execution of the statement.

advance is a scalar default CHARACTER expression that evaluates to NO if non-advancing
input/output is to occur, and YES if advancing input/output is to occur. The default value is
YES.

size is a scalar default INTEGER variable that is assigned the number of characters trans-
ferred by data edit descriptors during execution of the current non-advancing input/output
statement.

Remarks
io-control-specs must contain exactly one io-unit, and must not contain both a format and a
namelist-group-name.

A namelist-group-name must not appear if outputs is present.

If the optional characters UNIT= are omitted before io-unit, io-unit must be the first item in
io-control-specs. If the optional characters FMT= are omitted before format, format must be
the second item in io-control-specs. If the optional characters NML= are omitted before
namelist-group-name, namelist-group-name must be the second item in io-control-specs.

If io-unit is an internal file, io-control-specs must not contain a REC= specifier or a namelist-
group-name.

If the REC= specifier is present, an END= specifier must not appear, a namelist-group-name
must not appear, and format must not be an asterisk indicating list-directed I/O.

An ADVANCE= specifier can appear only in formatted sequential I/O with an explicit for-
mat specification (format-expr) whose control list does not contain an internal file specifier.
If an EOR= or SIZE= specifier is present, an ADVANCE= specifier must also appear with
the value NO.

The do-variable of an implied-do-control that is contained within another io-implied-do must
not appear as the do-variable of the containing io-implied-do.

If an array appears as an output item, it is treated as if the elements were specified in array-
element order.

If a derived type object appears as an output item, it is treated as if all of the components were
specified in the same order as in the definition of the derived type.
238 Lahey/Fujitsu Fortran 95 Language Reference

WRITE Statement
Example
write (*,*) a,b,c ! write a, b, and c using list-

! directed i/o
write (3, fmt= "(e7.4)") x

! write x to unit 3 using e format
write 10, i,j,k

! write i, j, and k using format on
! line 10
Lahey/Fujitsu Fortran 95 Language Reference 239

Chapter 2 Alphabetical Reference
240 Lahey/Fujitsu Fortran 95 Language Reference

A Fortran 77
Compatibility
This chapter discusses issues that affect the behavior of Fortran 77 and Fortran 90 code when
processed by LF95.

Different Interpretation Under Fortran 95
Standard Fortran 95 is a superset of standard Fortran 90 and a standard-conforming Fortran
90 program will compile properly under Fortran 95. There are, however, two situations in
which the program’s interpretation may differ.

• The behavior of the SIGN intrinsic function is different if the second argument is
negative real zero.

• Fortran 90 has more intrinsic procedures than Fortran 77. Therefore, a standard-con-
forming Fortran 77 program may have a different interpretation under Fortran 90 if
it invokes a procedure having the same name as one of the new standard intrinsic pro-
cedures, unless that procedure is specified in an EXTERNAL statement as
recommended for non-intrinsic functions in the appendix to the Fortran 77 standard.

Different Interpretation Under Fortran 90
Standard Fortran 90 is a superset of standard Fortran 77 and a standard-conforming Fortran
77 program will compile properly under Fortran 90. There are, however, some situations in
which the program’s interpretation may differ.

• Fortran 77 permitted a processor to supply more precision derived from a REAL con-
stant than can be contained in a REAL datum when the constant is used to initialize
a DOUBLE PRECISION data object in a DATA statement. Fortran 90 does not per-
mit this option.
Lahey/Fujitsu Fortran 95 Language Reference 241

Appendix A Fortran 77 Compatibility
• If a named variable that is not in a common block is initialized in a DATA statement
and does not have the SAVE attribute specified, Fortran 77 left its SAVE attribute
processor-dependent. Fortran 90 specifies that this named variable has the SAVE
attribute.

• Fortran 77 required that the number of characters required by the input list must be
less than or equal to the number of characters in the record during formatted input.
Fortran 90 specifies that the input record is logically padded with blanks if there are
not enough characters in the record, unless the PAD=”NO” option is specified in an
appropriate OPEN statement.

• Fortran 90 has more intrinsic procedures than Fortran 77. Therefore, a standard-con-
forming Fortran 77 program may have a different interpretation under Fortran 90 if
it invokes a procedure having the same name as one of the new standard intrinsic pro-
cedures, unless that procedure is specified in an EXTERNAL statement as
recommended for non-intrinsic functions in the appendix to the Fortran 77 standard.

Obsolescent Features
The following features are obsolescent or deleted from the Fortran 95 standard. While these
features are still supported in LF95, their use in new code is not recommended:

• Arithmetic IF
• REAL and double-precision DO control variables and DO loop control expressions
• shared DO termination and termination on a statement other than END DO or

CONTINUE
• Branching to an END IF statement from outside its IF block
• Alternate return
• PAUSE statement
• ASSIGN statement and assigned GOTO statement
• Assigned format specifier
• nH (Hollerith) edit descriptor
• Computed GOTO statement
• Statement functions
• DATA statements amongst executable statements
• Assumed-length CHARACTER functions
• Fixed-source form
• CHARACTER* form of CHARACTER declaration
242 Lahey/Fujitsu Fortran 95 Language Reference

B New in Fortran 95
The following Fortran 95 features were not present in Fortran 77. Fortran 95 features that
were not present in Fortran 90 are marked with an asterisk.

Miscellaneous
free source form
enhancements to fixed source form:

“;” statement separator
“!” trailing comment

names may be up to 31 characters in length
both upper and lower case characters are accepted
INCLUDE line
relational operators in mathematical notation
enhanced END statement
IMPLICIT NONE
binary, octal, and hexadecimal constants
quotation marks around CHARACTER constants

Data
enhanced type declaration statements
new attributes:

extended DIMENSION attribute
ALLOCATABLE
POINTER
TARGET
INTENT
PUBLIC
PRIVATE

kind and length type parameters
derived types
pointers
Lahey/Fujitsu Fortran 95 Language Reference 243

Appendix B New in Fortran 95
Operations
extended intrinsic operators
extended assignment
user-defined operators

Arrays
automatic arrays
allocatable arrays
assumed-shape arrays
array sections
array expressions
masked array assignment (WHERE statement and construct)
FORALL statement*

Execution Control
CASE construct
enhance DO construct
CYCLE statement
EXIT statement

Input/Output
binary, octal, and hexadecimal edit descriptors
engineering and scientific edit descriptors
namelist formatting
partial record capabilities (non-advancing I/O)
extra OPEN and INQUIRE specifiers

Procedures
keyword arguments
optional arguments
INTENT attribute
derived type actual arguments and functions
array-valued functions
recursive procedures
user-defined generic procedures
user-defined elemental procedures*
pure procedures*
specification of procedure interfaces
internal procedures
244 Lahey/Fujitsu Fortran 95 Language Reference

Modules

New Intrinsic Procedures
NULL*
PRESENT
numeric functions

CEILING
FLOOR
MODULO

character functions
ACHAR
ADJUSTL
ADJUSTR
IACHAR
LEN_TRIM
REPEAT
SCAN
TRIM
VERIFY

kind Functions
KIND
SELECTED_INT_KIND
SELECTED_REAL_KIND

LOGICAL
numeric inquiry functions

DIGITS
EPSILON
HUGE
MAXEXPONENT
MINEXPONENT
PRECISION
RADIX
RANGE
TINY

BIT_SIZE
bit manipulation functions

BTEST
IAND
IBCLR
IBITS
IBSET
IEOR
IOR
ISHFT
Lahey/Fujitsu Fortran 95 Language Reference 245

Appendix B New in Fortran 95
ISHFTC
NOT

TRANSFER
floating-point manipulation functions

EXPONENT
FRACTION
NEAREST
RRSPACING
SCALE
SET_EXPONENT
SPACING

vector and matrix multiply functions
DOT_PRODUCT
MATMUL

array reduction functions
ALL
ANY
COUNT
MAXVAL
MINVAL
PRODUCT
SUM

array inquiry functions
ALLOCATED
LBOUND
SHAPE
SIZE
UBOUND

array construction functions
MERGE
FSOURCE
PACK
SPREAD
UNPACK

RESHAPE
array manipulation functions

CSHFT
EOSHIFT
TRANSPOSE

array location functions
MAXLOC
MINLOC

ASSOCIATED
246 Lahey/Fujitsu Fortran 95 Language Reference

intrinsic subroutines
CPU_TIME*
DATE_AND_TIME
MVBITS
RANDOM_NUMBER
RANDOM_SEED
SYSTEM_CLOCK
Lahey/Fujitsu Fortran 95 Language Reference 247

Appendix B New in Fortran 95
248 Lahey/Fujitsu Fortran 95 Language Reference

C Intrinsic Procedures
The tables in this chapter offer a synopsis of procedures included with Lahey Fortran. For
detailed information on individual procedures, see the chapter “Alphabetical Reference” on
page 59.

All procedures in these tables are intrinsic. Specific function names may be passed as actual
arguments except for where indicated by an asterisk in the tables. Note that for almost all
programming situations it is best to use the generic procedure name.
Lahey/Fujitsu Fortran 95 Language Reference 249

Appendix C Intrinsic Procedures
Table 11: Numeric Functions

Name
Specific
Names

Function Type Argument Type Description Class

ABS
CABS
CDABS
CQABS
DABS
QABS
IABS
I2ABS
IIABS
JIABS

Numeric
REAL_4
REAL_8
REAL_16
REAL_8
REAL_16
INTEGER_4
INTEGER_2
INTEGER_2
INTEGER_4

Numeric
COMPLEX_4
COMPLEX_8
COMPLEX_16
REAL_8
REAL_16
INTEGER_4
INTEGER_2
INTEGER_2
INTEGER_4

Absolute Value. Elemental

AIMAG
DIMAG
QIMAG

REAL
REAL_8
REAL_16

COMPLEX
COMPLEX_8
COMPLEX_16

Imaginary part of
a complex num-
ber.

Elemental

AINT
DINT
QINT

REAL
REAL_8
REAL_16

REAL
REAL_8
REAL_16

Truncation to a
whole number. Elemental

ANINT
DNINT
QNINT

REAL
REAL_8
REAL_16

REAL
REAL_8
REAL_16

REAL representa-
tion of the nearest
whole number.

Elemental

CEILING INTEGER_4 REAL

Smallest INTE-
GER greater than
or equal to a num-
ber.

Elemental

CMPLX
DCMPLX
QCMPLX

COMPLEX
COMPLEX_8
COMPLEX_16

Numeric
Numeric
Numeric

Convert to type
COMPLEX. Elemental

CONJG
DCONJG
QCONJG

COMPLEX
COMPLEX_8
COMPLEX_16

COMPLEX
COMPLEX_8
COMPLEX_16

Conjugate of a
complex number. Elemental

DBLE
DREAL*
DFLOAT*
DBLEQ

REAL_8
REAL_8
REAL_8
REAL_8

Numeric
COMPLEX_8
INTEGER_4
REAL_16

Convert to dou-
ble-precision
REAL type.

Elemental
250 Lahey/Fujitsu Fortran 95 Language Reference

DIM

DDIM
QDIM
IDIM
I2DIM
IIDIM
JIDIM

INTEGER or
REAL
REAL_8
REAL_16
INTEGER_4
INTEGER_2
INTEGER_2
INTEGER_4

INTEGER or
REAL
REAL_8
REAL_16
INTEGER_4
INTEGER_2
INTEGER_2
INTEGER_4

The difference
between two num-
bers if the differ-
ence is positive;
zero otherwise.

Elemental

DPROD REAL_8 REAL_4 Double-precision
REAL product. Elemental

EXPO-
NENT REAL REAL

Exponent part of
the model repre-
sentation of a
number.

Elemental

FLOOR INTEGER_4 REAL
Greatest INTE-
GER less than or
equal to a number.

Elemental

FRAC-
TION REAL REAL

Fraction part of
the physical repre-
sentation of a
number.

Elemental

INT
IDINT*
IQINT*
IFIX*
INT2*
INT4*
HFIX*
IINT*
JINT*
IIDINT*
JIDINT*
IIFIX*
JIFIX*

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER_2
INTEGER_4
INTEGER_2
INTEGER_2
INTEGER_4
INTEGER_2
INTEGER_4
INTEGER_2
INTEGER_4

Numeric
REAL_8
REAL_16
REAL_4
Numeric
Numeric
REAL_4
REAL_4
REAL_4
REAL_8
REAL_8
REAL_4
REAL_4

Convert to INTE-
GER type. Elemental

Table 11: Numeric Functions

Name
Specific
Names

Function Type Argument Type Description Class
Lahey/Fujitsu Fortran 95 Language Reference 251

Appendix C Intrinsic Procedures
MAX

AMAX0*
AMAX1*
DMAX1*
QMAX1*
MAX0*
MAX1*
I2MAX0*
IMAX0*
JMAX0*
IMAX1*
JMAX1*
AIMAX0*
AJMAX0*

INTEGER or
REAL
REAL_4
REAL_4
REAL_8
REAL_16
INTEGER_4
INTEGER_4
INTEGER_2
INTEGER_2
INTEGER_4
INTEGER_2
INTEGER_4
REAL_4
REAL_4

INTEGER or
REAL
INTEGER_4
REAL_4
REAL_8
REAL_16
INTEGER_4
REAL_4
INTEGER_2
INTEGER_2
INTEGER_4
REAL_4
REAL_4
INTEGER_2
INTEGER_4

Maximum value. Elemental

MIN

AMIN0*
AMIN1*
DMIN1*
QMIN1*
MIN0*
MIN1*
I2MIN0*
IMIN0*
JMIN0*
IMIN1*
JMIN1*
AIMIN0*
AJMIN0*

INTEGER or
REAL
REAL_4
REAL_4
REAL_8
REAL_16
INTEGER_4
INTEGER_4
INTEGER_2
INTEGER_2
INTEGER_4
INTEGER_2
INTEGER_4
REAL_4
REAL_4

INTEGER or
REAL
INTEGER_4
REAL_4
REAL_8
REAL_16
INTEGER_4
REAL_4
INTEGER_2
INTEGER_2
INTEGER_4
REAL_4
REAL_4
INTEGER_2
INTEGER_4

Minimum value. Elemental

Table 11: Numeric Functions

Name
Specific
Names

Function Type Argument Type Description Class
252 Lahey/Fujitsu Fortran 95 Language Reference

MOD

AMOD
DMOD
QMOD
I2MOD
IMOD
JMOD

INTEGER or
REAL
REAL_4
REAL_8
REAL_16
INTEGER_2
INTEGER_2
INTEGER_4

INTEGER or
REAL
REAL_4
REAL_8
REAL_16
INTEGER_2
INTEGER_2
INTEGER_4

Remainder. Elemental

MODULO INTEGER or
REAL

INTEGER or
REAL Modulo. Elemental

NEAREST REAL REAL

Nearest number of
a given data type
in a given direc-
tion.

Elemental

NINT
IDNINT
IQNINT
I2NINT
ININT
JNINT
IIDNNT
JIDNNT

INTEGER
INTEGER_4
INTEGER_4
INTEGER_2
INTEGER_4
INTEGER_2
INTEGER_2
INTEGER_4

REAL
REAL_8
REAL_16
REAL
REAL_4
REAL_4
REAL_8
REAL_8

Nearest INTE-
GER. Elemental

REAL
FLOAT*
SNGL*
SNGLQ*
FLOATI*
FLOATJ*
DFLOTI*
DFLOTJ*

REAL
REAL_4
REAL_4
REAL_4
REAL_4
REAL_4
REAL_8
REAL_8

Numeric
INTEGER
REAL_8
REAL_16
INTEGER_2
INTEGER_4
INTEGER_2
INTEGER_4

Convert to REAL
type. Elemental

RRSPAC-
ING REAL REAL

Reciprocal of rel-
ative spacing near
a given number.

Elemental

Table 11: Numeric Functions

Name
Specific
Names

Function Type Argument Type Description Class
Lahey/Fujitsu Fortran 95 Language Reference 253

Appendix C Intrinsic Procedures
SCALE REAL REAL and
INTEGER

Multiply a num-
ber by a power of
two.

Elemental

SET_
EXPO-
NENT

REAL REAL and
INTEGER

Model representa-
tion of a number
with exponent
part set to a power
of two.

Elemental

SIGN

DSIGN
QSIGN
ISIGN
I2SIGN
IISIGN
JISIGN

INTEGER or
REAL
REAL_8
REAL_16
INTEGER_4
INTEGER_2
INTEGER_2
INTEGER_4

INTEGER or
REAL
REAL_8
REAL_16
INTEGER_4
INTEGER_2
INTEGER_2
INTEGER_4

Transfer of sign. Elemental

SPACING REAL REAL
Absolute spacing
near a given num-
ber.

Elemental

Table 11: Numeric Functions

Name
Specific
Names

Function Type Argument Type Description Class
254 Lahey/Fujitsu Fortran 95 Language Reference

Table 12: Mathematical Functions

Name
Specific
Names

Function Type Argument Type Description Class

ACOS
DACOS

REAL
REAL_8

REAL
REAL_8 Arccosine. Elemental

ASIN
DASIN

REAL
REAL_8

REAL
REAL_8 Arcsine. Elemental

ATAN
DATAN

REAL
REAL_8

REAL
REAL_8 Arctangent. Elemental

ATAN2
DATAN2

REAL
REAL_8

REAL
REAL_8

Arctangent of y/x
(principal value of
the argument of
the complex num-
ber (x,y)).

Elemental

COS

CCOS
CDCOS
CQCOS
DCOS
QCOS

REAL or
COMPLEX
COMPLEX_4
COMPLEX_8
COMPLEX_16
REAL_8
REAL_16

REAL or
COMPLEX
COMPLEX_4
COMPLEX_8
COMPLEX_16
REAL_8
REAL_16

Cosine. Elemental

COSH
DCOSH
QCOSH

REAL
REAL_8
REAL_16

REAL
REAL_8
REAL_16

Hyperbolic
cosine. Elemental

EXP

CEXP
CDEXP
CQEXP
DEXP
QEXP

REAL or
COMPLEX
COMPLEX_4
COMPLEX_8
COMPLEX_16
REAL_8
REAL_16

REAL or
COMPLEX
COMPLEX_4
COMPLEX_8
COMPLEX_16
REAL_8
REAL_16

Exponential. Elemental
Lahey/Fujitsu Fortran 95 Language Reference 255

Appendix C Intrinsic Procedures
LOG

ALOG
CLOG
CDLOG
CQLOG
DLOG
QLOG

REAL or
COMPLEX
REAL_4
COMPLEX_4
COMPLEX_8
COMPLEX_16
REAL_8
REAL_16

REAL or
COMPLEX
REAL_4
COMPLEX_4
COMPLEX_8
COMPLEX_16
REAL_8
REAL_16

Natural logarithm. Elemental

LOG10
ALOG10
DLOG10
QLOG10

REAL
REAL_4
REAL_8
REAL_16

REAL
REAL_4
REAL_8
REAL_16

Common loga-
rithm. Elemental

SIN

CSIN
CDSIN
CQSIN
DSIN
QSIN

REAL or
COMPLEX
COMPLEX_4
COMPLEX_8
COMPLEX_16
REAL_8
REAL_16

REAL or
COMPLEX
COMPLEX_4
COMPLEX_8
COMPLEX_16
REAL_8
REAL_16

Sine. Elemental

SINH
DSINH
QSINH

REAL
REAL_8
REAL_16

REAL
REAL_8
REAL_16

Hyperbolic sine. Elemental

SQRT

CSQRT
CDSQRT
CQSQRT
DSQRT
QSQRT

REAL or
COMPLEX
COMPLEX_4
COMPLEX_8
COMPLEX_16
REAL_8
REAL_16

REAL or
COMPLEX
COMPLEX_4
COMPLEX_8
COMPLEX_16
REAL_8
REAL_16

Square root. Elemental

TAN
DTAN
QTAN

REAL
REAL_8
REAL_16

REAL
REAL_8
REAL_16

Tangent. Elemental

Table 12: Mathematical Functions

Name
Specific
Names

Function Type Argument Type Description Class
256 Lahey/Fujitsu Fortran 95 Language Reference

TANH
DTANH
QTANH

REAL
REAL_8
REAL_16

REAL
REAL_8
REAL_16

Hyperbolic tan-
gent. Elemental

Table 12: Mathematical Functions

Name
Specific
Names

Function Type Argument Type Description Class
Lahey/Fujitsu Fortran 95 Language Reference 257

Appendix C Intrinsic Procedures
Table 13: Character Functions

Name Description Class

ACHAR Character in a specified position of the ASCII col-
lating sequence. Elemental

ADJUSTL Adjust to the left, removing leading blanks and
inserting trailing blanks. Elemental

ADJUSTR Adjust to the right, removing trailing blanks and
inserting leading blanks. Elemental

CHAR Given character in the collating sequence of the a
given character set. Elemental

IACHAR Position of a character in the ASCII collating
sequence. Elemental

ICHAR Position of a character in the processor collating
sequence associated with the kind of the character. Elemental

INDEX Starting position of a substring within a string. Elemental

LEN Length of a CHARACTER data object. Inquiry

LEN_TRIM Length of a CHARACTER entity without trailing
blanks. Elemental

LGE
Test whether a string is lexically greater than or
equal to another string based on the ASCII collat-
ing sequence.

Elemental

LGT
Test whether a string is lexically greater than
another string based on the ASCII collating
sequence.

Elemental

LLE
Test whether a string is lexically less than or equal
to another string based on the ASCII collating
sequence.

Elemental

LLT Test whether a string is lexically less than another
string based on the ASCII collating sequence. Elemental

REPEAT Concatenate copies of a string. Transforma-
tional

SCAN Scan a string for any one of a set of characters. Elemental
258 Lahey/Fujitsu Fortran 95 Language Reference

TRIM Omit trailing blanks. Transforma-
tional

VERIFY Verify that a set of characters contains all the char-
acters in a string. Elemental

Table 13: Character Functions

Name Description Class
Lahey/Fujitsu Fortran 95 Language Reference 259

Appendix C Intrinsic Procedures
Table 14: Array Functions

Name Description Class

ALL Determine whether all values in a mask are true
along a given dimension.

Transforma-
tional

ALLOCATED Indicate whether an allocatable array has been allo-
cated. Inquiry

ANY Determine whether any values are true in a mask
along a given dimension.

Transforma-
tional

COUNT Count the number of true elements in a mask along
a given dimension.

Transforma-
tional

CSHIFT

Circular shift of all rank one sections in an array.
Elements shifted out at one end are shifted in at the
other. Different sections can be shifted by differ-
ent amounts and in different directions by using an
array-valued shift.

Transforma-
tional

DOT_
PRODUCT Dot-product multiplication of vectors. Transforma-

tional

EOSHIFT

End-off shift of all rank one sections in an array.
Elements are shifted out at one end and copies of
boundary values are shifted in at the other. Differ-
ent sections can be shifted by different amounts
and in different directions by using an array-valued
shift.

Transforma-
tional

LBOUND Lower bounds of an array or a dimension of an
array. Inquiry

MATMUL Matrix multiplication. Transforma-
tional

MAXLOC
Location of the first element in array having the
maximum value of the elements identified by
mask.

Transforma-
tional

MAXVAL Maximum value of elements of an array, along a
given dimension, for which a mask is true.

Transforma-
tional

MERGE Choose alternative values based on the value of a
mask. Elemental
260 Lahey/Fujitsu Fortran 95 Language Reference

MINLOC Location of the first element in array having the
minimum value of the elements identified by mask.

Transforma-
tional

MINVAL Minimum value of elements of an array, along a
given dimension, for which a mask is true.

Transforma-
tional

PACK Pack an array into a vector under control of a
mask.

Transforma-
tional

PRODUCT Product of elements of an array, along a given
dimension, for which a mask is true.

Transforma-
tional

RESHAPE Construct an array of a specified shape from a
given array.

Transforma-
tional

SHAPE Shape of an array. Inquiry

SIZE Size of an array or a dimension of an array. Inquiry

SPREAD Adds a dimension to an array by adding copies of a
data object along a given dimension.

Transforma-
tional

SUM Sum of elements of an array, along a given dimen-
sion, for which a mask is true.

Transforma-
tional

TRANSPOSE Transpose an array of rank two. Transforma-
tional

UBOUND Upper bounds of an array or a dimension of an
array. Inquiry

UNPACK Unpack an array of rank one into an array under
control of a mask.

Transforma-
tional

Table 14: Array Functions

Name Description Class
Lahey/Fujitsu Fortran 95 Language Reference 261

Appendix C Intrinsic Procedures
Table 15: Inquiry and Kind Functions

Name Description Class

ALLOCATED Indicate whether an allocatable array has been allo-
cated. Inquiry

ASSOCIATED Indicate whether a pointer is associated with a tar-
get. Inquiry

BIT_SIZE Size, in bits, of a data object of type INTEGER. Inquiry

DIGITS Number of significant binary digits. Inquiry

EPSILON Positive value that is almost negligible compared
to unity. Inquiry

HUGE Largest representable number of data type. Inquiry

KIND Kind type parameter. Inquiry

LBOUND Lower bounds of an array or a dimension of an
array. Inquiry

LEN Length of a CHARACTER data object. Inquiry

MAXEXPO-
NENT Maximum binary exponent of data type. Inquiry

MINEXPO-
NENT Minimum binary exponent of data type. Inquiry

PRECISION Decimal precision of data type. Inquiry

PRESENT Determine whether an optional argument is
present. Inquiry

RADIX Number base of the physical representation of a
number. Inquiry

RANGE Decimal range of the data type of a number. Inquiry

SELECTED_
INT_KIND

Kind type parameter of an INTEGER data type
that represents all integer values n with

.

Transforma-
tional

SELECTED_
REAL_KIND

Kind type parameter of a REAL data type with
decimal precision of at least p digits and a decimal
exponent range of at least r.

Transforma-
tional

10– r n 10r< <
262 Lahey/Fujitsu Fortran 95 Language Reference

SHAPE Shape of an array. Inquiry

SIZE Size of an array or a dimension of an array. Inquiry

TINY Smallest representable positive number of data
type. Inquiry

UBOUND Upper bounds of an array or a dimension of an
array. Inquiry

Table 15: Inquiry and Kind Functions

Name Description Class
Lahey/Fujitsu Fortran 95 Language Reference 263

Appendix C Intrinsic Procedures
Table 16: Bit Manipulation Procedures

Name
Specific
Names

Function Type Argument Type Description Class

BTEST
BITEST
BJTEST

LOGICAL_4
LOGICAL_4
LOGICAL_4

INTEGER
INTEGER_2
INTEGER_4

Bit testing. Elemental

IAND
IIAND
JIAND

INTEGER
INTEGER_2
INTEGER_4

INTEGER
INTEGER_2
INTEGER_4

Bit-wise logical
AND. Elemental

IBCLR
IIBCLR
JIBCLR

INTEGER
INTEGER_2
INTEGER_4

INTEGER
INTEGER_2
INTEGER_4

Clear one bit to
zero. Elemental

IBITS
IIBITS
JIBITS

INTEGER
INTEGER_2
INTEGER_4

INTEGER
INTEGER_2
INTEGER_4

Extract a
sequence of bits. Elemental

IBSET
IIBSET
JIBSET

INTEGER
INTEGER_2
INTEGER_4

INTEGER
INTEGER_2
INTEGER_4

Set a bit to one. Elemental

IEOR
IIEOR
JIEOR

INTEGER
INTEGER_2
INTEGER_4

INTEGER
INTEGER_2
INTEGER_4

Bit-wise logical
exclusive OR. Elemental

IOR
IIOR
JIOR

INTEGER
INTEGER_2
INTEGER_4

INTEGER
INTEGER_2
INTEGER_4

Bit-wise logical
inclusive OR. Elemental

ISHFT
IISHFT
JISHFT

INTEGER
INTEGER_2
INTEGER_4

INTEGER
INTEGER_2
INTEGER_4

Bit-wise shift. Elemental

ISHFTC
IISHFTC
JISHFTC

INTEGER
INTEGER_2
INTEGER_4

INTEGER
INTEGER_2
INTEGER_4

Bit-wise circular
shift of rightmost
bits.

Elemental

MVBITS INTEGER

Copy a sequence
of bits from one
INTEGER data
object to another.

Subroutine
264 Lahey/Fujitsu Fortran 95 Language Reference

NOT
INOT
JNOT

INTEGER
INTEGER_2
INTEGER_4

INTEGER
INTEGER_2
INTEGER_4

Bit-wise logical
complement. Elemental

Table 17: Other Intrinsic Functions

Name Description Class

LOGICAL Convert between kinds of LOGICAL. Elemental

NULL Disassociated pointer. Elemental

TRANSFER
Interpret the physical representation of a number
with the type and type parameters of a given num-
ber.

Transforma-
tional

Table 18: Standard Intrinsic Subroutines

Name Description Class

CPU_TIME CPU time. Subroutine

DATE_AND_
TIME Date and real-time clock data. Subroutine

MVBITS Copy a sequence of bits from one INTEGER data
object to another. Subroutine

RANDOM_
NUMBER

Uniformly distributed pseudorandom number or
numbers in the range . Subroutine

RANDOM_
SEED

Set or query the pseudorandom number generator
used by RANDOM_NUMBER. If no argument is
present, the processor sets the seed to a predeter-
mined value.

Subroutine

SYSTEM_
CLOCK INTEGER data from the real-time clock. Subroutine

Table 16: Bit Manipulation Procedures

Name
Specific
Names

Function Type Argument Type Description Class

0 x 1<≤
Lahey/Fujitsu Fortran 95 Language Reference 265

Appendix C Intrinsic Procedures
Table 19: VAX/IBM Intrinsic Functions Without Fortran 90 Equivalents

Name
Specific
Names

Function Type Argument Type Description Class

ACOSD
DACOSD
QACOSD

REAL_4
REAL_8
REAL_16

REAL_4
REAL_8
REAL_16

Arccosine in
degrees. Elemental

ALGAMA
DLGAMA
QLGAMA

REAL_4
REAL_8
REAL_16

REAL_4
REAL_8
REAL_16

Log gamma func-
tion. Elemental

ASIND
DASIND
QASIND

REAL_4
REAL_8
REAL_16

REAL_4
REAL_8
REAL_16

Arcsine in
degrees. Elemental

ATAND
DATAND
QATAND

REAL_4
REAL_8
REAL_16

REAL_4
REAL_8
REAL_16

Arctangent in
degrees. Elemental

ATAN2D
DATAN2D
QATAN2D

REAL_4
REAL_8
REAL_16

REAL_4
REAL_8
REAL_16

Arctangent of y/x
(principal value of
the argument of
the complex num-
ber (x,y)) in
degrees.

Elemental

COSD
DCOSD
QCOSD

REAL_4
REAL_8
REAL_16

REAL_4
REAL_8
REAL_16

Cosine in degrees. Elemental

COTAN
DCOTAN
QCOTAN

REAL_4
REAL_8
REAL_16

REAL_4
REAL_8
REAL_16

Cotangent. Elemental

ERF
DERF
QERF

REAL_4
REAL_8
REAL_16

REAL_4
REAL_8
REAL_16

Error function. Elemental

ERFC
DERFC
QERFC

REAL_4
REAL_8
REAL_16

REAL_4
REAL_8
REAL_16

Error function
complement. Elemental
266 Lahey/Fujitsu Fortran 95 Language Reference

GAMMA
DGAMMA
QGAMMA

REAL_4
REAL_8
REAL_16

REAL_4
REAL_8
REAL_16

Gamma function. Elemental

SIND
DSIND
QSIND

REAL_4
REAL_8
REAL_16

REAL_4
REAL_8
REAL_16

Sine in degrees. Elemental

TAND
DTAND
QTAND

REAL_4
REAL_8
REAL_16

REAL_4
REAL_8
REAL_16

Tangent in
degrees. Elemental

IZEXT
IZEXT2
JZEXT
JZEXT2
JZEXT4

INTEGER_2
INTEGER_2
INTEGER_4
INTEGER_4
INTEGER_4

LOGICAL_1
INTEGER_2
LOGICAL_4
INTEGER_2
INTEGER_4

Zero extend. Elemental

Table 19: VAX/IBM Intrinsic Functions Without Fortran 90 Equivalents

Name
Specific
Names

Function Type Argument Type Description Class
Lahey/Fujitsu Fortran 95 Language Reference 267

Appendix C Intrinsic Procedures
Table 20: Utility Procedures

Name Description Class

CARG Pass item to a procedure as a C data type by value.
CARG can only be used as an actual argument.

Utility
Function

DLL_EXPORT Specify which procedures should be available in a
dynamic-link library.

Utility
Subroutine

DLL_IMPORT Specify which procedures are to be imported from
a dynamic-link library.

Utility
Subroutine

DVCHK

The initial invocation of the DVCHK subroutine
masks the divide-by-zero interrupt on the floating-
point unit. Subsequent invocations return true or
false in the lflag variable if the exception has
occurred or not occurred, respectively. DVCHK
will not check or mask zero divided by zero. Use
INVALOP to check for a zero divided by zero.

Utility
Subroutine

ERROR Print a message to the console with a subprogram
traceback, then continue processing.

Utility
Subroutine

EXIT Terminate the program and set the DOS error
level.

Utility
Subroutine

FLUSH
Empty the buffer for an input/output unit by writ-
ing to its corresponding file. Note that this does
not flush the DOS file buffer.

Utility
Subroutine

GETCL Get command line. Utility
Subroutine

GETENV Get the specified environment variable. Utility
Function

INVALOP

The initial invocation of the INVALOP subroutine
masks the invalid operator interrupt on the float-
ing-point unit. Subsequent invocations return true
or false in the lflag variable if the exception has
occurred or not occurred, respectively.

Utility
Subroutine

IOSTAT_MSG Get a runtime I/O error message then continue pro-
cessing.

Utility
Subroutine

NDPERR Report floating point exceptions. Utility
Function
268 Lahey/Fujitsu Fortran 95 Language Reference

NDPEXC Mask all floating point exceptions. Utility
Subroutine

OFFSET
Get the DOS offset portion of the memory address
of a variable, substring, array reference, or external
subprogram.

Utility
Function

OVEFL

The initial invocation of the OVEFL subroutine
masks the overflow interrupt on the floating-point
unit. Subsequent invocations return true or false in
the lflag variable if the exception has occurred or
not occurred, respectively.

Utility
Subroutine

POINTER Get the memory address of a variable, substring,
array reference, or external subprogram.

Utility
Function

PRECFILL
Set fill character for numeric fields that are wider
than supplied numeric precision. The default is
’0’.

Utility
Subroutine

PROMPT Set prompt for subsequent READ statements. For-
tran default is no prompt.

Utility
Subroutine

SEGMENT
Get the DOS segment portion of the memory
address of a variable, substring, array reference, or
external subprogram.

Utility
Function

SYSTEM Execute a DOS command as if from the DOS com-
mand line.

Utility
Subroutine

UNDFL

The initial invocation of the UNDFL subroutine
masks the underflow interrupt on the floating-point
unit. Subsequent invocations return true or false in
the lflag variable if the exception has occurred or
not occurred, respectively.

Utility
Subroutine

VAL Pass an item to a procedure by value. VAL can
only be used as an actual argument.

Utility
Function

YIELD

Causes a Windows 3.1 program to yield control to
Windows so that computation-intensive operations
do not monopolize the processor. YIELD has no
effect under other supported operating systems.

Utility
Function

Table 20: Utility Procedures

Name Description Class
Lahey/Fujitsu Fortran 95 Language Reference 269

Appendix C Intrinsic Procedures
270 Lahey/Fujitsu Fortran 95 Language Reference

D Porting Extensions
The following non-standard features are supported by LF95. Note that for service proce-
dures, a module SERVICE_ROUTINES is provided. Use SERVICE_ROUTINES to have
the compiler check interfaces for the various service procedures. See the USE statement for
details on how to use a module.

• Dollar sign as a letter

• Backslash as a special character

• Unlimited number of continuation lines in free or fixed source form

• Omission of required significant blanks in free source form

• DO UNTIL statement

• FIND statement

• STRUCTURE statement

• END STRUCTURE statement

• UNION statement

• END UNION statement

• MAP statement

• END MAP statement

• RECORD statement

• Non-standard POINTER statement

• AUTOMATIC statement and attribute

• STATIC statement and attribute

• VALUE statement and attribute

• VOLATILE statement and attribute
Lahey/Fujitsu Fortran 95 Language Reference 271

Appendix D Porting Extensions
• DLL_IMPORT statement

• DLL_EXPORT statement

• BYTE statement

• Double-precision COMPLEX constants

• Hollerith constants

• Bdigits form of binary constant

• digitsO form of octal constant

• X’digits’ form of hexadecimal constant

• ‘digits’X form of hexadecimal constant

• Zdigits form of hexadecimal constant

• Binary, Octal, or Hexadecimal constant in a DATA, PARAMETER, or type decla-
ration statement

• ‘.’ period structure component separator

• type*n form in type declaration, FUNCTION or IMPLICIT statement (e.g.
INTEGER*4)

• /literal-constant/ form of initialization in type declaration statement

• IMPLICIT UNDEFINED statement

• Namelist input/output on internal file

• Variable format expressions

• NUM specifier

• ACTION = ‘BOTH’

• FORM = ‘TRANSPARENT’ (use FORM=BINARY instead)

• TOTALREC specifier

• STATUS = ‘SHR’

• Gw edit descriptor

• $ edit descriptor

• \ edit descriptor

• R edit descriptor

• D, E, F, G, I, L, B, O or Z descriptor without w, d or e indicators

• &name...&end namelist record
272 Lahey/Fujitsu Fortran 95 Language Reference

• VAL and LOC intrinsic functions

• The following service subroutines: ABORT, BEEP, BIC, BIS, CLOCK, CLOCKM,
DATE, EXIT, ERRSAV, ERRSTR, ERRSET, ERRTRA, FDATE,
FREE,GETARG, GETDAT, GETLOG, GETPARM, GETTIM, GMTIME, IBTOD,
IDATE, IETOM, ITIME, IVALUE, LTIME, MTOIE, PERROR, PRNSET,
QSORT, SETRCD, SETBIT, SIGNAL, SLEEP

• The following service functions: ACCESS, ALARM, BIT, CHDIR, CHMOD,
CTIME, DRAND, DTIME, ETIME, FGETC, FPUTC, FSEEK, FSTAT, FTELL,
GETC, GETCWD, GETFD, GETPID, HOSTNM, IARGC, IERRNO, INMAX,
IOINIT, IRAND, JDATE, KILL, LNBLNK, LONG, LSTAT, MALLOC, NARGS,
PUTC, RAN, RAND, RENAME, RINDEX, RTC, SECOND, SECNDS, SETDAT,
SETTIM, SHORT, STAT, TIME, TIMEF, UNLINK

Additional information on service routines is in the file readme_service_routines.txt.
Lahey/Fujitsu Fortran 95 Language Reference 273

Appendix D Porting Extensions
274 Lahey/Fujitsu Fortran 95 Language Reference

E Glossary
action statement: A single statement specifying a computational action.

actual argument: An expression, a variable, a procedure, or an alternate return specifier that
is specified in a procedure reference.

allocatable array: A named array having the ALLOCATABLE attribute. Only when it has
space allocated for it does it have a shape and may it be referenced or defined.

argument: An actual argument or a dummy argument.

argument association: The relationship between an actual argument and a dummy argu-
ment during the execution of a procedure reference.

argument keyword: A dummy argument name. It may be used in a procedure reference
ahead of the equals symbol provided the procedure has an explicit interface.

array: A set of scalar data, all of the same type and type parameters, whose individual ele-
ments are arranged in a rectangular pattern. It may be a named array, an array section, a
structure component, a function value, or an expression. Its rank is at least one.

array element: One of the scalar data that make up an array that is either named or is a struc-
ture component.

array pointer: A pointer to an array.

array section: A subobject that is an array and is not a structure component.

array-valued: Having the property of being an array.

assignment statement: A statement of the form ‘‘variable = expression’’.

association: Name association, pointer association, or storage association.

assumed-size array: A dummy array whose size is assumed from the associated actual argu-
ment. Its last upper bound is specified by an asterisk.

attribute: A property of a data object that may be specified in a type declaration statement.
Lahey/Fujitsu Fortran 95 Language Reference 275

Appendix E Glossary
automatic data object: A data object that is a local entity of a subprogram, that is not a
dummy argument, and that has a nonconstant CHARACTER length or array bound.

belong: If an EXIT or a CYCLE statement contains a construct name, the statement belongs
to the DO construct using that name. Otherwise, it belongs to the innermost DO construct in
which it appears.

block: A sequence of executable constructs embedded in another executable construct,
bounded by statements that are particular to the construct, and treated as an integral unit.

block data program unit: A program unit that provides initial values for data objects in
named common blocks.

bounds: For a named array, the limits within which the values of the subscripts of its array
elements must lie.

character: A letter, digit, or other symbol.

character string: A sequence of characters numbered from left to right 1, 2, 3, . . .

collating sequence: An ordering of all the different characters of a particular kind type
parameter.

common block: A block of physical storage that may be accessed by any of the scoping units
in an executable program.

component: A constituent of a derived type.

conformable: Two arrays are said to be conformable if they have the same shape. A scalar
is conformable with any array.

conformance: An executable program conforms to the standard if it uses only those forms
and relationships described therein and if the executable program has an interpretation
according to the standard. A program unit conforms to the standard if it can be included in
an executable program in a manner that allows the executable program to be standard con-
forming. A processor conforms to the standard if it executes standard-conforming programs
in a manner that fulfills the interpretations prescribed in the standard.

connected:
For an external unit, the property of referring to an external file.

 For an external file, the property of having an external unit that refers to it.

constant: A data object whose value must not change during execution of an executable pro-
gram. It may be a named constant or a literal constant.

constant expression: An expression satisfying rules that ensure that its value does not vary
during program execution.

construct: A sequence of statements starting with a CASE, DO, IF, or WHERE statement
and ending with the corresponding terminal statement.

data: Plural of datum.
276 Lahey/Fujitsu Fortran 95 Language Reference

data entity: A data object, the result of the evaluation of an expression, or the result of the
execution of a function reference (called the function result). A data entity has a data type
(either intrinsic or derived) and has, or may have, a data value (the exception is an undefined
variable). Every data entity has a rank and is thus either a scalar or an array.

data object: A data entity that is a constant, a variable, or a subobject of a constant.

data type: A named category of data that is characterized by a set of values, together with a
way to denote these values and a collection of operations that interpret and manipulate the
values. For an intrinsic type, the set of data values depends on the values of the type
parameters.

datum: A single quantity that may have any of the set of values specified for its data type.

definable: A variable is definable if its value may be changed by the appearance of its name
or designator on the left of an assignment statement. An allocatable array that has not been
allocated is an example of a data object that is not definable. An example of a subobject that
is not definable is C when C is an array that is a constant and I is an INTEGER variable.

defined: For a data object, the property of having or being given a valid value.

defined assignment statement: An assignment statement that is not an intrinsic assignment
statement and is defined by a subroutine and an interface block that specifies ASSIGNMENT
(=).

defined operation: An operation that is not an intrinsic operation and is defined by a func-
tion that is associated with a generic identifier.

derived type: A type whose data have components, each of which is either of intrinsic type
or of another derived type.

designator: See subobject designator.

disassociated: A pointer is disassociated following execution of a DEALLOCATE or NUL-
LIFY statement, or following pointer association with a disassociated pointer.

dummy argument: An entity whose name appears in the parenthesized list following the
procedure name in a FUNCTION statement, a SUBROUTINE statement, an ENTRY state-
ment, or a statement function statement.

dummy array: A dummy argument that is an array.

dummy pointer: A dummy argument that is a pointer.

dummy procedure: A dummy argument that is specified or referenced as a procedure.

elemental: An adjective applied to an intrinsic operation, procedure, or assignment state-
ment that is applied independently to elements of an array or corresponding elements of a set
of conformable arrays and scalars.
Lahey/Fujitsu Fortran 95 Language Reference 277

Appendix E Glossary
entity: The term used for any of the following: a program unit, a procedure, an operator, an
interface block, a common block, an external unit, a statement function, a type, a named vari-
able, an expression, a component of a structure, a named constant, a statement label, a
construct, or a namelist group.

executable construct: A CASE, DO, IF, or WHERE construct or an action statement.

executable program: A set of program units that includes exactly one main program.

executable statement: An instruction to perform or control one or more computational
actions.

explicit interface: For a procedure referenced in a scoping unit, the property of being an
internal procedure, a module procedure, an intrinsic procedure, an external procedure that has
an interface block, a recursive procedure reference in its own scoping unit, or a dummy pro-
cedure that has an interface block.

explicit-shape array: A named array that is declared with explicit bounds.

expression: A sequence of operands, operators, and parentheses. It may be a variable, a con-
stant, a function reference, or may represent a computation.

extent: The size of one dimension of an array.

external file: A sequence of records that exists in a medium external to the executable
program.

external procedure: A procedure that is defined by an external subprogram or by a means
other than Fortran.

external subprogram: A subprogram that is not contained in a main program, module, or
another subprogram.

external unit: A mechanism that is used to refer to an external file. It is identified by a non-
negative INTEGER.

file: An internal file or an external file.

function: A procedure that is invoked in an expression.

function result: The data object that returns the value of a function.

function subprogram: A sequence of statements beginning with a FUNCTION statement
that is not in an interface block and ending with the corresponding END statement.

generic identifier: A lexical token that appears in an INTERFACE statement and is associ-
ated with all the procedures in the interface block.

global entity: An entity identified by a lexical token whose scope is an executable program.
It may be a program unit, a common block, or an external procedure.
278 Lahey/Fujitsu Fortran 95 Language Reference

host: A main program or subprogram that contains an internal procedure is called the host
of the internal procedure. A module that contains a module procedure is called the host of
the module procedure.

host association: The process by which an internal subprogram, module subprogram, or
derived type definition accesses entities of its host.

initialization expression: An expression that can be evaluated at compile time.

implicit interface: A procedure referenced in a scoping unit other than its own is said to
have an implicit interface if the procedure is an external procedure that does not have an inter-
face block, a dummy procedure that does not have an interface block, or a statement function.

inquiry function: An intrinsic function whose result depends on properties of the principal
argument other than the value of the argument.

intent: An attribute of a dummy argument that is neither a procedure nor a pointer, which
indicates whether it is used to transfer data into the procedure, out of the procedure, or both.

instance of a subprogram: The copy of a subprogram that is created when a procedure
defined by the subprogram is invoked.

interface block: A sequence of statements from an INTERFACE statement to the corre-
sponding END INTERFACE statement.

interface body: A sequence of statements in an interface block from a FUNCTION or SUB-
ROUTINE statement to the corresponding END statement.

interface of a procedure: See procedure interface.

internal file: A CHARACTER variable that is used to transfer and convert data from inter-
nal storage to internal storage.

internal procedure: A procedure that is defined by an internal subprogram.

internal subprogram: A subprogram contained in a main program or another subprogram.

intrinsic: An adjective applied to types, operations, assignment statements, and procedures
that are defined in the standard and may be used in any scoping unit without further definition
or specification.

invoke:
 To call a subroutine by a CALL statement or by a defined assignment statement.

 To call a function by a reference to it by name or operator during the evaluation of
an expression.

keyword: Statement keyword or argument keyword.

kind type parameter: A parameter whose values label the available kinds of an intrinsic
type.

label: See statement label.
Lahey/Fujitsu Fortran 95 Language Reference 279

Appendix E Glossary
length of a character string: The number of characters in the character string.

lexical token: A sequence of one or more characters with an indivisible interpretation.

line: A source-form record containing from 0 to 132 characters.

literal constant: A constant without a name.

local entity: An entity identified by a lexical token whose scope is a scoping unit.

main program: A program unit that is not a module, subprogram, or block data program
unit.

module: A program unit that contains or accesses definitions to be accessed by other pro-
gram units.

module procedure: A procedure that is defined by a module subprogram.

module subprogram: A subprogram that is contained in a module but is not an internal
subprogram.

name: A lexical token consisting of a letter followed by up to 30 alphanumeric characters
(letters, digits, and underscores).

name association: Argument association, use association, or host association.

named: Having a name.

named constant: A constant that has a name.

numeric type: INTEGER, REAL or COMPLEX type.

object: Data object.

obsolescent feature: A feature in FORTRAN 77 that is considered to have been redundant
but that is still in frequent use.

operand: An expression that precedes or succeeds an operator.

operation: A computation involving one or two operands.

operator: A lexical token that specifies an operation.

pointer: A variable that has the POINTER attribute. A pointer must not be referenced or
defined unless it is pointer associated with a target. If it is an array, it does not have a shape
unless it is pointer associated.

pointer assignment: The pointer association of a pointer with a target by the execution of a
pointer assignment statement or the execution of an assignment statement for a data object of
derived type having the pointer as a subobject.

pointer assignment statement: A statement of the form ‘‘pointer-name => target’’.

pointer associated: The relationship between a pointer and a target following a pointer
assignment or a valid execution of an ALLOCATE statement.
280 Lahey/Fujitsu Fortran 95 Language Reference

pointer association: The process by which a pointer becomes pointer associated with a
target.

present: A dummy argument is present in an instance of a subprogram if it is associated with
an actual argument and the actual argument is a dummy argument that is present in the invok-
ing procedure or is not a dummy argument of the invoking procedure.

procedure: A computation that may be invoked during program execution. It may be a
function or a subroutine. It may be an intrinsic procedure, an external procedure, a module
procedure, an internal procedure, a dummy procedure, or a statement function. A subpro-
gram may define more than one procedure if it contains ENTRY statements.

procedure interface: The characteristics of a procedure, the name of the procedure, the
name of each dummy argument, and the generic identifiers (if any) by which it may be
referenced.

processor: The combination of a computing system and the mechanism by which executable
programs are transformed for use on that computing system.

program: See executable program and main program.

program unit: The fundamental component of an executable program. A sequence of state-
ments and comment lines. It may be a main program, a module, an external subprogram, or
a block data program unit.

rank: The number of dimensions of an array. Zero for a scalar.

record: A sequence of values that is treated as a whole within a file.

reference: The appearance of a data object name or subobject designator in a context requir-
ing the value at that point during execution, or the appearance of a procedure name, its
operator symbol, or a defined assignment statement in a context requiring execution of the
procedure at that point.

scalar:
 A single datum that is not an array.

 Not having the property of being an array.

scope: That part of an executable program within which a lexical token has a single inter-
pretation. It may be an executable program, a scoping unit, a single statement, or a part of a
statement.

scoping unit: One of the following:
 A derived-type definition,

 An interface body, excluding any derived-type definitions and interface bodies con-
tained within it, or

 A program unit or subprogram, excluding derived-type definitions, interface bodies,
and subprograms contained within it.
Lahey/Fujitsu Fortran 95 Language Reference 281

Appendix E Glossary
section subscript: A subscript, vector subscript, or subscript triplet in an array section
selector.

selector: A syntactic mechanism for designating:
 Part of a data object. It may designate a substring, an array element, an array section,

or a structure component.

 The set of values for which a CASE block is executed.

shape: For an array, the rank and extents. The shape may be represented by the rank-one
array whose elements are the extents in each dimension.

size: For an array, the total number of elements.

specification expression: A scalar INTEGER expression that can be evaluated on entry to
the program unit at the time of execution.

statement: A sequence of lexical tokens. It usually consists of a single line, but the amper-
sand symbol may be used to continue a statement from one line to another and the semicolon
symbol may be used to separate statements within a line.

statement entity: An entity identified by a lexical token whose scope is a single statement
or part of a statement.

statement function: A procedure specified by a single statement that is similar in form to
an assignment statement.

statement keyword: A word that is part of the syntax of a statement and that may be used
to identify the statement.

statement label: A lexical token consisting of up to five digits that precedes a statement and
may be used to refer to the statement.

stride: The increment specified in a subscript triplet.

structure: A scalar data object of derived type.

structure component: The part of a data object of derived type corresponding to a compo-
nent of its type.

subobject: A portion of a named data object that may be referenced or defined indepen-
dently of other portions. It may be an array element, an array section, a structure component,
or a substring.

subobject designator: A name, followed by one or more of the following: component
selectors, array section selectors, array element selectors, and substring selectors.

subprogram: A function subprogram or a subroutine subprogram.

subroutine: A procedure that is invoked by a CALL statement or by a defined assignment
statement.
282 Lahey/Fujitsu Fortran 95 Language Reference

subroutine subprogram: A sequence of statements beginning with a SUBROUTINE state-
ment that is not in an interface block and ending with the corresponding END statement.

subscript: One of the list of scalar INTEGER expressions in an array element selector.

subscript triplet: An item in the list of an array section selector that contains a colon and
specifies a regular sequence of INTEGER values.

substring: A contiguous portion of a scalar character string. Note that an array section can
include a substring selector; the result is called an array section and not a substring.

target: A named data object specified in a type declaration statement containing the TAR-
GET attribute, a data object created by an ALLOCATE statement for a pointer, or a subobject
of such an object.

type: Data type.

type declaration statement: An INTEGER, REAL, DOUBLE PRECISION, COMPLEX,
CHARACTER, LOGICAL, or TYPE statement.

type parameter: A parameter of an intrinsic data type. KIND= and LEN= are the type
parameters.

type parameter values: The values of the type parameters of a data entity of an intrinsic
data type.

ultimate component: For a derived-type or a structure, a component that is of intrinsic type
or has the POINTER attribute, or an ultimate component of a component that is a derived
type and does not have the POINTER attribute.

undefined: For a data object, the property of not having a determinate value.

use association: The association of names in different scoping units specified by a USE
statement.

variable: A data object whose value can be defined and redefined during the execution of
an executable program. It may be a named data object, an array element, an array section, a
structure component, or a substring.

vector subscript: A section subscript that is an INTEGER expression of rank one.

whole array: A named array.
Lahey/Fujitsu Fortran 95 Language Reference 283

Appendix E Glossary
284 Lahey/Fujitsu Fortran 95 Language Reference

F ASCII Character Set
FORTRAN programs may use the full ASCII Character Set as listed below. The characters
are listed in collating sequence from first to last. Characters preceded by up arrows (^) are
ASCII Control Characters.

DOS uses <control-Z> (^Z) for the end-of-file delimiter and <control-M> (^M) for car-
riage return. To enter these two characters in a CHARACTER constant, use concatenation
and the CHAR function.
Lahey/Fujitsu Fortran 95 Language Reference 285

Appendix F ASCII Character Set
Attempting to input or output ^Z (end-of-file), ^M (new line), or ^C (break) in a sequential
file is not recommended and may produce undesirable results.

Table 21: ASCII Chart

Character HEX
Value

Decimal
Value

ASCII
Abbr. Description

^@ 00 0 NUL null<R>

^A 01 1 SOH start of heading

^B 02 2 STX start of text

^C 03 3 ETX break, end of text

^D 04 4 EOT end of transmission

^E 05 5 ENQ enquiry

^F 06 6 ACK acknowledge

^G 07 7 BEL bell

^H 08 8 BS backspace

^I 09 9 HT horizontal tab

^J 0A 10 LF line feed

^K 0B 11 VT vertical tab

^L 0C 12 FF form feed

^M 0D 13 CR carriage return

^N 0E 14 SO shift out

^O 0F 15 SI shift in

^P 10 16 DLE data link escape

^Q 11 17 DC1 device control 1

^R 12 18 DC2 device control 2

^S 13 19 DC3 device control 3

^T 14 20 DC4 device control 4

^U 15 21 NAK negative acknowledge
286 Lahey/Fujitsu Fortran 95 Language Reference

^V 16 22 SYN synchronous idle

^W 17 23 ETB end of transmission block

^X 18 24 CAN cancel

^Y 19 25 EM end of medium

^Z 1A 26 SUB end-of-file

^[1B 27 ESC escape

^\ 1C 28 FS file separator

^] 1D 29 GS group separator

^^ 1E 30 RS record separator

^ 1F 31 US unit separator

20 32 SP space, blank

! 21 33 ! exclamation point

“ 22 34 “ quotation mark

23 35 # number sign

$ 24 36 $ dollar sign

% 25 37 % percent sign

& 26 38 & ampersand

‘ 27 39 ‘ apostrophe

(28 40 (left parenthesis

) 29 41) right parenthesis

* 2A 42 * asterisk

+ 2B 43 + plus

, 2C 44 , comma

- 2D 45 - hyphen, minus

Table 21: ASCII Chart

Character HEX
Value

Decimal
Value

ASCII
Abbr. Description
Lahey/Fujitsu Fortran 95 Language Reference 287

Appendix F ASCII Character Set
. 2E 46 . period, decimal point

/ 2F 47 / slash, slant

0 30 48 0 zero

1 31 49 1 one

2 32 50 2 two

3 33 51 3 three

4 34 52 4 four

5 35 53 5 five

6 36 54 6 six

7 37 55 7 seven

8 38 56 8 eight

9 39 57 9 nine

: 3A 58 : colon

; 3B 59 ; semicolon

< 3C 60 < less than

= 3D 61 = equals

> 3E 62 > greater than

? 3F 63 ? question mark

@ 40 64 @ commercial at sign

A 41 65 A uppercase A

B 42 66 B uppercase B

C 43 67 C uppercase C

D 44 68 D uppercase D

E 45 69 E uppercase E

Table 21: ASCII Chart

Character HEX
Value

Decimal
Value

ASCII
Abbr. Description
288 Lahey/Fujitsu Fortran 95 Language Reference

F 46 70 F uppercase F

G 47 71 G uppercase G

H 48 72 H uppercase H

I 49 73 I uppercase I

J 4A 74 J uppercase J

K 4B 75 K uppercase K

L 4C 76 L uppercase L

M 4D 77 M uppercase M

N 4E 78 N uppercase N

O 4F 79 O uppercase O

P 50 80 P uppercase P

Q 51 81 Q uppercase Q

R 52 82 R uppercase R

S 53 83 S uppercase S

T 54 84 T uppercase T

U 55 85 U uppercase U

V 56 86 V uppercase V

W 57 87 W uppercase W

X 58 88 X uppercase X

Y 59 89 Y uppercase Y

Z 5A 90 Z uppercase Z

[5B 91 [left bracket

\ 5C 92 \ backslash

] 5D 93] right bracket

Table 21: ASCII Chart

Character HEX
Value

Decimal
Value

ASCII
Abbr. Description
Lahey/Fujitsu Fortran 95 Language Reference 289

Appendix F ASCII Character Set
^ 5E 94 ^ up-arrow, circumflex, caret

_ 5F 95 UND back-arrow, underscore

‘ 60 96 GRA grave accent

a 61 97 LCA lowercase a

b 62 98 LCB lowercase b

c 63 99 LCC lowercase c

d 64 100 LCD lowercase d

e 65 101 LCE lowercase e

f 66 102 LCF lowercase f

g 67 103 LCG lowercase g

h 68 104 LCH lowercase h

i 69 105 LCI lowercase i

j 6A 106 LCJ lowercase j

k 6B 107 LCK lowercase k

l 6C 108 LCL lowercase l

m 6D 109 LCM lowercase m

n 6E 110 LCN lowercase n

o 6F 111 LCO lowercase o

p 70 112 LCP lowercase p

q 71 113 LCQ lowercase q

r 72 114 LCR lowercase r

s 73 115 LCS lowercase s

t 74 116 LCT lowercase t

Table 21: ASCII Chart

Character HEX
Value

Decimal
Value

ASCII
Abbr. Description
290 Lahey/Fujitsu Fortran 95 Language Reference

u 75 117 LCU lowercase u

v 76 118 LCV lowercase v

w 77 119 LCW lowercase w

x 78 120 LCX lowercase x

y 79 121 LCY lowercase y

z 7A 122 LCZ lowercase z

{ 7B 123 LBR left brace

| 7C 124 VLN vertical line

} 7D 125 RBR right brace

~ 7E 126 TIL tilde

7F 127 DEL,RO delete, rubout

Table 21: ASCII Chart

Character HEX
Value

Decimal
Value

ASCII
Abbr. Description
Lahey/Fujitsu Fortran 95 Language Reference 291

Appendix F ASCII Character Set
292 Lahey/Fujitsu Fortran 95 Language Reference

Index

Symbols
%VAL function 232

A
A edit descriptor 27
ABS function 59, 250
ACCESS= specifier 145, 182
ACHAR function 59, 258
ACOS function 60, 255
ACOSD function 266
action statement 275
ACTION= specifier 145, 182
actual argument 275
adjustable array 15
ADJUSTL function 60, 258
ADJUSTR function 61, 258
ADVANCE= specifier 199, 237
AIMAG function 61, 250
AIMAX0 function 252
AIMIN0 function 252
AINT function 62, 250
AJMAX0 function 252
AJMIN0 function 252
ALGAMA function 266
ALL function 62, 260
allocatable array 13, 275
ALLOCATABLE attribute 9
ALLOCATABLE statement 35,

63–64
ALLOCATE statement 18, 37, 64–

65
ALLOCATED function 66, 260,

262
ALOG function 256
ALOG10 function 256
alternate return 49
AMAX0 function 252
AMAX1 function 252
AMIN0 function 252
AMIN1 function 252
AMOD function 253
ANINT function 66, 250
ANY function 67, 260
apostrophe edit descriptor 30
apostrophes 30
argument 275
argument association 275
argument keyword 275
arguments

alternate return 49
intent 47
keyword 47
optional 48
procedure 47–49

arithmetic IF statement 33, 68
arithmetic operators 20
array 275
array constructor 15
array element 11, 275
array element order 11
array pointer 13, 275
array reference 10
array section 11, 12, 275
arrays 10–15

adjustable 15
allocatable 13
assumed shape 14
assumed size 14
automatic 15
constructor 15
dynamic 12
element 11
element order 11
pointer 13
reference 10
section 11, 12
subscript triplet 11
vector subscript 12

array-valued 275
ASIN function 69, 255
ASIND function 266
ASSIGN statement 38, 70
assigned GOTO statement 33, 69
assignment and storage statements 37–

38
assignment statement 38, 70–71, 275
assignments

defined 53
ASSOCIATED function 72, 262
Lahey/Fujitsu Fo
association 275
assumed-shape array 14
assumed-size array 275
assumed-sized array 14
asterisk comment character 3
ATAN function 72, 255
ATAN2 function 73, 255
ATAN2D function 266
ATAND function 266
attribute 8–9, 275
automatic array 15
automatic data object 276
AUTOMATIC statement 271

B
B edit descriptor 25
BACKSPACE statement 22, 37, 73–

74
belong 276
binary files 23
BIT_SIZE function 74, 262
BITEST function 264
BJTEST function 264
BLANK= specifier 145, 182
blanks 3
block 276
block data 54
block data program unit 276
BLOCK DATA statement 38, 54, 75
BLOCKSIZE= specifier 145, 182
BN edit descriptor 29
bounds 276
BTEST function 75, 264
BYTE statement 272
BZ edit descriptor 29

C
C comment character 3
CABS function 250
CALL statement 33, 76
CARG function 78, 268
carriage control 24
CARRIAGECONTROL=

specifier 145, 182
CASE construct 79
rtran 95 Language Reference 293

Index
CASE DEFAULT 80
CASE statement 33, 80, 81–82
CCOS function 255
CDABS function 250
CDCOS function 255
CDEXP function 255
CDLOG function 256
CDSIN function 256
CDSQRT function 256
CEILING function 82, 250
CEXP function 255
CHAR function 83, 258
character 276
CHARACTER constant edit

descriptors 30
CHARACTER data type 4, 7
CHARACTER edit descriptor 27,

30
CHARACTER literal 7
character set 1
CHARACTER statement 35, 84–

86
character string 276
CLOG function 256
CLOSE statement 37, 86–87
CMPLX function 87, 250
collating sequence 276
colon edit descriptor 29
column 3
comments 3

asterisk 3
trailing 3

common block 35, 58, 88, 276
COMMON statement 35, 88–90
COMPLEX data type 4, 7
COMPLEX literal 7
COMPLEX statement 35, 90–91
component 276
computed GOTO statement 33,

92
concatenation operator 20
conformable 276
conformance 276
CONJG function 92, 250
connected 276
constant 6
constant expression 276
construct 276
construct name 40
constructors
294 Lahey/Fujitsu Fortran 95 Lan
array 15
structure 17

constructs
executable 40

CONTAINS statement 38, 46, 93–94
continuation character 4
continuation line 3, 4, 271
CONTINUE statement 33, 94
control edit descriptors 28
control statements 33–34
COS function 94, 255
COSD function 266
COSH function 95, 255
COTAN function 266
COUNT function 95, 260
CPU_TIME subroutine 96, 265
CQABS function 250
CQCOS function 255
CQSQRT function 256
CSHIFT function 97, 260
CSIN function 256
CSQRT function 256
CYCLE statement 33, 98

D
D edit descriptor 25
DABS function 250
DACOS function 255
DACOSD function 266
DASIN function 255
DASIND function 266
data 4–19, 276

literal 6
named 8

data edit descriptors 25
data entity 277
data object 277
DATA statement 35, 98–100
data type 277
data types

CHARACTER 4, 7
COMPLEX 4, 7
DOUBLE PRECISION 4
INTEGER 4
LOGICAL 4, 7
REAL 4, 6

data types INTEGER 6
DATAN function 255
DATAN2 function 255
DATAN2D function 266

DATAND function 266
DATE_AND_TIME subroutine 100,

265
datum 277
DBLE function 102, 250
DBLEQ function 250
DCMPLX function 250
DCONJG function 250
DCOS function 255
DCOSD function 266
DCOSH function 255
DCOTAN function 266
DDIM function 251
DEALLOCATE statement 38, 102–

103
deferred-shape specifier 13
definable 277
defined 277
defined assignment 53
defined assignment statement 277
defined operation 277
defined operations 51
DELIM= specifier 145, 182
DERF function 266
DERFC function 266
derived type component reference 17
derived types 16–18, 55, 277

component reference 17
declaration 17
definition 16
structure constructor 17

derived-type definition 16
DEXP function 255
DFLOAT function 250
DFLOTI function 253
DFLOTJ function 253
DGAMMA function 267
DIGITS 103
DIGITS function 103, 262
DIM function 103, 251
DIMAG function 250
DIMENSION attribute 8
DIMENSION statement 10, 35, 104–

105
DINT function 250
DIRECT= specifier 145
disassociated 277
DLGAMA function 266
DLL_EXPORT statement 35, 105
DLL_IMPORT statement 35, 106
guage Reference

Index
DLOG function 256
DLOG10 function 256
DMAX1 function 252
DMIN1 function 252
DMOD function 253
DNINT function 250
DO statement 33, 107–108
DO UNTIL statement 271
DOT_PRODUCT function 108,

260
DOUBLE PRECISION data type 4
DOUBLE PRECISION

statement 35, 109–110
DPROD function 111, 251
DREAL function 250
DSIGN function 254
DSIN function 256
DSIND function 267
DSINH function 256
DSQRT function 256
DTAN function 256
DTAND function 267
DTANH function 257
dummy argument 277
dummy array 277
dummy pointer 277
dummy procedure 49, 277
DVCHK subroutine 111, 268
dynamic arrays 12

E
E edit descriptor 25
edit descriptors 24–30

A 27
apostrophe 30
B 25
BN 29
BZ 29
CHARACTER 27, 30
CHARACTER constant 30
colon 29
control 28
D 25
data 25
E 25
EN 26
ES 27
F 25
G 28
generalized 28
H 30
I 25
INTEGER 25
L 27
LOGICAL 27
numeric 25
O 25
P 29
position 28
Q 25
quotation mark 30
REAL 25
S 29
slash 29
SP 29
SS 29
T 28
TL 28
TR 28
X 28
Z 25

elemental 277
elemental procedure 42
elemental procedures 47
ELSE IF statement 33, 112
ELSE statement 33, 112, 139
ELSEWHERE statement 33, 113, 235
EN edit descriptor 26
END DO statement 33, 114
END IF statement 34, 116, 139
END MAP statement 271
END SELECT statement 34, 80, 116
END statement 38, 113–114
END STRUCTURE statement 271
END TYPE statement 16
END UNION statement 271
END WHERE statement 34, 117, 235
END= specifier 199, 237
ENDFILE statement 22, 37, 115
entity 278
ENTRY statement 34, 117–118
EOR= specifier 199, 237
EOSHIFT function 119, 260
EPSILON function 120, 262
EQUIVALENCE statement 35, 121–

122
ERF function 266
ERFC function 266
ERR= specifier 74, 86, 115, 145, 182,

199, 206, 237
Lahey/Fujitsu Fo
ERROR subroutine 122, 268
ES edit descriptor 27
executable construct 278
executable constructs 40
executable program 278
executable statement 278
EXIST= specifier 145
EXIT statement 34, 123
EXIT subroutine 123, 268
EXP function 123, 255
explicit interface 55, 278
explicit interfaces 50
explicit-shape array 278
EXPONENT function 124, 251
expression 278
expressions 19–52
extent 278
EXTERNAL attribute 8
external file 278
external function 45
external procedure 41, 278
EXTERNAL statement 35, 124
external subprogram 278
external unit 278

F
F edit descriptor 25
file 278
file position 22
file types 22–23
FILE= specifier 145, 182
files 22–24

carriage control 24
formatted direct 22
formatted sequential 22
internal 23
position 22
unformatted direct 23
unformatted sequential 23

FIND statement 271
fixed source form 2
FLEN= specifier 145
FLOAT Function 253
FLOATI function 253
FLOATJ function 253
FLOOR function 125, 251
FLUSH subroutine 126, 268
FMT= specifier 199, 237
FORALL construct 126
FORALL statement 127
rtran 95 Language Reference 295

Index
FORM= specifier 145, 182
format control 25
format specification 24
FORMAT statement 24, 37, 128–

130
formatted direct file 22
formatted input/output 24–30
formatted sequential file 22
FORMATTED= specifier 145
FRACTION function 131, 251
free source form 3
function 278
function reference 44
function result 278
FUNCTION statement 38, 45,

131–133
function subprogram 278
functions 43

external 45
reference 44
statement 45

G
G edit descriptor 28
GAMMA function 267
Gamma function 154
generalized edit descriptor 28
generic identifier 278
generic interfaces 51
generic procedure 42
GETCL subroutine 133, 268
GETENV function 133
global data 55
global entity 278
GOTO

computed 33, 92
GOTO statement 34, 123, 134,

156

H
H edit descriptor 30
HFIX function 251
Hollerith constant 30, 272
host 279
host association 57, 279
HUGE function 134, 262

I
I edit descriptor 25
296 Lahey/Fujitsu Fortran 95 Lan
I2ABS function 250
I2DIM function 251
I2MAX0 function 252
I2MIN0 function 252
I2MOD function 253
I2NINT function 253
I2SIGN function 254
IABS function 250
IACHAR function 135, 258
IAND function 135, 264
IBCLR function 136, 264
IBITS function 136, 264
IBSET function 137, 264
ICHAR function 137, 258
IDIM function 251
IDINT function 251
IDNINT function 253
IEOR function 138, 264
IF construct 138
IF statement 34, 140
IFIX function 251
IF-THEN statement 34, 139, 140
IIABS function 250
IIAND function 264
IIBCLR function 264
IIBITS function 264
IIBSET function 264
IIDIM function 251
IIDINT function 251
IIDNNT function 253
IIEOR function 264
IIFIX function 251
IINT function 251
IIOR function 264
IISHFT function 264
IISHFTC function 264
IISIGN function 254
IMAX0 function 252
IMAX1 function 252
IMIN0 function 252
IMIN1 function 252
IMOD function 253
implicit interface 279
IMPLICIT statement 8, 35, 141
implicit typing 8
IMPLICIT UNDEFINED

statement 272
implied-do 99, 191, 199, 237
INCLUDE line 143
INDEX function 143, 258

ININT function 253
initialization expression 20, 279
INOT function 265
input/output 21–32

edit descriptors 24–30
editing 24–32
formatted 24–30
list-directed 30
namelist 32
non-advancing 22
statements 37

input/output units 21
preconnected 21

INQUIRE statement 37, 144–148
inquiry function 279
instance of a subprogram 279
INT function 148, 251
INT2 function 251
INT4 function 251
INTEGER data type 4, 6
INTEGER division 21
INTEGER edit descriptors 25
INTEGER literal 6
INTEGER statement 35, 149–151
intent 279
INTENT attribute 9, 47
INTENT statement 35, 151
interface block 50, 279
interface body 279
INTERFACE statement 38, 50, 152
interfaces 49–53

explicit 50, 55
generic 51

internal file 23, 279
internal procedure 41, 46, 279
internal subprogram 279
intrinsic 279
INTRINSIC attribute 9
intrinsic data types 4
intrinsic operations 20
INTRINSIC statement 36, 154
INVALOP subroutine 155, 268
invoke 279
IOR function 155, 185, 230, 264
IOSTAT= specifier 74, 86, 115, 145,

182, 199, 206, 237
IOSTAT_MSG subroutine 156, 268
IQINT function 251
IQNINT function 253
ISHFT function 156, 264
guage Reference

Index
ISHFTC function 157, 264
ISIGN function 254
IZEXT function 267
IZEXT2 function 267

J
JIABS function 250
JIAND function 264
JIBCLR function 264
JIBITS function 264
JIBSET function 264
JIDIM function 251
JIDINT function 251
JIDNNT function 253
JIEOR function 264
JIFIX function 251
JINT function 251
JIOR function 264
JISHFT function 264
JISHFTC function 264
JISIGN function 254
JMAX0 function 252
JMAX1 function 252
JMIN0 function 252
JMIN1 function 252
JMOD function 253
JNINT function 253
JNOT function 265
JZEXT function 267
JZEXT2 function 267
JZEXT4 function 267

K
keyword 279
keyword argument 47
kind 4
KIND function 157, 262
kind type parameter 4, 279

L
L edit descriptor 27
label 279
LBOUND function 158, 260, 262
LEN function 159, 258, 262
LEN_TRIM function 159
length 6
length of a character string 280
length type parameter 6
LENTRIM function 258
lexical token 280
LGE function 160, 258
LGT function 160, 258
line 280
list-directed formatting 30
list-directed input/output 30
literal constant 6, 280
literal data 6
literals

CHARACTER 7
COMPLEX 7
INTEGER 6
LOGICAL 7
REAL 6

LLE function 161, 258
LLT function 161, 258
LOC function 273
local entity 280
LOG function 162, 256
LOG10 function 162, 256
LOGICAL data type 4, 7
LOGICAL edit descriptor 27
LOGICAL function 163, 265
LOGICAL literal 7
logical operators 20
LOGICAL statement 36, 163–165

M
main program 54, 280
MAP statement 271
masked array assignment 234
MATMUL function 165, 260
MAX function 166, 252
MAX0 function 252
MAX1 function 252
MAXEXPONENT function 167, 262
MAXLOC function 167, 260
MAXVAL function 168, 260
MERGE function 169, 260
MIN function 170, 252
MIN0 function 252
MIN1 function 252
MINEXPONENT function 170, 262
MINLOC function 171, 261
MINVAL function 172, 261
MOD function 172, 253
module 280
module procedure 56, 280
MODULE PROCEDURE

statement 36, 174
Lahey/Fujitsu Fo
MODULE statement 38, 55, 173–
174

module subprogram 280
modules 55

name conflicts 56
use 56

MODULO function 175, 253
MVBITS subroutine 176, 264, 265

N
name 280
name association 280
NAME= specifier 145
named constant 280
named data 8
NAMED= specifier 145
namelist formatting 32
namelist input/output 32
NAMELIST statement 32, 36, 176–

177
names 1
NDPERR function 177
NDPERR subroutine 268
NDPEXC subroutine 178, 269
NEAREST function 178, 253
NEXTREC= specifier 145
NINT function 179, 253
NML= specifier 32, 199, 237
non-advancing input/output 22
NOT function 179, 265
NULL function 180, 265
NULLIFY statement 38, 180
NUMBER= specifier 145
numeric edit descriptors 25
numeric type 280

O
O edit descriptor 25
obsolescent feature 280
obsolescent features 242
OFFSET function 181, 269
OPEN statement 21, 37, 181–184
OPENED= specifier 145
operand 280
operation 280
operations

defined 51
intrinsic 20

operator 280
operators 20
rtran 95 Language Reference 297

Index
arithmetic 20
concatenation 20
logical 20

optional argument 48
OPTIONAL attribute 9, 48
OPTIONAL statement 36, 48,

184
OVEFL subroutine 184, 269

P
P edit descriptor 29
PACK function 185, 230, 261
PAD= specifier 145, 182
PARAMETER attribute 8
PARAMETER statement 36, 186
PAUSE statement 34, 186
pointer 280
pointer assignment 280
pointer assignment statement 18,

38, 187, 280
pointer associated 280
pointer association 281
POINTER attribute 8, 18
POINTER function 188, 269
POINTER statement 18, 36, 188
pointers 18–19

association 18
declaration 18
pointer assignment

statement 18
position edit descriptors 28
POSITION= specifier 145, 182
PRECFILL subroutine 189, 269
PRECISION function 189, 262
pre-connected units 21
present 281
PRESENT function 48, 190, 262
PRINT statement 37, 190–192
PRIVATE attribute 9
PRIVATE statement 16, 36, 193
procedure 281
procedure arguments 47–49
procedure interface 281
procedures 41–53

arguments 47–49
dummy 49
elemental 42
external 41
function 43
generic 42
298 Lahey/Fujitsu Fortran 95 Lan
interface 49–53
internal 41, 46
module 56
specific 42
subroutine 42

processor 281
PRODUCT function 194, 261
program 281
PROGRAM statement 38, 54, 194
program structure statements 38–39
program unit 281
program units 53–57

block data 54
main program 54
module 55

PROMPT subroutine 195, 269
PUBLIC attribute 9
PUBLIC statement 36, 195
pure procedures 46

Q
Q edit descriptor 25
QABS function 250
QACOSD function 266
QASIND function 266
QATAN2D function 266
QATAND function 266
QCMPLX function 250
QCONJ function 250
QCOS function 255
QCOSD function 266
QCOSH function 255
QCOTAN function 266
QDIM function 251
QERF function 266
QERFC function 266
QEXP function 255
QGAMMA function 267
QIMAG function 250
QLGAMA function 266
QLOG function 256
QLOG10 function 256
QMAX1 function 252
QMIN1 function 252
QMOD function 253
QNINT function 250
QSIGN function 254
QSIN function 256
QSIND function 267
QSINH function 256

QSQRT function 256
QTAN function 256
QTAND function 267
QTANH function 257
quotation mark edit descriptor 30
quotation marks 30

R
RADIX function 196, 262
RANDOM_NUMBER

subroutine 197, 265
RANDOM_SEED subroutine 197,

265
RANGE function 198, 262
rank 281
READ statement 37, 198–200
READ= specifier 145
READWRITE= specifier 145
REAL data type 4, 6
REAL edit descriptors 25
REAL function 201, 253
REAL literal 6
REAL statement 36, 201–203
RECL= specifier 145, 182
record 281
RECORD statement 271
recursion 46
RECURSIVE attribute 46
reference 281
relational operators 20
REPEAT function 203, 258
RESHAPE function 15, 204, 261
RESULT option 46
RETURN statement 34, 205
REWIND statement 22, 37, 205
RRSPACING function 206, 253

S
S edit descriptor 29
SAVE attribute 9
SAVE statement 36, 207
scalar 281
scale factor 29
SCALE function 208, 254
SCAN function 208, 258
scope 57, 281
scoping unit 39, 55, 57, 281
section subscript 282
SEGMENT function 209, 269
SELECT CASE statement 34, 80,
guage Reference

Index
209–210
SELECTED_INT_KIND

function 4, 210, 262
SELECTED_REAL_KIND

function 5, 211, 262
selector 282
SEQUENCE statement 16, 36, 211
SEQUENTIAL= specifier 145
SET_EXPONENT function 212,

254
shape 282
SHAPE function 212, 261, 263
SIGN function 213, 254
significant blank 271
SIN function 213, 256
SIND function 267
SINH function 214, 256
size 282
SIZE function 214, 261, 263
SIZE= specifier 199, 237
slash edit descriptor 29
SNGL function 253
SNGLQ function 253
source form 2–4

fixed 2
free 3

SP edit descriptor 29
SPACING function 215, 254
special characters 1
specific procedure 42
specification expression 20, 282
specification statements 35–37
SPREAD function 215, 261
SQRT function 216, 256
SS edit descriptor 29
statement 282
statement entity 282
statement function 282
statement function statement 38,

45, 217
statement keyword 282
statement label 2, 282
statement order 39
statement separator 3, 4
statements 32

assignment and storage 37–38
control 33–34
input/output 37
order 39
program structure 38–39
specification 35–37
STATIC statement 271
STATUS= specifier 86, 182
STOP statement 34, 217
stride 282
structure 282
structure component 282
structure constructor 17
STRUCTURE statement 271
subobject 282
subobject designator 282
subprogram 282
subroutine 282
SUBROUTINE statement 39, 43, 218
subroutines 42
subscript 283
subscript triplet 11, 283
substring 9, 12, 283
SUM function 219, 261
SYSTEM function 220
SYSTEM subroutine 220, 269
SYSTEM_CLOCK subroutine 221,

265

T
T edit descriptor 28
TAN function 222, 256
TAND function 267
TANH function 222, 257
target 18, 283
TARGET attribute 8, 18
TARGET statement 18, 36, 223
TIMER subroutine 223
TINY function 263
TL edit descriptor 28
TR edit descriptor 28
trailing comment 3
TRANSFER function 224, 265
TRANSPOSE function 225, 261
TRIM function 226, 259
type declaration statement 8, 283
type parameter 283
type parameter values 283
TYPE statement 36, 226, 227

U
UBOUND function 229, 261, 263
ultimate component 283
undefined 283
UNDFL subroutine 230, 269
Lahey/Fujitsu Fo
unformatted direct file 23
unformatted sequential file 23
UNFORMATTED= specifier 145
UNION statement 271
UNIT= specifier 74, 86, 115, 145,

182, 199, 206, 237
units 21
UNPACK function 230, 261
use association 283
USE statement 37, 56, 231–232

V
VAL function 269, 273
VALUE statement 271
variable 283
vector subscript 12, 283
VERIFY Function 233
VERIFY function 259

W
WHERE construct 234–235
WHERE statement 34, 235, 236
WRITE statement 37, 237–239
WRITE= specifier 145

X
X edit descriptor 28

Y
YIELD subroutine 239

Z
Z edit descriptor 25
rtran 95 Language Reference 299

	Introduction
	Manual Organization
	Notational Conventions

	Elements of Fortran
	Character Set
	Names
	Statement Labels
	Source Form
	Fixed Source Form
	Free Source Form

	Data
	Intrinsic Data Types
	Kind
	Length
	Literal Data
	Named Data
	Substrings
	Arrays
	Dynamic Arrays
	Array Constructors
	Derived Types
	Structure Constructors
	Pointers

	Expressions
	Intrinsic Operations

	Input/Output
	Pre-Connected Input/Output Units
	Files

	Input/Output Editing
	Format Control
	Data Edit Descriptors
	Control Edit Descriptors
	Character String Edit Descriptors
	List-Directed Formatting
	Namelist Formatting

	Statements
	Control Statements
	Specification Statements
	Input/Output Statements
	Assignment and Storage Statements
	Program Structure Statements
	Statement Order

	Executable Constructs
	Construct Names

	Procedures
	Intrinsic Procedures
	Subroutines
	Functions
	Internal Procedures
	Recursion
	Pure Procedures
	Elemental Procedures
	Procedure Arguments
	Procedure Interfaces

	Program Units
	Main Program
	Block Data Program Units
	Module Program Units

	Scope
	Data Sharing

	Alphabetical Reference
	ABS Function
	ACHAR Function
	ACOS Function
	ADJUSTL Function
	ADJUSTR Function
	AIMAG Function
	AINT Function
	ALL Function
	ALLOCATABLE Statement
	ALLOCATE Statement
	ALLOCATED Function
	ANINT Function
	ANY Function
	Arithmetic IF Statement (obsolescent)
	ASIN Function
	Assigned GOTO Statement (obsolescent)
	ASSIGN Statement (obsolescent)
	Assignment Statement
	ASSOCIATED Function
	ATAN Function
	ATAN2 Function
	BACKSPACE Statement
	BIT_SIZE Function
	BLOCK DATA Statement
	BTEST Function
	CALL Statement
	CARG Function
	CASE Construct
	CASE Statement
	CEILING Function
	CHAR Function
	CHARACTER Statement
	CLOSE Statement
	CMPLX Function
	COMMON Statement
	COMPLEX Statement
	Computed GOTO Statement
	CONJG Function
	CONTAINS Statement
	CONTINUE Statement
	COS Function
	COSH Function
	COUNT Function
	CPU_TIME Subroutine
	CSHIFT Function
	CYCLE Statement
	DATA Statement
	DATE_AND_TIME Subroutine
	DBLE Function
	DEALLOCATE Statement
	DIGITS Function
	DIM Function
	DIMENSION Statement
	DLL_EXPORT Statement
	DLL_IMPORT Statement
	DO Construct
	DO Statement
	DOT_PRODUCT Function
	DOUBLE PRECISION Statement
	DPROD Function
	DVCHK Subroutine (Windows Only)
	ELSE IF Statement
	ELSE Statement
	ELSEWHERE Statement
	END Statement
	END DO Statement
	ENDFILE Statement
	END IF Statement
	END SELECT Statement
	END WHERE Statement
	ENTRY Statement
	EOSHIFT Function
	EPSILON Function
	EQUIVALENCE Statement
	ERROR Subroutine
	EXIT Statement
	EXIT Subroutine
	EXP Function
	EXPONENT Function
	EXTERNAL Statement
	FLOOR Function
	FLUSH Subroutine
	FORALL Construct
	FORALL Statement
	FORMAT Statement
	FRACTION Function
	FUNCTION Statement
	GETCL Subroutine
	GETENV Subroutine
	GOTO Statement
	HUGE Function
	IACHAR Function
	IAND Function
	IBCLR Function
	IBITS Function
	IBSET Function
	ICHAR Function
	IEOR Function
	IF Construct
	IF-THEN Statement
	IF Statement
	IMPLICIT Statement
	INCLUDE Line
	INDEX Function
	INQUIRE Statement
	INT Function
	INTEGER Statement
	INTENT Statement
	INTERFACE Statement
	INTRINSIC Statement
	INVALOP Subroutine
	IOR Function
	IOSTAT_MSG Subroutine
	ISHFT Function
	ISHFTC Function
	KIND Function
	LBOUND Function
	LEN Function
	LEN_TRIM Function
	LGE Function
	LGT Function
	LLE Function
	LLT Function
	LOG Function
	LOG10 Function
	LOGICAL Function
	LOGICAL Statement
	MATMUL Function
	MAX Function
	MAXEXPONENT Function
	MAXLOC Function
	MAXVAL Function
	MERGE Function
	MIN Function
	MINEXPONENT Function
	MINLOC Function
	MINVAL Function
	MOD Function
	MODULE Statement
	MODULE PROCEDURE Statement
	MODULO Function
	MVBITS Subroutine
	NAMELIST Statement
	NDPERR Function (Windows Only)
	NDPEXC Subroutine (Windows Only)
	NEAREST Function
	NINT Function
	NOT Function
	NULL Function
	NULLIFY Statement
	OFFSET Function
	OPEN Statement
	OPTIONAL Statement
	OVEFL Subroutine (Windows Only)
	PACK Function
	PARAMETER Statement
	PAUSE Statement (obsolescent)
	Pointer Assignment Statement
	POINTER Function
	POINTER Statement
	PRECFILL Subroutine
	PRECISION Function
	PRESENT Function
	PRINT Statement
	PRIVATE Statement
	PRODUCT Function
	PROGRAM Statement
	PROMPT Subroutine
	PUBLIC Statement
	RADIX Function
	RANDOM_NUMBER Subroutine
	RANDOM_SEED Subroutine
	RANGE Function
	READ Statement
	REAL Function
	REAL Statement
	REPEAT Function
	RESHAPE Function
	RETURN Statement
	REWIND Statement
	RRSPACING Function
	SAVE Statement
	SCALE Function
	SCAN Function
	SEGMENT Function
	SELECT CASE Statement
	SELECTED_INT_KIND Function
	SELECTED_REAL_KIND Function
	SEQUENCE Statement
	SET_EXPONENT Function
	SHAPE Function
	SIGN Function
	SIN Function
	SINH Function
	SIZE Function
	SPACING Function
	SPREAD Function
	SQRT Function
	Statement Function Statement
	STOP Statement
	SUBROUTINE Statement
	SUM Function
	SYSTEM Function (Linux only)
	SYSTEM Subroutine
	SYSTEM_CLOCK Subroutine
	TAN Function
	TANH Function
	TARGET Statement
	TIMER Subroutine
	TINY Function
	TRANSFER Function
	TRANSPOSE Function
	TRIM Function
	Type Declaration Statement
	TYPE Statement
	TYPE Statement
	UBOUND Function
	UNDFL Subroutine (Windows Only)
	UNPACK Function
	USE Statement
	%VAL Function
	VERIFY Function
	WHERE Construct
	WHERE Statement
	WRITE Statement

	Fortran 77 Compatibility
	Different Interpretation Under Fortran 95
	Different Interpretation Under Fortran 90
	Obsolescent Features

	New in Fortran 95
	Intrinsic Procedures
	Porting Extensions
	Glossary
	ASCII Character Set
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

