Lahey/Fujitsu Fortran 95
Language Reference

Revision F

Copyright

Copyright © 1994-2000 by Lahey Computer Systems, Inc. All rights reserved worldwide. This manual
is protected by federal copyright law. No part of this manual may be copied or distributed, transmitted,
transcribed, stored in aretrieval system, or translated into any human or computer language, in any form
or by any means, electronic, mechanical, magnetic, manual, or otherwise, or disclosed to third parties.

Trademarks

Names of Lahey products are trademarks of Lahey Computer Systems, Inc. Other brand and product
names are trademarks or registered trademarks of their respective holders.

Disclaimer

Lahey Computer Systems, Inc. and Fujitsu, Ltd. reservetheright to revise their software and publications
with no obligation to notify any person or any organization of such revision. In no event shall Lahey
Computer Systems, Inc. or Fujitsu, Ltd. be liable for any loss of profit or any other commercial damage,
including but not limited to special, consequential, or other damages.

Lahey Computer Systems, Inc.
865 Tahoe Boulevard
P.O. Box 6091
Incline Village, NV 89450-6091
(775) 831-2500
Fax: (775) 831-8123

http://www.lahey.com

Technical Support
(775) 831-2500 (PRO version only)
support@lahey.com (all versions)

Table of Contents

INtroduction.......ccoeeiiiiiiiie e Vii
Manual Organization............c.cceeeveeenereesennns vii
Notational Conventions...........ccccceeeveeeueennee. viii

Elements of Fortran..........cccoeeevvvveeennnnn. 1
Character Set.......covviveeeeeieeceeceeee e 1
NEMES ... 1
Statement Labels......cooveceeieeeceeceeceeee e 2
SOUrCE FOIM .. 2
Data.....ccuveeieeceiiee e 4
EXPreSSIONS....cvcevererienrie e 19
INPUL/OULPUL........cveieiiieie e 21
Input/Output EAiting.........cccceeeeeerinicnenienn. 24
StaAEMENES.......evee e 32
Executable Constructs..........cccceeeeeeeeeeiieennee 40
ProCeduresSccoevcvieceeeeecee e 41
Program UNItS.......ccocevevrennenee e 53
SCOPE ..ttt e 57

Alphabetical Reference...........cccccuvuvnee 59
ABSFUNCLION ... 59
ACHAR FUNCLION.....ccceiivieeecee e 59
ACOS FUNCLION ..ot 60
ADJUSTL Function.........cccceeeeeeeeieecie e, 60
ADJUSTR FUNCLIONooveiieeeeeee e 61
AIMAG FUNCLION ... 61
AINT FUNCLION ... 62
ALL FUNCLION ..ot 62
ALLOCATABLE Statement..........cccceeevennen. 63
ALLOCATE Statementcoccveereereerveerennn. 64
ALLOCATED Function........ccccceeveevvveenennen. 66
ANINT FUNCLION......cocoveeeveiieeeee e 66
ANY FUNCLION ..ot 67
Arithmetic IF Statement (obsolescent) 68
ASIN FUNCLION......cceieeeeceecee e, 69
Assigned GOTO Statement (obsolescent) 69
ASSIGN Statement (obsolescent) 70
Assignment Statementccoeeeveeereiereenns 70
ASSOCIATED Function.........ccccceveeveenueenen. 72
ATAN FUNCLION ...t 72

ATANZ FUNCLION ...t 73
BACKSPACE Statementccocevveeceeenneenns 73
BIT_SIZE FUNCLION......ccovriereeieeeieeeeee 74
BLOCK DATA Statementccceeveevveeeneenns 75
BTEST FUNCLIONccvveeeeeeciee et 75
CALL Statementccceevvviveeceeiieeecreeereeennenn 76
CARG FUNCLIONoeeeeeer e 78
CASE CONnStrUCE.......cccccveeeeeieiecieee e e 79
CASE Statement........coeeveeeeceeeeeeeeceee e 81
CEILING FUNCtioN.......ccoeiiiecreecee e 82
CHAR FUNCLON ... 83
CHARACTER Statement........ccccoeeeeeveeeveenen. 84
CLOSE Statementc.eeeeevveeeceeeeceeeeevee s 86
CMPLX FUNCLION......coeeriiiiecieecee e 87
COMMON Statementccceeeeereerereeerensnnen. 88
COMPLEX Statement.........coceeveeeeeeeeeeevennnen. 90
Computed GOTO Statementcccceeeveeennee. 92
CONJG FUNCLION......ccoeerieitieereecee et 92
CONTAINS Statement........ccceeeeeeeeeeeeeeeeennen. 93
CONTINUE Statementccoeeevveeeceeeeereenn. 94
COS FUNCLION.....veiitieeieeetie e 94
COSH FUNCLION.....eicecveiceeeee e 95
COUNT FUNCLION.....ccoeetirireecee e 95
CPU_TIME Subroutine..........ccoeouneeneenennens 96
CSHIFT FUNCLioN......ccoeeeieiveecee e, 97
CYCLE Statement........coeeeeveveeveeeiveeeeciree s 98
DATA Statement.........cccceeeeveeveeeceenreeseeenene 98
DATE_AND_TIME Subroutine.................. 100
DBLE FUNCLiON.......cccveeieeirieecieece e 102
DEALLOCATE Statementcccccovveeueennen. 102
DIGITS FUNCLiONceeeveeirieeeecree e, 103
DIM FUNCLION.....cooieiiieee et 103
DIMENSION Statementcccccovevveeveenen. 104
DLL_EXPORT Statementcccceevveerennene 105
DLL_IMPORT Statement..........ccccceveeevenene 106
DO CONSIUCEcoveeeeieeeeecteee e 106
DO StatemeNtcccveeeeveeeeeeee e 107
DOT_PRODUCT Function........cccccceeeevvenen. 108
DOUBLE PRECISION Statement............... 109
DPROD FUNCtion........ccceevveeeceeeevie e, 111

Lahey/Fujitsu Fortran 95 Language Reference i

Contents

iv

DVCHK Subroutine (Windows Only) 111
ELSE IF Statement.......cccoveveeveeveceenveereenne, 112
ELSE Statementcccoovevevreeiereceeerecreene, 112
ELSEWHERE Statementcccceveeveeneenee. 113
END Statement........cccceevveevceevieeveeneeeveee e 113
END DO Statementccceeeeveereeeeecveeneenne. 114
ENDFILE Statementccoceeeeeeveeeeeerreenes 115
END IF Statementc..ocovveeeeeeveeerieeeeeeeee e 116
END SELECT Statement........cccceceveeevevenee, 116
END WHERE Statement............coceeeeeeeuennne. 117
ENTRY Statement........cccveeveeeeeieveeieeeeeee e 117
EOSHIFT Functionccccceeeeeiveeeeecnene 119
EPSILON FUNCEONeecvveeeeecee e 120
EQUIVALENCE Statement..........cccuveueeee. 121
ERROR Subrouting..........ccoeeveeeveeceeeeneene 122
EXIT Statement.........ccoeeeeceeeeeeeeeceee e 123
EXIT SUBroUtingc.eeeevevieeeeee e 123
EXP FUNCLION ... 123
EXPONENT FUNCLION.......cceeveereecieecee e 124
EXTERNAL Statement.........ccceeevevveeeenennne. 124
FLOOR FUNCLIiON......cceiiriiecteecee et 125
FLUSH Subrouting........c.cccoceeeveeveeieeeereenes 126
FORALL ConStrucCtcccovveeeeeeiieeeeeieeens 126
FORALL Statementccceeeveevevreeveeneene 127
FORMAT Statementccoeveveevrerieeereeenes 128
FRACTION FUNCLioN.......cooeeeeereecree e 131
FUNCTION Statement..........ccoeevvevveereereenne. 131
GETCL SUBIOULiNE........ccveeeeeeeeeeceeceeeerenne 133
GETENYV Subroutingccceeeveevveecveennenns 133
GOTO Statement.......c.ccevveeeeeeireeireireesreereens 134
HUGE FUNCEON......cooeeiveiceeece et 134
IACHAR FUNCLIONccveeiveeeeee e, 135
IAND FUNCLiON......ccoeeceicreeeecee e, 135
IBCLR FUNCLIONccveecvecceceeee e 136
IBITSFUNCLION......ccouieee e, 136
IBSET FUNCLION......cceeieiireeeece e, 137
ICHAR FUNCLION ..o 137
IEOR FUNCGLION ..cvviveceiee e 138
IF CONSLIUCE ... 138
IF-THEN Statementccoeeeeevecvveeceeenne. 140
IF Statementccoccveeeecieecee e 140
IMPLICIT Statement.........cccoeeeveveecveieenens 141
INCLUDE LIN€...uuvceeeeee e 143
INDEX FUNCLIONccvveeveeciecieeiee e, 143

Lahey/Fujitsu Fortran 95 Language Reference

INQUIRE Statementccceeeveevreereeneeerenne, 144
INT FUNCLION......cieveeieere et 148
INTEGER Statementccccceeveeeveeveevenevnnne 149
INTENT Statementcccoceevevreerrenreeneeerennn, 151
INTERFACE Statement..........ccccceveveeereennene. 152
INTRINSIC Statement.........ccccoveeeereereeernnne. 154
INVALOP Subrouting..........coeeeeeveeveeneeennnne, 155
TOR FUNCLIONcvveeecieere ettt 155
IOSTAT_MSG Subrouting........ccccceveevennens 156
ISHFT FUNCLIONccveeeiiceiceeeeceeee et 156
ISHFTC FUNCLioN......ccceeveieerecreetecreeeere 157
KIND FUNCLIONoooveeeee et 157
LBOUND Function.......c.cccceeevveeirecreereeerene 158
LEN FUNCLION......ciiieceee et 159
LEN_TRIM Function...........ccccoeeevevveeveennenne. 159
LGE FUNCLION......eiiceceee ettt 160
LGT FUNCLION.....veiiceeeeee et 160
LLE FUNCLION.....c.ccooieeee et 161
I I I Tt o T 161
LOG FUNCHIONveiiteeeeee ettt 162
LOGI10 FUNCLION.....ceeeeecviecieeeree st 162
LOGICAL FUNCLiON.......ccveeeveeceee e 163
LOGICAL Statement........coeeeeveeeiveeeeeeireens 163
MATMUL FUNCtioN........c.ccoeueeveeiiieeceeriens 165
MAX FUNCHONecoieeee et 166
MAXEXPONENT Function.........c..ceeeeevene. 167
MAXLOC Function........c.ccccueevueeiveeeceennnenns 167
MAXVAL FUNCLION.......ccveeeeeree e 168
MERGE FUNCioncccccvveieeeieeiieeeceerees 169
MIN FUNCLION......ccoiieeee et 170
MINEXPONENT Functioncccceeeeeveenee 170
MINLOC FUNCEION.....c.cccvieirieeree e 171
MINVAL FUNCtioncoceeveeeiveeiiieeceecreens 172
MOD FUNCHON......cooiieeecteeceee e sree e 172
MODULE Statementccccoveveevrevveeveeernnne, 173
MODULE PROCEDURE Statement........... 174
MODULO FUNCLION.......ccveeveeeceeesiee e 175
MVBITS Subrouting...........ccccoeeeveeveeneeernene, 176
NAMELIST Statementccceeevevveeveinnnns 176
NDPERR Function (Windows Only)........... 177
NDPEXC Subroutine (Windows Only)........ 178
NEAREST FUNCLIONccoveveireciecreceeree 178
NINT FUNCLION.....ooiiicee e 179
NOT FUNCLIONeeoieecee et 179

Contents

NULL FUNCLION ..ottt 180 SIN FUNCEON ..cccvveccveece e 213
NULLIFY SIEEMNt ..oovvvvvvrrrrrisississssnns 180 SINH FUNCHON «.eeeeeeeeeeeeeeeeeeeeeee e 214
OFFSET Function..........cccoecvevvenviecienceeene, 181]
OPEN Statement ... 181 SIZE FUNCLON ..ot 214
OPTIONAL Statementccceeeeeveevveeceeenne. 184 SPACING FUNCHION ..o 215
OVEFL Subroutine (Windows Only).......... 184 SPREAD FUNCHON w.vvvvoeoeooeeeeoeeeeen 215
PACK FUNCHION ..o 185)
PARAMETER Statementmee oo 186 SOQRT FUNCLION ...ocvvivieeic e 216
PAUSE Statement (obsolescent) 186 Statement Function Statement...................... 217
Pointer ASSgNMeNt SAEMeNt...........o.... 187 STOP StAEMENt oo 217
POINTER FUNCLIONoeevviiiiiieee e 188
POINTER Stalementooeereveereererree 188 SUBROUTINE Statementccoooeuueeees 218
PRECFILL Subroutine...........cccooovuvvennnee. 189 SUM FUNCHION ..o 219
PRECISION FUNCtioncocoveveeeieeeeeee e 189 . .
PRESENT FUNCHON.or oo 190 SYSTEM Function (Linux only) 220
PRINT Statement...........ccoovvvvererreeeerreereene 190 SYSTEM SUDFOUtIN ...oovvvvvveiins 220
PRIVATE Statementccccooevveiviinncinnn, 193 SYSTEM_CLOCK Subroutine.................... 221
PRODUCT FUNCLIONcoovveieeciee e 194 .
PROGRAM Statement ... 194 TAN Func’noh .. 222
PROMPT SUBIOULING. oo 195 TANH FUNCHioNcccoviiiiieeeeeee e 222
PUBLIC Statement........ccccooevvvveeeeeiviineneeene 195 TARGET Statementooeeeeeeeeeoeeeeeee 223
RADIX FUNCHION ... 196 .
RANDOM_NUMBER Subrotire............. 197 TIMER Sub-routl (TP 223
RANDOM _SEED Subroutine............c........ 197 TINY FUNCLION......coceiiie e 224
RANGE FUNCEION ... 198 TRANSFER FUNCHON oo 224
READ Statementccceceeveevevvieee e 198 .
REAL FUNCHON. oo 201 TRANSPOSE FUNCHON....cos oo 225
REAL StateMeNteeeeeeeee oo 201 TRIM FUNCLION.....oeiiiieeeeie e 226
REPEAT FunCtIOI’] 203 Type Decl aranon Statement _________________________ 226
RESHAPE FUNCLIONccvveeeeee e 204
RETURN Statement ... 205 TYPE Statement.......oooovveeeeeiiecreee e, 226
REWIND Statementcccooeevevveeeeeieieeeeeeennnn, 205 TYPE Statement.......oooovveeiee e, 227
SARSPAsCtING FUNCLON. .o ;86 UBOUND FUNCHON ..o 229
VE Statement.........cooovvveeevvverieeeeeeeeeen, 7 . .
SCALE Eunction 208 UNDFL Subroutine (Windows Only).......... 230
SCAN FUNCLION ..., 208 UNPACK FUNCLiONeeevieveeceecce e 230
SEGMENT FUNCHON ... 209 USE SEEMENE crrvvveeeeeeeeeeeeeeeeeeeeeeesresessee 231
SELECT CASE Statementcccocoveeeeeennen. 209 0 .
%L ECTED_I NT_KI ND Functl On 210 /OVAL Functl On --- 232
SELECTED_REAL_KIND Function.......... 211 VERIFY FUNCLION ..o 233
SEQUENCE Stalementcoooouussessrenen 211 WHERE CONSITUCE - eeeeveeeeeeeeseeeeeeeeeeees 234
SET_EXPONENT Function.........cc.ccceevnee. 212
SHAPE FUNCHON ..o 212 WHERE Statement.................oooooovvvvvvvvvvennen 236
SIGN FUNCLION.......coveeeceicieeceeeeee e, 213 WRITE Statementccceeveeeeeeeeeeseeeeeee e, 237

Lahey/Fujitsu Fortran 95 Language Reference \Y

Contents

Fortran 77 Compatibility 241

Different Interpretation Under Fortran 95... 241
Different Interpretation Under Fortran 90... 241

Obsolescent Features..........ccoovveveneeeencnnne 242
New in Fortran 95 243
Intrinsic Procedures........................... 249
Porting Extensions.........cccccceeeeniniinns 271
GlOSSAIY .eevviiiiiiiiieieee e 275
ASCIl Character Setccccceeeeiecinnnnns 285

Vi Lahey/Fujitsu Fortran 95 Language Reference

Introduction

Lahey/Fujitsu Fortran 95 (LF95) is a complete implementation of the Fortran 95 standard.
Numerous popular extensions are supported.

Thismanual isintended as areferenceto the Fortran 95 language for programmerswith expe-
riencein Fortran. For information on creating programs using the LF95 Language System,
see the Lahey/Fujitsu Fortran 95 User’s Guide.

Manual Organization

The manual is organized in six parts:

Chapter 1, Elements of Fortran, takes an elemental, building-block approach, start-
ing from Fortran’s smallest elements, its character set, and proceeding through
source form, data, expressions, input/output, statements, executable constructs, and
procedures, and ending with program units.

Chapter 2, Alphabetical Reference, gives detailed syntax and constraints for Fortran
statements, constructs, and intrinsic procedures.

Appendix A, Fortran 77 Compatibility, discussesissues of concern to programmers
who are compiling their Fortran 77 code with LF95.

Appendix B, New in Fortran 95, lists Fortran 95 features that were not part of stan-
dard Fortran 77.

Appendix C, Intrinsic Procedures, is atable containing brief descriptions and spe-
cific names of procedures included with LF95.

Appendix D, Porting Extensions, lists the various non-standard features provided to
facilitate porting from other systems.

Appendix E, Glossary, defines various technical terms used in this manual.

Appendix F, ASCII Chart, details the 128 characters of the ASCII set.

Lahey/Fujitsu Fortran 95 Language Reference

Vii

Introduction

Notational Conventions

The following conventions are used throughout the manual:
bluetext indicates an extension to the Fortran 95 standard.
code isindicated by courier font.

In syntax descriptions, [brackets] enclose optional items. An ellipsis, “...”, following an
item indicates that more items of the same form may appear. Italicsindicate text to be
replaced by you. Non-italic lettersin syntax descriptions are to be entered exactly as they

viii Lahey/Fujitsu Fortran 95 Language Reference

Elements of Fortran

Character Set

The Fortran character set consists of
o letters:

ABCDEFGHI JKLMNOPQRSTUVWXYZ
abcdefghij k|l mnopqgqrstuvwxyz

« digits:
0123456789
» gpecid characters:
<blank> =+-*/ (), . " 11" %&; <>2%

» and the underscore character * _
Special characters are used as operators, as separators or delimiters, or for grouping.
‘?” and ‘$’ have no special meaning.

Lower case letters are equivalent to corresponding upper-case letters except in CHARAC-
TER literals.

The underscore character can be used as a non-leading significant character in a name.

Names

Names are used in Fortran to refer to various entities such as variables and program units. A
name starts with aletter or a‘$’, can be up to 240 charactersin length and consists entirely
of letters, digits, underscores, and the ‘$’ character.

Lahey/Fujitsu Fortran 95 Language Reference 1

Chapter 1 Elements of Fortran

Examples of legal Fortran names are:

aAaAa appl es_and_or anges r2d2
rose ROSE Rose

The three representations for the names on the line immediately above are equivalent.
The following names areillegal :

_start_w th_underscore

2start_with_a_ digit

name_t 000000000000000000000000000000000_| ong
illegal _@character

Statement Labels

Fortran statements can have labels consisting of one to five digits, at least one of which is
non-zero. Leading zerosare not significant in distinguishing statement labels. Thefollowing
labels are valid:

123
5000
10000
1
0001

The last two labels are equivalent. The same statement label must not be given to more than
one statement in a scoping unit.

Source Form

Fortran offers two source forms: fixed and free.

Fixed Source Form

Fixed source form is the traditional Fortran source form and is based on the columns of a
punched card. There are restrictions on where statements and |abels can appear on aline.
Except in CHARACTER literals, blanks are ignored.

2 Lahey/Fujitsu Fortran 95 Language Reference

Free Source Form

Except within a comment:
e Columns 1 through 5 are reserved for statement labels. Labels can contain blanks.

e Column 6 isused only to indicate a continuation line. 1f column 6 contains a blank
or zero, column 7 begins anew statement. If column 6 contains any other character,
columns 7 through 72 are a continuation of the previous non-comment line. There
can be up to 19 continuation lines. Continuation lines must not be labeled.

e Columns 7 through 72 are used for Fortran statements.
» Columns after 72 are ignored.

Fixed source form comments are formed by beginningalinewitha‘C ora‘*’ in column 1.
Additionally, trailing comments can beformed by placinga‘! * in any column except column
6. A1’ inaCHARACTER litera does not indicate atrailing comment. Comment lines
must not be continued, but a continuation line can contain atrailing comment. An END state-
ment must not be continued.

The*; ' character can be used to separate statements on aline. If it appearsina CHARAC-
TER literal or in acomment, the‘; ' character is not interpreted as a statement separator.

Free Source Form

In free source form, there are no restrictions on where a statement can appear on aline. A
line can be up to 132 characterslong. Blanksare used to separate names, constants, or |abels
from adjacent names, constants, or labels. Blanksare al so used to separate Fortran keywords,
with the following exceptions, for which the blank separator is optional:

» BLOCK DATA
» DOUBLE PRECISION

« ELSEIF

» END BLOCK DATA
« ENDDO

» ENDFILE

* END FUNCTION

« ENDIF

 END INTERFACE

« END MODULE
 END PROGRAM
 END SELECT

+ END SUBROUTINE

 ENDTYPE

» END WHERE
+ GOTO

« INOUT

» SELECT CASE

Lahey/Fujitsu Fortran 95 Language Reference 3

Chapter 1 Elements of Fortran

Data

The*! ' character begins acomment except when it appearsin aCHARACTER literal. The
comment extends to the end of the line.

The*; ' character can be used to separate statementson aline. If it appearsina CHARAC-
TER literal or in acomment, the‘; ’ character is not interpreted as a statement separator.

The'& character asthe last non-comment, non-blank character on alineindicatesthelineis
to be continued on the next non-comment line. If aname, constant, keyword, or label is split
across the end of aline, the first non-blank character on the next non-comment line must be
the'& character followed by successive characters of the name, constant, keyword, or |abel.

If aCHARACTER literal isto be continued, the ‘&’ character ending the line cannot be fol-
lowed by atrailing comment. A free source form statement can have up to 39 continuation
lines.

Comment lines cannot be continued, but a continuation line can contain atrailing comment.
A line cannot contain only an ‘&' character or contain an ‘& character as the only character
before a comment.

Fortran offers the programmer avariety of ways to store and refer to data. Y ou can refer to
dataliterally, asinthereal numbers4. 73 and 6. 23E5, theintegers- 3000 and 65536, or the
CHARACTER literal " Cont i nue (y/n)?". Or, you can store and reference variable data,
using namessuch asx or y, DI STANCE_FROM ORI G Nor USER_NAME. Constants such aspi
or the speed of light can be given names and constant values. Y ou can store datain a fixed-
sizeareain memory, or allocate memory asthe program needsit. Finally, Fortran offersvar-
ious means of creating, storing, and referring to structured data, through use of arrays,
pointers, and derived types.

Intrinsic Data Types

Thefiveintrinsic datatypesare INTEGER, REAL, COMPLEX, LOGICAL, and CHARAC-
TER. The DOUBLE PRECISION datatype available in Fortran 77 is still supported, but is
considered a subset, or kind, of the REAL datatype.

Kind

In Fortran, an intrinsic data type has one or more kinds. In LF95 for the CHARACTER,
INTEGER, REAL, and LOGICAL datatypes, the kind type parameter (a number used to
refer to akind) corresponds to the number of bytes used to represent each respective kind.
For the COMPLEX datatype, the kind type parameter is the number of bytes used to repre-
sent thereal or theimaginary part. Twointrinsicinquiry functions, SELECTED INT_KIND

4 Lahey/Fujitsu Fortran 95 Language Reference

Kind

and SELECTED_REAL_KIND, are provided. Each returnsakind type parameter based on
the required range and precision of a data object in away that is portable to other Fortran 90
or 95 systems. The kinds availablein LF95 are summarized in the following table:

Table 1: Intrinsic Data Types

Kind Type
Type Parameter St
INTEGER 1 Range: -128 to 127
INTEGER 2 Range: -32,768 to 32,767
INTEGER 4* Range: -2,147,483,648 to 2,147,483,647
Range: -9,223,372,036,854,775,808 to
INTEGER 8 9,223,372,036,854, 775,807
Range: 1.18* 10% to 3.40* 10%
*
REAL 4 Precision: 7-8 decimal digits
Range: 2.23* 1008 to 1.79* 10°%®
REAL 8 Precision: 15-16 decimal digits
Range: 10%! to 10792
REAL 16 Precision: approximately 33 decimal digits
Range: 1.18* 10 to 3.40* 10
*
COMPLEX 4 Precision: 7-8 decimal digits
Range: 2.23* 103%® to 1.79* 10°%®
COMPLEX 8 Precision: 15-16 decimal digits
Range: 104931 to 10%9%2
COMPLEX 16 Precision: approximately 33 decimal digits
LOGICAL 1 Values: .TRUE. and .FALSE.
LOGICAL 4* Vaues: .TRUE. and .FALSE.
CHARACTER 1* ASCII character set
* default kinds

Lahey/Fujitsu Fortran 95 Language Reference 5

Chapter 1 Elements of Fortran

6

Length

The number of charactersin a CHARACTER data object isindicated by itslength type
parameter. For example, the CHARACTER litera “ Hal f Mar at hon” has alength of
thirteen.

Literal Data

A literal datum, also known as aliteral, literal constant, or immediate constant, is specified
as follows for each of the Fortran datatypes. The syntax of aliteral constant determinesits
intrinsic type.

INTEGER literals

AnINTEGER literal consists of one or more digits preceded by an optional sign (+ or -) and
followed by an optional underscore and kind type parameter. |f the optional underscore and
kind type parameter are not present, the INTEGER literal is of default kind. Examples of
valid INTEGER literals are

34 - 256 345 4 +78_nyki nd

34 and- 256 areof typedefault INTEGER. 345_4 isan INTEGER of kind 4 (default INTE-
GERinLF95). Inthelast example, nyki nd must have been previously declared asascalar
INTEGER named constant with the value of an INTEGER kind type parameter (1, 2, or 4 in
LF95).

A binary, octal, or hexadecimal constant can appear in aDATA statement. Such constants
areformed by enclosing aseries of binary, octal, or hexadecimal digitsin apostrophes or quo-
tation marks, and preceding the opening apostrophe or quotation mark with aB, O, or Z for
binary, octal, and hexadecimal representations, respectively. Two valid examples are

B' 10101 Z" 1AC3"

REAL literals

A REAL litera consists of one or more digits containing adecimal point (the decimal point
can appear before, within, or after the digits), optionally preceded by asign (+ or -), and
optionally followed by an exponent letter and exponent, optionally followed by an under-
score and kind type parameter. |f an exponent letter is present the decimal point is optional.
The exponent letter isE for single precision, Dfor double precision, or Qfor quad precision.
If the optional underscore and kind type parameter are not present, the REAL litera is of
default kind. Examples of valid REAL literals are

-3.45 . 0001 34.E-4 1.4.8

The first three examples are of type default REAL. Thelast exampleisaREAL of kind 8.

Lahey/Fujitsu Fortran 95 Language Reference

Literal Data

COMPLEX literals

A COMPLEX literal isformed by enclosing in parentheses acomma-separated pair of REAL
or INTEGER literals. Thefirst of the REAL or INTEGER literals representsthe real part of
the complex number; the second represents the imaginary part. The kind type parameter of
aCOMPLEX constant is 16 if either the real or the imaginary part or both are quadruple pre-
cision REAL, 8if either the real or the imaginary part or both are double-precision REAL,
otherwise the kind type parameter is4 (default COMPLEX). Examplesof valid COMPLEX
literalsare

(3.4,-5. 45) (-1,-3) (3.4,-5) (-3.d13,6. 8)

Thefirst three examples are of default kind, where four bytes are used to represent each part,
real or imaginary, of the complex number. Thefourth example useseight bytesfor each part.

LOGICAL literals

A LOGICAL litera iseither TRUE. or .FALSE., optionally followed by an underscore and
akind type parameter. If the optional underscore and kind type parameter are not present,
the LOGICAL literal is of default kind. Examples of valid LOGICAL literas are;

.fal se. .true. .true. _nykind

In the last example, nyki nd must have been previously declared as a scalar INTEGER
named constant with the value of a LOGICAL kind type parameter (1 or 4 in LF95). The
first two examples are of type default LOGICAL.

CHARACTER literals

A CHARACTER literal consists of astring of characters enclosed in matching apostrophes
or quotation marks, optionally preceded by a kind type parameter and an underscore.

If a quotation mark is needed within a CHARACTER string enclosed in quotation marks,
doubl e the quotation mark inside the string. The doubled quotation mark is then counted as
asingle quotation mark. Similarly, if an apostropheisneeded withinaCHARACTER string
enclosed in apostrophes, double the apostrophe inside the string. The double apostropheis
then counted as a single apostrophe.

Examples of valid CHARACTER literads are

"Hel | o world"
‘don' 't give up the ship!’
ASCl | _' f oobeedoodah’

ASClI | must have been previously declared as a scalar INTEGER named constant with the
value 1 toindicate the kind. The last two examples, which have no intervening characters
between the quotes or apostrophes, are zero-length CHARACTER literals.

Lahey/Fujitsu Fortran 95 Language Reference 7

Chapter 1 Elements of Fortran

8

Named Data

A named data object, such asavariable, named constant, or function result, is given the prop-
ertiesof anintrinsic or user-defined datatype, either implicitly (based on thefirst letter of the
name) or through a type declaration statement. Additional information about a named data
object, known asthe data object’ sattributes, can also be specified, either in atype declaration
statement or in separate statements specific to the attributes that apply.

Once adataobject hasaname, it can be accessed in its entirety by referring to that name. For
some data objects, such as character strings, arrays, and derived types, portions of the data
object can also be accessed directly. In addition, aliases for a data object or a portion of a
data object, known as pointers, can be established and referred to.

Implicit Typing
In the absence of atype declaration statement, a named data object’ s type is determined by
thefirst letter of itsname. Theletters| through N begin INTEGER data objects and the other
letters begin REAL data objects. These implicit typing rules can be customized or disabled
using the IMPLICIT statement. IMPLICIT NONE can be used to disable al implicit typing
for a scoping unit.

Type Declaration Statements

A type declaration statement specifies the type, type parameters, and attributes of a named
data object or function. A type declaration statement is available for each intrinsic type,
INTEGER, REAL (and DOUBLE PRECISION), COMPLEX, LOGICAL, or CHARAC-
TER, aswell asfor derived types (see “ Derived Types’ on page 16).

Attributes

Besides type and type parameters, a data object or function can have one or more of the fol-
lowing attributes, which can be specified in atype declaration statement or in a separate
statement particular to the attribute:

» DIMENSION — the dataobject isan array (see“ DIMENSION Statement” on page
104).

* PARAMETER — the data object is anamed constant (see “* PARAMETER Sate-
ment” on page 186).

» POINTER — the data object isto be used as an alias for another data object of the
sametype, kind, and rank (see “ POINTER Satement” on page 188).

» TARGET — the data object that is to be aliased by a POINTER data object (see
“TARGET Statement” on page 223).

« EXTERNAL — the nameisthat of an external procedure (see“ EXTERNAL State-
ment” on page 124).

Lahey/Fujitsu Fortran 95 Language Reference

Substrings

 ALLOCATABLE —thedataobjectisanarray that isnot of fixed size, but isto have
memory allocated for it as specified during execution of the program (see “ ALLO-
CATABLE Satement” on page 63).

* INTENT — the dummy argument value will not change in aprocedure (INTENT
(IN)), will not be provided an initial value by the calling subprogram (INTENT
(OUT)), or both aninitial value will be provided and anew value may result
(INTENT (IN OUT)) (see “ INTENT Statement” on page 151).

* PUBLIC — the named data object or procedurein a MODULE program unit is
accessibleinaprogram unit that usesthat module (see“ PUBLIC Satement” on page
195).

* PRIVATE — the named data object or procedure in a MODULE program unit is
accessible only in the current module (see “ PRIVATE Statement” on page 193).

* INTRINSIC —thenameisthat of anintrinsic function (see* INTRINS C Satement”
on page 154).

* OPTIONAL — the dummy argument need not have a corresponding actual argu-
ment in areference to the procedure in which the dummy argument appears (see
“OPTIONAL Satement” on page 184).

* SAVE — the data object retains its value, association status, and allocation status
after aRETURN or END statement (see “ SAVE Satement” on page 207).

* SEQUENCE — the order of the component definitions in a derived-type definition
is the storage sequence for objects of that type (see * SEQUENCE Satement” on

page 211).
e DLLEXPORT (Windowsonly) — the nameis an external procedure, amodule, or a

common block name, that to beaDLL (see“ DLL_EXPORT Statement” on page
105).

e DLLIMPORT (Windowsonly) — the nameisan external procedure, amodul e name
isan external procedure, amodule, or acommon block name, that touseaDLL (see
“DLL_IMPORT Satement” on page 106).

Substrings

A character string isasequence of charactersinaCHARACTER dataobject. The characters
in the string are numbered from left to right starting with one. A contiguous part of a char-
acter string, called a substring, can be accessed using the following syntax:

string ([lower-bound] : [upper-bound])

Where:
string isastring name or aCHARACTER literal.

lower-bound is the lower bound of a substring of string.

Lahey/Fujitsu Fortran 95 Language Reference 9

Chapter 1 Elements of Fortran

10

upper-bound is the upper bound of a substring of string.

If absent, lower-bound and upper-bound are given the values one and the length of the string,
respectively. A substring has alength of zero if lower-bound is greater than upper-bound.
lower-bound must not be less than one.

For example, if abc_st ri ng isthe name of the string " abcdef g",

abc_string(2:4) is “bcd”
abc_string(2:) is “bcdefg”
abc_string(:5) is “abcde”
abc_string(:) is “abcdefg”
abc_string(3:3) is “c”

“abcdef” (2:4) is “bcd”

“abcdef " (3: 2) isazero-length string

Arrays

Anarray isaset of data, all of the same type and type parameters, arranged in arectangular
pattern of one or moredimensions. A data object that isnot an array isascalar. Arrayscan
be specified by using the DIMENSION statement or by using the DIMENSION attributein
atype declaration statement. An array has arank that is equal to the number of dimensions
in the array; ascalar hasrank zero. The array’s shapeisits extent in each dimension. The
array’ s sizeisthe number of elementsin the array. In the following example

integer, dinension (3,2) :: i

i hasrank 2, shape (3,2), and size 6.

Array References
A whole array is referenced by the name of the array. Individual elements or sections of an
array are referenced using array subscripts.

Syntax:
array [(subscript-list)]

Where:

array is the name of the array.

subscript-list is acomma-separated list of

element-subscript

or subscript-triplet

or vector-subscript

element-subscript isascalar INTEGER expression.

subscript-triplet is[element-subscript] : [element-subscript] [: stride]
strideisascalar INTEGER expression.

vector-subscript isarank one INTEGER array expression.

The subscriptsin subscript-list each refer to adimension of thearray. Theleft-most subscript
refersto thefirst dimension of the array.

Lahey/Fujitsu Fortran 95 Language Reference

Arrays

Array Elements

If each subscript in an array subscript list is an element subscript, then the array referenceis
toasinglearray element. Otherwise, it istoan array section (see“ Array Sections’ on page
11).

Array Element Order

The elements of an array form a sequence known as array element order. The position of an
element of an array in the sequenceis:

(L+(s1=1)) + ((S2=J2) ¥ dy) + ... +((8y=Jn) X p_g X Uy _5... ¥ 0y)

Where:
s isthe subscript in the ith dimension.

ji isthe lower bound of the ith dimension.
d; isthe size of theith dimension.
n isthe rank of the array.

Another way of describing array element order isthat the subscript of theleftmost dimension
changes most rapidly as one goesfrom first element to last in array element order. For exam-
ple, in the following code

i nteger, dinension(2,3) :: a

the order of the dlementsisa(1, 1),a(2,1),a(1,2),a(2,2),a(1,3),a(2,3). When
performing input/output on arrays, array element order is used.

Array Sections

You can refer to a selected portion of an array asan array. Such aportioniscalled an array
section. An array section has a subscript list that contains at least one subscript that is either
a subscript triplet or a vector subscript (see the examples under “ Subscript Triplets’ and

“Vector Subscripts’ below). Notethat an array section with only one element isnot ascalar.

Subscript Triplets

Thethree components of asubscript triplet arethe lower bound of the array section, the upper
bound, and the stride (the increment between successive subscripts in the sequence), respec-
tively. Any or all three can be omitted. If the lower bound is omitted, the declared lower
bound of the dimension is assumed. If the upper bound is omitted, the upper bound of the
dimensionisassumed. If the strideisomitted, astride of oneisassumed. Valid examples of
array sections using subscript triplets are:

a(2:8:2) I a(2), a(4), a(6), a(8)
b(1,3:1:-1) ' b(1,3), b(1,2), b(1,1)
c(:,:,:) I c

Lahey/Fujitsu Fortran 95 Language Reference 11

Chapter 1 Elements of Fortran

12

Vector Subscripts

A vector (one-dimensional array) subscript can be used to refer to a section of awhole array.
Consider the following example:

integer :: vector(3) = (/3,8,12/)
real :: whol e(3,15)

print*, whol e(3,vector)

Herethearray vect or isused asasubscript of whol e inthe PRINT statement, which prints
the values of elements (3,3), (3,8), and (3,12).

Arrays and Substrings

A CHARACTER array section or array element can have a substring specifier following the
subscript list. I1f awholearray or an array section has a substring specifier, then the reference
isan array section. For example,

character (len=10), dinension (10,10) :: my_string
ny_string(3:8,:) (2:4) = "abc'

assigns' abc' tothearray section made up of characters 2 through 4 of rows 3 through 8 of
the CHARACTER array ny_stri ng.

Dynamic Arrays

An array can be fixed in size at compile time or can assume a size or shape at runtimein a
number of ways.

» allocatable arrays and array pointers can be allocated as needed with an ALLO-
CATE statement, and deallocated with a DEALLOCATE statement. An array
pointer assumes the shape of its target when used in a pointer assignment statement
(see“ Allocatable Arrays’ on page 13 and “ Array Pointers’ on page 13). Allocat-
able arrays and array pointers together are known as deferred-shape arrays.

* A dummy array can assume a size and shape based on the size and shape of the cor-
responding actual argument (see “ Assumed-Shape Arrays’ on page 14).

* A dummy array can be of undeclared size (* Assumed-Sze Arrays’ on page 14).

» Anarray can have variable dimensions based on the values of dummy arguments
(“ Adjustable and Automatic Arrays’ on page 15).

Lahey/Fujitsu Fortran 95 Language Reference

Dynamic Arrays

Allocatable Arrays

The ALLOCATABLE attribute can be given to an array in atype declaration statement or in
an ALLOCATABLE statement. An dlocatable array must be declared with the deferred-
shape specifier, *:’, for each dimension. For example,

integer, allocatable :: a(:), b(:,:,:)
declares two allocatable arrays, one of rank one and the other of rank three.

The bounds, and thus the shape, of an allocatable array are determined when the array isallo-
cated with an ALLOCATE statement. Continuing the previous example,

allocate (a(3), b(1,3,-3:3))
allocates an array of rank one and size three and an array of rank three and size 21 with the
lower bound -3 in the third dimension.

Memory for allocatable arraysisreturned to the system using the DEALL OCATE statement.

Array Pointers

The POINTER attribute can be given to an array in atype declaration statement or in a
POINTER statement. An array pointer, like an alocatable array, is declared with the
deferred-shape specifier, *:’, for each dimension. For example

i nteger, pointer, dimension(:,:) :: c

declares apointer array of rank two. An array pointer can be allocated in the same way an
allocatable array can. Additionally, the shape of a pointer array can be set when the pointer
becomes associated with atarget in a pointer assignment statement. The shape then becomes
that of the target.

i nteger, target, dimension(2,4) :: d
integer, pointer, dimension(:,:) :: ¢
c =>d

In the above example, the array ¢ becomes associated with array d and assumes the shape of
d.

Lahey/Fujitsu Fortran 95 Language Reference 13

Chapter 1 Elements of Fortran

Assumed-Shape Arrays

An assumed-shape array isadummy array that assumes the shape of the corresponding
actual argument. The lower bound of an assumed-shape array can be declared and can be
different from that of the actual argument array. An assumed-shape specificationis

[lower-bound] :

for each dimension of the assumed-shape array. For example
integer :: a(3,4)

call zee(a)

subroutine zee(x)
inmplicit none
integer, dimension(-1:,:) :: X

Here the dummy array x assumesthe shape of the actual argument a with anew lower bound
for dimension one.

Theinterface for an assumed-shape array must be explicit (see” Explicit Interfaces’ on page
50).

Assumed-Size Arrays

An assumed-size array is adummy array that’s sizeis not known. All bounds except the
upper bound of the last dimension are specified in the declaration of the dummy array. In
the declaration, the upper bound of thelast dimensionisan asterisk. Thetwo arrayshavethe
sameinitial array element, and are storage associated.

Y ou must not refer to an assumed-size array in a context where the shape of the array must
be known, such asin awhole array reference or for many of the transformational array intrin-
sic functions. A function result can not be an assumed-size array.

i nteger a
di mensi on a(4)

call zee(a)

subroutine zee(x)
integer, dimension(-1:*) :: X

In this example, the size of dummy array x is not known.

14 Lahey/Fujitsu Fortran 95 Language Reference

Array Constructors

Adjustable and Automatic Arrays

Y ou can establish the shape of an array based on the values of dummy arguments. If such an
array isadummy array, it is called an adjustable array. If the array isnot adummy array it
is called an automatic array. Consider the following example:

i nteger function bar(i, k)
integer :: i,j,k
di mension i(k,3), j(Kk)

Here the shapes of arraysi andj depend on the value of the dummy argument k. i isan
adjustable array and j isan automatic array.

Array Constructors
An array constructor is an unnamed array.

Syntax:
(/ constructor-values/)

Where:

constructor-values is acomma-separated list of
expr

or ac-implied-do

expr isan expression.

ac-implied-do is (constructor -values, ac-implied-do-control)
ac-implied-do-control is do-variable = do-expr, do-expr [, do-expr]
do-variableisascalar INTEGER variable.

do-expr isascalar INTEGER expression.

An array constructor isarank-one array. |f aconstructor element isitself array-valued, the
values of the elements, in array-element order, specify the corresponding sequence of ele-
ments of the array constructor. If aconstructor valueisanimplied-do, itisexpanded to form
a sequence of values under the control of the do-variable asin the DO construct (see“ DO
Construct” on page 106).

i nteger, dinension(3) :: a, b=(/1,2,3/), c=(/(i, i=4,6)/)
a=b+c+ (/7,89/) ! ais assigned (/12,15,18/)

An array constructor can be reshaped with the RESHAPE intrinsic function and can then be
used to initialize or represent arrays of rank greater than one. For example

real ,dinension(2,2) :: a = reshape((/1,2,3,4/),(/2,2/))

assigns(/ 1, 2, 3, 4/) toa inarray-element order after reshaping it to conform with the
shape of a.

Lahey/Fujitsu Fortran 95 Language Reference 15

Chapter 1 Elements of Fortran

Derived Types

Derived types are user-defined data types based on the intrinsic types, INTEGER, REAL,
COMPLEX, LOGICAL, and CHARACTER. Wherean array isaset of dataal of the same
type, a derived type can be composed of a combination of intrinsic types or other derived
types. A data object of derived typeiscalled a structure.

Derived-Type Definition

A derived type must be defined before objects of the derived type can be declared. A derived
type definition specifies the name of the new derived type and the names and types of its
components.

Syntax:
derived-type-statement
[private-sequence-statement]
type-definition-statement
[type-definition-statement]

END TY PE [type-name]

Where:
derived-type-statement is a derived type statement.

private-sequence-statement is a PRIVATE statement.
or a SEQUENCE statement.

type-definition-statement isan INTEGER, REAL, COMPLEX, DOUBLE PRECISION,
LOGICAL, CHARACTER or TY PE statement.

A type definition statement in a derived type definition can have only the POINTER and
DIMENSION attributes. It cannot beafunction. It can be given adefault initialization val ue,
in which case the component acquires the SAVE attribute. A component array must be a
deferred-shape array if the POINTER attribute is present, otherwise it must have an explicit
shape.

type coordi nates
real :: latitude, |ongitude
end type coordi nates

type pl ace
character(l en=20) :: nane
type(coordinates) :: location

end type pl ace

type link

integer :: j

type (link), pointer :: next
end type |ink

Lahey/Fujitsu Fortran 95 Language Reference

Sructure Constructors

In the example, type coor di nat es isaderived type with two REAL components: | ati -
tude andl ongi t ude. Typepl ace hastwo components: aCHARACTER of length twenty,
nane, and astructure of typecoor di nat es named| ocat i on. Typel i nk hastwo compo-
nents: an INTEGER, j , and a structure of typel i nk, named next , that is a pointer to the
same derived type. A component structure can be of the same type as the derived type itself
only if it hasthe POINTER attribute. In thisway, linked lists, trees, and graphs can be
formed.

There are two waysto use aderived type in more than one program unit. The preferred way
isto define the derived typein amodule (see “ Module Program Units’ on page 55) and use
the module wherever the derived type is needed. Another method, avoiding modules, isto
use a SEQUENCE statement in the derived type definition, and to define the derived typein
exactly the same way in each program unit the type is used. This could be done using an
include file. Components of aderived type can be made inaccessible to other program units
by using a PRIVATE statement before any component definition statements.

Declaring Variables of Derived Type
Variablesof derived type are declared withthe TY PE statement. Thefollowing are examples
of declarations of variables for each of the derived types defined above:

type(coordi nates) :: mny_coordi nates
type(place) :: ny_town
type(pl ace), dinmension(10) :: cities

type(link) :: head

Component References

Components of a structure are referenced using the percent sign ‘% operator. For example,
| atitude inthestructure ny_coor di nat es, above, is referenced as

my_coordi nat es% at i t ude. | atitude intypecoor di nat es in structure my_t own is
referenced asny_t own%oor di nat es% at i t ude. If thevariableisan array of structures,
asinciti es, above, array sections can be referenced, such as

cities(:,:)%ane
which references the component nane for all elementsof ci ti es, and
cities(1l,1:2)%oordi nates% atitude

which referenceselement | at i t ude of typecoor di nat es for elements(1, 1) and (1, 2)
only of ci ti es. Notethat inthefirst example, the syntax

cities%ane

isequivalent and is an array section.

Structure Constructors
A structure constructor is an unnamed structure.

Lahey/Fujitsu Fortran 95 Language Reference 17

Chapter 1 Elements of Fortran

18

Syntax:
type-name (expr-list)

Where:
type-name is the name of the derived type.

expr-list isalist of expressions.

Each expression in expr-list must agree in number and order with the corresponding compo-
nents of the derived type. Where necessary, intrinsic type conversions are performed. For
non-pointer components, the shape of the expression must agree with that of the component.

type nytype I derived-type definition
integer :: i,]j
character(l en=40) :: string

end type nytype

type (nmytype) :: a I derived-type declaration
a = nytype (4, 5.0*2.3, 'abcdefqg')

Inthisexample, the second expression in the structure constructor is converted to type default
INTEGER when the assignment is made.

Pointers

In Fortran, apointer isan alias. Thevariableit aliasesisitstarget. Pointer variables must
have the POINTER attribute; target variables must have either the TARGET attribute or the
POINTER attribute.

Associating a Pointer with a Target

A pointer can only be associated with a variable that hasthe TARGET attribute or the
POINTER attribute. Such an association can be made in one of two ways:

« explicitly with a pointer assignment statement.
o implicitly with an ALLOCATE statement.
Once an association between pointer and target has been made, any reference to the pointer

appliesto the target.

Declaring Pointers and Targets
A variable can be declared to have the POINTER or TARGET attributein atype declaration

statement or inaPOINTER or TARGET statement. When declaring an array to be apointer,
you must declare the array with a deferred shape.

Lahey/Fujitsu Fortran 95 Language Reference

Expressions

Example:
integer, pointer :: a, b(:,:)
integer, target :: c
a=>c¢ poi nter assi gnnment st at enent

|

! ais an alias for c
allocate (b(3,2)) I allocate statenent

I an unnaned target for b is

I created with the shape (3, 2)

Inthisexample, an explicit association is created between a and c through the pointer assign-
ment statement. Note that a has been previously declared a pointer, ¢ has been previously
declared atarget, and a and ¢ agree in type, kind, and rank. Inthe ALLOCATE statement,
atarget array isallocated and b is made to point to it. The array b was declared with a
deferred shape, so that the target array could be allocated with any rank two shape.

Expressions

An expression isformed from operands, operators, and parentheses. Evaluation of an expres-
sion produces avalue with atype, type parameters (kind and, if CHARACTER, length), and
ashape. Some examples of valid Fortran expressions are:

5

n

(n+1)*y

"to be" // ’ or not to be’ // text(1l:23)

(-b + (b**2-4*a*c)**.5) / (2*a)

b% - a(1:1000: 10)

sin(a) .le. .5

| .nmy_binary_operator. r + .ny_unary_operator. m

The last example uses defined operations (see “ Defined Operations’ on page 51).

All array-valued operands in an expression must have the same shape. A scalar is conform-
ablewith an array of any shape. Array-valued expressions are eval uated el ement-by-element
for corresponding elementsin each array and a scalar in the same expression is treated like
an array where al elements have the value of the scalar. For example, the expression

a(2:4) + b(1:3) +5
would perform

a(2) + b(1) + 5

a(3) + b(2) +5

a(4) + b(3) +5

Lahey/Fujitsu Fortran 95 Language Reference 19

Chapter 1 Elements of Fortran

20

Expressions are eval uated according to the rules of operator precedence, described below. |If
there are multiple contiguous operations of the same precedence, subtraction and division are
evaluated from left to right, exponentiation is evaluated from right to left, and other opera-
tions can be evaluated either way, depending on how the compiler optimizesthe expression.
Parentheses can be used to enforce a particular order of evaluation.

A specification expression isascalar INTEGER expression that can be eval uated on entry to
the program unit at the time of execution. An initialization expression is an expression that
can be evaluated at compile time.

Intrinsic Operations

Theintrinsic operators, in descending order of precedence are:

Table 2: Intrinsic Operators

Operator Represents Operands
*x exponentiation two numeric
*and/ multiplication and division two numeric
+and - unary addition and subtraction one numeric
+and - binary addition and subtraction two numeric
1 concatenation two CHARACTER
EQ. and == equal to two numeric or two
.NE. and /= not equal to CHARACTER
LT. and< less than
.LE. and <= lessthan or equal to two non-COMPLEX
.GT. and > greater than numeric or two CHAR-
.GE. and >= greater than or equal to ACTER
.NOT. logical negation one LOGICAL
AND. logical conjunction two LOGICAL
.OR. logical inclusive disjunction two LOGICAL
.EQV. and logical eguivalence and non-equiv-
NEQV. alence two LOGICAL

Note: al operators within agiven cell in the table are of equal precedence

Lahey/Fujitsu Fortran 95 Language Reference

I nput/Output

If an operation is performed on operands of the same type, the result is of that type and has
the greater of the two kind type parameters.

If an operation is performed on numeric operands of different types, theresult isof the higher
type, where COMPLEX is higher than REAL and REAL is higher than INTEGER.

If an operationis performed on numeric or LOGICAL operands of the sametype but different
kind, the result has the kind of the operand offering the greater precision.

The result of a concatenation operation has alength that is the sum of the lengths of the
operands.

INTEGER Division

The result of adivision operation between two INTEGER operands is the integer closest to
the mathematical quotient and between zero and the mathematical quotient, inclusive. For
example, 7/ 5 evaluatesto 1 and - 7/ 5 evaluatesto - 1.

Input/Output

Fortran input and output are performed on logical units. A unitis

» anon-negative INTEGER associated with a physical device such as adisk file, the
console, or aprinter. The unit must be connected to afile or devicein an OPEN state-
ment, except in the case of pre-connected files.

* anasterisk, ‘*’, indicating the standard input and standard output devices, usually the
keyboard and monitor, that are preconnected.

* aCHARACTER variable corresponding to the name of an interna file.

Fortran statements are availabl e to connect (OPEN) or disconnect (CLOSE) filesand devices
frominput/output units; transfer data(PRINT, READ, WRITE); establish the position within
afile (REWIND, BACKSPACE, ENDFILE); and inquire about afile or device or its con-
nection (INQUIRE).

Pre-Connected Input/Output Units

Input/output units 5, 6 and * are automatically connected when used. Unit 5is connected to
the standard input device, usually the keyboard, and unit 6 is connected to the standard output
device, usually the monitor. Unit * isalways connected to the standard input and standard
output devices.

Lahey/Fujitsu Fortran 95 Language Reference 21

Chapter 1 Elements of Fortran

22

Files

Fortran treats all physical devices, such as disk files, the console, printers, and internal files,
asfiles. A fileisa seguence of zero or more records. The dataformat (either formatted or
unformatted), file access type (either direct or sequential) and record length determine the
structure of thefile.

File Position

Certain input/output statements affect the position within an external file. Prior to execution
of adatatransfer statement, adirect fileis positioned at the beginning of the record indicated
by the record specifier REC= in the data transfer statement. By default, a sequential fileis
positioned after the last record read or written. However, if non-advancing input/output is

specified using the ADV ANCE-= specifier, it is possible to read or write partial records and
to read variable-length records and be notified of their length.

An ENDFILE statement writes an endfile record after the last record read or written and posi-
tions the file after the endfile record. A REWIND statement positions the file at itsinitial
point. A BACKSPACE statement moves the file position back one record.

If an error condition occurs, the position of the file is indeterminate.

If thereis no error, and an endfile record isread or written, thefileis positioned after the end-
filerecord. The file must be repositioned with a REWIND or BACK SPACE statement
beforeit isread from or written to again.

For non-advancing (partial record) input/output, if thereis no error and no end-of-file condi-
tion, but an end-of-record condition occurs, thefileis positioned after the record just read. 1f
there is no end-of-record condition the file position is unchanged.

File Types
The type of fileto be accessed is specified in the OPEN statement using the FORM= and
ACCESS= specifiers (see “ OPEN Satement” on page 181).

Formatted Sequential

» variable-length records terminated by end of line
» stored as CHARACTER data

e can be used with devices or disk files

» records must be processed in order

» filescan be printed or displayed easily

e usually slowest

Formatted Direct

» fixed-length records - record zero is a header
» stored as CHARACTER data

o diskfilesonly

» records can be accessed in any order

Lahey/Fujitsu Fortran 95 Language Reference

Files

* not easily processed outside of LF95
» same speed as formatted sequential disk files

Unformatted Sequential

» variablelength records separated by record marker
» dtored ashinary data

o diskfilesonly

» records must be processed in order

+ faster than formatted files

» not easily read outside of LF95

Unformatted Direct

» fixed-length records - record zero is a header
» dtored ashinary data

» diskfilesonly

 records can be accessed in any order

o fastest

» not easily read outside of LF95

Binary (or Transparent)

e gtored as binary data without record markers or header

» record length one byte but end-of-record restrictions do not apply
» records can be processed in any order

e can be used with disk files or other physical devices

e good for filesthat are accessed outside of LF95

» fast and compact

See “ File Formats’ in the User's Guide for more information.

Internal Files

Aninternal fileis aways aformatted sequential file and consists of asingle CHARACTER
variable. If the CHARACTER variableis array-valued, each element of the array is treated
asarecord in thefile. Thisfeature alows conversion from internal representation (binary,
unformatted) to external representation (ASCII, formatted) without transferring datato an
external device.

Lahey/Fujitsu Fortran 95 Language Reference 23

Chapter 1 Elements of Fortran

Carriage Control

The first character of aformatted record sent to aterminal device, such as the console or a
printer, is used for carriage control and is not printed. The remaining characters are printed
on one line beginning at the left margin. The carriage control character isinterpreted as
follows:

Table 3: Carriage Control

Character Vertical Spacing Before Printing
0 Two Lines
1 To First Line of Next Page
* None
Blank or Any .
Other Character OneLine

Input/Output Editing

24

Fortran provides extensive capabilities for formatting, or editing, of data. The editing can be
explicit, using a format specification; or implicit, using list-directed input/output, in which
data are edited using a predetermined format (see “ List-Directed Formatting” on page 30).
A format specification is adefault CHARACTER expression and can appear

o directly asthe FMT= specifier value.
* inaFORMAT statement whose label isthe FMT= specifier value.

* inaFORMAT statement whose label was assigned to a scalar default INTEGER
variable that appears as the FMT= specifier value.

The syntax for aformat specification is
([format-items])

where format-items includes editing information in the form of edit descriptors. See* FOR-
MAT Statement” on page 128 for detailed syntax.

Lahey/Fujitsu Fortran 95 Language Reference

Format Control

Format Control

A correspondence is established between aformat specification and itemsin a READ,
WRITE or PRINT statement’ sinput/output list in which the edit descriptors and i nput/output
list are both interpreted from left to right. Each effective edit descriptor is applied to the cor-
responding data entity in the input/output list. Each instance of arepeated edit descriptor is
an edit descriptor in effect. Three exceptionsto thisrule are

1. COMPLEX itemsin theinput/output list require the interpretation of two F, E, EN,
ES, D or G edit descriptors.

2. Control and character string edit descriptors do not correspond to itemsin the input/
output list.

3. If theend of acomplete format is encountered and there are remaining itemsin the
input/output list, format control reverts to the beginning of the format item termi-
nated by the last preceding right parenthesis, if it exists, and to the beginning of the
format otherwise. If format control revertsto a parenthesis preceded by a repeat
specification, the repeat specification is reused.

Data Edit Descriptors
Data edit descriptors control conversion of datato or from itsinternal representation.

Numeric Editing
Thel,B, 0, Z,Q, F, E, EN, ES, D, and G edit descriptors can be used to specify the input/
output of INTEGER, REAL, and COMPLEX data. The following general rules apply:

* Oninput, leading blanks are not significant.
* On output, the representation is right-justified in the field.

» Onoutput, if the number of characters produced exceeds the field width the entire
field isfilled with asterisks.

INTEGER Editing (I, B, O, and Z)

The Iw, Ilw.m, Bw, Bw.m, Ow, Ow.m, Zw, and Zw.m edit descriptors indicate the manner of
editing for INTEGER data. The w indicates the width of the field on input, including asign
(if present). The mindicates the minimum number of digits on output; m must not exceed w
unlessw is zero. The output width is padded with blanksif the number is smaller than the
field, unlesswiszero. If wiszerothen asuitablewidth will be used to show all digitswithout
any padding blanks. Note that an input width must always be specified.

REAL Editing (Q, F, D, and E)
The Qw.d, Fw.d, Ew.d, Dw.d, Ew.dEe, EN, and ES edit descriptors indicate the manner of
editing of REAL and COMPLEX data.

Lahey/Fujitsu Fortran 95 Language Reference 25

Chapter 1 Elements of Fortran

26

Q,F, D, E, EN, and ES editing areidentical oninput. Thew indicates the width of thefield;
the d indicates the number of digitsin the fractional part. The field consists of an optional
sign, followed by one or more digitsthat can contain a decimal point. If the decimal pointis
omitted, the rightmost d digits are interpreted as the fractional part. An exponent can be
included in one of the following forms:

» Anexplicitly signed INTEGER constant.
* Q,E, or D followed by an optionally signed INTEGER constant.

F editing, the output field consists of zero or more blanks followed by a minus sign or an
optional plussign (see S, SP, and SS Editing), followed by one or more digits that contain a
decimal point and represent the magnitude. Thefieldismodified by the established scalefac-
tor (see P Editing) and is rounded to d decimal digits. If wis zero then a suitable width will
be used to show al digits and sign without any padding blanks.

For Q, E, and D editing, the output field consists of the following, in order:
zero or more blanks

aminus or an optional plussign (see S, SP, and SS Editing)

a zero (depending on scale factor, see P Editing)

adecimal point

the d most significant digits, rounded

aQ,E orab

aplusor aminus sign

O N o g b~ 0 D P

an exponent of e digits, if the extended Ew.dEe form is used, and two digits
otherwise.

For Q, E, and D editing, the scale factor k controls the position of the decimal point. If

—d <k <0, the output field contains exactly |k| leading zeros and d — |k| significant digits
after thedecimal point. If 0 <k <d+ 2, theoutput field contains exactly k significant digits
totheleft of the decimal point andd — k + 1 significant digitstotheright of the decimal point.
Other values of k are not permitted.

EN Editing

The EN edit descriptor produces an output field in engineering notation such that the decimal
exponent isdivisible by three and the absol ute val ue of the significand isgreater than or equal
to 1 and less than 1000, except when the output valueis zero. The scale factor has no effect
on output.

The forms of the edit descriptor are ENw.d and ENw.dEe indicating that the external field
occupiesw positions, the fractional part of which consists of d digits and the exponent part e
digits.

Lahey/Fujitsu Fortran 95 Language Reference

Data Edit Descriptors

Oninput, EN editing is the same as F editing.

ES Editing

The ES edit descriptor produces an output field in the form of areal number in scientific nota-
tion such that the absolute value of the significand is greater than or equal to 1 and less than
10, except when the output value is zero. The scale factor has no effect on output.

The forms of the edit descriptor are ESw.d and ESw.dEe indicating that the external field
occupiesw positions, the fractional part of which consists of d digits and the exponent part e
digits.

Oninput, ES editing is the same as F editing.

COMPLEX Editing

COMPLEX editing isaccomplished by using two REAL edit descriptors. Thefirst of the edit
descriptors specifies the real part; the second specifies the imaginary part. The two edit
descriptors can be different. Control edit descriptors can be processed between the edit
descriptor for thereal part and the edit descriptor for theimaginary part. Character string edit
descriptors can be processed between the two edit descriptors on output only.

LOGICAL Editing (L)
The Lw edit descriptor indicates that the field occupies w positions. The specified input/out-
put list item must be of type LOGICAL.

Theinput field consists of optional blanks, optionally followed by adecimal point, followed
by aT for trueor Ffor false. TheT or F can befollowed by additional charactersinthefield.
Note that the logical constants . TRUE. and .FALSE. are acceptable input forms. If apro-
cessor is capable of representing lettersin both upper and lower case, alower-case letter is
equivalent to the corresponding upper-case letter in a LOGICAL input field.

Theoutput field consists of w - 1 blanksfollowed by aT or F, depending on whether the value
of the internal data object istrue or false, respectively.

CHARACTER Editing (A)
The A[w] edit descriptor is used with an input/output list item of type CHARACTER.

If afield width wis specified with the A edit descriptor, thefield consists of w characters. |If
afield width wisnot specified with the A edit descriptor, the number of charactersinthefield
isthe length of the corresponding list item.

Let len be the length of thelist item. Oninput, if wis greater than or equal to len, the right-
most len characterswill be taken from thefield; if wislessthan len, thew characters are | eft-
justified and padded with len-w trailing blanks.

On output, thelist item is padded with leading blanksif wis greater thanlen. If wislessthan
or equal to len, the output field consists of the leftmost w characters of the list item.

Lahey/Fujitsu Fortran 95 Language Reference 27

Chapter 1 Elements of Fortran

28

Generalized Editing (G)
The Gw.d and Gw.dEe edit descriptors can be used with an input/output list item of any
intrinsic type.

These edit descriptorsindicate that the external field occupiesw positions, the fractional part
of which consists of a maximum of d digits and the exponent part e digits. d and e have no
effect when used with INTEGER, LOGICAL, or CHARACTER data

Generalized Integer Editing
With INTEGER data, the Gw.d and Gw.dEe edit descriptors follow the rules for the Iw edit
descriptor.

Generalized Real and Complex Editing
The form and interpretation of the input field is the same as for F editing.

The method of representation in the output field depends on the magnitude of the data object
being edited. If thedecimal point fallsjust before, within, or just after thed significant digits
to be printed, then the output is as for the F edit descriptor; otherwise, editingis asfor the E
edit descriptor.

Note that the scale factor k (see P Editing” on page 29) has no effect unless the magnitude
of the data object to be edited is outside the range that permits effective use of F editing.

Generalized Logical Editing
With LOGICAL data, the Gw.d and Gw.dEe edit descriptors follow the Lw edit descriptor
rules.

Generalized Character Editing
With CHARACTER data, the Gw.d and Gw.dEe edit descriptors follow the Aw edit descrip-
tor rules.

Control Edit Descriptors
Control edit descriptors affect format control or the conversions performed by subsequent
data edit descriptors.

Position Editing (T, TL, TR, and X)

TheTn, TLn, TRn, and nX edit descriptors control the character position in the current record
to or from which the next character will be transferred. The new position can bein either
direction from the current position. This makes possible the input of the same record twice,
possibly with different editing. It aso makes skipping charactersin arecord possible.

The Tn edit descriptor tabsto character position n from the beginning of therecord. TheTLn
and TRn edit descriptorstab n charactersleft or right, respectively, from the current position.
The nX edit descriptor tabs n characters right from the current position.

If the position is changed to beyond the length of the current record, the next datatransfer to
or from the record causes the insertion of blanks in the character positions not previously
filled.

Lahey/Fujitsu Fortran 95 Language Reference

Control Edit Descriptors

Slash Editing

The slash edit descriptor terminates data transfer to or from the current record. Thefile posi-
tion advancesto the beginning of the next record. On output to afile connected for sequential
access, anew record iswritten and the new record becomesthe last record in thefile.

Colon Editing

The colon edit descriptor terminates format control if there are no more itemsin the input/
output list. The colon edit descriptor has no effect if there are moreitemsin the input/output
list.

S, SP, and SS Editing

The S, SP, and SS edit descriptors control whether an optional plusis to be transmitted in
subsequent numeric output fields. SP causes the optional plus to be transmitted. SS causes
it not to be transmitted. S returns optional pluses to the processor default (no pluses).

P Editing

The kP edit descriptor sets the value of the scale factor to k. The scale factor affects the Q,
F, E, EN, ES, D, or G editing of subsequent numeric quantities as follows:

* Oninput (provided that no exponent existsin the field) the scale factor causes the
externally represented number to be equal to the internally represented number mul-
tiplied by 10k, The scale factor has no effect if there is an exponent in the field.

» Onoutput, with E and D editing, the significand part of the quantity to be produced
is multiplied by 10« and the exponent is reduced by k.

» Onoutput, with G editing, the effect of the scale factor is suspended unless the mag-
nitude of the data object to be edited is outside the range that permits the use of F
editing. If the use of E editing isrequired, the scale factor has the same effect aswith
E output editing.

e Onoutput, with EN and ES editing, the scale factor has no effect.

» Onoutput, with F editing, the scale factor effect is that the externally represented
number equals the internally represented number times 10X,

BN and BZ Editing

The BN and BZ edit descriptors are used to specify the interpretation, by numeric edit
descriptors, of non-leading blanksin subsequent numericinput fields. 1f aBN edit descriptor
is encountered in aformat, blanks in subsequent numeric input fields are ignored. If aBZ
edit descriptor is encountered, blanksin subsequent numeric input fields are treated as zeros.

Lahey/Fujitsu Fortran 95 Language Reference 29

Chapter 1 Elements of Fortran

30

Character String Edit Descriptors
The character string edit descriptors cause literal CHARACTER data to be output. They
must not be used for input.

CHARACTER String Editing
The CHARACTER string edit descriptor causes characters to be output from astring, includ-
ing blanks. Enclosing characters are either apostrophes or quotation marks.

For aCHARACTER string edit descriptor, the width of the field is the number of characters
contained in, but not including, the delimiting characters. Within the field, two consecutive
delimiting characters (apostrophes, if apostrophes are the delimiters; quotation marks, if quo-
tation marks are the delimiters) are counted as a single character. Thus an apostrophe or
guotation mark character can be output as part of a CHARACTER string edit descriptor
delimited by the same character.

H Editing (obsolescent)

The cH edit descriptor causes character information to be written from the next ¢ characters
(including blanks) following the H of the cH edit descriptor in thelist of format itemsitself.
The c characters are called a Hollerith constant.

List-Directed Formatting

List-directed formatting is indicated when an input/output statement uses an asterisk instead
of an explicit format. For example,

read*, a
print*, x,y,z
read (unit=1, fm=*) i,j,k

al use list-directed formatting.

List-Directed Input
List-directed records consist of a sequence of values and value separators. Vauesare either
null or any of the following forms:

(o
r*c
r*

Where:
cisaliteral constant or anon-delimited CHARACTER string.

r isapositive INTEGER literal constant with no kind type parameter specified.

r*cisequivaent to r successive instances of c.

Lahey/Fujitsu Fortran 95 Language Reference

List-Directed Formatting

r* isequivalent to r successive instances of null.

Separators are either commas or slashes with optional preceding or following blanks; or one
or more blanks between two non-blank values. A slash separator causes termination of the
input statement after transfer of the previous value.

Editing occurs based on the type of thelist item as explained below. On input the following

formatting applies:

Table 4: List-Directed Input Editing

Type Editing
INTEGER |
REAL F
COMPLEX Asfor COMPLEX literal constant
LOGICAL L
Asfor CHARACTER string. CHARACTER string
can be continued from one record to the next.
Delimiting apostrophes or quotation marks are not
CHARACTER | requiredif the CHARACTER string doesnot crossa
record boundary and does not contain value separa-
torsor CHARACTER string delimiters, or begin
with r*,

List-Directed Output

For list-directed output the following formatting applies:

Table 5: List-Directed Output Editing

Type Editing
INTEGER Gw
REAL Gwd
COMPLEX (Gw.d, Gw.d)
LOGICAL T for value true and F for value false
CHARACTER As CHARAC;I;ERDEE r&:exsgzltf?; overridden by

Lahey/Fujitsu Fortran 95 Language Reference

31

Chapter 1 Elements of Fortran

Namelist Formatting
Namelist formatting is indicated by an input/output statement with an NML= specifier.
Namelist input and output consists of

1. optional blanks

2. theampersand character followed immediately by the namelist group name specified
in the namelist input/output statement

3. oneor more blanks
4. aseguence of zero or more name-val ue subsequences, and
5. adashindicating the end of the namelist record.

The characters in namelist records form a sequence of hame-value subsequences. A name-
value subsequence is a data object or subobject previously declared in aNAMELIST state-
ment to be part of the namelist group, followed by an equals, followed by one or more values
and value separators.

Formatting for namelist recordsis the same as for list-directed records.

Example:
integer :: i,j(10)
real :: n(5)
namelist /my_nanelist/ i,j,n

read(*, nm =ny_nanel i st)
If the input records are

&ny_namel i st i=5, n(3)=4.5,
j(1:4)=4%0/

then5 isstoredini, 4. 5inn(3),and 0 in elements 1 through 4 of j .

Statements

32

A brief description of each statement follows. For complete syntax and rules, see Chapter 2,
“ Alphabetical Reference.”

Fortran statements can be grouped into five categories. They are
» Control Statements

» Specification Statements

* Input/Output Statements

* Assignment and Storage Statements

¢ Program Structure Statements

Lahey/Fujitsu Fortran 95 Language Reference

Control Satements

Control Statements

Arithmetic IF (obsolescent)

Execution of an arithmetic | F statement causes evaluation of an expression followed by a
transfer of control. The branch target statement identified by the first, second, or third label
inthe arithmetic | F statement is executed next if the value of the expression islessthan zero,
equal to zero, or greater than zero, respectively.

Assigned GOTO (obsolescent)

Theassigned GOTO statement causes atransfer of control to the branch target statement indi-
cated by avariable that was assigned a statement label in an ASSIGN statement. If the
parenthesized list of labelsis present, the variable must be one of the labelsin thelist.

CALL
The CALL statement invokes a subroutine and passesto it alist of arguments.

CASE

Execution of a SELECT CASE statement causes a case expression to be evaluated. The
resulting value is called the case index. If the case index isin the range specified with a
CASE statement’ s case sel ector, the block following the CASE statement, if any, is executed.

Computed GOTO
The computed GOTO statement causes transfer of control to one of alist of labeled
Statements.

CONTINUE
Execution of a CONTINUE statement has no effect.

CYCLE
The CY CLE statement curtails the execution of asingle iteration of a DO loop.

DO
The DO statement begins a DO construct. A DO construct specifies the repeated execution
(loop) of a sequence of executable statements or constructs.

ELSE IF
The EL SE I F statement controls conditional execution of anested IF block in an |F construct
where all previous IF expressions are fal se.

ELSE
The ELSE statement controls conditional execution of ablock of code in an IF construct
where all previous IF expressions are fal se.

ELSEWHERE
The ELSEWHERE statement controls conditional execution of a block of assignment state-
ments for elements of an array for which the WHERE construct’s mask expression isfalse.

END DO
The END DO statement ends a DO construct.

END FORALL
The END FORALL statement ends a FORALL construct.

Lahey/Fujitsu Fortran 95 Language Reference 33

Chapter 1 Elements of Fortran

34

END IF
The END IF statement ends an | F construct.

END SELECT
The END SELECT statement ends a CA SE construct.

END WHERE
The END WHERE statement ends a WHERE construct.

ENTRY
The ENTRY statement permits one program unit to define multiple procedures, each with a
different entry point.

EXIT
The EXIT statement terminates a DO loop.

FORALL

The FORALL statement beginsa FORALL construct. The FORALL construct controls mul-
tiple assignments, masked array (WHERE) assignments, and nested FORALL constructsand
statements.

GOTO
The GOTO statement transfers control to a statement identified by alabel.

IF
The IF statement controls whether or not a single executable statement is executed.

IF-THEN
The IF-THEN statement begins an |F construct.

PAUSE (Obsolescent)
The PAUSE statement temporarily suspends execution of the program.

RETURN
The RETURN statement compl etes execution of a subroutine or function and returns control
to the statement following the procedure invocation.

SELECT CASE

The SELECT CASE statement begins a CASE construct. It contains an expression that,
when evaluated, produces a caseindex. The caseindex is used in the CASE construct to
determine which block in a CASE construct, if any, is executed.

STOP
The STOP statement terminates execution of the program.

WHERE

The WHERE statement is used to mask the assignment of valuesin array assignment state-
ments. The WHERE statement can begin a WHERE construct that contains zero or more
assignment statements, or can itself contain an assignment statement.

Lahey/Fujitsu Fortran 95 Language Reference

Soecification Satements

Specification Statements

ALLOCATABLE

The ALLOCATABLE statement declares allocatable arrays. The shape of an alocatable
array is determined when space is allocated for it by an ALLOCATE statement.

CHARACTER
The CHARACTER statement declares entities of type CHARACTER.

COMMON

The COMMON statement providesaglobal datafacility. It specifiesblocks of physical stor-
age, called common blocks, that can be accessed by any scoping unit in an executable
program.

COMPLEX
The COMPLEX statement declares names of type COMPLEX.

DATA
The DATA statement providesinitial values for variables. It is not executable.

Derived-Type Definition Statement
The derived-type definition statement begins a derived-type definition.

DIMENSION
The DIMENSION statement specifies the shape of an array.

DLL_EXPORT (Windows only)
The DLLEXPORT statement declares to create a DLL.

DLL_IMPORT (Windows only)
The DLLIMPORT statement declaresto useaDLL.

DOUBLE PRECISION
The DOUBLE PRECISION statement declares names of type double precision REAL.

EQUIVALENCE
The EQUIVALENCE statement specifiesthat two or more objectsin ascoping unit sharethe
same storage.

EXTERNAL
The EXTERNAL statement specifies external procedures. Specifying a procedure name as
EXTERNAL permits the name to be used as an actual argument.

IMPLICIT

The IMPLICIT statement specifies, for a scoping unit, atype and optionally akind or a
CHARACTER length for each name beginning with aletter specified in the statement. Alter-
nately, it can specify that no implicit typing isto apply in the scoping unit.

INTEGER
The INTEGER statement declares names of type INTEGER.

INTENT
The INTENT statement specifies the intended use of a dummy argument.

Lahey/Fujitsu Fortran 95 Language Reference 35

Chapter 1 Elements of Fortran

36

INTRINSIC

The INTRINSIC statement specifies alist of names that represent intrinsic procedures.
Doing so permits a name that represents a specific intrinsic function to be used as an actual
argument.

LOGICAL
The LOGICAL statement declares names of type LOGICAL.

NAMELIST
The NAMELIST statement specifiesalist of variableswhich can bereferred to by one name
for the purpose of performing input/output.

MODULE PROCEDURE
The MODUL E PROCEDURE statement specifies that the namesin the statement are part of
ageneric interface.

OPTIONAL
The OPTIONAL statement specifiesthat any of the dummy arguments specified need not be
associated with an actual argument when the procedure is invoked.

PARAMETER
The PARAMETER statement specifies named constants.

POINTER
The POINTER statement specifies alist of variables that have the POINTER attribute.

PRIVATE
The PRIVATE statement specifies that the names of entities are accessible only within the
current module.

PUBLIC
The PUBLIC statement specifiesthat the names of entities are accessible anywhere the mod-
ulein which the PUBLIC statement appearsis used.

REAL
The REAL statement declares names of type REAL.

SAVE
The SAVE statement specifies that al objects in the statement retain their association, allo-
cation, definition, and value after execution of a RETURN or subprogram END statement.

SEQUENCE
The SEQUENCE statement can only appear in aderived type definition. It specifiesthat the
order of the component definitions is the storage sequence for objects of that type.

TARGET
The TARGET statement specifiesalist of object namesthat have the target attribute and thus
can have pointers associated with them.

TYPE
The TY PE statement specifiesthat all entities whose names are declared in the statement are
of the derived type named in the statement.

Lahey/Fujitsu Fortran 95 Language Reference

Input/Output Satements

USE
The USE statement specifiesthat aspecified moduleisaccessible by the current scoping unit.
It also provides a means of renaming or limiting the accessibility of entitiesin the module.

Input/Output Statements

BACKSPACE

The BACKSPACE statement positions the file before the current record, if thereisacurrent
record, otherwise before the preceding record.

CLOSE

The CLOSE statement terminates the connection of a specified input/output unit to an exter-
nal file.

ENDFILE
The ENDFILE statement writes an endfile record as the next record of thefile. Thefileis
then positioned after the endfile record, which becomes the last record of thefile.

FORMAT
The FORMAT statement provides explicit information that directs the editing between the
internal representation of data and the characters that are input or output.

INQUIRE
The INQUIRE statement enablesthe program to make inquiries about afile’ s existence, con-
nection, access method or other properties.

OPEN
The OPEN statement connects or reconnects an external file and an input/output unit.

PRINT
The PRINT statement transfers values from an output list to an input/output unit.

READ
The READ statement transfers values from an input/output unit to the entities specified in an
input list or a namelist group.

REWIND
The REWIND statement positions the specified file at itsinitial point.

WRITE
The WRITE statement transfers values to an input/output unit from the entities specified in
an output list or a namelist group.

Assignment and Storage Statements

ALLOCATE

For an alocatable array the ALLOCATE statement defines the bounds of each dimension
and allocates space for the array.

Lahey/Fujitsu Fortran 95 Language Reference 37

Chapter 1 Elements of Fortran

38

For a pointer the ALLOCATE statement creates an object that implicitly hasthe TARGET
attribute and associates the pointer with that target.

ASSIGN (obsolescent)
Assigns a statement label to an INTEGER variable.

Assignment
Assignsthe value of the expression on the right side of the equal sign to the variable on the
left side of the equal sign.

DEALLOCATE
The DEALLOCATE statement deallocates allocatable arrays and pointer targets and disas-
sociates pointers.

NULLIFY
The NULLIFY statement disassociates pointers.

Pointer Assignment
The pointer assignment statement associates a pointer with a target.

Program Structure Statements
BLOCK DATA
The BLOCK DATA statement begins a block data program unit.

CONTAINS
The CONTAINS statement separates the body of a main program, module, or subprogram
from any internal or module subprograms it contains.

END
The END statement ends a program unit, modul e subprogram, interface, or internal
subprogram.

FUNCTION
The FUNCTION statement begins a function subprogram, and specifiesits return type and
name (the function name by default), its dummy argument names, and whether it isrecursive.

INTERFACE

The INTERFACE statement begins an interface block. An interface block specifies the
forms of reference through which a procedure can be invoked. Aninterface block can be
used to specify a procedure interface, a defined operation, or a defined assignment.

MODULE
The MODULE statement begins a module program unit.

PROGRAM
The PROGRAM statement specifies a name for the main program.

Statement Function
A statement function is afunction defined by a single statement.

Lahey/Fujitsu Fortran 95 Language Reference

Satement Order

SUBROUTINE

The SUBROUTINE statement begins a subroutine subprogram and specifies its dummy

argument names and whether it is recursive.

Statement Order
There are restrictions on where a given statement can appear in a program unit or subpro-

gram. In general,

» USE statements come before specification statements;

» gpecification statements appear before executable statements, but FORMAT,

DATA, and ENTRY statements can appear among the executable statements; and

» module procedures and internal procedures appear following a CONTAINS

statement.

The following table summarizes statement order rules. Vertical lines separate statements

that can be interspersed. Horizontal lines separate statements that cannot be interspersed.

Table 6: Statement Order

PROGRAM, FUNCTION, SUBROUTINE, MODULE,

or BLOCK DATA statement

USE statements
IMPLICIT NONE
PARAMETER IMPLICIT
statements statements
FORMAT
and Derived-type definitions,
ENTRY PARAMETER interface blocks,
statements and DATA type declaration statements,
statements statement function statements,
and specification statements
DATA statements Executable statements

CONTAINS statement

Internal subprograms or module subprograms

END statement

Statements are restricted in what scoping units (see “ Scope” on page 57) they may appear,

asfollows:

Lahey/Fujitsu Fortran 95 Language Reference

39

Chapter 1 Elements of Fortran

* AnENTRY statement may only appear in an external subprogram or module
subprogram.

» A USE statement may not appear in aBLOCK DATA program unit.

* A FORMAT statement may not appear in amodule scoping unit, BLOCK DATA
program unit, or interface body.

* A DATA statement may not appear in an interface body.
» A derived-type definition may not appear in aBLOCK DATA program unit.
» Aninterface block may not appear in a BLOCK DATA program unit.

» A statement function may not appear in amodule scoping unit, BLOCK DATA pro-
gram unit, or interface body.

» Anexecutable statement may not appear in amodule scoping unit, aBLOCK DATA
program unit, or an interface body.

* A CONTAINS statement may not appear inaBLOCK DATA program unit, aninter-
nal subprogram, or an interface body.

Executable Constructs

40

Executable constructs control the execution of blocks of statements and nested constructs.

» The CASE and |F constructs control whether a block will be executed (see“ CASE
Construct” on page 79 and “ IF Construct” on page 138).

» The DO construct controls how many times a block will be executed (see“ DO Con-
struct” on page 106).

* The FORALL construct controls multiple assignments, masked array (WHERE)
assignments, and nested FORALL constructs and statements (see “ FORALL Con-
struct” on page 126).

» The WHERE construct controls which elements of an array will be affected by a
block of assignment statements (see “ WHERE Construct” on page 234).

Construct Names

Optional construct names can be used with CASE, IF, DO, and FORALL constructs. Use of
construct names can add clarity to aprogram. For the DO construct, construct names enable
aCYCLE or EXIT statement to leave aDO nesting level other than the current one. All con-
struct names must match for agiven construct. For example, if a SELECT CASE statement
has a construct name, the corresponding CASE and END SELECT statements must have the
same construct name.

Lahey/Fujitsu Fortran 95 Language Reference

Procedures

Procedures

Fortran has two varieties of procedures: functions and subroutines. Procedures are further
categorized in the following table:

Table 7: Procedures

Functions

Intrinsic Func-
tions

Generic Intrinsic
Functions

Specific Intrinsic
Functions

External Func-
tions

Generic External
Functions

Specific External
Functions

Internal Functions

Statement Functions

Subroutines

Intrinsic
Subroutines

Generic Intrinsic
Subroutines

Specific Intrinsic
Subroutines

External Sub-
routines

Generic External
Subroutines

Specific External
Subroutines

Internal Subroutines

Intrinsic procedures are built-in procedures that are provided by the Fortran processor.

An external procedureisdefined in aseparate program unit and can be separately compiled.
It is not necessarily coded in Fortran. External procedures and intrinsic procedures can be
referenced anywhere in the program.

Aninternal procedure is contained within ancther program unit. It can only be referenced
from within the containing program unit.

Internal and external procedures can be referenced recursively if the RECURSIVE keyword
isincluded in the procedure definition.

Lahey/Fujitsu Fortran 95 Language Reference

41

Chapter 1 Elements of Fortran

Intrinsic and external procedures can be either specific or generic. A generic procedure has
specific versions, which can be referenced by the generic name. The specific version usedis
determined by the type, kind, and rank of the arguments.

Additionally, procedures can be elemental or non-elemental. An elemental procedure can
takeasan argument either ascalar or an array. If the proceduretakesan array asan argument,
it operates on each element in the array asif it were ascalar.

Each of the various kinds of Fortran procedures is described in more detail below.

Intrinsic Procedures

Intrinsic procedures are built-in procedures provided by the Fortran processor. Fortran has
over one hundred standard intrinsic procedures. Each is documented in detail in the Alpha-
betical Reference. A tableisprovided in*® Intrinsic Procedures’ on page 249.

Subroutines

A subroutine is a self-contained procedure that isinvoked using a CALL statement. For
example,

program nai n
inmplicit none
interface ! an explicit interface is provided
subroutine rmultiply(x, y)
inmplicit none
real, intent(in out) :: x
real, intent(in) :: vy
end subroutine rmultiply
end interface

real :: a, b
a=4.0
b =12.0
call multiply(a, b)
print*, a

end program nmain

subroutine rmultiply(x, y)
inplicit none
real, intent(in out) :: x
real, intent(in) :: vy
mul tiply = x*y

end subroutine multiply

42 Lahey/Fujitsu Fortran 95 Language Reference

Functions

Thisprogram callsthe subroutinemul t i pl y and passestwo REAL actual arguments, a and
b. Thesubroutinenul ti pl y’s corresponding dummy arguments, x andy, refer to the same
storageasa and b in mai n. When the subroutine returns, a hasthevalue 48.0 and b is
unchanged.

The syntax for a subroutine definitionis

subroutine-stmt

[use-stmts]

[specification-part]

[execution-part]
[internal-subprogram-part]
end-subroutine-stmt

Where:
subroutine-stmt is a SUBROUTINE statement.

use-stmts is zero or more USE statements.
specification-part is zero or more specification statements.
execution part is zero or more executabl e statements.

internal -subprogram-part is
CONTAINS
procedure-definitions

procedure-definitions is one or more procedure definitions.

end-subroutine-stmt is
END [SUBROUTINE [subroutine-name] |

subroutine-name is the name of the subroutine.

Functions
A functionisaprocedure that produces asingle scalar or array result. Itisusedin an expres-
sionin the same way avariableis. For example, in the following program,

Lahey/Fujitsu Fortran 95 Language Reference 43

Chapter 1 Elements of Fortran

program mai n
inmplicit none
interface ! an explicit interface is provided
function square(x)
inmplicit none
real, intent(in) :: x
real :: square
end function square
end interface

real :: a, b=3.6, c=3.8, square

a =37+ b + square(c) + sin(4.7)
print*, a

stop

end program mai n

function square(x)
inplicit none

real, intent(in) :: X
real :: square

square = X*X

return

end function square
square(c) andsi n(4.7) arefunction references.
The syntax for afunction referenceis
function-name (actual-arg-list)

Where:
function-name is the name of the function.

actual-arg-listisalist of actual arguments.

A function can be defined as an internal or external function or as a statement function.

44 Lahey/Fujitsu Fortran 95 Language Reference

Functions

External Functions
External functions can be called from anywhere in the program. The syntax for an external
function definition is

function-stmt

[use-stmts]

[specification-part]

[execution-part]

[internal-subprogram-part]

end-function-stmt

Where:
function-stmt isa FUNCTION statement.

use-stmts is zero or more USE statements.
specification-part is zero or more specification statements.
execution part is zero or more executabl e statements.

internal -subprogram-part is
CONTAINS

procedure-definitions
procedure-definitions is one or more procedure definitions.

end-function-stnt is
END [FUNCTION [function-name]]

function-name is the name of the function.

Statement Functions

A statement function (see” Statement Function Statement” on page 217) isafunction defined
on asingle line with asingle expression. It can only be referenced within the program unit

inwhichitisdefined. A statement function isbest used where speed is more important than
reusability in other locations, and where the function can be expressed in asingle expression.

The following is an example equivalent to the external function examplein “ Functions’ on
page 43:

Lahey/Fujitsu Fortran 95 Language Reference 45

Chapter 1 Elements of Fortran

46

program mai n

real :: a, b=3.6, c=3.8, square
square(x) = x*X

a=237+0Db + square(c) + sin(4.7)
print*, a

end

Internal Procedures

A procedure can contain other procedures, which can bereferenced only from within the host
procedure. Such procedures are known asinternal procedures. An interna procedureis
specified within the host procedure following a CONTAINS statement, which must appear
after all the executabl e code of the containing subprogram. Theform of aninternal procedure
isthe same as that of an externa procedure.

Example:
subroutine external ()

call internal () I reference to internal procedure
cont ai ns
subroutine internal () ! only callable fromexternal ()

end subroutine internal

end subroutine external

Names from the host procedure are accessible to the internal procedure. Thisis called host
association.

Recursion

A Fortran procedure can reference itself, either directly or indirectly, only if the RECUR-
SIVE keyword is specified in the procedure definition. A function that callsitself directly
must use the RESULT option (see “ FUNCTION Statement” on page 131).

Pure Procedures

Fortran procedures can be specified as PURE, meaning that there is no chance that the pro-
cedure would have any side effect on data outside the procedure. Only pure procedures can
be used in specification expressions. The PURE keyword must be used in the procedure
declaration.

Lahey/Fujitsu Fortran 95 Language Reference

Elemental Procedures

Elemental Procedures

Fortran procedures can be elemental, meaning that they work on each element of an array
argument asif the argument were ascalar. The ELEMENTAL keyword must be used in the
procedure declaration. Note that all elemental procedures are also pure procedures.

Procedure Arguments

Arguments provide a means of passing information between a calling procedure and a pro-
cedureit calls. The calling procedure provides alist of actual arguments. The called
procedure accepts alist of dummy arguments.

Argument Intent

Because Fortran passes arguments by reference, unwanted side effects can occur when an
actual argument’s value is changed by the called procedure. To protect the program from
such unwanted side effects, the INTENT attributeisprovided. A dummy argument can have
one of the following attributes:

* INTENT (IN), when it isto be used to input data to the procedure and not to return
results to the calling subprogram;

* INTENT (OUT), when it isto be used to return results but not to input data; and

e INTENT (IN OUT), when it is to be used for inputting data and returning a result.
Thisisthe default argument intent.

The INTENT attribute is specified for dummy arguments using the INTENT statement or in
atype declaration statement.

Keyword Arguments

Using keyword arguments, the programmer can specify explicitly which actual argument
correspondsto which dummy argument, regardless of positionintheactual argumentlist. To
do so, specify the dummy argument name along with the actual argument, using the follow-
ing syntax:

keyword = actual-arg

Where:
keyword is the dummy argument name.

actual-arg is the actual argument.

Example:

call zee(c=1, b=2, a=3)

subroutine zee(a,b,c)

Lahey/Fujitsu Fortran 95 Language Reference 47

Chapter 1 Elements of Fortran

48

In the example, the actual arguments are provided in reverse order.

A procedure reference can use keyword arguments for zero, some, or all of the actual argu-
ments (see “ Optional Arguments” below). For those arguments not having keywords, the
order in the actual argument list determines the correspondence with the dummy argument
list. Keyword arguments must appear after any non-keyword arguments.

Note that for a procedure invocation to use keyword arguments an explicit interface must be
present (see “ Procedure Interfaces” on page 49).

Optional Arguments

An actual argument need not be provided for a corresponding dummy argument with the
OPTIONAL attribute. To make an argument optional, specify the OPTIONAL attribute for
the dummy argument, either in atype declaration statement or with the OPTIONAL
Statement.

An optional argument at the end of a dummy argument list can simply be omitted from the
corresponding actual argument list. Keyword arguments must be used to omit other optional
arguments, unless all of the remaining arguments in the reference are omitted. For example,

subroutine zee(a, b, c¢)
inplicit none
real, intent(in), optional :: a, c

real, intent(in out) :: b

end subroutine zee

In the above subroutine, a and c are optional arguments. In the following calls, various com-
binations of optional arguments are omitted:

call zee(b=3.0) ! a and c omtted, keyword necessary
call zee(2.0, 3.0) I c omtted

call zee(b=3.0, ¢c=8.5) ! a onmtted, keywords necessary

Itisusually necessary in aprocedure body to know whether or not an optional argument has
been provided. The PRESENT intrinsic function takes as an argument the name of an
optional argument and returnstrue if the argument is present and false otherwise. A dummy
argument or procedure that is not present must not be referenced except as an argument to
the PRESENT function or as an optional argument in a procedure reference.

Note that for a procedure to have optional arguments an explicit interface must be present
(see “ Procedure Interfaces’ on page 49). Many of the Fortran intrinsic procedures have
optional arguments.

Lahey/Fujitsu Fortran 95 Language Reference

Procedure Interfaces

Alternate Returns (obsolescent)

A procedure can be made to return to alabeled statement in the calling subprogram using an
alternate return. The syntax for an alternate return dummy argument is

*
The syntax for an alternate return actual argument is
* |abel

Where:
label is alabelled executable statement in the calling subprogram.

An argument to the RETURN statement is used in the called subprogram to indicate which
alternate return in the dummy argument list to take. For example,

call zee(a,b, *200, c, *250)

subroutine zee(a, b, *, c, *)

return 2 ! returns to label 250 in calling procedure

return 1 ! returns to label 200 in calling procedure
return I normal return

Dummy Procedures

A dummy argument can be the name of a procedure that isto be referenced in the called sub-
program or isto appear in aninterface block or inan EXTERNAL or INTRINSIC statement.
The corresponding actual argument must not be the name of an internal procedure or state-
ment function.

Procedure Interfaces

A procedureinterfaceisall the characteristics of aprocedurethat are of interest to the Fortran
processor when the procedureisinvoked. These characteristics include the name of the pro-
cedure, the number, order, type parameters, shape, and intent of the arguments; whether the
arguments are optional, and whether they are pointers; and, if the referenceisto afunction,
the type, type parameters, and rank of the result, and whether it isa pointer. If the function
result is not a pointer, its shape is an important characteristic. The interface can be explicit,
in which case the Fortran processor has access to all characteristics of the procedure inter-
face, or implicit, in which case the Fortran processor must make assumptions about the
interface.

Lahey/Fujitsu Fortran 95 Language Reference 49

Chapter 1 Elements of Fortran

Explicit Interfaces
Itisdesirable, to avoid errors, to create explicit interfaces whenever possible. In each of the
following cases, an explicit interface is mandatory:

If areferenceto a procedure appears

» with akeyword argument,

» asadefined assignment,

* inan expression as a defined operator, or
» asareferenceby its generic name;

or if the procedure has

e anoptiona dummy argument,

e anarray-valued result,

* adummy argument that is an assumed-shape array, a pointer, or atarget,

* aCHARACTER result whose length type parameter value is neither assumed nor
constant, or

» aresult that isapointer.

Aninterfaceis always explicit for intrinsic procedures, internal procedures, and module pro-
cedures. A statement function’sinterface isawaysimplicit. In other cases, explicit
interfaces can be established using an interface block:

Syntax:
interface-stmt
[interface-body] ...
[module procedure statement] ...
end-interface statement

Where:
interface-stmt is an INTERFACE statement.

interface-body is
function-stmt
[specification-part]
end stmt

or
subroutine-stmt
[specification-part]
end-stmt

modul e-procedure-stmt isa MODULE PROCEDURE statement.
end-interface-stmt is an END INTERFACE statement.
function-stmt isa FUNCTION statement.

subroutine-stmt is a SUBROUTINE statement.

specification-part is the specification part of the procedure.

50 Lahey/Fujitsu Fortran 95 Language Reference

Procedure Interfaces

end-stmt is an END statement.

Example:
interface
subroutine x(a, b, c)
inmplicit none
real, intent(in), dimension (2,8) :: a
real, intent(out), dinmension (2,8) :: b, c
end subroutine x
function y(a, b)
inmplicit none
logical, intent (in) :: a, b
end function vy
end interface

In this example, explicit interfaces are provided for the proceduresx andy. Any errorsin
referencing these procedures in the scoping unit of the interface block will be diagnosed at
compile time.

Generic Interfaces

An INTERFACE statement with a generic-name (see “ INTERFACE Satement” on page
152) specifies a generic interface for each of the proceduresin the interface block. In this
way external generic procedures can be created, analogous to intrinsic generic procedures.

Example:
interface swap ! generic swap routine
subroutine real _swap(x, V)
inmplicit none
real, intent (in out) :: X, y
end subroutine real _swap
subroutine int_swap(x, Yy)
inplicit none
integer, intent (in out) :: X, Vy
end subroutine int_swap
end interface

Here the generic procedure swap can be used with both the REAL and INTEGER types.

Defined Operations
Operators can be extended and new operators created for user-defined and intrinsic data
types. Thisisdone using interface blocks with INTERFACE OPERATOR (see“ INTER-

FACE Satement” on page 152).
A defined operation has the form
operator operand

for a defined unary operation, and

Lahey/Fujitsu Fortran 95 Language Reference 51

Chapter 1 Elements of Fortran

52

operand operator operand

for a defined binary operation, where operator is one of the intrinsic operators or a user-
defined operator of the form

.operator-name.
where .operator-name. consists of oneto 31 letters.
For example, either

a .intersection. b

or
a*b

might be used to indicate the intersection of two sets. The generic interface block might look
like

interface operator (.intersection.)
function set_intersection (a, b)
inplicit none
type (set), intent (in) :: a, b, set_intersection
end function set_intersection
end interface

for the first example, and

interface operator (*)
function set_intersection (a, b)
implicit none
type (set), intent (in) :: a, b, set intersection
end function set_intersection
end interface

for the second example. Thefunctionset _i nt er sect i on would then contain the code to
determine the intersection of a and b.

The precedence of a defined operator is the same as that of the corresponding intrinsic oper-
ator if an intrinsic operator is being extended. If a user-defined operator is used, a unary
defined operation has higher precedence than any other operation, and a binary defined oper-
ation has alower precedence than any other operation.

Anintrinsic operation (such as addition) cannot be redefined for valid intrinsic operands. For
example, it isillegal to redefine plus to mean minus for numeric types.

The functions specified in the interface block take either one argument, in the case of a
defined unary operator, or two arguments, for adefined binary operator. The operand or
operandsin adefined operation become the argumentsto afunction specified in theinterface
block, depending on their type, kind, and rank. If adefined binary operation is performed,

Lahey/Fujitsu Fortran 95 Language Reference

Program Units

the | eft operand corresponds to the first argument and the right operand to the second argu-
ment. Both unary and binary defined operationsfor a particular operator may be specifiedin
the same interface block.

Defined Assighment

The assignment operator may be extended using an interface block with INTERFACE
ASSIGNMENT (see“ INTERFACE Satement” on page 152). The mechanismissimilar to
that used to resolve a defined binary operation (see“ Defined Operations’ on page 51), with
the variable on the left side of the assignment corresponding to the first argument of a sub-
routinein theinterface block and the data object on theright side corresponding to the second
argument. Thefirst argument must be INTENT (OUT) or INTENT (IN OUT); the second
argument must be INTENT (IN).

Example:
interface assignment (=) ! use = for integer to
! logical array
subroutine integer_to_logical _array (b, n)
inmplicit none
logical, intent (out) :: b(:)
integer, intent (in) :: n
end subroutine integer_to_| ogical _array
end interface

Here the assignment operator is extended to convert INTEGER datato a LOGICAL array.

Program Units

Program units are the smallest elements of a Fortran program that may be separately com-
piled. There arefive kinds of program units:

» Main Program

e External Function Subprogram

» External Subroutine Subprogram

» Block Data Program Unit

» Module Program Unit

External Functions and Subroutines are described in “ Functions’ on page 43 and “ Intrinsic

Procedures’ on page 42.

Lahey/Fujitsu Fortran 95 Language Reference 53

Chapter 1 Elements of Fortran

54

Main Program

Execution of a Fortran program begins with the first executable statement in the main pro-
gram and ends with a STOP statement anywhere in the program or with the END statement
of the main program.

The form of amain programis

[program-stnt]
[use-stmts]
[specification-part]
[execution-part]
[internal-subprogram-part]
end-stmt

Where:

program-stnt isa PROGRAM statement.

use-stmts is one or more USE statements.
specification-part is one or more specification statements or interface blocks.

execution-part is one or more executable statements, other than RETURN or ENTRY
Statements.

internal-subprogramis one or more internal procedures.

end-stmt is an END statement.

Block Data Program Units

A block data program unit providesinitial values for datain one or more named common
blocks. Only specification statements may appear in ablock dataprogram unit. A block data
program unit may be referenced only in EXTERNAL statements in other program units.

The form of ablock data program unit is

bl ock-data-stmt
[specification-part]
end-stmt

Where:
block-data-stmt isaBLOCK DATA statement.

specification-part is one or more specification statements, other than ALLOCATABLE,
INTENT, PUBLIC, PRIVATE, OPTIONAL, and SEQUENCE.

end-stmt is an END statement.

Lahey/Fujitsu Fortran 95 Language Reference

Module Program Units

Module Program Units

Module program units provide a means of packaging anything that is required by more than
one scoping unit (ascoping unit is a program unit, subprogram, derived type definition, or
procedure interface body, excluding any scoping unitsit contains). Modules may contain
type specifications, interface bl ocks, executable codein modul e subprograms, and references
to other modules. The namesin amodule can be specified PUBLIC (accessible wherever the
module is used) or PRIVATE (accessible only in the scope of the moduleitself). Typical
uses of modulesinclude

» declaration and initialization of datato be used in more than one subprogram without
using common blocks.

» gpecification of explicit interfaces for procedures.

» definition of derived types and creation of reusabl e abstract datatypes (derived types
and the procedures that operate on them).

In LF95, any module program units must appear before any other program unitsin a source
file.

The form of a module program unit is

modul e-stmt

[use-stmts]

[specification-part]

[module-subprogram-part]
end-stmt

Where:
module-stmt isaMODULE statement.

use-stmts is one or more USE statements.

specification-part is one or more interface blocks or specification statements other than
OPTIONAL or INTENT.

modul e-subprogram part is CONTAINS, followed by one or more module procedures.
end-stmt is an END statement.

Example:
nodul e exanpl e
inmplicit none

i nteger, dinension(2,2) :: barl=1, bar2=2
t ype phone_nunber Iderived type definition
i nteger :: area_code, nunber

end type phone_nunber

Lahey/Fujitsu Fortran 95 Language Reference 55

Chapter 1 Elements of Fortran

i nterface lexplicit interfaces
function test(sanple, result)
inmplicit none
real :: test
integer, intent(in) :: sanple,result
end function test
function count(total)
implicit none
i nteger :: count
real,intent(in) :: tota
end function count
end interface

interface swap lgeneric interface
nodul e procedure swap_real s, swap_i nt egers
end interface

cont ai ns

function swap_reals I nodul e procedure

end function swap_reals

function swap_i ntegers !nodul e procedure

end function swap_i ntegers
end nodul e exanmpl e

Module Procedures

M odule procedures have the same rules and organization as external procedures. They are
analogousto internal procedures, however, in that they have accessto the data of the host
module. Only program units that use the host module have access to the module’ s module
procedures. Procedures may be made local to the module by specifying the PRIVATE
attribute in a PRIVATE statement or in atype declaration statement within the module.

Using Modules
Information contained in a module may be made available within another program unit via
the USE statement. For example,

use set _nodul e

would give the current scoping unit accessto the namesin module set _nodul e. If aname
inset _nodul e conflictswith anamein the current scoping unit, an error occurs only if that
name s referenced. To avoid such conflicts, the USE statement has an aiasing facility:

use set_nodule, a => b

Here the module entity b would be known as a in the current scoping unit.

56 Lahey/Fujitsu Fortran 95 Language Reference

Scope

Scope

Another way of avoiding name conflicts, if the module entity name is not needed in the cur-
rent scoping unit, iswith the ONLY form of the USE statement:

use set_nodule, only : ¢, d
Here, only the names c and d are accessible to the current scoping unit.

Forward references to modules are not allowed in LF95. That is, if amoduleis used in the
same source filein which it resides, the module program unit must appear before its use.

Names of program units, common blocks, and external procedures have global scope. That
is, they may be referenced from anywhere in the program. A global name must not identify
more than one global entity in a program.

Names of statement function dummy arguments have statement scope. The same name may
be used for adifferent entity outside the statement, and the name must not identify more than
one entity within the statement.

Names of implied-do variablesin DATA statements and array constructors have a scope of
theimplied-do list. The same name may be used for a different entity outside the implied-
DO list, and the name must not identify more than one entity within the implied-DO list.

Other names have local scope. Thelocal scope, called ascoping unit, isone of thefollowing:
» aderived-type definition, excluding the name of the derived type.
» aninterface body, excluding any derived-type definitions or interface bodies within
it.
e aprogram unit or subprogram, excluding derived-type component definitions, inter-
face bodies, and subprograms contained within it.

Names in a scoping unit may be referenced from a scoping unit contained within it, except
when the same name is declared in the inner, contained scoping unit. Thisisknown as host
association. For example,

Lahey/Fujitsu Fortran 95 Language Reference 57

Chapter 1 Elements of Fortran

subroutine external ()
inmplicit none
integer :: a, b

cont ai ns

subroutine internal ()
inplicit none
integer :: a

a=b ! ais the local a;
! b is available by host association

end subroutine internal

end subroutine external

In the statement a=b, above, a isthe a declared in subroutinei nt er nal , not the a declared
in subroutine ext er nal . b isavailable from ext er nal by host association.

Data Sharing

To make an entity available to more than one program unit, passit as an argument, place it
in acommon block (see “ COMMON Satement” on page 88), or declare it in a module and
use the module (see “ Module Program Units” on page 55).

58 Lahey/Fujitsu Fortran 95 Language Reference

Alphabetical
Reference

ABS Function

Description

Absolute value.

Syntax
ABS (a)

Arguments
amust be of type REAL, INTEGER, or COMPLEX.

Result
If aisof type INTEGER or REAL, theresult is of the sametype asa and hasthe value [a]; if

ais COMPLEX with value (x,y), the result isa REAL representation of X+ y2 .

Example

X = abs(-4.2) ! x is assigned the value 4.2

ACHAR Function

Description
Character in a specified position of the ASCII collating sequence.

Lahey/Fujitsu Fortran 95 Language Reference 59

Chapter 2 Alphabetical Reference

Syntax
ACHAR (i)

Arguments
i must be of type INTEGER.

Result
A CHARACTER of length onethat is the character in position (i) of the ASCII collating
sequence.
Example
¢ = achar(65) ! c is assigned the value 'A

ACOS Function

Description
Arccosine.

Syntax
ACOS (x)

Arguments
x must be of type REAL and must be withintherange -1<x<1.

Result
A REAL representation, expressed in radians, of the arccosine of x.

Example
r = acos(.5) ! r is assigned the value 1.04720

ADJUSTL Function

Description
Adjust to the left, removing leading blanks and inserting trailing blanks.

60 Lahey/Fujitsu Fortran 95 Language Reference

ADJUSTR Function

Syntax
ADJUSTL (string)

Arguments
string must be of type CHARACTER.

Result

A CHARACTER of the samelength and kind as string. Itsvalueisthe same asthat of string
except that any leading blanks have been deleted and the same number of trailing blanks has
been inserted.

Example
adj usted = adjustl (' string')
I adjusted is assigned the value 'string

ADJUSTR Function

Description
Adjust to the right, removing trailing blanks and inserting leading blanks.

Syntax
ADJUSTR (string)

Arguments
string must be of type CHARACTER.

Result

A CHARACTER of the samelength and kind as string. Itsvalueisthe sameasthat of string
except that any trailing blanks have been del eted and the same number of leading blanks has
been inserted.

Example
adjusted = adjustr('string ")
! adjusted is assigned the value ' string'

AIMAG Function

Description
Imaginary part of acomplex number.

Lahey/Fujitsu Fortran 95 Language Reference 61

Chapter 2 Alphabetical Reference

Syntax
AIMAG (2

Arguments
zmust be of type COMPLEX.

Result
A REAL with the samekind asz If zhasthe value (x,y) then the result hasthe valueyy.

Example
r = aimag(-4.2,5.1) ! r is assigned the value 5.1

AINT Function

Description
Truncation to awhole number.

Syntax
AINT (a, kind)

Required Arguments
a must be of type REAL.

Optional Arguments
kind must be ascalar INTEGER expression that can be evaluated at compile time.

Result

A REAL vauewith the kind specified by kind, if present; otherwise with thekind of a. The
result is equal to the value of a without its fractional part.

Example

r=aint(-7.32,2) ! r is assigned the value -7.0
' with kind 2

ALL Function

Description
Determine whether al valuesin amask are true along a given dimension.

62 Lahey/Fujitsu Fortran 95 Language Reference

ALLOCATABLE Satement

Syntax
ALL (mask, dim)

Required Arguments

mask must be of type LOGICAL. It must not be scalar.

Optional Arguments

dim must be a scalar of type INTEGER with avalue withintherange 1< x<n, wherenis
the rank of mask. The corresponding actual argument must not be an optional dummy

argument.

Result

The result is of type LOGICAL with the same kind asMASK. Itsvalue and rank are com-

puted as follows:

1. If dimisabsent or mask has rank one, the result is scalar. The result has the value

trueif all elements of mask are true.

2. If dimispresent or mask hasrank two or greater, theresult isan array of rank n-1 and

of shape (d,, d,, ..

"ddim—l’ddim+11

,d,) where (dq, d,, ...,d,) istheshape

of mask and nisthe rank of mask. The result hasthe value true for each correspond-
ing vector in mask that evaluates to true for all elementsin that vector.

Example
i nteger, dinension (2,3) a, b
| ogi cal , dinension (2) c
| ogi cal , dinension (3) d
logical :: e
a = reshape((/1,2,3,4,5,6/), (/2,3/))
I represents |1 3 5]
|2 4 6]
b = reshape((/1,2,3,5,6,4/), (/2,3/))
I represents |1 3 6|
|2 5 4
e = all (a==b) | e is assigned the value false
d = all(a==b, 1)! d is assigned the value true,fal se,
I fal se
c = all(a==b, 2)! c is assigned the value false,fal se

ALLOCATABLE Statement

Description

The ALLOCATABLE statement declares allocatable arrays. The shape of an alocatable
array is determined when space is alocated for it by an ALLOCATE statement.

Lahey/Fujitsu Fortran 95 Language Reference 63

Chapter 2 Alphabetical Reference

Syntax
ALLOCATABLE] ::] array-name[(deferred-shape)] [, array-name (deferred-
shape)] ...

Where:
array-name is the name of an array.

deferred-shapeis: [, :] ... wherethe number of colonsisequal to the rank of array-name.

Remarks

If the DIMENSION of array-nameis specified el sewhere in the scoping unit, it must be spec-
ified as a deferred-shape.

Example
integer :: a, b, c(:,:,:) ! rank of c is specified
di mension b(:,:) ! rank of b is specified
al l ocatable a(:), b, c ! rank of a is specified,
I a,b, and ¢ are allocatable
allocate (a(2), b(3,-1:1), c(10,10,10))
! shapes specified,
! space al |l ocat ed

deal | ocate (a,b,c) ! space deall ocat ed

ALLOCATE Statement

64

Description

For an alocatable array the ALLOCATE statement defines the bounds of each dimension
and allocates space for the array.

For a pointer the ALLOCATE statement creates an object that implicitly hasthe TARGET
attribute and associates the pointer with that target.

Syntax
ALLOCATE (allocation-list [, STAT = stat-variable])

Where:
allocation-list isa comma-separated list of pointers or allocatable arrays and, for each allo-
catable array, alist of dimension bounds, ([lower-bound :] upper-bound [, ... 1)

upper bound and lower-bound are scalar INTEGER expressions.

stat-variableis ascalar INTEGER variable.

Lahey/Fujitsu Fortran 95 Language Reference

ALLOCATE Satement

Remarks

If the optional STAT=is present and the ALLOCATE statement succeeds, stat-variableis
assigned the value zero. If STAT=ispresent and the ALLOCATE statement fails, stat-vari-
able is assigned the number of the error message generated at runtime.

If an error condition occurs during execution of an ALLOCATE statement that does not con-
tain the STAT= specifier, execution of the executable program is terminated.

For an allocatable array:

1

Subsequent redefinition of lower-bound or upper-bound does not affect the array
bounds.

If lower-bound is omitted, the default value is one.

If upper-bound isless than lower-bound, the extent of that dimension is zero and the
array has zero size.

The allocatable array can be of type CHARACTER with zero length.

Allocating a currently allocated allocatable array causes an error condition in the
ALLOCATE statement.

The ALLOCATED intrinsic function can be used to determine whether an all ocat-
ablearray is currently allocated.

For a pointer:

1

If apointer that is currently associated with atarget is allocated, anew pointer target
is created and the pointer is associated with that target.

The ASSOCIATED intrinsic function can be used to determine whether a pointer is
currently associated with atarget.

A function whose result is a pointer must cause the pointer to be associated or
dissociated.

Example

logical :: I, m
integer, pointer :: i
integer, allocatable, dinension (:,:) :: j
| = associated (i) ! | is assigned the value false
m = all ocated (j) ! mis assigned the value false
al locate (j(4,-2:3))! shape of J defined,

I space allocated
allocate (i) ! i points to unnaned target
| = associated (i) ! | is assigned the value true
m = all ocated (j) ! mis assigned the value true

deal | ocate (i,]j) I space deal | ocat ed

Lahey/Fujitsu Fortran 95 Language Reference 65

Chapter 2 Alphabetical Reference

ALLOCATED Function

Description
Indicate whether an allocatable array has been all ocated.

Syntax
ALLOCATED (array)

Arguments
array must be an alocatable array.

Result

Theresult isascalar of default LOGICAL type. It hasthe valuetrueif array is currently
allocated and falseif array isnot currently allocated. Theresult isundefined if the allocation
status of array is undefined.

Example
integer, allocatable :: i(:,:)
allocate (i(2,3))
| = allocated (i) ! | is assigned the value true

ANINT Function

66

Description
REAL representation of the nearest whole number.

Syntax
ANINT (a, kind)

Required Arguments
a must be of type REAL.

Optional Arguments
kind must be ascalar INTEGER expression that can be evaluated at compile time.

Result

Theresult isof type REAL. If kind is present, the kind is that specified by kind; otherwise,
itisthekind of a. If a> 0, theresult hasthevalue INT(a + 0.5); if a< 0, theresult has the
valueINT(a- 0.5).

Lahey/Fujitsu Fortran 95 Language Reference

ANY Function

Example
X = anint (7.73) ! x is assigned the value 8.0

ANY Function

Description:
Determine whether any values are true in amask along a given dimension.

Syntax
ANY (mask, dim)

Required Arguments
mask must be of type LOGICAL. It must not be scalar.

Optional Arguments

dim must be a scalar of type INTEGER with avalue withintherange 1< x<n, wherenis
the rank of mask. The corresponding actual argument must not be an optional dummy
argument.

Result
Theresultisof type LOGICAL withthe samekind asmask. Itsvalue and rank are computed
asfollows:

1. If dimisabsent or mask hasrank one, the result is scalar. The result has the value
true if any elements of mask are true.

2. If dimispresent or mask hasrank two or greater, theresult isan array of rank n-1 and
of shape (d;, d,, ..., dgm-1,%im+1:---.d,) where (dq,d,, ...,d,) istheshape
of mask and nisthe rank of mask. The result has the value true for each correspond-
ing vector in mask that evaluates to true for any element in that vector.

Lahey/Fujitsu Fortran 95 Language Reference 67

Chapter 2 Alphabetical Reference

Example
integer, dinension (2,3) :: a, b
| ogical, dinension (2) :: c
| ogical, dinension (3) :: d
logical :: e

a = reshape((/1,2,3,4,5,6/), (/2,3/))
! represents |1 3 5]
|2 4 6|

b = reshape((/1,2,3,5,6,4/), (/2,3/))
! represents |1 3 6|

|2 5 4]
e = any(a==b) | e is assigned the value true
d = any(a==b, 1)! d is assigned the value true, true,

I fal se
= any(a==b, 2)! c¢ is assigned the value true, true

(9]
|

Arithmetic IF Statement (obsolescent)

68

Description

Execution of an arithmetic | F statement causes evaluation of an expression followed by a
transfer of control. The branch target statement identified by the first, second, or third label
is executed next if the value of the expression isless than zero, equal to zero, or greater than
zero, respectively.

Syntax
IF (expr) label, label, label

Where:
expr isascalar numeric expression.

label is astatement label.

Remarks
Each label must be the label of a branch target statement that appears in the same scoping
unit as the arithmetic IF statement.

expr must not be of type COMPLEX.
The same label can appear more than once in one arithmetic I F statement.
Example

if (b) 10,20,30 ! goto 10 if b<0

I goto 20 if b=0
I goto 30 if b>0

Lahey/Fujitsu Fortran 95 Language Reference

ASN Function

ASIN Function

Description
Arcsine.

Syntax
ASIN (x)

Arguments
x must be of type REAL and must beintherange -1<x<1.

Result
The result hasthe samekind asx. ItsvalueisaREAL representation of the arcsine of x,
expressed in radians.

Example
r = asin(.5) ! r is assigned the value 0.523599

Assigned GOTO Statement (obsolescent)

Description

Theassigned GOTO statement causes atransfer of control to the branch target statement indi-
cated by avariable that was assigned a statement label in an ASSIGN statement. If the
parenthesized list of labelsis present, the variable must be one of the labelsin thelist.

Syntax
GOTO assign-variable[[,] (labels)]

Where:
assign-variableisascalar INTEGER variable that was assigned alabel in an ASSIGN
statement.

labels is a comma-separated list of statement labels.

Remarks
At the time of execution of the GOTO statement, assign-variable must be defined with the
value of alabel of abranch target statement in the same scoping unit.

Example
assign 100 to i
goto i
100 continue

Lahey/Fujitsu Fortran 95 Language Reference 69

Chapter 2 Alphabetical Reference

ASSIGN Statement (obsolescent)

Description
Assigns a statement label to an INTEGER variable.

Syntax
ASSIGN label TO assign-variable

Where:
label is astatement label.

assign-variableisascalar INTEGER variable.

Remarks

assign-variable must be a named variable of default INTEGER kind. It must not be a struc-
ture component or an array element.

label must be the target of a branch target statement or the label of a FORMAT statement in
the same scoping unit.

When defined with an INTEGER value, assign-variable must not be used as alabel.

When assigned alabel, assign-variable must not be used as anything except a label.

Example
assign 100 to i
goto i
100 continue

Assignment Statement

70

Description
Assigns the value of the expression on the right side of the equal sign to the variable on the
left side of the equal sign.

Syntax
variable = expression

Where:
variableis ascaar variable, an array, or avariable of derived type.

expression is an expression whose result is conformable with variable.

Lahey/Fujitsu Fortran 95 Language Reference

Assignment Satement

Remarks

A numeric variable can only be assigned a numeric; a CHARACTER variable can only be
assigned a CHARACTER with the same kind; aLOGICAL variable can only be assigned a
LOGICAL; and a derived type variable can only be assigned the same derived type.

Evaluation of expression takes place before the assignment. If the kind of expression is dif-
ferent from that of variable, the result of expression undergoes an implicit type conversion
to the kind and type of variable. Precision can be lost.

If expressionisarray-valued, then variable must bean array. If expressionisscaar and vari-
ableisan array, all elements of variable are assigned the value of expression.

If variable is a pointer, it must be associated with atarget. Thetarget is assigned the value
of expression.

If variable and expression are of CHARACTER type with different lengths, expression is
truncated if longer than variable, and padded on the right with blanksif expression is shorter
than variable.

Example
real :: a=1.5, b(10)
integer :: i=2, j(10)
character (len =5) :: string5 = "abcde"
character (len =7) :: string7 = "cdefghi"”
type person
integer :: age
character (len = 25) :: nanme
end type person
type (person) :: personl, person2
i = a i is assigned int(a)
error

!
i =] !
i I each elenment in j assigned
I the value 2
j =b I each elenment in j assigned
I corresponding value in b
I converted to integer
I string5 is assigned "cdefg"
I string7 is assigned "abcde

string5 = string7
string7 = string5
personl % age = 5
personl % name = "
person2 = personl

ohn"

each component of person2 is
assi gned the value of the
correspondi ng conponent

of personl

Lahey/Fujitsu Fortran 95 Language Reference 71

Chapter 2 Alphabetical Reference

ASSOCIATED Function

Description
Indicate whether a pointer is associated with atarget.

Syntax
ASSOCIATED (pointer, target)

Required Arguments
pointer must be a pointer whose pointer association status is not undefined.

Optional Arguments

target must be a pointer or target. If it isapointer, its pointer association status must not be
undefined.

Result

Theresult isof type default LOGICAL. If target isabsent, the resultistrueif pointer is cur-
rently associated with atarget and falseif it isnot. If target is present and is atarget, the
result istrueif pointer is currently associated with target and falseif itisnot. If targetis
present and is a pointer, the result is true if both pointer and target are currently associated
with the same target and false if they are not.

Example

real, pointer :: a, b, e
real, target :: c, f
logical :: |
a=>c¢
b =>c
e => f

= associ ated (a)

= associated (a, c)

I is assigned the value true
I

| = associated (a, b)

I

I

I

| is assigned the value true

| is assigned the value true
= associated (a, f) I
= associated (a, e) I

i s assigned the value fal se
i s assigned the value fal se

ATAN Function

72

Description
Arctangent.

Lahey/Fujitsu Fortran 95 Language Reference

ATANZ2 Function

Syntax
ATAN (X)

Arguments
x must be of type REAL.

Result

Theresult isa REAL representation of the arctangent of X, expressed in radians, that lies
withintherange -/ 2<x<1w/2.

Example
a = atan(.5) ! a is assigned the value 0.463648

ATAN2 Function

Description
Arctangent of y/x (principal value of the argument of the complex number (x,y)).

Syntax
ATAN2 (y, X)

Arguments
y must be of type REAL.
x must be of the samekind asy. If y hasthe value zero, x must not have the value zero.

Result

Theresult isof the samekind asx. ItsvalueisaREAL representation, expressed in radians,
of the argument of the complex number (x,y).

Example
x = atan2 (1, 1) ! x is assigned the value 0.785398

BACKSPACE Statement

Description

The BACK SPACE statement positions the file before the current record if thereis a current
record, otherwise before the preceding record.

Lahey/Fujitsu Fortran 95 Language Reference 73

Chapter 2 Alphabetical Reference

Syntax
BACKSPACE unit-number

or
BACKSPACE (position-spec-list)

Where:

unit-number isascalar INTEGER expression corresponding to the input/output unit number
of an external file.

position-spec-list is[[UNIT =] unit-number][, ERR = label][, IOSTAT = stat | where
UNIT=, ERR=, and IOSTAT= can bein any order but if UNIT=isomitted, then unit-number
must be first.

label isastatement label that is branched to if an error condition occurs during execution of
the statement.

stat isavariable of type INTEGER that is assigned a positive value if an error condition
occurs, a hegative value if an end-of-file or end-of-record condition occurs, and zero
otherwise.

Remarks
If thereisno current record and no preceding record, the file position is left unchanged.
If the preceding record is an endfile record, the file is positioned before the endfile record.

If the BACKSPACE statement causes the implicit writing of an endfile record, thefileis
positioned before the record that precedes the endfile record.

Backspacing afile that is connected but does not exist is prohibited.
Backspacing over records using list-directed or namelist formatting is prohibited.
Example
backspace 10 ! file connected to unit 10 backspaced
backspace (10, err = 100)

! file connected to unit 10 backspaced
I on error goto |abel 100

BIT_SIZE Function

Description
Size, in bits, of adata object of type INTEGER.

74 Lahey/Fujitsu Fortran 95 Language Reference

BLOCK DATA Satement

Syntax
BIT_SIZE (i)

Arguments
i must be of type INTEGER.

Result
Theresult hasthe samekind asi. Itsvalueisequal to the number of bitsini.

Example
integer :: i, m
integer, dinmension (2) :: j, n

m= bit_size (i) ! mis assigned the value 32
n ="hit_size (j) ! nis assigned the value [32 32]

BLOCK DATA Statement

Description
The BLOCK DATA statement begins a block data program unit.

Syntax
BLOCK DATA [block-data-name]

Where:
block-data-name is an optional name given to the block data program unit.

Example
bl ock data nydata
common /d/ a, b, c
data a/1.0/, b/2.0/, c/3.0/
end bl ock data nydata

BTEST Function

Description
Test abit of an INTEGER data object.

Lahey/Fujitsu Fortran 95 Language Reference 75

Chapter 2 Alphabetical Reference

Syntax
BTEST (i, pos)

Arguments
i must be of type INTEGER.

pos must be of type INTEGER. It must be non-negative and lessthan BIT_SIZE (i). Bits
are numbered from least significant to most significant, beginning with O.

Result

Theresult is of type default LOGICAL. It hasthe value true if bit pos has the value 1 and
falseif bit pos has the value zero.

Example
| = btest (1, 0) ' 1 is assigned the value true
| = btest (4, 1) ! 1 is assigned the value fal se
| = btest (32, 5) ! | is assigned the value true

CALL Statement

76

Description
The CALL statement invokes a subroutine and passesto it alist of arguments.

Syntax

CALL subroutine-name [([actual-arg-list])]

Where:
subroutine-name is the name of a subroutine.

actual-arg-list is[[keyword =] actual-arg] [, ...]

keyword is the name of a dummy argument to subroutine-name.

actual-arg is an expression, avariable, a procedure name, or an alternate-return-spec.
alternate-return-spec is *label

label is a statement abel.

Remarks

General:

actual-arg-list definesthe correspondence between the actual -args supplied and the dummy
arguments of the subroutine.

Lahey/Fujitsu Fortran 95 Language Reference

CALL Satement

If keyword = is present, the actual argument is passed to the dummy argument whose name
isthe sameaskeyword. If akeyword = isabsent, the actual argument is passed to the dummy
argument in the corresponding position in the dummy argument list.

keyword = must appear with an actual-arg unless no previous keyword = has appeared in the
actual-arg-list.

keyword = can only appear if the interface of the procedure is explicit in the scoping unit.

An actual-arg can be omitted if the corresponding dummy argument has the OPTIONAL
attribute. Each actual-arg must be associated with a corresponding dummy argument.

Data objects as arguments:
An actual argument must be of the same kind as the corresponding dummy argument.

If the dummy argument is an assumed-shape array of type default CHARACTER, itslength
must agree with that of the corresponding actual argument.

Thetotal length of adummy argument of type default CHARACTER must be less than or
equal to that of the corresponding actual argument.

If the dummy argument isapointer, the actual argument must be apointer and the types, type
parameters, and ranks must agree. At theinvocation of the subroutine, the dummy argument
pointer receives the pointer association status of the actual argument. At the end of the sub-
routine, the actual argument receives the pointer association status of the dummy argument.

If the actual argument hasthe TARGET attribute, any pointers associated with it remain asso-
ciated with the actual argument. If the dummy argument has the TARGET attribute, any
pointers associated with it become undefined when the subroutine compl etes.

The ranks of dummy arguments and corresponding actual arguments must agree unless the
actual argument isan element of an array that is not an assumed-shape or pointer array, or a
substring of such an element.

Procedures as arguments:
If adummy argument isadummy procedure, the associated actual argument must be the spe-
cific name of an external, module, dummy, or intrinsic procedure.

Theintrinsic functions AMAX0, AMAX1, AMINO, AMIN1, CHAR, DMAX1, DMIN1,
FLOAT, ICHAR, IDINT, IFIX, INT, LGE, LGT, LLE,LLT, MAX0, MAX1, MINO, MIN1,
REAL, and SNGL are not permitted as actual arguments.

If ageneric intrinsic function nameis also a specific name, only the specific procedureis
associated with the dummy argument.

If adummy procedure has an implicit interface either the name of the dummy argument is
explicitly typed or the procedure isreferenced asafunction. The dummy procedure must not
be called as a subroutine and the actual argument must be a function or dummy procedure.

If adummy procedure has an implicit interface and the procedure is called as a subroutine,
the actual argument must be a subroutine or adummy procedure.

Lahey/Fujitsu Fortran 95 Language Reference 77

Chapter 2

Alphabetical Reference

Alternate returns as arguments:

If adummy argument is an asterisk, the corresponding actual argument must be an alternate-
return-spec. Thelabel in the alter nate-retur n-spec must identify an executable construct in
the scoping unit containing the procedure reference.

Example
call al pha (x, vy)
subroutine al pha (a, b)
inplicit none
real, intent(in) :: a

real, intent(out) :: b

end subroutine al pha

CARG Function

Description
Pass item to a procedure as a C data type by value. CARG can only be used as an actual
argument.

Syntax
CARG (item)

Arguments
item can be anamed data object of any intrinsic type except COMPLEX and four-byte L OG-
ICAL. Itisthe dataobject for which to return avalue. itemisan INTENT(IN) argument.

78 Lahey/Fujitsu Fortran 95 Language Reference

CASE Construct

Result
Theresult isthe value of item. Its C datatypeisasfollows:

Table 8: CARG result types

Fortran Type Fortran Kind C type
INTEGER 1 signed char
INTEGER 2 signed short int
INTEGER 4 signed long int
REAL 4 float
must not be passed by value; if
passed by reference (without
CARGQG) it isapointer to a structure
COMPLEX 4 of the form:
struct complex {
float real_part;
float imaginary_part;};
LOGICAL 1 unsigned char
LOGICAL 4 must not be passed by value or by
reference
CHARACTER 1 char *
Example

i = nmy_c_function(carg(a)) ! a is passed by val ue

CASE Construct

Description
The CASE construct is used to select between blocks of executable code based on the value
of an expression.

Lahey/Fujitsu Fortran 95 Language Reference 79

Chapter 2 Alphabetical Reference

80

Syntax
[construct-name :] SELECT CASE (case-expr)
CASE (case-selector [, case-selector] ...) [construct-name |
block

[CASE DEFAULT [construct-name]]
block

END SELECT [construct-name]

Where:
construct-name is an optional name for the CASE construct

case-expr isascalar expression of type INTEGER, LOGICAL, or CHARACTER

case-selector is case-value
or : case-value

or case-value:

or case-value : case-value

case-value is a constant scalar LOGICAL, INTEGER, or CHARACTER expression.

block is a sequence of zero or more statements or executable constructs.

Remarks

Execution of a SELECT CASE statement causes the case expression to be evaluated (see
SELECT CASE). Theresulting value is called the caseindex. If the caseindex isin the
range specified with a CASE statement’ s case-sel ector, the block following the CASE state-
ment, if any, is executed. The case-selector is evaluated as follows:

case-value means equal to case-value;
. case-value means | ess than or equal to case-value;
case-value : means greater than or equal to case-value; and

case-value : case-value means greater than or equal to the left case-value, andlessthan
or equal to theright case-value.

The block following a CASE DEFAULT, if any, isexecuted if the case index matches none
of the case-valuesin the case construct. CASE DEFAULT can appear before, among, or
after other CASE statements, or can be omitted.

Each case-value must be of the same kind as the case construct’ s case index.
The ranges of case-valuesin a case construct must not overlap.

Only one CASE DEFAULT isalowed in agiven case construct.

Lahey/Fujitsu Fortran 95 Language Reference

CASE Satement

If the SELECT CASE statement isidentified by a construct-name, the corresponding END
SELECT statement must be identified by the same construct name. If the SELECT CASE
statement is not identified by a construct-name, the corresponding END SELECT statement
must not be identified by aconstruct-name. If a CASE statement isidentified by aconstruct-
name, the corresponding SELECT CASE statement must specify the same construct-name.

Example
sel ect case (i)
case (:-2)
print*, "i is less than or equal to -2"
case (0)
print*, "i is equal to O"
case (1:97)
print*, "i isin the range 1 to 97, inclusive"

case default
print*, "i is either -1 or greater than 97"

end sel ect

CASE Statement

Description

Execution of a SELECT CASE statement causes the case expression to be evaluated (see
SELECT CASE). Theresulting value iscalled the caseindex. If the caseindex isinthe
range specified with a CASE statement's case-sel ector, the block following the CASE state-
ment, if any, is executed. The case-selector is evaluated as follows:

case-value means equal to case-value;

: case-value means |less than or equal to case-value;

case-value : means greater than or equal to case-value; and

case-value : case-value means greater than or equal to the left case-value, andlessthan
or equal to theright case-value.

The block following a CASE DEFAULT, if any, isexecuted if the case index matches none
of the case-valuesin the case construct.

Lahey/Fujitsu Fortran 95 Language Reference 81

Chapter 2 Alphabetical Reference

Syntax
CASE (case-selector [, case-selector] ...) [construct-name |

or
CASE DEFAULT [construct-name]

Where:

case-selector is case-value
or : case-value

or case-value:

or case-value : case-value

case-value is a constant scalar LOGICAL, INTEGER, or CHARACTER expression.
construct-name is an optional name assigned to the construct.

Remarks

Each case-value must be of the same kind as the case construct's case index.

The ranges of case-values in a case construct must not overlap.

Only one CASE DEFAULT is alowed in a given case construct.

If a CASE statement isidentified by a construct-name, the corresponding SELECT CASE
statement must specify the same construct-name.

Example

sel ect case (i)
case (:-2)

print*, "i is less than or equal to -2"
case (0)

print*, "i is equal to 0"
case (1:97)

print*, "i isin the range 1 to 97, inclusive"
case default

print*, "i is either -1 or greater than 97"
end sel ect

CEILING Function

Description
Smallest INTEGER greater than or equal to a number.

82 Lahey/Fujitsu Fortran 95 Language Reference

CHAR Function

Syntax
CEILING (a, kind)

Required Arguments
a must be of type REAL.

Optional Arguments
kind must be a scalar INTEGER expression that can be evaluated at compile time.

Result

The result is an INTEGER whose value is the smallest integer greater than or equal to a. If
kind is present, the kind is that specified by kind. If kind is absent, the kind is that of the
default REAL type.

Example
i
i

ceiling (-4.7) ! i is assigned the value -4
ceiling (4.7) I i is assigned the value 5

CHAR Function

Description
Given character in the collating sequence of a given character set.

Syntax
CHAR (i, kind)

Required Arguments
i must be of type INTEGER. It must be positive and not greater than the number of characters
in the collating sequence of the character set specified by kind.

Optional Arguments
kind must be ascalar INTEGER expression that can be evaluated at compile time.

Result

Theresult isa CHARACTER of length one corresponding to the ith character of the given
character set. If kind is present, the kind isthat specified by kind. If kind is absent, the kind
isthat of the default CHARACTER type.

Example
c = char(65) ! char is assigned the value 'A
I with ASCII the default character type

Lahey/Fujitsu Fortran 95 Language Reference 83

Chapter 2 Alphabetical Reference

CHARACTER Statement

84

Description
The CHARACTER statement declares entities of type CHARACTER.

Syntax
CHARACTER [char-selector] [, attribute-list ::] entity [, entity] ...

Where:

char-selector is length-sel ector

or (LEN = type-param, KIND = kind-param)
or (type-param, KIND = kind-param)

or (KIND = kind-param, LEN = type-param,)
length-selector is ([LEN =] type-param)

or * char-length

char-length is (type-param)

or scalar-int-literal-constant

type-param is specification-expr

or*

specification-expr isascalar INTEGER expression that can be evaluated on entry to the pro-
gram unit.

kind-paramis ascalar INTEGER expression that can be evaluated at compile time.

attribute-list isacomma-separated list from the following attributes: PARAMETER, ALLO-
CATABLE, DIMENSION(array-spec), EXTERNAL, INTENT (IN) or INTENT (OUT) or
INTENT (IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE,
TARGET.

entity is entity-name [(array-spec)] [* char-length] [= initialization-expr]
or function-name [(array-spec)] [* char-length]

array-spec is an array specification

initialization-expr isa CHARACTER-valued expression that can be evaluated at compile
time

entity-name is the name of a data object being declared
function-name is the name of a function being declared

Remarks

If char-length is not specified, the length is one.

An asterisk can be used for char-length only in the following ways:

Lahey/Fujitsu Fortran 95 Language Reference

CHARACTER Satement

1. If theentity isadummy argument. The dummy argument assumes the length of the
associated actual argument.

2. Todeclare anamed constant. The length isthat of the constant value.

3. Inanexternal function, asthe length of the function result. In this case, the function
name must be declared in the calling scoping unit with alength other than *, or access
such a definition by host or use association. The length of the result variableis
assumed from this definition.

char-length for CHARACTER-valued statement functions and statement function dummy
arguments must be a constant INTEGER expression.

The optional commafollowing* char-lengthin achar-selector ispermitted only if no double
colon appears in the statement.

The value of kind must specify a character set that isvalid for this compiler.
char-length must not include a kind parameter.

The* char-length in entity specifies the length of asingle entity and overrides the length
specified in char-selector.

The same attribute must not appear more than once in a CHARACTER statement.

function-name must be the name of an external, intrinsic, or statement function, or afunction
dummy procedure.

The = initialization-expr must appear if the statement contains a PARAMETER attribute.

If = initialization-expr appears, a double colon must appear before the list of entities. Each
entity has the SAVE attribute, unlessit isin a named common block.

The = initialization-expr must not appear if entity-name is adummy argument, a function
result, an object in anamed common block unless the type declarationisin ablock data pro-
gram unit, an object in blank common, an allocatable array, a pointer, an external name, an
intrinsic name, or an automatic object.

An array declared with aPOINTER or an ALLOCATABLE attribute must be specified with
a deferred shape.

An array-spec for afunction-name that does not have the POINTER attribute or the ALLO-
CATABLE attribute must be specified with an explicit shape.

An array-spec for afunction-name that does have the POINTER attribute or the ALLOCAT-
ABLE attribute must be specified with a deferred shape.

If the POINTER attributeis specified, the TARGET, INTENT, EXTERNAL, or INTRINSIC
attribute must not be specified.

If the TARGET attributeis specified, the POINTER, EXTERNAL, INTRINSIC, or
PARAMETER attribute must not be specified.

Lahey/Fujitsu Fortran 95 Language Reference 85

Chapter 2 Alphabetical Reference

The PARAMETER attribute must not be specified for dummy arguments, pointers, allocat-
able arrays, functions, or objectsin a common block.

The INTENT and OPTIONAL attributes can be specified only for dummy arguments.
An entity must not have the PUBLIC attribute if its type has the PRIVATE attribute.

The SAVE attribute must not be specified for an object that isin acommon block, adummy
argument, a procedure, a function result, or an automatic data object.

An entity must not have the EXTERNAL attribute if it has the INTRINSIC attribute.

An entity in aCHARACTER statement must not have the EXTERNAL or INTRINSIC
attribute specified unlessit is afunction.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute.
An entity must not be given explicitly any attribute more than once in a scoping unit.

If char-length is a non-constant expression, the length is declared at the entry of the proce-
dure and is not affected by any redefinition of the variables in the specification expression
during execution of the procedure.

Example
character (len=2) :: X,y,z X,y,z of length 2
character(len = *) :: d I ength of dummy d

det ermi ned when
procedur e invoked

CLOSE Statement

86

Description
The CLOSE statement terminates the connection of a specified unit to an external file.

Syntax
CLOSE (close-spec-list)
Where:
close-spec-list is a comma-separated list of close-specs.

close-specis[UNIT =] external-file-unit
or IOSTAT = iostat

or ERR = |abel

or STATUS = status

external-file-unit is the input/output unit number of an external file.

Lahey/Fujitsu Fortran 95 Language Reference

CMPLX Function

iostat isascalar default INTEGER variable. If present, it isassigned the number of the error
message generated at runtime if an error occurs in executing the CLOSE statement and the
program is not terminated; if no error occurs it is assigned the value zero.

label isthe label of abranch target statement to which the program branchesiif thereis an
error in executing the CLOSE statement.

statusisa CHARACTER expression that evaluatesto either 'KEEP or 'DELETE..

Remarks
external-file-unit isrequired. If UNIT = is omitted, external-file-unit must be the first spec-
ifier in close-spec-list.

A specifier must not appear more than once in a CLOSE statement.

STATUS ="'KEEP must not be specified for afile whose status prior to execution of a
CLOSE statement is SCRATCH. If KEEP isspecified for afilethat exists, thefile continues
to exist after a CLOSE statement. Thisisthe default behavior.

If STATUS ='DELETE' is specified, the file will not exist after execution of the CLOSE
statement.

Example
close (8, status = 'keep
close (err = 200, unit =

unit 8 closed and kept
unit 9 closed; if error
occurs, branch to | abel
200

)
9)

CMPLX Function

Description
Convert to type COMPLEX.

Syntax
CMPLX (X, y, kind)

Required Arguments
x must be of type REAL, INTEGER, or COMPLEX.

Optional Arguments
y must be of type REAL or INTEGER. If x isof type COMPLEX, y must not be present.

kind must be ascalar INTEGER expression that can be evaluated at compile time.

Lahey/Fujitsu Fortran 95 Language Reference 87

Chapter 2 Alphabetical Reference

Result

Theresultisof type COMPLEX. If kind is present the result is of kind kind; otherwise, itis
of default kind. The value of the result isthe complex number whose real part hasthe value
of x, if xisan INTEGER or a REAL; whose real part has the value of the real part of x, if x
is of type COMPLEX; and whose imaginary part has the value of y, if present, and zero
otherwise.

Example
y cmplx (3.2, 4.7) ! y is assigned (3.2, 4.7)
z crpl x (3.2) ! z is assigned (3.2, 0.0)

COMMON Statement

88

Description

The COMMON statement providesaglobal datafacility. It specifiesblocks of physical stor-
age, called common blocks, that can be accessed by any scoping unit in an executable
program.

Syntax
COMMON [/[common-name] /] common-object-list [[,] /[common-name] /
common-object-list] ...

Where:
common-name is the name of a common block being declared.

common-object-list is a comma-separated list of data objects that are declared to bein the
common block.

Remarks

If common-name is present, all data objects in the corresponding common-object-list are
specified to bein the named common block named common-name. If common-nameisomit-
ted, all data objects in the first common-object-list are specified to be in blank common.

For each common block, astorage sequenceisformed of storage sequencesof all dataobjects
in the common block, in the order they appear in common-object-lists in the scoping unit. If
any storage sequence is associated by equival ence association with the storage sequence of
the common block, the sequence can be extended only by adding storage units beyond the
last storage unit.

Within an executable program, the storage sequences of al common blocks with the same
name (or al blank commons) have the samefirst storage unit. Thisresultsin the association
of objectsin different scoping units.

A blank common has the same properties as a named common, except:

Lahey/Fujitsu Fortran 95 Language Reference

COMMON Satement

1. Execution of aRETURN or END statement can cause data objectsin a named com-
mon to become undefined unless the common block name has been declared in a
SAVE statement.

2. Named common blocks of the same name must be the same sizein all scoping units
of aprogram in which they appear, but blank commons can be of different sizes.

3. A dataobject in anamed common can be initially defined inaDATA or type decla-
ration statement in ablock data program unit, but data objectsin a blank common
must not be initially defined.

A common block name or blank common can appear multiple timesin one or more COM-
MON statements in a scoping unit. In such case, the common-object-list istreated asa
continuation of the common-object-list for that common block.

A given data object can appear only oncein al common-object-lists in a scoping unit.

A data object in a common-object-list must not be a dummy argument, an allocatable array,
an automatic object, a function name, an entry name, or aresult name.

Each bound in an array-valued data object in a common-object-list must be a constant spec-
ification expression.

If adata object in acommon-object-list is of aderived type, the derived type must have the
seguence attribute.

A pointer must only become associated with pointers of the sametype, kind, length, and rank.

Default-type, non-pointer data objects must only become associated with default-type, non-
pointer data objects.

Non-default-type, non-pointer intrinsic data objects must only become associated with non-
default-type, non-pointer intrinsic data objects.

Default CHARACTER data objects must not become associated with default REAL, DOU-
BLE PRECISION, INTEGER, COMPLEX, DOUBLE COMPLEX, or LOGICAL data
objects.

Derived type data objectsin which all componentsare of default numeric or LOGICAL types
can become associated with data objects of default numeric or LOGICAL types.

Derived type data objects in which all components are of default CHARACTER type can
become associated with data objects of type CHARACTER.

An EQUIVALENCE statement must not cause the storage sequences of two different com-
mon blocks to become associated.

An EQUIVALENCE statement must not cause storage unitsto be added before the first stor-
age unit of the common block.

Lahey/Fujitsu Fortran 95 Language Reference 89

Chapter 2

Alphabetical Reference

Example

common /first/ a,b,c ! a, b, and ¢ are in naned
I comon first
comon d,e,f, /second/, g ! d, e, and f are in blank
I conmon, g is in naned
I commobn second
|

comon /first/ h his also in first

COMPLEX Statement

Description
The COMPLEX statement declares entities of type COMPLEX.

Syntax
COMPLEX [kind-selector] [[, attribute-list] ::] entity [, entity] ...

Where:
kind-selector is ([KIND =] scalar-int-initialization-expr)

scalar-int-initialization-expr isa scalar INTEGER expression that can be eval uated at com-
pile time.

attribute-list isacomma-separated list from the following attributes: PARAMETER, ALLO-
CATABLE, DIMENSION(array-spec), EXTERNAL, INTENT (IN) or INTENT (OUT) or
INTENT (IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE,
TARGET.

entity is entity-name [(array-spec)] [= initialization-expr]
or function-name [(array-spec) |

array-spec is an array specification.

initialization-expr is an expression that can be evaluated at compile time.
entity-name is the name of a data object being declared.

function-name is the name of a function being declared.

Remarks

The same attribute must not appear more than oncein a COMPLEX statement.

function-name must be the name of an external, intrinsic, or statement function, or afunction
dummy procedure.

= initialization-expr must appear if the statement contains a PARAMETER attribute.

If = initialization-expr appears, a double colon must appear before the list of entities. Each
entity has the SAVE attribute, unlessit isin a named common block.

90 Lahey/Fujitsu Fortran 95 Language Reference

COMPLEX Satement

=initialization-expr must not appear if entity-nameis adummy argument, afunction result,
an object in anamed common block unless the type declaration isin a block data program
unit, an object in blank common, an allocatable array, a pointer, an external name, an intrin-
sic name, or an automatic object.

An array declared with aPOINTER or an ALLOCATABLE attribute must be specified with
a deferred shape.

An array-spec for afunction-name that does not have the POINTER attribute or the ALLO-
CATABLE attribute must be specified with an explicit shape.

An array-spec for afunction-name that does have the POINTER attribute or the ALLOCAT-
ABLE attribute ust be specified with a deferred shape.

If the POINTER attributeis specified, the TARGET, INTENT, EXTERNAL, or INTRINSIC
attribute must not be specified.

If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or
PARAMETER attribute must not be specified.

The PARAMETER attribute must not be specified for dummy arguments, pointers, allocat-
able arrays, functions, or objectsin a common block.

The INTENT and OPTIONAL attributes can be specified only for dummy arguments.
An entity must not have the PUBLIC attribute if its type has the PRIVATE attribute.

The SAVE attribute must not be specified for an object that isin acommon block, adummy
argument, a procedure, a function result, or an automatic data object.

An entity must not have the EXTERNAL attribute if it has the INTRINSIC attribute.

AnentityinaCOMPLEX statement must not havethe EXTERNAL or INTRINSIC attribute
specified unlessit isafunction.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute.

An entity must not be given explicitly any attribute more than once in a scoping unit.

Example
conplex :: a, b, c ! a, b, and c are of type conpl ex
conpl ex, dimension (2, 4) :: d
I dis a2 by 4 array of conpl ex
conplex :: e = (2.0, 3.14159)
I complex e is initialized

Lahey/Fujitsu Fortran 95 Language Reference 91

Chapter 2 Alphabetical Reference

Computed GOTO Statement

Description

The computed GOTO statement causes transfer of control to one of alist of labeled
Statements.

Syntax
GO TO (labels) [,] scalar-int-expr

Where:
labels is a comma-separated list of labels.

scalar-int-expr isascalar INTEGER expression.

Remarks

Execution of acomputed GOTO statement causes eval uation of scalar-int-expr. If thisvalue
isi suchthat 1<i < n,wherenisthe number of labelsin labels, atransfer of control occurs
so that the next statement executed is the one identified by theith label in labels. If iisless
than 1 or greater than n, the execution sequence continues asthough a CONTINUE statement
were executed.

Each label in labels must be the label of abranch target statement in the current scoping unit.

Example
goto (10,20, 30) i
10 a=at+tl ! if i=1 control transfers here
20 a=at+tl ! if i=2 control transfers here
30 a=a+tl ! if i=3 control transfers here

CONJG Function

Description
Conjugate of a complex number.

Syntax
CONJG (2

Arguments
zmust be of type COMPLEX.

92 Lahey/Fujitsu Fortran 95 Language Reference

CONTAINS Satement

Result
Theresult is of type COMPLEX and of the samekind asz Itsvalueisthe same asthat of z
with the imaginary part negated.

Example
x =conjg (2.1, -3.2) ! x is assigned
I the value (2.1, 3.2)

CONTAINS Statement

Description
The CONTAINS statement separates the body of a main program, module, or subprogram
from any internal or module subprogramsit contains.

Syntax
CONTAINS

Remarks
The CONTAINS statement is not executable.

Internal procedures cannot contain other internal procedures.

Example
subroutine outside (a)
inplicit none
real, intent(in) :: a
integer :: i, |j
real :: x

call inside (i)
X = sin (3.89) ! not the intrinsic sin()

cont ai ns

subroutine inside (k) ! not avail abl e outside outside()
inplicit none
integer, intent(in) :: k

end subroutine inside

Lahey/Fujitsu Fortran 95 Language Reference 93

Chapter 2 Alphabetical Reference

function sin (m ! not avail abl e outside outside()
inmplicit none
real :: sin
real, intent(in) :: m

end function sin

end subroutine outside

CONTINUE Statement

Description
Execution of a CONTINUE statement has no effect.

Syntax
CONTINUE
Example
do 10 i =1, 100
10 conti nue

COS Function

Description
Cosine.

Syntax
COS (x)

Arguments
X must be of type REAL or COMPLEX.

Result
Theresult is of the sametype and kind as x. Itsvalueisa REAL or COMPLEX representa-
tion of the cosine of x.

Example
r =cos(.5) ! r is assigned the value 0.877583

o) Lahey/Fujitsu Fortran 95 Language Reference

COSH Function

COSH Function

Description
Hyperbolic cosine.

Syntax
COSH (x)

Arguments
x must be of type REAL.

Result
Theresult is of the same type and kind asx. ItsvalueisaREAL representation of the hyper-
bolic cosine of x.

Example
r = cosh(.5) ! r is assigned the value 1.12763

COUNT Function

Description
Count the number of true elements in a mask along a given dimension.

Syntax
COUNT (mask, dim)

Required Arguments
mask must be of type LOGICAL. It must not be scalar.

Optional Arguments

dimmust be a scalar of type INTEGER with avaue withintherange 1 < dim<n, wheren
isthe rank of mask. The corresponding actual argument must not be an optional dummy
argument.

Result
Theresult is of type default INTEGER. Its value and rank are computed as follows:

1. If dimisabsent or mask has rank one, the result is scalar. The result is the number
of elements for which mask is true.

Lahey/Fujitsu Fortran 95 Language Reference 95

Chapter 2 Alphabetical Reference

2. If dimispresent or mask hasrank two or greater, theresult isan array of rank n-1 and
of shape (d;, d,, ..., dgm_1.94im+1,----d,) where (d;, d,, ...,d,) istheshape
of mask and nisthe rank of mask. Theresult isthe number of true elementsfor each
corresponding vector in mask.

Example
integer, dinension (2,3) :: a, b
i nteger, dinension (2) :: c
i nteger, dinension (3) :: d
integer :: e
a = reshape((/1,2,3,4,5,6/), (/2,3/))

! represents |1 3 5|
|2 4 6]
b = reshape((/1,2,3,5,6,4/), (/2,3/))
! represents |1 3 6|
|2 5 4]
e = count (a==b) | e is assigned the value 3
d = count(a==b, 1)! d is assigned the value 2,1,0

¢ = count(a==b, 2)! c is assigned the value 2,1

CPU_TIME Subroutine

Description

Processor Time.

Syntax
CPU_TIME (time)

Required Arguments

timemust beascalar REAL. ItisanINTENT (OUT) argument that is assighed the processor
timein seconds. Notethat CPU_TIME only reflects the actual CPU time when the applica-
tion is compiled for Windows and run on NT or when the application is compiled for Linux
and run from Linux. Otherwise, CPU_TIME behaveslike SYSTEM_CLOCK.

96 Lahey/Fujitsu Fortran 95 Language Reference

CHIFT Function

Example
call cpu_time(start_tinmne)
X = cos(2.0)

call cpu_time(end_tine)
cos_tinme = end_tine - start_tine

I time to calculate and store the cosine of 2.0

CSHIFT Function

Description

Circular shift of all rank one sectionsin an array. Elements shifted out at one end are shifted
in at the other. Different sections can be shifted by different amounts and in different direc-
tions by using an array-valued shift.

Syntax
CSHIFT (array, shift, dim)

Required Arguments
array can be of any type. It must not be scalar.
shift must be of type INTEGER and must be scalar if array is of rank one; otherwise it must

be scalar or of rank n-1 and of shape (d,, d,, ..., dgim-1,9gim+1:----d,) , where
(dy, d, ..., d,) istheshapeof array.

Optional Arguments

dimmust beascalar INTEGER with avalueintherange 1 < dim< n, wherenisthe rank of
array. If dimisomitted, itisasif it were present with the value one.

Result
The result is of the same type, kind, and shape as array.

If array is of rank one, the value of the result isthe value of array circularly shifted shift ele-
ments. A shift of n performed on array gives aresult value of array(1 + MODULO(i + n -
1, SIZE(array))) for element i.

If array is of rank two or greater, each complete vector along dimension dimis circularly
shifted shift elements. shift can be array-valued.

Lahey/Fujitsu Fortran 95 Language Reference 97

Chapter 2 Alphabetical Reference

Example
integer, dinension (2,3) :: a, b
i nteger, dinension (3) :: c, d
integer :: e

a = reshape((/1,2,3,4,5,6/), (/2,3/))
! represents |1 3 5|

|2 4 6|
c =(/1,2,3/)
b = cshift(a,1) I b is assigned the val ue
!
b = cshift(a,-1,2)! b is assigned the val ue
!

b = cshift(a,c,1) ! b is assigned the val ue
!
!

d = cshift(c,2) c is assigned the val ue

CYCLE Statement

Description

P hAWOOIWhH

6|
5|
1
2|
5|
6|
2|

The CY CLE statement curtails the execution of asingle iteration of a DO loop.

Syntax
CYCLE [do-construct-name]

Where:

do-construct-name is the name of aDO construct that contains the CY CLE statement. |f do-
construct-nameisomitted, it is as if do-construct-name were the name of the innermost DO

construct in which the CY CLE statement appears.

Example
outer: do i=1, 10
i nner: do j=1, 10
if (i>a) cycle outer
if (j>b) cycle ! cycles to inner

enddo i nner
enddo outer

DATA Statement

Description
The DATA statement provides initial values for variables.

98 Lahey/Fujitsu Fortran 95 Language Reference

DATA Satement

Syntax
DATA data-stmt-set [[,] data-stmt-set] ...

Where:
data-stmt-set is object-list / value-list /

object-list is a comma-separated list of variable names or implied-dos.
value-list is a comma-separated list of [repeat *] data-constant
repeat isascalar INTEGER constant.

data-constant is a scalar constant (either literal or named)
or astructure constructor.

implied-do is (implied-do-object-list , implied-do-var = expr, expr[, expr])

implied-do-object-list is a comma-separated list of array elements, scalar structure compo-
nents, or implied-dos.

implied-do-var isascalar INTEGER variable.

expr isascalar INTEGER expression.

Remarks

object-list is expanded to form a sequence of scalar variables. An array whose unqualified
name appearsin an object-list is equivalent to a complete sequence of its array elementsin
array element order. An array section is equivalent to the sequence of its array elementsin
array element order. Animplied-do is expanded to form a sequence of array elements and

structure components, under the control of the implied-do-var, asin the DO construct.

value-list is expanded to form asequence of scalar constant values. Each such value must be
aconstant that is either previously defined or made accessible by a use association or host
association. repeat indicates the number of times the following constant isto be included in
the sequence; omission of repeat has the effect of a repeat factor of 1.

The expanded sequences of scalar variables and constant va ues are in one-to-one correspon-
dence. Each constant specifiestheinitial value for the corresponding variable. Thelengths
of the two expanded sequences must be the same.

A variable, or part of avariable, must not be initialized more than once in an executable
program.

A variable whose name isincluded in an object-list must not be: adummy argument made
accessible by use association or host association; in a named common block unless the
DATA statement isin ablock data program unit; in ablank common block; afunction name;
afunction result name; an automatic object; a pointer; or an allocatable array.

In an array element or a scalar structure component that isin an implied-do-object-list, any
subscript must be an expression whose primaries are either constants or implied-do-vars of
the containing implied-dos, and each operation must be intrinsic.

Lahey/Fujitsu Fortran 95 Language Reference 99

Chapter 2 Alphabetical Reference

expr must involve as primaries only constants or implied-do-vars of the containing implied-
dos, and each operation must be intrinsic.

The value of the constant must be compatible with its corresponding variable according to
therules of intrinsic assignment, and the variable becomesinitialy defined with the value of
the constant in accordance with the rules of intrinsic assignment.

Example

real :: a

i nteger, dinension (-3:3) :: snmallarray

i nteger, dinension (10000) :: bigarray

data a /3.78/, smallarray /7 * 1/
I assigns 3.78 to a and 1 to each
I element of snallarray

data (bigarray(i), i=1,10000,2) /5000*6/
I assigns 6 to each el enent that
! has an odd subscript val ue

DATE_AND_TIME Subroutine

100

Description
Date and real-time clock data.

Syntax
DATE_AND_TIME (date, time, zone, values)

Optional Arguments

date must be scalar and of type default CHARACTER, and must be of length at least eight
in order to contain the completevalue. Itisan INTENT (OUT) argument. Itsleftmost eight
charactersare set to avalue of theform ccyymmdd, where ccisthe century, yy the year within
the century, mm the month within the year, and dd the day within the month. If thereisno
date available, they are set to blank.

time must be scalar and of type default CHARACTER, and must be of length at least ten in
order to contain the completevalue. Itisan INTENT (OUT) argument. Itsleftmost ten char-
acters are set to a value of the form hhmmss.sss, where hh is the hour of the day, mmisthe
minutes of the hour, and ss.sss is the seconds and milliseconds of the minute. If thereisno
clock available, they are set to blank.

zone must be scalar and of type default CHARACTER, and must be of length at least fivein
order to contain the complete value. Itisan INTENT (OUT) argument. Itsleftmost five
characters are set to avalue of the form +-hhmm, where hh and mm are the time difference
with respect to Coordinated Universal Time (UTC, aso known as Greenwich Mean Time) in

Lahey/Fujitsu Fortran 95 Language Reference

DATE_AND_TIME Subroutine

hours and parts of an hour expressed in minutes, respectively. If thereisno clock available,
they are set to blank. To use the zone argument, you must first set the environment variable
TZ asfollows:

set Tz=2zZ[+/-]d[d][LLL]

where ZZ7 is athree-character string representing the name of the current time zone; [+/-
1d[d] isarequired field containing an optionally signed number with one or two digits rep-
resenting the local time zone' s difference from UTC in hours (negative numbers adjust
eastward from UTC); and [LLL] isan optional three-character field that represents the local
time zone’' sdaylight savingstime. If [LLL] ispresent then 1isadded to[+/-]d[d]. ZZZ and
LLL (if present) must be uppercase. For example, "TZ=PST-8PDT" would be used on the
west coast of the United States during the portion of the year when daylight savingsisin
effect, and "TZ=PST-8" during therest of theyear. If the TZ environment variableis not set
or is set using an invalid format then zone will be set to blanks.

valuesmust be of typedefault INTEGER and of rank one. Itisan INTENT (OUT) argument.
Its size must be at least eight. The valuesreturned in VALUES are as follows:

values (1) the year (for example, 1990), or - huge(0) if thereis no date available.
values (2) the month of the year, or - huge(0) if thereisno date available.
values (3) the day of the month, or - huge(0) if thereis no date available.

val ues (4) thetime difference with respect to Coordinated Universal Time (UTC) in minutes,
or - huge(0) if thisinformation is not available.

values (5) the hour of the day, in the range of 0 to 23, or - huge(0) if thereisno clock.
values (6) the minutes of the hour, in the range of 0to 59, or - huge(0) if thereis no clock.
values (7) the seconds of the minute, in the range 0 to 60, or - huge(0) if thereisno clock.

values (8) the milliseconds of the second, in the range 0 to 999, or - huge(0) if thereisno
clock.

Example
! called in Incline Village, NV on February 3, 1993
I at 10:41:04.1
integer :: dt(8)
character (len=10) :: time, date, zone
call date_and_tinme (date, tine, zone, dt)
| date is assigned the value "19930203"
! time is assigned the val ue "104104. 100"
! zone is assigned the val ue "-800"
! dt is assigned the value: 1993, 2,3,
! -480, 10, 41, 4, 100.

Lahey/Fujitsu Fortran 95 Language Reference 101

Chapter 2 Alphabetical Reference

DBLE Function

Description
Convert to double-precision REAL type.

Syntax
DBLE (a)

Arguments
a must be of type INTEGER, REAL or COMPLEX.

Result

Theresult is of double-precision REAL type. Itsvalueisadouble precision representation
of a. If aisof type COMPLEX, theresult isadouble precision representation of the real part
of a.

Example
doubl e precision d
d =dble (1) ! dis assigned the value 1.00000000000000

DEALLOCATE Statement

102

Description
The DEALLOCATE statement deallocates all ocatable arrays and pointer targets and disas-
sociates pointers.

Syntax
DEALLOCATE (object-list [, STAT = stat-variable])

Where:
object-list is a comma-separated list of pointers or alocatable arrays.

stat-variableisascalar INTEGER variable.

Remarks

If the optional STAT= is present and the DEALLOCATE statement succeeds, stat-variable
isassigned thevalue zero. If STAT=ispresent and the DEALLOCATE statement fails, stat-
variableis assigned the number of the error message generated at runtime.

If an error condition occurs during execution of a DEALLOCATE statement that does not
contain the STAT= specifier, the executabl e program is terminated.

Lahey/Fujitsu Fortran 95 Language Reference

DIGITS Function

Deallocating an allocatable array that is not currently allocated or a pointer that is disassoci-
ated or whose target was not allocated causes an error condition in the DEALLOCATE
statement

If apointer is currently associated with an allocatable array, the pointer must not be
deallocated.

Deallocating an allocatable array or pointer with the TARGET attribute causes the pointer
association status of any pointer associated with it to become undefined.

Example
deal | ocate (a, b, stat=s) ! causes a and b to be
! deallocated. |f success-
! ful, s is assigned O

DIGITS Function

Description
Number of significant binary digits.

Syntax
DIGITS (x)

Arguments
x must be of type INTEGER or REAL. It can be scalar or array-valued.

Result

Theresult is of type default INTEGER. Itsvalueisthe number of significant binary digits
inx.

Example
real :: r
integer :: i
i =digits (r) ! i is assigned the value 24

DIM Function

Description
The difference between two numbersiif the difference is positive; zero otherwise.

Lahey/Fujitsu Fortran 95 Language Reference 103

Chapter 2 Alphabetical Reference

Syntax
DIM (%, y)

Arguments
x must be of type INTEGER or REAL.
y must be of the same type and kind as x.

Result
Theresult is of the sametypeasx. Itsvalueisx - yif xisgreater than y and zero otherwise.

Example
V4
V4

dinm{1.1, 0.8) ! z is assigned the value 0.3
din{0.8, 1.1) ! z is assigned the value 0.0

DIMENSION Statement

104

Description
The DIMENSION statement specifies the shape of an array.

Syntax

DIMENSION [::] array-name (array-spec) [, array-name (array-spec) | ...
Where:
array-name is the name of an array.

array-spec is explicit-shape-specs
or assumed-shape-specs

or deferred-shape-specs

or assumed-size-spec

explicit-shape-specsisacomma-separated list of [lower-bound :] upper-bound that specifies
the shape and bounds of an explicit-shape array.

assumed-shape-specs is acomma-separated list of [lower-bound)] : that, with the dimensions
of the corresponding actual argument, specifies the shape and bounds of an assumed-shape

array.

deferred-shape-specs is a comma-separated list of colons that specifies the rank of a
deferred-shape array.

assumed-size-spec is[explicit-shape-specs,] [lower-bound :] *

assumed-si ze-spec specifies the shape of a dummy argument array whose size is assumed
from the corresponding actual argument array.

Lahey/Fujitsu Fortran 95 Language Reference

DLL_EXPORT Satement

lower-bound isascalar INTEGER expression that can be evaluated on entry to the program
unit that specifies the lower bound of a given dimension of the array.

upper-bound isascalar INTEGER expression that can be evaluated on entry to the program
unit that specifies the upper bound of a given dimension of the array.

Example
di nension a(3,2,1) ! ais a 3x2x1 array
di nension b(-3:3) ! bis a 7-element vector with a
! lower bound of -3
di nension c(:,:,:) ! c is an assuned-shape or
! deferred-shape array of
! rank 3
di nensi on d(*) ! dis an assuned-size array
DLL_EXPORT Statement
Description
TheDLL_EXPORT statement specifies which procedures should be available in adynamic-
link library.
Syntax

DLLEXPORT dll-export-names

Where:
dil-export-namesis alist of procedures defined in the current scoping unit.

Remarks
The procedures in dil-export-names must not be module procedures.

Example

function hal f(x)
inmplicit none
integer :: half
dl | _export half
hal f = x/2
return

end function half

Lahey/Fujitsu Fortran 95 Language Reference 105

Chapter 2 Alphabetical Reference

DLL IMPORT Statement

Description
The DLL_IMPORT statement specifies which procedures are to be imported from a
dynamic-link library.

Syntax
DLL_IMPORT dll-import-names

Where:

dil-import-names is a comma-separated list of procedure names.

Example

program mai n
inmplicit none
integer :: foo, i
dl | _import foo
i = half(i)
stop

end program main

DO Construct

106

Description
The DO construct specifies the repeated execution (Iloop) of asequence of statements or exe-
cutable constructs.

Syntax
do-statement
block
do-termination

Where:
do-statement is a DO statement

block is a sequence of zero or more statements or executable constructs.

do-termination is END DO [construct-name]
or label action-stmt

action-stmt statement is an action statement other than a GOTO, RETURN, STOP, EXIT,
CYCLE, assigned GOTO, arithmetic IF, or END statement.

Lahey/Fujitsu Fortran 95 Language Reference

DO Satement

Remarks

If a construct nameis specified in the DO statement, the same construct name must be spec-
ified in a corresponding END DO statement.

Ending a DO construct with alabeled action statement is obsol escent.

Example
do i =1, 100 I iterates 100 tines
do while (a>b) I iterates while a>b
do 10 j=1,100,3 ! iterates 33 tines

10 continue
end do

end do

The CY CLE statement can be used to curtail execution of the current iteration of aDO loop.
The EXIT statement can be used to exit a DO loop altogether.

DO Statement

Description

The DO statement beginsa DO construct. The DO construct specifiesthe repeated execution
(loop) of a sequence of executable statements or constructs.

Syntax
[construct-name:] DO label] [loop-control]

Where:
construct-name is an optional name given to the DO construct.

label isthe optional 1abel of a statement that terminates the DO construct.

loop-control is[,] do-variable = expr, expr [, expr]
or [,] WHILE (while-expr)

do-variableisascalar variable of type INTEGER, default REAL, or default double-precision
REAL.

expr isascalar expression of type INTEGER, default REAL, or default double-precision
REAL. Thefirst expr istheinitial value of do-variable; the second expr isthefinal value of
do-variable; the third expr isthe increment value for do-variable.

while-expr isascalar LOGICAL expression.

Lahey/Fujitsu Fortran 95 Language Reference 107

Chapter 2 Alphabetical Reference

Remarks

When a DO statement is executed, aDO construct becomes active. The expressionsin loop-
control are evaluated, and, if do-variableis present, it isassigned an initial value and an iter-
ation count is established for the construct based on the expressions. Aniteration count of
zeroispossible. Note that because the iteration count is established before execution of the
loop, changing the do-variable within the range of the loop has no effect on the number of
iterations. If loop-control is WHILE (while-expr), while-expr is evaluated and if false, the
loop terminates and the DO construct becomesinactive. If thereisno loop-control it isasif
theiteration count were effectively infinite.

Use of default or double-precision REAL for the do-variable is obsolescent.

Example
do i =1, 100 I iterates 100 tines
do while (a>b) I iterates while a>b
do 10 j=1,100,3 ! iterates 33 tines each tine
! this do construct is entered

10 continue
end do
end do

DOT_PRODUCT Function

108

Description
Dot-product multiplication of vectors.

Syntax
DOT_PRODUCT (vector_a, vector_b)

Arguments

vector_a must be of type INTEGER, REAL, COMPLEX, or LOGICAL. It must be array-
valued and of rank one.

vector_b must be of numeric type if vector_a is of numeric type and of type LOGICAL if
vector_aisof type LOGICAL. It must be array-valued, of rank one, and of the same size as
vector_a.

Result

If the arguments are of type LOGICAL, then the result is scalar and of type default LOGI-
CAL. ItsvaueisANY (vector_a.AND. vector_b). If the vectors have size zero, the result
has the value false.

Lahey/Fujitsu Fortran 95 Language Reference

DOUBLE PRECISON Satement

If theargumentsare of different numeric type, thentheresult typeisthat of the argument with
the higher type, where COMPLEX is higher than REAL, and REAL is higher than INTE-
GER. If both arguments are of the same type, theresult kind isthe kind of the argument that
offersthe greater range. Theresult valueisSUM (vector_a* vector_b) if vector_aisof type
REAL or INTEGER. Theresult valueis SUM (CONJG (vector_a) * vector_b) if vector_a
is of type COMPLEX.

Example
i = dot_product((/3,4,5/),(/6,7,8/))
I i is assigned the value 86

DOUBLE PRECISION Statement

Description
The DOUBLE PRECISION statement declares entities of type double precision REAL.

Syntax
DOUBLE PRECISION [[, attribute-list] ::] entity [, entity] ...

Where:

attribute-list isacomma-separated list from the following attributes: PARAMETER, ALLO-
CATABLE, DIMENSION(array-spec), EXTERNAL, INTENT (IN) or INTENT (OUT) or
INTENT (IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE,
TARGET.

entity is entity-name [(array-spec)] [= initialization-expr]
or function-name [(array-spec)]

array-spec is an array specification.

initialization-expr is an expression that can be evaluated at compile time.

entity-name is the name of a data object being declared.

function-name is the name of afunction being declared.

Remarks

The same attribute must not appear more than oncein a DOUBLE PRECISION statement.

function-name must be the name of an external, intrinsic, or statement function, or afunction
dummy procedure.

The = initialization-expr must appear if the statement contains a PARAMETER attribute.

If = initialization-expr appears, a double colon must appear before the list of entities. Each
entity has the SAVE attribute, unlessit isin a named common block.

Lahey/Fujitsu Fortran 95 Language Reference 109

Chapter 2 Alphabetical Reference

110

The = initialization-expr must not appear if entity-name is a dummy argument, a function
result, an object in anamed common block unless the type declarationisin ablock data pro-
gram unit, an object in blank common, an allocatable array, a pointer, an external name, an
intrinsic name, or an automatic object.

The ALLOCATABLE attribute can be used only when declaring an array that isnot a
dummy argument or afunction result.

An array declared with aPOINTER or an ALLOCATABLE attribute must be specified with
a deferred shape.

An array-spec for a function-name that does not have the POINTER attribute must be spec-
ified with an explicit shape.

An array-spec for a function-name that does have the POINTER attribute must be specified
with a deferred shape.

If the POINTER attributeisspecified, the TARGET, INTENT, EXTERNAL, or INTRINSIC
attribute must not be specified.

If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or
PARAMETER attribute must not be specified.

The PARAMETER attribute must not be specified for dummy arguments, pointers, allocat-
able arrays, functions, or objectsin a common block.

The INTENT and OPTIONAL attributes can be specified only for dummy arguments.
An entity must not have the PUBLIC attribute if its type has the PRIVATE attribute.

The SAVE attribute must not be specified for an object that isin acommon block, adummy
argument, a procedure, a function result, or an automatic data object.

An entity must not have the EXTERNAL attribute if it has the INTRINSIC attribute.

An entity inaDOUBLE PRECISION statement must not have the EXTERNAL or INTRIN-
SIC attribute specified unlessit is a function.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute.

An entity must not be given explicitly any attribute more than once in a scoping unit.

Example
doubl e precision a, b, ¢! a, b, and ¢ are of type
I doubl e precision
doubl e precision, dinension (2, 4) :: d
! dis a2 by 4 array
I of doubl e precision
doubl e precision :: e = 2.0d0
I eisinitialized

Lahey/Fujitsu Fortran 95 Language Reference

DPROD Function

DPROD Function

Description
Double-precision REAL product.

Syntax
DPROD (x, y)

Arguments
X must be of type default REAL.

y must be of type default REAL.

Result

Theresult is of type double-precision REAL . Itsvalue is a double-precision representation
of the product of x andy.

Example
dub = dprod (3.e2, 4.4e4) ! dub is assigned 13.2d6

DVCHK Subroutine (Windows Only)

Description

Theinitial invocation of the DVCHK subroutine masks the divide-by-zero interrupt on the
floating-point unit. flag must be set to true on the first invocation. Subsequent invocations
return true or falsein the Iflag variable if the exception has occurred or not occurred, respec-
tively. DVCHK will not check or mask zero divided by zero. Use INVALOPto check for a
zero divided by zero.

Syntax
DVCHK (Iflag)

Arguments
Iflag must be of type LOGICAL. Itisassigned the value trueif a divide-by-zero exception

has occurred, and false otherwise.

Example
call dvchk (lIflag) ! nmask the divide-by-zero interrupt

Lahey/Fujitsu Fortran 95 Language Reference 111

Chapter 2 Alphabetical Reference

ELSE IF Statement

Description
The ELSE IF statement controls conditional execution of a block of code in an |F construct
where all previous IF expressions are fal se.

Syntax
EL SE IF (expr) THEN [construct-name]

Where:
expr isascalar LOGICAL expression.

congtruct-name is the optional name given to the IF construct.

Example
if (i>1) then
print*, b
else if (i<j) then ! executed only if true and previous
I if expression was false
print*, c
end if

ELSE Statement

112

Description
The EL SE statement controls precedes a block of code to be executed in an IF construct
where all previous IF expressions are fal se.

Syntax
EL SE [construct-name]

Where:
construct-name is the optional name given to the IF construct.

Example

if (i>) then
print*, a

else if (i<j) then
print*, b

el se | executed if previous if expressions were false
print*, c

end if

Lahey/Fujitsu Fortran 95 Language Reference

ELSEWHERE Satement

ELSEWHERE Statement

Description

The ELSEWHERE statement controls conditional execution of a block of assignment state-
ments for elements of an array for which the WHERE construct’s mask expression isfalse
(see* WHERE Construct” beginning on page 234).

Syntax
ELSEWHERE [(mask-expr)]

Where:
mask-expr isaLOGICAL expression.

Example

where (b>c) I begi n where construct
b=-1

el sewhere (b=c)
b=1

el sewhere ! b=0
b = 999

end where

END Statement

Description
The END statement ends a program unit, modul e subprogram, or internal subprogram.

Syntax
END [class[name]]

Where:
classis either PROGRAM, FUNCTION, SUBROUTINE, MODULE, INTERFACE or
BLOCK DATA.

name is the name of the program unit, module subprogram, or internal subprogram.

Remarks
Each program unit, modul e subprogram, or internal subprogram must have exactly one END
statement.

The END PROGRAM, END FUNCTION, and END SUBROUTINE statements are execut-
able and can be branch target statements. The END MODULE, END INTERFACE, and
END BLOCK DATA statements are non-executable.

Lahey/Fujitsu Fortran 95 Language Reference 113

Chapter 2 Alphabetical Reference

Executingan END FUNCTION or END SUBROUTINE statement isequivalent to executing
areturn statement in a subprogram.

Executing an END PROGRAM statement terminates the executing program.

name can be used only if a name was given to the program unit, modul e subprogram, or inter-
nal subprogram in a PROGRAM, FUNCTION, SUBROUTINE, MODULE, or BLOCK
DATA statement. name cannot be used with an END INTERFACE statement.

If nameispresent, it must beidentical to the name specified in the PROGRAM, FUNCTION,
SUBROUTINE, MODULE, or BLOCK DATA statement.

Example
program nanes
call joe
call bill
call fred
end program names I program and names are optional

subroutine joe
end subroutine joe | ok end statenent

subroutine bill
end subroutine I also ok end statenent

subroutine fred
end I also ok end statenent

END DO Statement

114

Description
The END DO statement ends a DO construct.

Syntax
END DO [construct-name]

Where:
construct-name is the name of the DO construct.

Remarks

If the DO statement of the DO construct isidentified by aconstruct-name, the corresponding
END DO statement must specify the same construct-name. |If the DO statement is not iden-
tified by a construct-name, the END DO statement must not specify a construct-name.

If the DO statement specifies alabel, the corresponding END DO statement must be identi-
fied with the same label.

Lahey/Fujitsu Fortran 95 Language Reference

ENDFILE Satement

Example
naned: do i=1, 10
| abel ed: do 10 j=1,10

do k=1, 10
end do
10 end do | abel ed

end do naned

ENDFILE Statement

Description

The ENDFILE statement writes an endfile record as the next record of thefile. Thefileis
then positioned after the endfile record, which becomes the last record of thefile.

Syntax
ENDFILE unit-number

or
ENDFILE (position-spec-list)

Where:
unit-number isascalar INTEGER expression corresponding to the input/output unit number
of an external file.

position-spec-list is[[UNIT =] unit-number][, ERR = label][, IOSTAT = stat] where
UNIT=, ERR=, and IOSTAT= can beinany order but if UNIT=isomitted, then unit-number
must be first.

label isastatement label that is branched to if an error condition occurs during execution of
the statement.

stat isavariable of type INTEGER that is assigned a positive value if an error condition
occurs, a hegative value if an end-of-file or end-of-record condition occurs, and zero other-
wise. If stat ispresent and error, end-of-file, or end-of-record condition occurs, execution is
not terminated.

Remarks

After execution of an ENDFILE statement, aBACK SPACE or REWIND statement must be
executed to reposition the file before any data transfer statement or subsequent ENDFILE
statement.

An ENDFILE statement on afile that is connected but does not yet exist causesthefileto be
created before writing the endfile record.

Lahey/Fujitsu Fortran 95 Language Reference 115

Chapter 2 Alphabetical Reference

Example
endfile 8 ! wites an endfile record to the file
I connected to unit 8

END IF Statement

Description
The END |F statement ends an | F construct.

Syntax
END IF [construct-name]

Where:
construct-name is the name of the | F construct.

Remarks

If the IF statement of the IF construct isidentified by a construct-name, the corresponding
END IF statement must specify the same construct-name. If the IF statement isnot identified
by a construct-name, the END |F statement must not specify construct-name.

Example
if (a.gt.b) then
c =1
d =2
end if

END SELECT Statement

Description
The END SELECT statement ends a CASE construct.

Syntax
END SELECT [construct-name]

Where:
construct-name is the name of the CASE construct.

116 Lahey/Fujitsu Fortran 95 Language Reference

END WHERE Satement

Remarks

If the SELECT CASE statement of the CA SE construct isidentified by aconstruct-name, the
corresponding END SELECT statement must specify the same construct-name. If the
SELECT CASE statement is not identified by a construct-name, the END SELECT state-
ment must not specify construct-name.

Example
sel ect case (i)
case (:-1)
print*, "negative"

case (0)

print*, "zero"
case (1:)

print*, "positive"
end sel ect

END WHERE Statement

Description
The END WHERE statement ends a WHERE construct.

Syntax
END WHERE

Example
where (¢ >d) ! c and d are arrays
c =1
d =2
end where

ENTRY Statement

Description
The ENTRY statement permits one program unit to define multiple procedures, each with a
different entry point.

Syntax
ENTRY entry-name [([dummy-arg-list]) [RESULT (result-name)]]

Where:
entry-name is the name of the entry.

Lahey/Fujitsu Fortran 95 Language Reference 117

Chapter 2 Alphabetical Reference

118

dummy-arg-list is acommarseparated list of dummy arguments or * alternate return
indicators.

result-name is the name of the result.

Remarks

AnENTRY statement can appear only in an external subprogram or module subprogram. An
ENTRY statement must not appear within an executabl e construct.

ENTRY statement in a function

If the ENTRY statement is contained in a function subprogram, an additional functionis
defined by that subprogram. The name of the function is entry-name and its result variable
isresult-name or isentry-nameif no result-nameis provided. The characteristics of the func-
tion result are specified by specifications of the result variable.

If RESULT is specified, entry-name must not appear in any specification statement in the
scoping unit of the function program.

RESULT can be present only if the ENTRY statement is contained in afunction subprogram.
If RESULT is specified, result-name must not be the same as entry-name.

ENTRY statement in a subroutine

A dummy argument can be an alternate return indicator only if the ENTRY statement is con-
tained in a subroutine subprogram.

If the ENTRY statement is contained in asubroutine subprogram, an additional subroutineis
defined by that subprogram. The name of the subroutine is entry-name. The dummy argu-
ments of the subroutine are those specified on the ENTRY statement.

Example
program mai n
i =2
call square(i)
j=2
call quad(j)
print*, i,j I prints 4 16
end program nmain
subrouti ne quad(k)
k=k*k
entry square(k)
k=k*k
return
end subroutine quad

Lahey/Fujitsu Fortran 95 Language Reference

EOSHIFT Function

EOSHIFT Function

Description

End-off shift of all rank one sectionsin an array. Elements are shifted out at one end and
copies of boundary values are shifted in at the other. Different sections can be shifted by dif-
ferent amounts and in different directions by using an array-valued shift.

Syntax
EOSHIFT (array, shift, boundary, dim)

Required Arguments
array can be of any type. It must not be scalar.

shift must be of type INTEGER and must be scalar if array is of rank one; otherwise it must
be scalar or of rank n-1 and of shape (d;, d,, ..., dgim_1,Agim+1+---,0,) , Where
(dy, dy, ..., d,) istheshapeof array.

Optional Arguments

boundary must be of the same type and kind asarray. If array is of type CHARACTER,
boundary must have the same length as array. It must be scalar if array is of rank one; oth-
erwise it must be scalar or of rank n-1 and of shape (dy, d,, ..., dgim_1,dgim+1+----dn) -
boundary can be omitted, in which case the default values are zero for numeric types, blanks
for CHARACTER, and false for LOGICAL.

dimmust beascalar INTEGER withavalueintherange 1 < dim< n, wherenistherank of
array. If dimisomitted, it isasif it were present with a value of one.

Result
Theresult is of the same type, kind and shape as array.

Element (s, S,, ..., S,) of theresult has the value
array (Sy, Sy -+ Sqim—1+Sdim + SN+ Sgim+ 1+ -+- »S,) Where shis shift or
shift (S;,S,, .-+ Sgim—1+Sgim+ 1 --- »Sy) Provided the inequality
Ibound(array, dim) < s;,, + sh < ubound(array, dim) holds and is otherwise boundary or
boundary (S;,S,, --+ Sgim—1Sdim+ 1+ -++»Sn) -

Lahey/Fujitsu Fortran 95 Language Reference 119

Chapter 2 Alphabetical Reference

Example
integer, dinension (2,3) :: a, b
i nteger, dinension (3) :: c, d
integer :: e

a = reshape((/1,2,3,4,5,6/), (/2,3/))
I represents |1 3 5]

|2 4 6|
c =(/1,2,3/)
b = eoshift(a, 1) ! bis assigned the value |0 O O
! |1 3 5
b = eoshift(a,-1,0,2) ! b assigned the value |3 5 0]
! |4 6 0]
b = eoshift(a,-c,1)! b is assigned the value |2 1 1]
! [1 1 1]
d = eoshift(c, 2) ! ¢ is assigned the value |3 0 0|
EPSILON Function
Description
Positive value that is almost negligible compared to unity; smallest x such that 1+x is not
equal to 1.
Syntax
EPSILON (X)
Arguments

x must be of type REAL. It can be scalar or array-valued.
Result

Theresult isascalar value of the samekind asx. Itsvalueis 2-», where p is the number of
bits in the fraction part of the physical representation of x.

120 Lahey/Fujitsu Fortran 95 Language Reference

EQUIVALENCE Satement

Example
I reasonably safe conpare of two default REALs
function equals (a, b)
inmplicit none

| ogical :: equals
real, intent(in) :: a, b
real :: eps
eps = abs(a) * epsilon(a) ! scale epsilon
if (eps == 0) then
eps = tiny (a) I if eps underflowed to O
! use a very snal
! positive value for epsilon
end if
if (abs(a-b) > eps) then
equal s = .fal se. I not equal if difference>eps
return
el se
equals = .true. I equal otherw se
return
endi f

end function equal s

EQUIVALENCE Statement

Description

The EQUIVALENCE statement is used to specify that two or more objectsin a scoping unit
share the same storage.

Syntax
EQUIVALENCE equivalence-sets

Where:
equivalence-sets is a comma-separated list of (equivalence-objects)

equivalence-objects is a comma-separated list of variables, array elements, or substrings.

Remarks

If the equivalenced objects have different types or kinds, the EQUIVALENCE statement
does not cause any type conversion or imply mathematical equivalence.

If ascalar and an array-valued object are equivalenced, the scalar does not have array prop-
erties and the array does not have scalar properties.

Lahey/Fujitsu Fortran 95 Language Reference 121

Chapter 2 Alphabetical Reference

An equival ence-object must not be a dummy argument, a pointer, an allocatable array, an
object of a non-sequence derived type or of a sequence derived type containing a pointer at
any level of component selection, an automatic object, afunction name, an entry name, a
result name, anamed constant, astructure component, or a subobject of any of the preceding
objects.

If an equivalence-object is of aderived typethat is not anumeric sequence or CHARACTER
sequence type, al of the objects in the equivalence set must be of the same type.

If an equivalence-object is of an intrinsic type other than default INTEGER, default REAL,
double precision REAL, default COMPLEX, default LOGICAL, or default CHARACTER,
all of the objects in equivalence-set must be of the same type with the same kind value.

A data object of type default CHARACTER can be equivalenced only with other objects of
type default CHARACTER. Thelengths of the equivalenced objects are not required to be
the same.

An EQUIVALENCE statement must not specify that the same storage unit isto occur more
than once in a storage sequence.

Example
equi val ence (a,b,c(2)) ! a, b, and c(2) share the
I sane storage

ERROR Subroutine

122

Description
Print a message to the consol e, then continue processing.

Syntax
ERROR (message)

Arguments

message must be of type CHARACTER. Itisan INTENT(IN) argument that is the message
to be printed. Notethat to generate asubprogram traceback you must specify the -trace com-
piler switch.

Example
call error(’error’) ! prints the string "error’
! followed by a subprogram
I traceback

Lahey/Fujitsu Fortran 95 Language Reference

EXIT Satement

EXIT Statement

Description
The EXIT statement terminates a DO loop.

Syntax
EXIT [do-construct-name]

Where:

do-construct-name is the name of a DO construct that contains the EXIT statement. |f do-
construct-nameisomitted, it is as if do-construct-name were the name of the innermost DO
construct in which the EXIT statement appears.

Example
outer: do i=1, 10
i nner : do j=1, 10
if (i>a) exit outer
if (j>b) exit | exits inner
enddo i nner
enddo outer

EXIT Subroutine

Description
Terminate the program and set the system error level.

Syntax
EXIT (ilevel)

Arguments
ilevel must be of type INTEGER. It isthe system error level set on program termination.

Example
call exit(3) ! exit -- systemerror level 3

EXP Function

Description
Exponential.

Lahey/Fujitsu Fortran 95 Language Reference 123

Chapter 2 Alphabetical Reference

Syntax
EXP (x)

Arguments
x must be of type REAL or COMPLEX.

Result

Theresult is of the sametypeasx. ItsvaueisaREAL or COMPLEX representation of e
If xisof type COMPLEX, itsimaginary part istreated as avaue in radians.

Example
a = exp(2.0) ! a is assigned the val ue 7.38906

EXPONENT Function

Description
Exponent part of the model representation of a number.

Syntax
EXPONENT (X)

Arguments
X must be of type REAL.

Result

The result is of type default INTEGER. Itsvalue isthe value of the exponent part of the
model representation of x.

Example

i = exponent(3.8) ! i is assigned 2
i = exponent(-4.3)! i is assigned 3

EXTERNAL Statement

Description

The EXTERNAL statement specifies external procedures. Specifying a procedure name as
EXTERNAL permits the name to be used as an actual argument.

124 Lahey/Fujitsu Fortran 95 Language Reference

FLOOR Function

Syntax
EXTERNAL [::] external-name-list

Where:
external-name-list is acomma-separated list of external procedures, dummy procedures, or
block data program units.

Remarks
If an intrinsic procedure name appearsin an EXTERNAL statement, the intrinsic procedure
is not available in the scoping unit and the nameisthat of an external procedure.

A name can appear only once in all of the EXTERNAL statements in a scoping unit.

Example
subroutine fred (a, b, sin)
external sin I sinis the nane of an external
! procedure, not the intrinsic sin()
call bill (a, sin)

! sin can be passed as an actual arg

FLOOR Function

Description
Greatest INTEGER less than or equal to a number.

Syntax
FLOOR (a, kind)

Required Arguments
a must be of type REAL.

Optional Arguments
kind must be ascalar INTEGER expression that can be evaluated at compile time.

Result

Theresult isof type default INTEGER. Itsvaueisequal to the greatest INTEGER lessthan
or equal to a. If kind is present, the kind is that specified by kind. If kind is absent, the kind
isthat of the default REAL type.

Example
i

j

floor(-2.1) ! i is assigned the value -3
floor(2.1) ! j is assigned the value 2

Lahey/Fujitsu Fortran 95 Language Reference 125

Chapter 2 Alphabetical Reference

FLUSH Subroutine

Description
Empty the buffer for an input/output unit by writing to its corresponding file. Note that this
does not flush the file buffer.

Syntax
FLUSH (iunit)

Arguments
iunit must be of type INTEGER. It isan INTENT(IN) argument that is the unit number of
the file whose buffer is to be emptied.

Example
call flush(11) ! enpty buffer for unit 11

FORALL Construct

126

Description
The FORALL construct controls the execution of assignment and pointer assignment state-
ments with selection by sets of index values and an optional mask expression.

Syntax
[construct-name: | FORALL (forall-triplets[, mask])
[forall-body]
END FORALL [construct-name]

Where:
construct-name is an optional name for the FORALL construct name.

forall-triplets is a comma-separated list of index-name = subscript : subscript [: stride]
index-name is a named scalar variable of type INTEGER.

subscript is an array index.

strideisan array stride.

mask isa scalar expression of type LOGICAL.

forall-body is zero or more assignment or pointer assignment statements, WHERE state-
ments or construct, or FORALL statements or constructs.

Lahey/Fujitsu Fortran 95 Language Reference

FORALL Satement

Remarks

If the FORALL construct has a constr uct-name, the same construct-name must appear at the
beginning and end of the construct.

Any procedure referenced in mask or in forall-body must be a pure procedure.
If mask isnot present it is asif it were present with the value .TRUE..

Example
real :: a(10,10), b(10,10) = 1.0

forall (i=1:10, j=1:10, b(i,j) /= 0.0)
a(i,j) =real (i+-2)
b(i,J) =a(i,j) + b(i,j) * real (i*j)
end forall

FORALL Statement

Description

The FORALL statement control s the execution of an assignment or pointer assignment state-
ment with selection by sets of index values and an optional mask expression.

Syntax

FORALL (forall-triplets[, mask]) forall-assignment-stmt

Where:
forall-triplets is a comma-separated list of index-name = subscript : subscript [: stride]

index-name is a named scalar variable of type INTEGER.

subscript isan array index.

strideis an array stride.

mask is a scalar expression of type LOGICAL.

forall-assignment-stmt is an assignment statement or a pointer assignment statement.
Remarks

Any procedure referenced in mask or in forall-assignment-stmt must be a pure procedure.

If maskisnot present itisasif it were present with the value . TRUE..

Lahey/Fujitsu Fortran 95 Language Reference 127

Chapter 2

Alphabetical Reference

Example
i nteger, dinension(3,3) :: a
forall (i=1:n-1, j=1:n, j>i) a(i,j) = a(j,i)
! assigns the transpose of the lower triangle of array a
I (the section below the main diagonal) to the upper

! triangle of a

FORMAT Statement

Description

The FORMAT statement provides explicit information that directs the editing between the
internal representation of data and the characters that are input or output.

Syntax
FORMAT ([format-items])

Where:

format-itemsisacomma-separated list of [r] data-edit-descriptor, control-edit-descriptor, or
char-string-edit-descriptor, or [r] (format-items)
data-edit-descriptor is Iw{.m]

or Bw[.m]

or Ow[.m|

or Zw[.m|

or Fw.d

or Ew.d[E€]

or ENw.d[Ee€]

or ESw.d[E€]

or Gw.d[Ee]

orLw

or A[w]

or Dwd

w, m, d, and eare INTEGER literal constantsthat represent field width, digits, digits after the
decimal point, and exponent digits, respectively.

128 Lahey/Fujitsu Fortran 95 Language Reference

FORMAT Satement

control-edit-descriptor isTn
or TLn
or TRn
or nX
orS

or SP
or SS
or BN
or BZ
or[r]/
or:

or kP

char-string-edit-descriptor isa CHARACTER literal constant or cHrep-chars
rep-charsisastring of characters.

c isthe number of charactersin rep-chars

r, k, and n are positive INTEGER literal constants used to specify anumber of repetitions of
the data-edit-descriptor, char-string-edit-descriptor, control-edit-descriptor, or (format-
items)

Remarks
The FORMAT statement must be | abel ed.

The comma between edit descriptors may be omitted in the following cases:

» between the scale factor (P) and the numeric edit descriptors F, E, EN, ES, D, or G.

» before anew record indicated by a slash when thereis no repeat factor present.

» dfter the dash for anew record.

» before or after the colon edit descriptor.

Edit descriptors may be nested within parentheses and may be preceded by arepeat factor.

A parenthesized list of edit descriptors may also be preceded by arepeat factor, indicating
that the entirelist is to be repeated.

Lahey/Fujitsu Fortran 95 Language Reference 129

Chapter 2 Alphabetical Reference

The edit descriptors

| (decima INTEGER),

B (binary INTEGER),

O (octal INTEGER),

Z (hexadecimal INTEGER),

F (REAL or COMPLEX, no exponent on output),
E and D (REAL or COMPLEX, exponent on output),
EN (engineering notation),

ES (scientific notation),

G (generalized),

L (LOGICAL),

A (CHARACTER),

T (position from beginning of record),

TL (position left from current position),
TR (position right from current position),

X (position forward from current position),
S (default plus production on output),

SP (force plus production on output),

SS (suspend plus production on output),
BN (ignore non-leading blanks on input),
BZ (non-leading blanks are zeros on input),
/ (end of current record),

. (terminate format control), and

P (scale factor)

indicate the manner of data editing.

Descriptions of each edit descriptor are provided in “ Input/Output Editing” beginning on
page 24.

The comma used to separate items in for mat-items can be omitted between a P edit descriptor
and an immediately following F, E, EN, ES, D, or G edit descriptor; before a slash edit
descriptor when the optional repeat specification is not present; after a slash edit descriptor;
and before or after a colon edit descriptor.

WithinaCHARACTER literal constant, if adelimiter character itself appears, either an apos-
trophe or quote, it must be as a consecutive pair without any blanks. Each such pair
represents a single occurrence of the delimiter character.

Example
a = 123.45
wite (7,10) a
wite (7,20) a
10 format (ell.5) 1 0.12345E+03
20 format (2p, el2.5) | 12.3450E+01

130 Lahey/Fujitsu Fortran 95 Language Reference

FRACTION Function

FRACTION Function

Description
Fraction part of the physical representation of a number.

Syntax
FRACTION (x)

Arguments
x must be of type REAL.

Result

Theresult is of the same kind as x. Itsvalueisthe value of the fraction part of the physical
representation of x.

Example
a = fraction(3.8) ! ais assigned the value 0.95

FUNCTION Statement

Description

The FUNCTION statement begins a function subprogram, and specifies its return type and
name (the function name by default), its dummy argument names, and whether it isrecursive.

Syntax

[PURE][ELEMENTAL][RECURSIVE] [type-spec] FUNCTION function-
name ([dummy-arg-names]) [RESULT (result-name)]

Where:

type-spec is INTEGER [kind-selector]
or REAL [kind-selector]

or DOUBLE PRECISION

or COMPLEX [kind-selector]

or CHARACTER [char-selector]

or LOGICAL [kind-selector]

or TYPE (type-name)

kind-selector is ([KIND =] kind)

Lahey/Fujitsu Fortran 95 Language Reference 131

Chapter 2 Alphabetical Reference

132

char-selector is (LEN = length[, KIND = kind])
or (length[,[KIND =] kind])

or (KIND =kind [, LEN =length])

or * char-length [,]

kind isascalar INTEGER expression that can be evaluated at compile time.

length isa scalar INTEGER expression
or*

char-length isascalar INTEGER literal constant
or (*)
function-name is the name of the function.

dummy-arg-names is a commarseparated list of dummy argument names.

result-name is the name of the result variable.

Remarks
PURE, ELEMENTAL, RECURSIVE, and type-spec can bein any order.

A pure function has the prefix PURE or ELEMENTAL.
An ELEMENTAL function hasthe prefix ELEMENTAL.

A pure function must not contain any operation that could conceivably result in an assign-
ment or pointer assignment to a common variable, avariable accessed by use or host
association, or an INTENT (IN) dummy argument; nor shall a pure function contain any
operation that could conceivably perform any external file |/O or STOP operation.

The specification of a pure function must specify that all dummy arguments have INTENT
(IN) except procedure arguments and arguments with the POINTER attribute.

Local variables of pure functions must not have the SAVE attribute, either by explicit decla-
ration or by initiaization in atype declaration or DATA statement.

The result and dummy arguments of elemental functions must be scalar and must not have
the POINTER attribute.

Dummy arguments of elemental functions must not appear in any specification expressions
except as the argument to one of the intrinsic functions BIT_SIZE, KIND, LEN, or the
numeric inquiry functions.

Dummy arguments of elemental functions must not be dummy procedures.

The keyword RECURSIVE must be present if the function directly or indirectly callsitself
or afunction defined by an ENTRY statement in the same subprogram. RECURSIVE must
a so bepresent if afunction defined by an ENTRY statement directly or indirectly callsitself,
another function defined by an ENTRY statement, or the function defined by the FUNC-
TION statement.

Lahey/Fujitsu Fortran 95 Language Reference

GETCL Subroutine

A function that callsitself directly must use the RESULT option.
If the function result is array-valued or a pointer, this must be specified in the specification
of the result variable in the function body.

Example
i nteger function sun(i,j) result(k)

GETCL Subroutine

Description
Get command line.

Syntax
GETCL (result)

Arguments

result must be of type CHARACTER. Itisan INTENT(OUT) argument that is assigned the
characters on the system command line beginning with the first non-white-space character
after the program name.

Example
call getcl(cl) ! cl is assigned the comand |ine

GETENYV Subroutine

Description
Get the specified environment variable.

Syntax
GETENV (variable, value)

Arguments

variable must be of type default CHARACTER. Itisan INTENT(IN) argument which spec-
ifies the environment variable to check.

value must be of type default CHARACTER. Itisan INTENT(OUT) argument which
returns the value of the environment variable variable.

Lahey/Fujitsu Fortran 95 Language Reference 133

Chapter 2 Alphabetical Reference

Example
character (l1en=80) :: nypath
call getenv(’ path’, nypath)

GOTO Statement

Description
The GOTO statement transfers control to a statement identified by alabel.

Syntax
GOTO label

Where:
label isthe label of abranch target statement.

Remarks
label must be the label of a branch target statement in the same scoping unit as the GOTO
Statement.
Example

a=m>b

goto 10 ! branches to 10

b =c¢c ! never executed

10 c=d

HUGE Function

Description
Largest representable number of datatype.

Syntax
HUGE (x)

Arguments
x must be of type REAL or INTEGER.

Result

Theresult is of the same type and kind as x. Itsvalueisthe value of the largest number in
the data type of x.

134 Lahey/Fujitsu Fortran 95 Language Reference

IACHAR Function

Example
a = huge(4.1) ! a is assigned the value 0.340282E+39

IACHAR Function

Description
Position of a character in the ASCII collating sequence.

Syntax
IACHAR (c)

Arguments
¢ must be of type default CHARACTER and of length one.

Result

The result is of type default INTEGER. Itsvalue isthe position of c in the ASCII collating
sequence and isin therange O <iachar(c) <127 .

Example
i =iachar('c') ! i is assigned the value 99

IAND Function

Description
Bit-wiselogical AND.

Syntax
IAND (i, j)

Arguments
i must be of type INTEGER.
j must be of type INTEGER and of the samekind asi.

Result

Theresult isof type INTEGER. Itsvalueisthe value obtained by performing a bit-wise log-
ical AND of i andj.

Lahey/Fujitsu Fortran 95 Language Reference 135

Chapter 2

Alphabetical Reference

Example
i =53 I i = 00110101 binary (Il owest-order byte)
j =45 I j = 00101101 binary (|l owest-order byte)
k=iand(i,j) ! k = 00100101 bi nary (| owest-order byte)
I k = 37 deci mal

IBCLR Function

Description
Clear one bit to zero.

Syntax
IBCLR (i, pos)

Arguments

i must be of type INTEGER.

pos must be of type INTEGER. It must be non-negative and less than the number of bitsini.
Result

The result is of type INTEGER and of the samekind asi. Itsvalueisthe value of i except
that bit posisset to zero. Note that the lowest order posis zero.

Example
i =ibclr (37,2) ! i is assigned the value 33

IBITS Function

Description
Extract a sequence of bits.

Syntax
IBITS(i, pos, len)

Arguments
i must be of type INTEGER.

pos must be of type INTEGER. It must be hon-negative and pos+len must be less than or
equal to the number of bitsini.

len must be of type INTEGER and non-negative.

136 Lahey/Fujitsu Fortran 95 Language Reference

IBSET Function

Result

Theresult is of type INTEGER and of the samekind asi. Itsvalueisthe value of the
sequence of len bits beginning with pos, right adjusted with all other bits set to 0. Note that
the lowest order posis zero.

Example
i =ibits (37,2,2) ! i is assigned the value 1

IBSET Function

Description
Set abit to one.

Syntax
IBSET (i, pos)

Arguments

i must be of type INTEGER.

pos must be of type INTEGER. It must be non-negative and less than the number of bitsini.
Result

The result is of type INTEGER and of the samekind asi. Itsvalueisthe value of i except
that bit posisset to one. Note that the lowest order posis zero.

Example
i = ibset (37,1) ! i is assigned the value 39

ICHAR Function

Description
Position of a character in the processor collating sequence associated with the kind of the
character.

Syntax
ICHAR (c)

Arguments
¢ must be of type CHARACTER and of length one.

Lahey/Fujitsu Fortran 95 Language Reference 137

Chapter 2 Alphabetical Reference

Result

Theresultisof typedefault INTEGER. Itsvalueisthe position of cintheprocessor collating
sequence associated with the kind of c and isintherange O<ichar(c) <n-1,wherenis
the number of charactersin the collating sequence.

Example
i =ichar('c') ! i is assigned the value 99 for
I character ¢ in the ASClI
I collating sequence

IEOR Function

Description
Bit-wise logical exclusive OR.

Syntax
IEOR (i, j)

Arguments
i must be of type INTEGER.
j must be of type INTEGER and of the samekind asi.

Result

Theresultisof type INTEGER. Itsvalueisthe value obtained by performing a bit-wise log-
ical exclusive OR of i andj.

Example
i =53 I i = 00110101 binary (Il owest-order byte)
j =45 I j = 00101101 binary (I owest-order byte)
k=ieor(i,j) ! k = 00011000 binary (| owest-order byte)
I k = 24 deci mal

IF Construct

Description

The IF construct controls which, if any, of one or more blocks of statements or executable
constructs will be executed.

138 Lahey/Fujitsu Fortran 95 Language Reference

|F Construct

Syntax
[construct-name:] IF (expr) THEN
block
[ELSE IF (expr) THEN [construct-name]
block]

[EL SE [construct-name]
block]
END IF [construct-name]

Where:
congtruct-name is an optional name for the construct.

expr isascalar LOGICAL expression.

block is a sequence of zero or more statements or executable constructs.

Remarks

At most one of the blocks contained within the IF construct is executed. If thereisan ELSE
statement in the construct, exactly one of the blocks contained within the construct will be
executed. Theexprsareevaluated inthe order of their appearancein the construct until atrue
valueisfound or an EL SE statement or END IF statement is encountered. If atrue value or
an EL SE statement isfound, the block immediately following is executed and this compl etes
the execution of the construct. The exprsin any remaining EL SE IF statements of the IF con-
struct are not evaluated. If none of the evaluated expressions istrue and there isno EL SE
statement, the execution of the construct is completed without the execution of any block
within the construct.

If the IF statement specifies a construct name, the corresponding END |F statement must
specify the same construct name. |If the IF statement does not specify a construct name, the
corresponding END |F statement must not specify a construct name.

Example

if (a>b) then
c=d

else if (a<b) then
d =c

else ! a=b
stop

end if

Lahey/Fujitsu Fortran 95 Language Reference 139

Chapter 2 Alphabetical Reference

IF-THEN Statement

Description
The IF-THEN statement begins an IF construct.

Syntax
[construct-name:] IF (expr) THEN

Where:
congtruct-name is an optional name for the |F construct.

expr isascalar LOGICAL expression.

Remarks

At most one of the blocks contained within the I F construct is executed. |If thereisan ELSE
statement in the construct, exactly one of the blocks contained within the construct will be
executed. Theexprsareevaluated intheorder of their appearance in the construct until atrue
value isfound or an EL SE statement or END IF statement is encountered. If atruevalue or
an EL SE statement isfound, the block immediately following is executed and this compl etes
the execution of the construct. The exprsin any remaining EL SE | F statements of the I F con-
struct are not evaluated. If none of the evaluated expressionsistrue and there is no EL SE
statement, the execution of the construct is completed without the execution of any block
within the construct.

Example
if (a>b) then
c=d
el se
d =c
end if

IF Statement

Description
The IF statement controls whether or not a single executabl e statement is executed.

Syntax
IF (expr) action-statement

Where:
expr isascalar LOGICAL expression.

140 Lahey/Fujitsu Fortran 95 Language Reference

IMPLICIT Satement

action-statement is an executabl e statement other than another |F or the END statement of a
program, function, or subroutine.

Remarks
Execution of an |F statement causes evaluation of expr. If the value of expr istrue, action-
statement is executed. If the value is false, action-statement is not executed.

Example
if (a>=Db) a=-a

IMPLICIT Statement

Description

The IMPLICIT statement specifies, for a scoping unit, atype and optionally akind or a
CHARACTER length for each name beginning with aletter specifiedinthe IMPLICIT state-
ment. Alternately, it can specify that no implicit typing isto apply in the scoping unit.

Syntax
IMPLICIT implicit-specs

or
IMPLICIT NONE

Where:
implicit-specs is a comma-separated list of type-spec (letter-specs)

type-spec is INTEGER [kind-selector]
or REAL [kind-selector]

or DOUBLE PRECISION

or COMPLEX [kind-selector]

or CHARACTER [char-selector]

or LOGICAL [kind-selector]

or TY PE (type-name)

kind-selector is ([KIND =] kind)

char-selector is(LEN = length [, KIND = kind])
or (length [,[KIND =] kind])

or (KIND =kind [, LEN =length])

or * char-length [,]

type-name is the name of a user-defined type.

kind isascalar INTEGER expression that can be evaluated at compile time.

Lahey/Fujitsu Fortran 95 Language Reference 141

Chapter 2 Alphabetical Reference

142

length isa scalar INTEGER expression

or*

char-length isascalar INTEGER literal constant

or (*)
letter-specs is a commarseparated list of letter[-letter]

letter is one of the letters A-Z.

Remarks

A letter-spec consisting of two letters separated by aminusis equivalent to writing alist con-
taining all of the lettersin aphabetical order in the al phabetic sequence from thefirst letter

through the second letter. The same letter must not appear asasingleletter or beincluded in
arange of letters more than once in all of the IMPLICIT statements in a scoping unit.

In the absence of an implicit statement, a program unit istreated as if it had a host with the
declaration

inmplicit integer (i-n), real (a-h, 0-2)

IMPLICIT NONE specifiesthe null mapping for all the letters. I1f amapping isnot specified
for aletter, the default is the mapping in the host scoping unit.

If IMPLICIT NONE is specified in a scoping unit, it must precede any PARAMETER state-
ments that appear in the scoping unit and there must be no other IMPLICIT statementsin the
scoping unit.

Any dataentity that is not explicitly declared by atype declaration statement, isnot an intrin-
sic function, and is not made accessible by use association or host association is declared
implicitly to be of thetype (and type parameters, kind and length) mapped from thefirst | etter
of its name, provided the mapping is not null.

An explicit type specification in aFUNCTION statement overridesan IMPLICIT statement
for the name of that function subprogram.

Example
implicit character (c), integer (a-b, d-z)
| specifies that all data objects
! beginning with ¢ are inplicitly of
I type character, and other data

! objects are of type integer

Lahey/Fujitsu Fortran 95 Language Reference

INCLUDE Line

INCLUDE Line

Description
The INCLUDE line causestext in another file to be processed as if the text therein replaced
the INCLUDE line. The INCLUDE lineisnot a Fortran statement.

Syntax
INCLUDE filename

Where:
filenameisaCHARACTER literal constant that correspondsto afilethat contains sourcetext
to beincluded in place of the INCLUDE line.

Remarks
The INCLUDE line must be the only non-blank text on this source line other than an optional
trailing comment. A statement label or additional statements are not allowed on the line.

Example
include "types.for" | include a file naned types.for
! in place of this INCLUDE |ine

INDEX Function

Description
Starting position of a substring within a string.

Syntax
INDEX (string, substring, back)

Required Arguments
string must be of type CHARACTER.

substring must be of type CHARACTER with the same kind as string.

Optional Arguments
back must be of type LOGICAL.

Result

Theresult isof type default INTEGER. If back is absent or false, the result valueis the posi-
tion number in string where the first instance of substring begins or zero if there is no such
value or if string is shorter than substring. 1f substring is of zero length, the result valueis
one.

Lahey/Fujitsu Fortran 95 Language Reference 143

Chapter 2 Alphabetical Reference

If back is present and true, the result value is the position number in string where the last
instance of substring begins. If string is shorter than substring or if substring isnot in string,
zero isreturned. |If substring is of zero length, LEN(string)+1 is returned.

Example
i = index('mssissippi', 'si')
I i is assigned the value 4
i = index('mssissippi', 'si', back=.true.)

! i is assigned the value 7

INQUIRE Statement

Description
The INQUIRE statement enablesthe program to make inquiries about afile’ s existence, con-
nection, access method or other properties.

144 Lahey/Fujitsu Fortran 95 Language Reference

INQUIRE Satement

Syntax
INQUIRE (inquire-specs)

or
INQUIRE (IOLENGTH = iolength) output-items

Where:

inquire-specsis a comma-separated list of
[UNIT =] external-file-unit

or FILE = file-name-expr

or IOSTAT =iostat

or ERR = |abel

or EXIST = exist

or OPENED = opened

or NUMBER = number

or NAMED = named

or NAME = name

or ACCESS = access

or SEQUENTIAL = sequential
or DIRECT = direct

or FORM = form

or FORMATTED = formatted
or UNFORMATTED = unformatted
or RECL =recl

or NEXTREC = nextrec

or BLANK = blank

or POSITION = position

or ACTION = action

or READ =read

or WRITE = write

or READWRITE = readwrite
or DELIM =delim

or PAD = pad

or FLEN = flen

or BLOCKSIZE = blocksize
or CONVERT =file-format

or CARRIAGECONTROL = carriagecontrol

external-file-unit is a scalar INTEGER expression that eval uates to the input/output unit
number of an external file.

file-name-expr isascalar CHARACTER expression that evaluates to the name of afile.

iostat is a scalar default INTEGER variable that is assigned a positive value if an error con-
dition occurs, a negative value if an end-of-file or end-of-record condition occurs, and zero
otherwise.

Lahey/Fujitsu Fortran 95 Language Reference 145

Chapter 2 Alphabetical Reference

146

label isthe statement label of the statement branched to if an error occurs.

exist isascalar default LOGICAL variable that is assigned the value trueif the file specified
in the FILE= specifier exists or the input/output unit specified in the UNIT= specifier exigts,
and false otherwise.

opened is ascalar default LOGICAL variable that is assigned the value true if the file or
input/output unit specified is connected, and false otherwise.

number isascalar default INTEGER variable that is assigned the value of the input/output
unit of the external file or -1 if the file is not connected or does not exist.

named is ascalar default LOGICAL variable that is assigned the value trueif the file has a
name and fal se otherwise.

nameis ascalar default CHARACTER variable that is assigned the name of thefile, if the
file has a name, otherwise it becomes undefined.

accessisascalar default CHARACTER variable that evaluates to SEQUENTIAL if thefile
isconnected for sequential access, DIRECT if thefileisconnected for direct access, TRANS-
PARENT if the file is connected for transparent access, or UNDEFINED if the fileis not
connected.

sequential isascalar default CHARACTER variable that is assigned the value Y ES if
sequential accessis an allowed access method for the file, NO if sequential accessis not
allowed, and UNKNOWN if the fileis not connected or does not exist.

direct isascalar default CHARACTER variable that is assigned the value YESif direct
access is an allowed access method for thefile, NO if direct accessis not alowed, and
UNKNOWN if thefileis not connected or does not exist.

formisascaar default CHARACTER variable that is assigned the value FORMATTED if
thefileisconnected for formatted input/output, UNFORMATTED if thefileis connected for
unformatted input/output, and UNDEFINED if there is no connection.

formatted isascalar default CHARACTER variablethat is assigned the value Y ESif format-
ted isan allowed form for the file, NO if formatted is not allowed, and UNKNOWN if the
fileis not connected or does not exist.

unformatted is a scalar default CHARACTER variable that is assigned the value YES if
unformatted is an alowed form for the file, NO if unformatted is not allowed, and
UNKNOWNIf thefileis not connected or does not exist.

recl isascalar default INTEGER variable that evaluates to the record length in bytes for a
file connected for direct access, or the maximum record length in bytes for afile connected
for sequential access, or zero if thefile is not connected or does not exist.

nextrec is ascalar default INTEGER variable that is assigned the value n+ 1, where nisthe
number of the last record read or written on the file connected for direct access. If thefile
has not been written to or read from since becoming connected, the value 1 is assigned. |If
the fileis not connected for direct access, the value becomes zero.

Lahey/Fujitsu Fortran 95 Language Reference

INQUIRE Satement

blank isascalar default CHARACTER variable that evaluatesto NULL if null blank control
isin effect, ZERO if zero blank control isin effect, and UNDEFINED if thefile is not con-
nected for formatted input/output or does not exist.

position is ascalar default CHARACTER variable that evaluates to REWIND if the newly
opened sequential accessfileis positioned at itsinitial point; APPEND if it is positioned
before the endfile record if one exists and at the file terminal point otherwise; ASISif the
position is after the endfile record; and UNDEFINED if thefile is not connected or does not
exist.

action isascalar default CHARACTER variable that evaluates to READ if thefileis con-
nected for input only, WRITE if the fileis connected for output only, READWRITE if the
fileis connected for input and output, and UNDEFINED if thefile is not connected or does
not exist.

read isascalar default CHARACTER variable that isassigned thevalue YES if READ isan
alowed action onthefile, NO if READ isnot an allowed action of thefile, and UNKNOWN
if the file is not connected or does not exist.

writeisascalar default CHARACTER variable that is assigned the value YES if WRITE is
an allowed action on the file, NO if WRITE is not an allowed action of the file, and
UNKNOWN if thefileis not connected or does not exist.

readwriteisascalar default CHARACTER variablethat isassigned thevalue YESif READ-
WRITE isan allowed action on thefile, NO if READWRITE is not an alowed action of the
file, and UNKNOWN if the file is not connected or does not exist.

delimisascalar default CHARACTER variablethat evaluatesto APOSTROPHE if the apos-
trophe will be used to delimit character constants written with list-directed or namelist
formatting, QUOTE if the quotation mark will be used, NONE if neither quotation marks nor
apostrophes will be used, and UNDEFINED if thefile is not connected or does not exist.

pad isascaar default CHARACTER variable that evaluatesto Y ES if the formatted input
record is padded with blanks or if the file is not connected or does not exist, and NO
otherwise.

flen isascalar default INTEGER variable that is assigned the length of the file in bytes.

blocksizeisascalar default INTEGER variablethat evaluatesto the size, in bytes, of thel/O
buffer. Thisvaue may be internally adjusted to arecord size boundary if the unit has been
connected for direct access and therefore may no agree with the BLOCK S| ZE specifier spec-
ifiedin an OPEN Statement. Thevalueiszeroif the fileisnot connected or does not exist.

file-format isa scalar default CHARACTER variable that evaluatesto BIG_ENDIAN if big
endian conversionisineffect, LITTLE_ENDIAN if littleendian conversionisin effect, IBM
if IBM style conversionisin effect, and NATIVE if no conversion isin effect.

carriagecontrol isascalar default CHARACTER variablethat evaluatesto FORTRAN if the
first character of aformatted sequential record isto be used for carriage control, and LIST
otherwise.

Lahey/Fujitsu Fortran 95 Language Reference 147

Chapter 2 Alphabetical Reference

iolength isascalar default INTEGER variable that is assigned avalue that would result from
the use of output-itemsin an unformatted output statement. The value can be used asa
RECL = specifier in an OPEN statement that connects afile for unformatted direct access
when there are input/output statements with the same list of output-items.

output-itemsisacomma-separated list of items used with iolength as explained immediately
above.

Remarks
inquire-specs must contain one FIL E= specifier or one UNIT= specifier, but not both, and at
most one of each of the other specifiers.

In the inquire by unit form of the INQUIRE statement, if the optional characters UNIT= are
omitted from the unit specifier, the unit specifier must be the first item in inquire-specs.

When areturned value of a specifier other than the NAME= specifier is of type CHARAC-
TER and the processor is capable of representing lettersin both upper and lower case, the
value returned isin upper case.

If an error condition occurs during execution of an INQUIRE statement, all of the inquiry
specifier variables become undefined, except for the variable in the IOSTAT= specifier (if

any).

Example
inquire (unit=8, access=acc, err=200)
I what access nethod for unit 8? goto 200 on error
inquire (this_unit, opened=opnd, direct=dir)
! is unit this_unit open? direct access all owed?
inquire (file="nyfile.dat", recl=record_|l ength)
! what is the record length of file "nyfile.dat"?

INT Function

148

Description
Convert to INTEGER type.

Syntax
INT (a, kind)

Required Arguments
a must be of type INTEGER, REAL, or COMPLEX.

Optional Arguments
kind must be ascalar INTEGER expression that can be evaluated at compile time.

Lahey/Fujitsu Fortran 95 Language Reference

INTEGER Satement

Result

Theresult is of type INTEGER. If kind is present, the kind is that specified by kind. The
result's value is the value of a without its fractional part. If aisof type COMPLEX, the
result's value is the value of the real part of a without its fractional part.

Example
b =int(-3.6) ! b is assigned the value -3

INTEGER Statement

Description
The INTEGER statement declares entities of type INTEGER.

Syntax
INTEGER [kind-selector] [[, attribute-list] ::] entity [, entity] ...

Where:
kind-selector is ([KIND =] scalar-int-initialization-expr)

scalar-int-initialization-expr is ascalar INTEGER expression that can be evaluated at com-
piletime.

attribute-list isacomma-separated list from the following attributes: PARAMETER, ALLO-
CATABLE, DIMENSION(array-spec), EXTERNAL, INTENT (IN) or INTENT (OUT) or
INTENT (IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE,
TARGET.

entity is entity-name [(array-spec)] [= initialization-expr]
or function-name [(array-spec)]

array-spec isan array specification.

initialization-expr is an expression that can be evaluated at compile time.
entity-name is the name of a data object being declared.

function-name is the name of a function being declared.

Remarks

The same attribute must not appear more than once in aINTEGER statement.

function-name must be the name of an external, intrinsic, or statement function, or afunction
dummy procedure.

The = initialization-expr must appear if the statement contains a PARAMETER attribute.

Lahey/Fujitsu Fortran 95 Language Reference 149

Chapter 2 Alphabetical Reference

150

If = initialization-expr appears, a double colon must appear before the list of entities. Each
entity has the SAVE attribute, unlessit isin a named common block.

The = initialization-expr must not appear if entity-name is a dummy argument, a function
result, an object in anamed common block unless the type declarationisin ablock data pro-
gram unit, an object in blank common, an allocatable array, a pointer, an external name, an
intrinsic name, or an automatic object.

An array declared with aPOINTER or an ALLOCATABLE attribute must be specified with
a deferred shape.

An array-spec for a function-name that does not have the POINTER attribute or the ALLO-
CATABLE attribute must be specified with an explicit shape.

An array-spec for afunction-name that does have the POINTER attribute or the ALLOCAT-
ABLE attribute must be specified with a deferred shape.

If the POINTER attributeis specified, the TARGET, INTENT, EXTERNAL, or INTRINSIC
attribute must not be specified.

If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or
PARAMETER attribute must not be specified.

The PARAMETER attribute must not be specified for dummy arguments, pointers, allocat-
able arrays, functions, or objectsin a common block.

The INTENT and OPTIONAL attributes can be specified only for dummy arguments.
An entity must not have the PUBLIC attribute if its type has the PRIVATE attribute.

The SAVE attribute must not be specified for an object that isin acommon block, adummy
argument, a procedure, a function result, or an automatic data object.

An entity must not have the EXTERNAL attribute if it has the INTRINSIC attribute.

Anentity in aINTEGER statement must not have the EXTERNAL or INTRINSIC attribute
specified unlessit isafunction.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute.

An entity must not be explicitly given any attribute more than once in a scoping unit.

Lahey/Fujitsu Fortran 95 Language Reference

INTENT Satement

Example
integer :: a, b, c ! a, b, and c are of typeinteger
i nteger, dinension (2, 4) :: d
! dis a2 by 4 array of integers
integer :: e = 2 I integer e is initialized

INTENT Statement

Description
The INTENT statement specifies the intended use of a dummy argument.

Syntax
INTENT (intent-spec) [::] dummy-args

Where:
intent-spec isIN
or OUT

or IN OUT

dummy-args is a comma-separated list of dummy arguments.

Remarks

The INTENT (IN) attribute specifies that the dummy argument is intended to receive data
from the invoking scoping unit. The dummy argument must not be redefined or become
undefined during the execution of the procedure.

The INTENT (OUT) attribute specifies that the dummy argument is intended to return data
to the invoking scoping unit. Any actual argument that becomes associated with such a
dummy argument must be definable.

TheINTENT (IN OUT) attribute specifiesthat the dummy argument isintended for use both
to receive data from and to return data to the invoking scoping unit. Any actual argument
that becomes associated with such a dummy argument must be definable.

TheINTENT statement must not specify adummy argument that isadummy procedure or a
dummy pointer.

Example
subroutine ex (a, b, c¢)
real :: a, b, c
intent (in) a
intent (out) b
intent (in out) ¢

Lahey/Fujitsu Fortran 95 Language Reference 151

Chapter 2 Alphabetical Reference

INTERFACE Statement

152

Description

The INTERFACE statement begins an interface block. An interface block specifies the
forms of reference through which a procedure can be invoked. An interface block can be
used to specify a procedure interface, a defined operation, or a defined assignment.

Syntax
INTERFACE [generic-spec]

Where:

generic-spec is generic-name

or OPERATOR (defined-operator)
or ASSIGNMENT (=)

generic-name is the name of a generic procedure.

defined-operator is one of theintrinsic operators
or .operator-name.

operator-name is a user-defined name for the operation, consisting of oneto 31 letters.

Remarks
Procedureinterface

A procedure interface consists of the characteristics of the procedure, the name of the proce-
dure, the name and characteristics of each dummy argument, and the procedure's generic
identifiers, if any.

Aninterface statement with a generic-name specifies a generic interface for each of the pro-
cedures in the interface block.

Defined operations

If OPERATOR is specified in an INTERFACE statement, al of the procedures specified in
theinterface block must be functionsthat can be referenced as defined operations. Inthecase
of functions of two arguments, infix binary operator notation isimplied. In the case of func-
tions of one argument, prefix operator notation isimplied. OPERATOR must not be
specified for functions with no arguments or for functions with more than two arguments.
The dummy arguments must be non-optional dummy data objects and must be specified with
INTENT (IN) and the function result must not have assumed CHARACTER length. If the
operator is an intrinsic-operator, the number of function arguments must be consistent with
theintrinsic uses of that operator.

Lahey/Fujitsu Fortran 95 Language Reference

INTERFACE Satement

A given defined operator may, as with generic names, apply to more than one function, in
which caseit is generic in exact analogy to generic procedure names. For intrinsic operator
symbols, the generic propertiesinclude theintrinsic operationsthey represent. Because both
forms of each relational operator have the same interpretation, extending one form (such as
<=) hasthe effect of defining both forms (<= and .LE.).

Defined assignments

If ASSIGNMENT is specified in an INTERFACE statement, all the proceduresin the inter-
face block must be subroutinesthat can be referenced as defined assignments. Each of these
subroutines must have exactly two dummy arguments. Each argument must be non-optional.
The first argument must have INTENT (OUT) or INTENT (IN OUT) and the second argu-
ment must have INTENT (IN). A defined assignment is treated as areference to the
subroutine, with the left-hand side as the first argument and the expression to the right of the
equals the second argument. The ASSIGNMENT generic specification specifies that the
assignment operation is extended or redefined if both sides of the equals sign are of the same
derived type.

Example
interface ! interface w thout generic specification
subroutine ex (a, b, c)
inplicit none
real, dinmension (2,8) :: a, b, ¢
intent (in) a
intent (out) b
end subroutine ex
function why (t, f)
inmplicit none
logical, intent (in) :: t, f
| ogi cal :: why
end function why
end interface

interface swap ! generic swap routine
subroutine real _swap(x, V)
inplicit none
real, intent (in out) :: X, y
end subroutine real _swap
subroutine int_swap(x, Yy)
inplicit none
integer, intent (in out) :: X, y
end subroutine int_swap
end interface

Lahey/Fujitsu Fortran 95 Language Reference 153

Chapter 2 Alphabetical Reference

interface operator (*) ! use * for set intersection
function set_intersection (a, b)
use set_nodule ! contains definition of type set
inmplicit none
type (set), intent (in) :: a, b
type (set) :: set_intersection

end function set_intersection
end interface

interface assignment (=) ! use = for integer to bit
subroutine integer_to_bit (n, b)
implicit none
integer, intent (in) :: n
logical, intent (out) :: b(:)
end subroutine integer_to_bit
end interface

INTRINSIC Statement

Description

The INTRINSIC statement specifies alist of names that represent intrinsic procedures.
Doing so permits a name that represents a specific intrinsic function to be used as an actual
argument.

Syntax
INTRINSIC [::] intrinsic-procedure-names

Where:
intrinsic-procedure-names is a comma-separated list of intrinsic procedures.

Remarks
The appearance of ageneric intrinsic function namein an INTRINSIC statement does not
cause that name to lose its generic property.

If the specific name of an intrinsic function is used as an actual argument, the name must
either appear in an INTRINSIC statement or be given the intrinsic attribute in a type decla-
ration statement in the scoping unit.

Only one appearance of anamein al of the INTRINSIC statementsin a scoping unit is
permitted.

A name must not appear in both an EXTERNAL and an INTRINSIC statement in the same
scoping unit.

154 Lahey/Fujitsu Fortran 95 Language Reference

INVALOP Subroutine

Example
intrinsic dlog, dabs ! dlog and dabs al |l owed as
! actual argunents
call zee (a, b, dlog)

INVALOP Subroutine

Description

Theinitia invocation of the INVALOP subroutine masks the invalid operator interrupt on
the floating-point unit. |flag must be set to true on the first invocation. Subsequent invoca-
tions return true or false in the Iflag variable if the exception has occurred or not occurred,
respectively.

Syntax
INVALOP (Iflag)

Arguments
Iflag must be of type LOGICAL. It isassigned the valuetrueif an invalid operation excep-

tion has occurred, and false otherwise.

Example
call invalop (Iflag) ! mask the invalid operation interrupt

IOR Function

Description
Bit-wiselogical inclusive OR.

Syntax
IOR (i, j)

Arguments
i must be of type INTEGER.

j must be of type INTEGER and of the samekind asi.

Result
Theresult is of type INTEGER and of the same kind asi.

Lahey/Fujitsu Fortran 95 Language Reference 155

Chapter 2

Alphabetical Reference

Example
i =53 ! i = 00110101 binary (|l owest-order byte)
j =45 I j = 00101101 binary (Il owest-order byte)
k=ior(i,j) ! k = 00111101 binary (Il owest-order byte)
I k =

61 deci nmal

IOSTAT_MSG Subroutine

Description
Get aruntime /O error message then continue processing.

Syntax
IOSTAT_MSG (iostat, message)

Arguments
iostat must be of type INTEGER. Itisan INTENT(IN) argument that passesthe IOSTAT
value from a preceding input/output statement.

message must be of type CHARACTER. Itisan INTENT(OUT) argument that is assigned
the runtime error message corresponding to the IOSTAT valueiniostat. A CHARACTER
length of 256 issufficient for all runtimeerrorsat thistime. However, longer CHARACTER
lengths may be used.

Example
call iostat_nsg(iostat,nsg) ! nsg is assigned
! the runtine error message
I corresponding to iostat

ISHFT Function

Description
Bit-wise shift.

Syntax
ISHFT (i, shift)

Arguments
i must be of type INTEGER.

shift must be of type INTEGER. Its absolute value must be less than or equal to the number
of bitsini.

156 Lahey/Fujitsu Fortran 95 Language Reference

ISHFTC Function

Result

Theresult is of type INTEGER and of the samekind asi. Itsvalueisthe value of i shifted
by shift positions; if shift is positive, the shift isto the left, if shift is negative, the shift isto
theright. Bits shifted out arelost.

Example
i =ishft(3,2) ! i is assigned the value 12

ISHFTC Function

Description
Bit-wise circular shift of rightmost bits.

Syntax
ISHFTC (i, shift, size)

Required Arguments
i must be of type INTEGER.
shift must be of type INTEGER. The absolute value of shift must be lessthan or equal to size.

Optional Arguments
size must be of type INTEGER. The value of size must be positive and must not be greater

than BIT_SIZE (i). If absent, itisasif size were present with the value BIT_SIZE (i).
Result

Theresult is of type INTEGER and of the samekind asi. Itsvaueisequal to the value of i
with its rightmost size bits circularly shifted left by shift positions.

Example
i =ishftc(13,-2,3) ! i is assigned the value 11

KIND Function

Description
Kind type parameter.

Lahey/Fujitsu Fortran 95 Language Reference 157

Chapter 2 Alphabetical Reference

Syntax
KIND (x)

Arguments
X can be of any intrinsic type.

Result
Theresult isadefault scalar INTEGER. Itsvalueisequal to the kind type parameter value
of x.

Example
i = kind (0.0) ! i is assigned the value 4

LBOUND Function

158

Description
Lower bounds of an array or adimension of an array.

Syntax
LBOUND (array, dim)

Required Arguments
array can be of any type. It must not be ascalar and must not be a pointer that is disassociated
or an allocatable array that is not allocated.

Optional Arguments
dim must of type INTEGER and must be a dimension of array.

Result

Theresult isof type default INTEGER. If dimispresent, theresult isascalar with the value
of the lower bound of dim. If dimis absent, the result is an array of rank one with values
corresponding to the lower bounds of each dimension of array.

The lower bound of an array section is always one. The lower bound of a zero-sized dimen-
sion isalso always one.

Example
integer, dinension (3,-4:0) :: i
integer :: k,j(2)
j | bound (i) 1 j is assigned the value [1 -4]
k I bound (i, 2) ! k is assigned the value -4

Lahey/Fujitsu Fortran 95 Language Reference

LEN Function

LEN Function

Description
Length of a CHARACTER data object.

Syntax
LEN (string)

Arguments
string must be of type CHARACTER. It can be scalar or array-valued.

Result

Theresultisascaar default INTEGER. Itsvaueisthe number of charactersin string or in
an element of string if string is array-valued.

Example
i =len ('zee') ! i is assigned the value 3

LEN_TRIM Function

Description
Length of a CHARACTER entity without trailing blanks.

Syntax
LEN_TRIM (string)

Arguments
string must be of type CHARACTER. It can be scalar or array-valued.

Result

Theresult isascalar default INTEGER. Itsvalueisthe number of charactersin string (orin
an element of string if string is array-valued) minus the number of trailing blanks.

Example
i

len_trim('zee ') ! i is assigned the value 3
len_trim/(' ") I i is assigned the value zero

Lahey/Fujitsu Fortran 95 Language Reference 159

Chapter 2 Alphabetical Reference

LGE Function

Description
Test whether astring islexically greater than or equal to another string based on the ASCI|
collating sequence.

Syntax
LGE (string_a, string_b)

Arguments
string_a must be of type default CHARACTER.

string_b must be of type default CHARACTER.

Result

Theresult is of type default LOGICAL. Itsvaueistrueif string_b precedes string_ain the
ASCII collating sequence, or if the strings are the same ignoring trailing blanks; otherwise
theresult isfalse. If both strings are of zero length the result istrue.

Example
| =1lge('elephant', "horse') ! | is assigned the
I value fal se

LGT Function

160

Description
Test whether astring islexically greater than another string based on the ASCI| collating
sequence.

Syntax
LGT (string_a, string_b)

Arguments
string_a must be of type default CHARACTER.

string_b must be of type default CHARACTER.

Result

Theresult is of type default LOGICAL. Itsvalueistrueif string_b precedes string_ainthe
ASCII collating sequence; otherwise the result isfalse. If both strings are of zero length the
result isfalse.

Lahey/Fujitsu Fortran 95 Language Reference

LLE Function

Example
| =1lgt('elephant', "horse') ! | is assigned the
I value fal se

LLE Function

Description
Test whether a string islexically less than or equal to another string based on the ASCII col-
lating sequence.

Syntax
LLE (string_a, string_b)

Arguments

string_a must be of type default CHARACTER.

string_b must be of type default CHARACTER.

Result

Theresult is of type default LOGICAL. Itsvaueistrueif string_a precedes string_b in the

ASCII collating sequence, or if the strings are the same ignoring trailing blanks; otherwise
theresult isfalse. If both strings are of zero length the result is true.

Example
| =1le('elephant', "horse') ! | is assigned the
I value true

LLT Function

Description
Test whether astring is lexically less than another string based on the ASCII collating
sequence.

Syntax
LLT (string_a, string_b)

Arguments
string_a must be of type default CHARACTER.

string_b must be of type default CHARACTER.

Lahey/Fujitsu Fortran 95 Language Reference 161

Chapter 2 Alphabetical Reference

Result

Theresult is of type default LOGICAL. Itsvaueistrueif string_a precedes string_b in the
ASCII collating sequence; otherwisetheresult isfalse. If both strings are of zero length the
result isfalse.

Example
I =11t(" elephant', "horse') ! | is assigned the
I value true

LOG Function

Description
Natural logarithm.

Syntax
LOG (x)

Arguments
x must be of type REAL or COMPLEX. If xisREAL, it must be greater than zero. If xis
COMPLEX, it must not be equal to zero.

Result

Theresult is of the same type and kind as x. Itsvalueisequal to a REAL representation of
logxif XiSREAL. Itsvalueisequal tothe principal valuewithimaginary part w intherange
-n<w< mnif xis COMPLEX.

Example
x =log (3.7) ! x is assigned the value 1.30833

LOG10 Function

162

Description
Common logarithm.

Syntax
LOG10 (x)

Arguments
x must be of type REAL. The value of x must be greater than zero.

Lahey/Fujitsu Fortran 95 Language Reference

LOGICAL Function

Result
Theresult is of the same type and kind as x. Itsvalueisequal to a REAL representation of
log,oX.

Example
x = 1lo0gl0 (3.7) ! x is assigned the value 0.568202

LOGICAL Function

Description
Convert between kinds of LOGICAL.

Syntax
LOGICAL (I, kind)

Required Arguments
| must be of type LOGICAL.

Optional Arguments
kind must be ascalar INTEGER expression that can be evaluated at compile time.

Result
Theresult is of type LOGICAL. If kind is present, the result kind is that of kind; otherwise
itisof default LOGICAL kind. Theresult valueisthat of I.

Example
| =logical (.true., 4) ! | is assigned the val ue
! true with kind 4

LOGICAL Statement

Description
The LOGICAL statement declares entities of type LOGICAL.

Syntax
LOGICAL [kind-selector] [[, attribute-list] ::] entity [, entity] ...

Where:
kind-selector is ([KIND =] scalar-int-initialization-expr)

Lahey/Fujitsu Fortran 95 Language Reference 163

Chapter 2 Alphabetical Reference

164

scalar-int-initialization-expr isascalar INTEGER expression that can be evaluated at com-
piletime.

attribute-list isacomma-separated list from the following attributes: PARAMETER, ALLO-
CATABLE, DIMENSION(array-spec), EXTERNAL, INTENT (IN) or INTENT (OUT) or
INTENT (IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE,
TARGET.

entity is entity-name [(array-spec)] [= initialization-expr]
or function-name [(array-spec)]

array-spec is an array specification.

initialization-expr is an expression that can be evaluated at compile time.
entity-name is the name of a data object being declared.

function-name is the name of a function being declared.

Remarks

The same attribute must not appear more than once in aLOGICAL statement.

function-name must be the name of an external, intrinsic, or statement function, or afunction
dummy procedure.

The = initialization-expr must appear if the statement contains a PARAMETER attribute.

If = initialization-expr appears, a double colon must appear before the list of entities. Each
entity has the SAVE attribute, unlessit isin a named common block.

The = initialization-expr must not appear if entity-name is adummy argument, a function
result, an object in anamed common block unless the type declarationisin ablock data pro-
gram unit, an object in blank common, an allocatable array, a pointer, an external name, an
intrinsic name, or an automatic object.

An array declared withaPOINTER or an ALLOCATABLE attribute must be specified with
adeferred shape.

An array-spec for afunction-name that does not have the POINTER attribute or the ALLO-
CATABLE attribute must be specified with an explicit shape.

An array-spec for afunction-name that does have the POINTER attribute or the ALLOCAT-
ABLE attribute must be specified with a deferred shape.

If the POINTER attributeisspecified, the TARGET, INTENT, EXTERNAL, or INTRINSIC
attribute must not be specified.

If the TARGET attributeis specified, the POINTER, EXTERNAL, INTRINSIC, or
PARAMETER attribute must not be specified.

The PARAMETER attribute must not be specified for dummy arguments, pointers, allocat-
able arrays, functions, or objects in a common block.

Lahey/Fujitsu Fortran 95 Language Reference

MATMUL Function

The INTENT and OPTIONAL attributes can be specified only for dummy arguments.
An entity must not have the PUBLIC attribute if its type has the PRIVATE attribute.

The SAVE attribute must not be specified for an object that isin acommon block, adummy
argument, a procedure, a function result, or an automatic data object.

An entity must not have the EXTERNAL attributeif it has the INTRINSIC attribute.

Anentity in aLOGICAL statement must not have the EXTERNAL or INTRINSIC attribute
specified unlessit isafunction.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute.

Example
logical :: a, b, ¢ ! a, b, and c are of type | ogical
| ogical, dinension (2, 4) :: d
I dis a2 by 4 array of |ogical
logical :: e = .true. ! logical e is initialized

MATMUL Function

Description
Matrix multiplication.

Syntax
MATMUL (matrix_a, matrix_b)

Arguments
matrix_a must be of type INTEGER, REAL, COMPLEX, or LOGICAL. It must be array-

valued and of rank one or two if matrix_b is of rank two, and of rank two if matrix_bis of
rank one..

matrix_b must be of numerical type if matrix_ais of numerical type and of type LOGICAL
if matrix_aisof type LOGICAL. It must bearray-valued and of rank one or two, if matrix_a
is of rank two, and of rank two if matrix_ais of rank one. The size of the first dimension
must be the same as the size of the last dimension of matrix_a.

Result

If the arguments are of the same numeric type, theresult is of that type. If their kindsarethe
same the result kind isthat of the arguments. If their kind is different, the result kind is that
of the argument with the greater kind parameter.

Lahey/Fujitsu Fortran 95 Language Reference 165

Chapter 2 Alphabetical Reference

If the arguments are of different numeric type and oneis of type COMPLEX, then the result
isof type COMPLEX. If the arguments are of different numeric type, and neither is of type
COMPLEX, theresult is of type REAL.

If the arguments are of type LOGICAL, theresult isof type LOGICAL. If their kindsarethe
same the result kind isthat of the arguments. If their kind is different, the result kind is that
of the argument with the greater kind parameter.

The value and shape of the result are as follows:

If matrix_a has shape (n, m) and matrix_b has shape (m, k), the result has shape (n, k). Ele-
ment (i, j) of theresult hasthe value SUM(matrix_a(i, :) * matrix_b(:, j)) if theargumentsare
of numeric type and has the value ANY (matrix_a(i, :) * matrix_b(:, j)) if the arguments are
of type LOGICAL.

If matrix_a has shape (m) and matrix_b has shape (m, k), the result has shape (k). Element
(j) of the result has the value SUM (matrix_a(:) * matrix_b(:, j)) if the arguments are of
numerictypeand hasthevalue ANY (matrix_a(:) * matrix_b(:,j)) if theargumentsare of type
LOGICAL.

If matrix_a has shape (n, m) and matrix_b has shape (m), the result has shape (n). Element
(i, j) of the result has the value SUM(matrix_a(i, :) * matrix_b(:)) if the arguments are of
numerictypeand hasthevalue ANY (matrix_a(i, :) * matrix_b(:)) if theargumentsare of type
LOGICAL.

Example
integer a(2,3), b(3), c(2)
a = reshape((/1,2,3,4,5,6/), (/2,3/))
! represents |1 3 5]

MAX Function

166

|2 4 6]
b =(/1,2,3/) ! represents [1,2,3]
c = matmul (a, b) I ¢ = [22,28]
Description

Maximum value.

Syntax
MAX (al, a2, a3, ...)

Arguments
The arguments must be of type INTEGER or REAL and must all be of the same type and
kind.

Lahey/Fujitsu Fortran 95 Language Reference

MAXEXPONENT Function

Result

Theresult is of the same type and kind as the arguments. Itsvalue isthe value of the largest
argument.

Example
k = max(-14,3,0,-2,19,1) ! k is assigned the value 19

MAXEXPONENT Function

Description
Maximum binary exponent of data type.

Syntax
MAXEXPONENT (x)

Arguments
x must be of type REAL. It can be scalar or array-valued.

Result

Theresultisascalar default INTEGER. Itsvalueisthe largest permissible binary exponent
in the data type of x.

Example
real :: r
integer :: i
i = maxexponent (r) ! i is assigned the value 128

MAXLOC Function

Description

Location of the first element in array having the maximum value of the elementsidentified
by mask.

Syntax
MAXLOC (array, dim, mask)

Required Arguments
array must be of type INTEGER or REAL. It must not be scalar.

Lahey/Fujitsu Fortran 95 Language Reference 167

Chapter 2 Alphabetical Reference

Optional Arguments

dimmust be ascalar INTEGER intherange 1 < dim<n, wherenistherank of array. The
corresponding dummy argument must not be an optional dummy argument.

mask must be of type LOGICAL and must be conformable with array.

Result

Theresult is of type default INTEGER. If dimis present, the result is an array of rank n-1
where nistherank of array. The result values are the locations having the maximum value
along dimension dim.

If dimisabsent, theresult isan array of rank one whose element values are the values of the
subscripts of the first element in array to have the maximum value of all of the elements of
array.

If mask is present, the elements of array for which mask is false are not considered.
Example

integer, dinmension(1) :: i
i = maxloc ((/3,0,4,4/)) ! i is assigned the value [3]

MAXVAL Function

168

Description
Maximum value of elements of an array, along a given dimension, for which amask is true.

Syntax
MAXVAL (array, dim, mask)

Required Arguments
array must be of type INTEGER or REAL. It must not be scalar.

Optional Arguments

dimmust beascalar INTEGER in therange 1 < dim< n, wherenistherank of array. The
corresponding dummy argument must not be an optional dummy argument.

mask must be of type LOGICAL and must be conformable with array.

Result
Theresult is of the sametype and kind as array. Itisscalar if dimisabsent or if array has
rank one; otherwise the result is an array of rank n-1 and of shape

(dy, dy, ... dgim—1:94im+ 1, --- - dy) where (d;, d,, ...,d,) istheshapeof array. If dim

Lahey/Fujitsu Fortran 95 Language Reference

MERGE Function

MERGE

is absent, the value of the result isthe maximum value of all the elementsof array. If dimis
present, the value of the result is the maximum value of all elements of array along dimen-
siondim. If maskispresent, the elements of array for which mask isfalse are not considered.

Example
integer, dinmension (2,2) :: m= reshape((/1,2,3,4/),(/2,2/))
! mis the array |1 3|
! | 2 4]
i = maxval (m I i is assigned 4
j = maxval (m di mrl) I j is assigned [2,4]

k = maxval (m mask=m<3) ! k is assigned 2

Function

Description
Choose alternative values based on the value of a mask.

Syntax
MERGE (tsource, fsource, mask)

Arguments
tsource can be of any type.

fsource must be of the same type and type parameters as tsource.

mask must be of type LOGICAL.

Result

Theresult is of the same type and type parameters astsource. Itsvalueistsourceif maskis
true, and fsource otherwise.

Example

integer, dinension (2,2) :: m= reshape((/1,2,3,4/),(/2,2/))
i nteger, dinension (2,2) :: n = reshape((/3,3,3,3/),(/2,2/))
! mis the array |1 3|

! | 2 4]

! nis the array |3 3|

! | 3 3|

r = merge(mn,nxn) ! r is assigned (/1,2,3,3/)

Lahey/Fujitsu Fortran 95 Language Reference 169

Chapter 2 Alphabetical Reference

MIN Function

Description

Minimum value.

Syntax
MIN (a1, a2, a3, ...)

Arguments

The arguments must be of type INTEGER or REAL and must all be of the same type and
kind.

Result

Theresult isof the sametype and kind asthe arguments. Itsvalueisthevalue of the smallest
argument.

Example
k =mn(-14,3,0,-2,19,1) ! k is assigned the value -14

MINEXPONENT Function

170

Description

Minimum binary exponent of datatype.

Syntax
MINEXPONENT (X)

Arguments
x must be of type REAL. It can be scalar or array-valued.

Result

Theresult isascaar default INTEGER. Itsvalue isthe most negative permissible binary
exponent in the data type of x.

Lahey/Fujitsu Fortran 95 Language Reference

MINLOC Function

Example
real :: r
integer :: i
i = minexponent (r) ! i is assigned the value -126

MINLOC Function

Description

L ocation of the first element in array having the minimum value of the elementsidentified
by mask.

Syntax
MINLOC (array, dim, mask)

Required Arguments
array must be of type INTEGER or REAL. It must not be scalar.

Optional Arguments
dimmust beascalar INTEGER intherange 1 < dim< n, wherenistherank of array. The
corresponding dummy argument must not be an optional dummy argument.

mask must be of type LOGICAL and must be conformable with array.

Result

Theresult is of type default INTEGER. If dimis present, the result is an array of rank n-1
where n istherank of array. The result values are the locations having the minimum value
aong dimension dim.

If dimisabsent, theresult isan array of rank one whose element values are the values of the
subscripts of the first element in array to have the minimum value of all of the elements of
array.

If mask is present, the elements of array for which mask is false are not considered.
Example
i nteger, dinension(l) :: i

i =mnloc ((/3,0,4,4/)) ! i is assigned the value [2]

Lahey/Fujitsu Fortran 95 Language Reference 171

Chapter 2 Alphabetical Reference

MINVAL Function

Description
Minimum value of elements of an array, along a given dimension, for which amask is true.

Syntax
MINVAL (array, dim, mask)

Required Arguments
array must be of type INTEGER or REAL. It must not be scalar.

Optional Arguments

dimmust be ascalar INTEGER intherange 1 < dim< n, wherenistherank of array. The
corresponding dummy argument must not be an optional dummy argument.

mask must be of type LOGICAL and must be conformable with array.

Result

Theresult is of the same type and kind as array. Itisscalar if dimisabsent or if array has
rank one; otherwise the result is an array of rank n-1 and of shape

(dy, dy, ..., dgim—1:94im+ 1, ---,0dy) where (dy, d,, ...,d,) istheshapeof array. If dim
is absent, the value of the result is the minimum value of all the elements of array. If dimis
present, the value of the result isthe minimum value of al elementsof array along dimension
dim. If maskis present, the elements of array for which mask is false are not considered.

Example
integer, dinmension (2,2) :: m= reshape((/1,2,3,4/),(/2,2/))
! mis the array |1 3|
! | 2 4]
i m nval (m I i is assigned 1
j m nval (m di n¥1) ! j is assigned [1, 3]
k m nval (m mask=n®3) ! k is assigned 4

MOD Function

172

Description
Remainder.

Lahey/Fujitsu Fortran 95 Language Reference

MODULE Satement

Syntax
MQOD (a, p)

Arguments
a must be of type INTEGER or REAL.
p must be of the same type and kind asa. Itsvalue must not be zero.

Result

Theresult isthe sametype and kind asa. ltsvalueisa-INT(a/p)* p.

Example
r = md(23.4,4.0) ! r is assigned the value 3.4

i = nmod(-23,4) ! i is assigned the value -3
j = mod(23,-4) I j is assigned the value 3
k = nmod(-23,-4) ! k is assigned the value -3

MODULE Statement

Description

The MODULE statement begins a module program unit.

Syntax
MODULE module-name

Where:

module-name is the name of the module.

Remarks

The module name must not be the same as the name of another program unit, an external pro-
cedure, or acommon block within the executable program, nor bethe same asany local name
in the module.

In LF95, amodule program unit must be compiled beforeiit is used.

Lahey/Fujitsu Fortran 95 Language Reference 173

Chapter 2 Alphabetical Reference

Example
nodul e m
inmplicit none
type nytype I nmytype avail abl e anywhere mis used
real :: a, b(2,4)
integer :: n,o0,p

end type nytype
end nodule m
subroutine zee ()
use m
inplicit none
type (nmytype) bee, dee

end subroutine zee

MODULE PROCEDURE Statement

Description
The MODULE PROCEDURE statement specifies that the names in the modul e-procedure-
list are part of ageneric interface.

Syntax
MODULE PROCEDURE module-procedure-list

Where:
module-procedure-listis alist of module procedures accessible by host or use association.

Remarks
A MODULE PROCEDURE statement can only appear in ageneric interface block within a
module or within a program unit that accesses a module by use association.

174 Lahey/Fujitsu Fortran 95 Language Reference

MODULO Function

Example
nodul e nanes
inmplicit none
interface bil
nodul e procedure fred

end interface

cont ai ns

function fred ()

end function fred
function jim ()

end function jim
end nodul e nanes

MODULO Function

Description
Modulo.

Syntax
MODULO (a, p)

Arguments
a must be of type INTEGER or REAL.

jim

p must be of the same type and kind asa. Itsvalue must not be zero.

Result

Theresultisthe sametypeand kind asa. If aisaREAL, the result valueisa - FLOOR(a/
p) * p. If aisan INTEGER, MODULO(a, p) hasthevaluer suchthata=q* p+r, whereq
isan INTEGER and r is nearer to zero than p.

Example
r = modul 0(23.4,4.0) ! r
i = modul o(-23, 4) !
j = modul 0(23, -4) [
k - modul o(-23,-4) Ik

is
is
is
is

assi gned the
assi gned the
assi gned the
assi gned the

val ue
val ue
val ue
val ue

3.4
1
-1
-3

Lahey/Fujitsu Fortran 95 Language Reference 175

Chapter 2 Alphabetical Reference

MVBITS Subroutine

Description
Copy a sequence of bitsfrom one INTEGER data object to another.

Syntax
MVBITS (from, frompos, len, to, topos)

Arguments
from must be of type INTEGER. Itisan INTENT(IN) argument.

frompos must be of type INTEGER and must be non-negative. Itisan INTENT(IN) argu-
ment. frompos + len must be less than or equal to BIT_SIZE(from).

len must be of type INTEGER and must be non-negative. Itisan INTENT(IN) argument.

to must be avariable of type INTEGER with the same kind as from. It can be the same vari-
ableasfrom. Itisan INTENT(IN OUT) argument. tois set by copying len bits, starting at
position frompos, from from, to to, starting at position topos.

topos must be of type INTEGER and must be non-negative. Itisan INTENT(IN) argument.
topos + len must be less than or equal to BIT_SIZE(to).

Example
i =17; j =3
call mvbits (i,3,3,j,1) ! j is assigned the value 5

NAMELIST Statement

176

Description

The NAMELIST statement specifiesalist of variableswhich can bereferred to by one name
for the purpose of performing input/output.

Syntax
NAMELIST /namelist-name/ namelist-group [[,] /namelist-name/ namelist-group]

Where:
namelist-name is the name of anamelist group.

namelist-group isalist of variable names.

Lahey/Fujitsu Fortran 95 Language Reference

NDPERR Function (Windows Only)

Remarks

A name in anamelist-group must not be the name of an array dummy argument with a non-
constant bound, a variable with a non-constant character length, an automatic object, a
pointer, avariable of atypethat hasan ultimate component that isapointer, or an allocatable
array.

If a namelist-name has the public attribute, no item in the namelist-group can have the PRI-
VATE attribute.

The order in which the variables appear inaNAMELIST statement determines the order in
which the variables' values will appear on output.

Example
nanmelist /nylist/ x, y, z

NDPERR Function (Windows Only)

Description
Report floating point exceptions.

Syntax
NDPERR (lvar)

Arguments
Ivar must be of type LOGICAL. If Ivar istrue, NDPERR clearsfloating-point exception bits.
If lvar isfalse, NDPERR does not clear floating-point exception bits.

Result
Theresult isof type default INTEGER. Itsvalueisthe INTEGER value of the combination
of the following bits, where a bit set to one indicates an exception has occurred:

Table 9: NDPERR bits

Bit Exception

Invalid Operation

Denormalized Number

Divide by Zero

Overflow

Al W|N| | O

Underflow

Lahey/Fujitsu Fortran 95 Language Reference 177

Chapter 2 Alphabetical Reference

Example
exc = ndperr (.true.)
! exc is assigned the bits for floating-point exceptions
! that have occurred. Exception bits are cleared.

NDPEXC Subroutine (Windows Only)

Description
Mask all floating point exceptions.

Remarks

To mask specific exceptions use the subroutines INVALOP (invalid operator), OVEFL
(overflow), UNDFL (underflow), and DVCHK (divide by zero).

The precision exception is always masked.

Example
call ndpexc () ! mask floating-point exceptions

NEAREST Function

Description
Nearest number of agiven datatype in agiven direction.

Syntax
NEAREST (X, 9)

Arguments
X must be of type REAL.
smust be of type REAL and must be non-zero.

Result

Theresult is of the same type and kind as x. Itsvalueisthe nearest distinct number, in the
datatype of x, from x in the direction of the infinity with the same sign ass.

178 Lahey/Fujitsu Fortran 95 Language Reference

NINT Function

Example
a = nearest (34.3, -2.0) ! a is assigned 34.2999954223624

NINT Function

Description
Nearest INTEGER.

Syntax
NINT (a, kind)

Required Arguments
amust be of type REAL.

Optional Arguments
kind must be a scalar INTEGER expression that can be evaluated at compile time.

Result
Theresult is of type INTEGER. If kind is present the result kind is kind; otherwise it isthe
default INTEGER kind. If a > 0, the result hasthe value

INT(a+ 0.5); if a< 0, theresult hasthevalue INT(a - 0.5).

Example
i =nint (7.73) ! i is assigned the value 8
i =nint (-4.2) ! i is assigned the value -4
i =nint (-7.5) ! i is assigned the value -8
i =nint (2.50) ! i is assigned the value 3
NOT Function
Description

Bit-wise logical complement.

Syntax
NOT (i)

Arguments
i must be of type INTEGER.

Lahey/Fujitsu Fortran 95 Language Reference 179

Chapter 2 Alphabetical Reference

Result

Theresult is of the same type and kind asi. Itsvalueisthe value of i with each of its bits
complemented (zeros changed to ones and ones changed to zeros).

Example
i =not(5) ! i is assigned the value -6

NULL Function

Description
Returns a disassociated pointer.

Syntax
NULL (mold)

Optional Argument

mold must be a pointer and may be of any type. mold must be present when areferenceto
NULL () appears as an actual argument in areference to ageneric procedureif the type, type
parameters, or rank isrequired to resolve the generic reference.

Result

A disassociated pointer of the same type, type parameters, and rank as the pointer that
becomes associated with the result.

Example
real, pointer, dimension(:) :: a=>null() ! ais disassociated

NULLIFY Statement

180

Description
The NULLIFY statement disassociates pointers.

Syntax
NULLIFY (pointers)

Where:
pointersisacomma-separated list of variablesor structure components having the POINTER
attribute.

Lahey/Fujitsu Fortran 95 Language Reference

OFFSET Function

Example
real, pointer :: a, b, c
real, target :: t, u, v
a=>t:; b=>u; c=>v I a, b, and c are associ at ed
nullify (a, b, ¢) ! a b, and c are disassociated

OFFSET Function

Description
Get the offset portion of the memory address of a variable, substring, array reference, or
external subprogram.

Syntax
OFFSET (item)

Arguments
item can be of any type. It isthe name for which to return an offset. item must have the
EXTERNAL attribute.

Result
Theresult is of type INTEGER. It isthe offset portion of the memory address of item.

Example
i = offset(a) ! get the offset portion of the address of a

OPEN Statement

Description
The OPEN statement connects or reconnects an external file and an input/output unit.

Lahey/Fujitsu Fortran 95 Language Reference 181

Chapter 2 Alphabetical Reference

Syntax
OPEN (connect-specs)

Where:

connect-specs is a comma-separated list of
[UNIT =] external-file-unit

or IOSTAT = iostat

or ERR = |abel

or FILE = file-name-expr

or STATUS = status

or ACCESS = access

or FORM = form

or RECL =recl

or BLANK = blank

or POSITION = position

or ACTION = action

or DELIM =delim

or PAD = pad

or BLOCKSIZE = blocksize

or CONVERT =file-format

or CARRIAGECONTROL = carriagecontrol

external-file-unit isa scalar INTEGER expression that eval uates to the input/output unit
number of an externa file.

file-name-expr isascalar CHARACTER expression that evaluates to the name of afile.

iostat is a scalar default INTEGER variable that is assigned a positive value if an error con-
dition occurs, a negative value if an end-of-file or end-of-record condition occurs, and zero
otherwise.

label is the statement label of the statement that is branched to if an error occurs.

statusisascalar default CHARACTER expression. It must evaluateto NEW if thefile does
not exist and isto be created; REPLACE if thefileisto overwrite an existing file of the same
name or create anew oneif the file does not exist; SCRATCH if thefileisto be deleted at
the end of the program or the execution of a CLOSE statement; OLD, if thefileisto be
opened but not replaced; and UNKNOWN otherwise. The default is UNKNOWN.

accessisascalar default CHARACTER expression. It must evaluate to SEQUENTIAL if
thefileisto be connected for sequential access, DIRECT if thefile isto be connected for
direct access, or TRANSPARENT if the file isto be connected for binary (transparent)
access. The default valueis SEQUENTIAL

182 Lahey/Fujitsu Fortran 95 Language Reference

OPEN Satement

formisascalar default CHARACTER expression. It must evaluateto FORMATTED if the
fileisto be connected for formatted input/output, UNFORMATTED if the fileisto be con-
nected for unformatted input/output, or BINARY if thefileisto be connected for binary
(transparent) access. The default valueis UNFORMATTED, for afile connected for direct
access, and FORMATTED, for afile connected for sequential access.

recl isascalar default INTEGER expression. It must evaluate to the record length in bytes
for afile connected for direct access, or the maximum record length in bytes for afile con-
nected for sequential access.

blank isa scalar default CHARACTER expression. It must evaluateto NULL if null blank
control isto be used and ZERO if zero blank control isto be used. The default valueis
NULL. Thisspecifier isonly permitted for afile being connected for formatted input/output.

position is ascalar default CHARACTER expression. It must evaluate to REWIND if the
newly opened sequential accessfileisto be positioned at itsinitial point; APPEND if itisto
be positioned before the endfile record if one exists and at the file terminal point otherwise;
and ASISif the position isto be left unchanged. The default is ASIS.

action isa scalar default CHARACTER expression. It must evaluateto READ if thefileis
to be connected for input only, WRITE if the fileis to be connected for output only, and
READWRITE if the fileisto be connected for input and output. The default valueis
READWRITE.

delimisa scalar default CHARACTER expression. It must evaluate to APOSTROPHE if
the apostrophe will be used to delimit character constants written with list-directed or namel-
ist formatting, QUOTE if the quotation mark will be used, and NONE if neither quotation
marks nor apostrophes will be used. The default valueisNONE. This specifier ispermitted
only for formatted files and isignored on input.

pad isascalar default CHARACTER expression. It must evaluateto YES if the formatted
input record is to be padded with blanks and NO otherwise. The default valueis YES.

blocksize is a scalar default INTEGER expression. It must evaluate to the size, in bytes, of
the input/output buffer.

file-format isa scalar default CHARACTER variable that evaluatesto BIG_ENDIAN if big
endian conversionistooccur, LITTLE_ENDIAN if little endian conversion isto occur, IBM
if IBM style conversion isto occur, and NATIVE if no conversion isto occur.

carriagecontrol isascalar default CHARACTER expression. It must evaluateto FORTRAN
if the first character of aformatted sequential record isto be used for carriage control, and
LIST otherwise. Non-storage devices default to FORTRAN; disk filesto LIST

Remarks

The OPEN statement can be used to connect an existing file to an input/output unit, create a
filethat ispreconnected, create afile and connect it to an input/output unit, or change certain
characteristics of a connection between afile and an input/output unit.

Lahey/Fujitsu Fortran 95 Language Reference 183

Chapter 2 Alphabetical Reference

If the optional characters UNIT= are omitted from the unit specifier, the unit specifier must
be the first item in the connect-spec-list.

If the file to be connected to the input/output unit is the same as the file to which the unit is
already connected, only the BLANK=, DELIM=, PAD=, ERR=, and IOSTAT= specifiers
can have values different from those currently in effect.

If afileisaready connected to an input/output unit, execution of an OPEN statement on that
file and a different unit is not permitted.

FILE=isoptional if it isthe second argument and thefirst argument is aunit number with no
UNIT=.

Example
open (8, file="info.dat', status='new)

OPTIONAL Statement

Description
The OPTIONAL statement specifiesthat any of the dummy arguments specified need not be
associated with an actual argument when the procedure isinvoked.

Syntax
OPTIONAL [::] dummy-arg-names

Where:
dummy-arg-names is a commarseparated list of dummy argument names.

Example
subroutine a(b,c)
real, optional, intent(in) :: c
I ¢ need not be provided when calling a
real, intent(out) :: b

OVEFL Subroutine (Windows Only)

184

Description

Theinitial invocation of the OV EFL subroutine masks the overflow interrupt on the floating-
point unit. Iflag must be set to true on the first invocation. Subsequent invocations return
true or false in the Iflag variableif the exception has occurred or not occurred, respectively.

Lahey/Fujitsu Fortran 95 Language Reference

PACK Function

Syntax
OVEFL (Iflag)

Arguments

Iflag must be of type LOGICAL. Itisassigned the value trueif an overflow exception has
occurred, and fal se otherwise.

Example
call ovefl (Iflag) ! nmask the overflow interrupt

PACK Function

Description
Pack an array into avector under control of a mask.

Syntax
PACK (array, mask, vector)

Required Arguments
array can be of any type. It must not be scalar.

mask must be of type LOGICAL and must be conformable with array.

Optional Arguments

vector must be of the same type and kind as array and must have rank one. It must have at
least as many elements asthere aretrue elementsin array. If maskisscalar with valuetrue,
vector must have at least as many elements as array.

Result

Theresult isan array of rank one with the same type and kind asarray. If vector is present,
the result size isthe size of vector. If vector is absent, the result size is the number of true
elements in mask unless mask is scalar with the value true, in which case the sizeisthe size
of array.

Thevalue of element i of theresult istheith true element of mask, in array-element order. If
vector is present and is larger than the number of true elements in mask, the elements of the
result beyond the number of true elementsin mask arefilled with values from the correspond-
ing elements of vector.

Lahey/Fujitsu Fortran 95 Language Reference 185

Chapter 2 Alphabetical Reference

Example
i nteger, dinension(3,3) :: ¢
¢ = reshape((/0,3,2,4,3,2,5,1,2/),(/3,3/))
| represents the array |0 4 5|
! |3 3 1]
! |2 2 2|
i nteger, dinension(6) :: d
i nteger, dinension(9) :: e
d pack(c, mask=c.ne.2)! d is assigned [0 3 4
e pack(c, mask=.true.)! e is assigned [0 3 2

]

351
43251 2]

PARAMETER Statement

Description
The PARAMETER statement specifies named constants.

Syntax
PARAMETER (named-constant-defs)

Where:
named-constant-defs is a comma separated list of constant-name = init-expr

constant-name is the name of a constant being specified.
init-expr isan expression that can be evaluated at compile time.

Remarks
Each named constant becomes defined with the value of init-expr.

Example
parameter (freezing_point = 32.0, conv_factor = 9/5)

PAUSE Statement (obsolescent)

Description
The PAUSE statement temporarily suspends execution of the program.

Syntax
PAUSE [pause-code]

Where:
pause-code is ascalar CHARACTER constant or aseriesof 1to 5 digits.

186 Lahey/Fujitsu Fortran 95 Language Reference

Pointer Assignment Statement

Remarks

When aPAUSE statement isreached, the optional pause-code and the string "Pr ess ent er
to continue" aredisplayed. The program resumes execution when the <ENTER> key is
pressed.

Example
pause I"Press enter to continue" is displayed

Pointer Assignment Statement

Description
The pointer assignment statement associates a pointer with a target.

Syntax
pointer => target

Where:
pointer is avariable having the POINTER attribute.

target isavariable or expression having the TARGET attribute or the POINTER attribute or
a subobject of avariable having the TARGET attribute.

Remarks

If target is not a pointer, pointer becomes associated with target. If targetisapointer that is
associated, pointer becomes associated with the same object astarget. If target is disassoci-
ated, pointer becomes disassociated. If target’s association status is undefined, pointer’s
also becomes undefined.

Pointer assignment of a pointer component of astructure can also take place by derived type
intrinsic assignment or by a defined assignment.

A pointer also becomes associated with atarget through allocation of the pointer.
Any previous association between pointer and atarget is broken.

target must be of the same type, kind, and rank as pointer.

target must not be an array section with a vector subscript.

If target is an expression, it must deliver a pointer result.

Example
real, pointer :: a
real, target :: b =5.0
a=>b ! ais an alias for b

Lahey/Fujitsu Fortran 95 Language Reference 187

Chapter 2 Alphabetical Reference

POINTER Function

Description
Get the memory address of a variable, substring, array reference, or external subprogram.

Syntax
POINTER (item)

Arguments

item can be of any type. It isthe name for which to return an address. item must have the
EXTERNAL attribute.

Result
Theresult is of type INTEGER. It isthe address of item.

Example
i = pointer(a) ! get the address of a

POINTER Statement

188

Description
The POINTER statement specifies alist of variables that have the POINTER attribute.

Syntax
POINTER ::] variable-name [(deferred-shape)] [, variable-name [(deferred-
shape)]] ...

Where:
variable-name is the name of avariable.

deferred-shapeis: [, :] ... wherethe number of colonsisequal to the rank of variable-name.

Remarks

A pointer must not be referenced or defined unlessit isfirst associated with atarget through
a pointer assignment or an ALLOCATE statement.

The INTENT attribute must not be specified for variable-name.

If the DIMENSION attribute is specified el sewhere in the scoping unit, the array must have
adeferred shape.

Lahey/Fujitsu Fortran 95 Language Reference

PRECFILL Subroutine

Example
real :: next, previous, value
poi nter :: next, previous

PRECFILL Subroutine

Description

Set fill character for numeric fields that are wider than supplied numeric precision. The
defaultis’O'.

Syntax
PRECFILL (filchar)

Arguments
filchar must be of type CHARACTER. Itisan INTENT(IN) argument whosefirst character

becomes the new precision fill character.

Example
call precfill('*') I "*" is the new precision fill character

PRECISION Function

Description
Decimal precision of datatype.

Syntax
PRECISION (x)

Arguments
x must be of type REAL or COMPLEX.

Result

Theresult is of type default INTEGER. Itsvaueisegual to the number of decimal digits of
precision in the data type of x.

Lahey/Fujitsu Fortran 95 Language Reference 189

Chapter 2 Alphabetical Reference

Example

i = precision (4.2) ! i is assigned the value 6

PRESENT Function

Description

Determine whether an optional argument is present.

Syntax
PRESENT (a)

Arguments

a must be an optional argument of the procedure in which the PRESENT function appears.

Result

Theresultisascalar default LOGICAL. Itsvalueistrueif the actual argument correspond-
ing to a was provided in the invocation of the procedure in which the PRESENT function

appears and false otherwise.

Example

call zee(a, b)

subroutine zee (Xx,Y, 2z)
inplicit none
real, intent(in out) :: X, y
real, intent (in), optional :: z

r = present(z) ! r is assigned the value fal se

PRINT Statement

Description

The PRINT statement transfers values from an output list to an input/output unit.

190 Lahey/Fujitsu Fortran 95 Language Reference

PRINT Satement

Syntax
PRINT format [, outputs]

Where:

format is format-expr
or label

or*

or assigned-label

format-expr is adefault CHARACTER expression that eval uates to ([format-items])
label is astatement label of a FORMAT statement.

assigned-label is ascalar default INTEGER variable that was assigned the label of a FOR-
MAT statement in the same scoping unit.

outputs is a comma-separated list of expr
or io-implied-do

expr is an expression.
io-implied-do is (outputs, implied-do-control)
implied-do-control is do-variable = start, end [, increment]

start, end, and increment are scalar numeric expressions of type INTEGER, REAL or double-
precision REAL.

do-variableis ascalar variable of type INTEGER, REAL or double-precision REAL.

format-items isacomma-separated list of [r] data-edit-descriptor, control-edit-descriptor, or
char-string-edit-descriptor, or [r] (format-items)

data-edit-descriptor is lw[.m]
or Bw[.m]

or Ow[.m|

or Zw[.m|

or Fw.d

or Ew.d[E€]
or ENw.d[Ee€]
or ESw.d[E€]
or Gw.d[E€]
or Lw

or A[w]

or Dw.d

w, m, d, and eare INTEGER literal constantsthat represent field width, digits, digits after the
decimal point, and exponent digits, respectively

Lahey/Fujitsu Fortran 95 Language Reference 191

Chapter 2 Alphabetical Reference

192

control-edit-descriptor isTn
or TLn
or TRn
or nX
orS

or SP
or SS
or BN
orBzZ
or [r]/
or:

or kP

char-string-edit-descriptor isa CHARACTER literal constant or cHrep-chars
rep-charsisastring of characters
c isthe number of charactersin rep-chars

r, k, and n are positive INTEGER literal constants that are used to specify a number of repe-
titions of the data-edit-descriptor, char-string-edit-descriptor, control-edit-descriptor, or
(format-items)

Remarks

Thedo-variable of animplied-do-control that is contai ned within another io-implied-do must
not appear as the do-variable of the containing io-implied-do.

If an array appears as an output item, it istreated as if the elements are specified in array-
element order.

If aderived type object appears as an output item, it istreated asif al of the components are
specified in the same order as in the definition of the derived type.

The commaused to separate itemsin format-items can be omitted between aP edit descriptor
and an immediately following F, E, EN, ES, D, or G edit descriptor; before a slash edit
descriptor when the optional repeat specification is not present; after a slash edit descriptor;
and before or after a colon edit descriptor.

WithinaCHARACTER literal constant, if an apostrophe or quotation mark appears, it must
be as a consecutive pair without any blanks. Each such pair represents a single occurrence
of the delimiter character.

Example
print*, "hello world"
print 100, i,j,k
100 format (3i8)

Lahey/Fujitsu Fortran 95 Language Reference

PRIVATE Satement

PRIVATE Statement

Description
The PRIVATE statement specifies that the names of entities are accessible only within the
current module.

Syntax

PRIVATE][::] access-ids]
Where:
access-idsis acomma-separated list of
use-name

or generic-spec

use-name is a name previously declared in the module.
generic-spec is generic-name

or OPERATOR (defined-operator)

or ASSIGNMENT (=)

generic-name is the name of a generic procedure.

defined-operator is one of theintrinsic operators
or .op-name.

op-name is a user-defined name for the operation.

Remarks

The PRIVATE statement is permitted only inamodule. If the PRIVATE statement appears
without alist of objects, it sets the default accessibility of named items in the module to pri-
vate. Otherwise, it makes the accessibility of the objects specified private.

If the PRIV ATE statement appearsin aderived type definition, the entitieswithin the derived
type definition are accessible only in the current module. Within a derived type definition,
the PRIVATE statement must not appear with alist of access-ids.

Example
nodul e ex
implicit none
public ! default accessibility is public
real :: a, b, ¢
private a ! a is not accessible outside nodul e
! b and c are accessibl e outside nodul e
type zee
private

integer :: I,m ! | and mare private
end type zee
end nodul e ex

Lahey/Fujitsu Fortran 95 Language Reference 193

Chapter 2 Alphabetical Reference

PRODUCT Function

Description
Product of elements of an array, along a given dimension, for which amask is true.

Syntax
PRODUCT (array, dim, mask)

Required Arguments
array must be of type INTEGER, REAL or COMPLEX. It must not be scalar.

Optional Arguments

dimmust be ascalar INTEGER intherange 1 < dim< n, wherenistherank of array. The
corresponding dummy argument must not be an optional dummy argument.

mask must be of type LOGICAL and must be conformable with array.

Result

Theresult is of the same type and kind as array. Itisscalar if dimisabsent or if array has
rank one; otherwise the result is an array of rank n-1 and of shape

(d, dy, ..., dyim—1-9d4im+1,---»d,) where (d;, d,, ..., d,) istheshapeof array. If dim
is absent, the value of the result is the product of the values of al the elements of array. If
dimis present, the value of the result is the product of the values of all elements of array
along dimension dim. If mask is present, the elements of array for which mask is false are
not considered.

Example
integer, dinension (2,2) :: m= reshape((/1,2,3,4/),(/2,2/))
! mis the array |1 3|
! | 2 4]
i = product(m ! i is assigned 24
j = product(m di m=l) I j is assigned [2,12]
k = product(m mask=nmr2) ! k is assigned 12

PROGRAM Statement

Description
The PROGRAM statement specifies a name for the main program unit.

194 Lahey/Fujitsu Fortran 95 Language Reference

PROMPT Subroutine

Syntax
PROGRAM program-name

Where:
program-name is the name given to the main program.

Remarks

program-name is global to the entire executable program. It must not be the same as the
name of another program unit, external procedure, or common block in the executable pro-
gram, nor the same as any local name in the main program.

Example

program zyx

PROMPT Subroutine

PUBLIC

Description
Set prompt for subsegquent READ statements. Fortran default is no prompt.

Syntax
PROMPT (message)
Arguments
message must be of type CHARACTER. Itisan INTENT(IN) argument that is the prompt
for subsequent READ statements.

Example
call prompt(’?") ! ? is the new READ pronpt

Statement

Description

The PUBLIC statement specifies that the names of entities are accessible anywhere the mod-
ule in which the PUBLIC statement appearsis used.

Lahey/Fujitsu Fortran 95 Language Reference 195

Chapter 2 Alphabetical Reference

Syntax
PUBLICJ ::] access-ids]

Where:
access-idsis acomma-separated list of use-name
or generic-spec

use-name is a name previously declared in the module.
generic-spec is generic-name

or OPERATOR (defined-operator)
or ASSIGNMENT (=)

generic-name is the name of a generic procedure.

defined-operator is one of theintrinsic operators
or .op-name.

op-name is a user-defined name for the operation.

Remarks

The PUBLIC statement is permitted only in amodule. The default accessibility of namesin
amoduleispublic. If the PUBLIC statement appearswithout alist of objects, it confirmsthe
default accessibility. If alist of objectsis present, the PUBLIC statement makes the acces-
sibility of the objects specified public.

Example
nodul e zee
inmplicit none
private ! default accessibility is now private
real :: a, b, ¢
public a ! a is now accessi bl e outside nodul e

end nodul e zee

RADIX Function

196

Description
Number base of the physical representation of a number.

Syntax
RADIX (X)

Arguments
x must be of type INTEGER or REAL.

Lahey/Fujitsu Fortran 95 Language Reference

RANDOM_NUMBER Subroutine

Result
Theresult isadefault INTEGER scalar whose value is the number base of the physical rep-
resentation of x. In LF95 thisvalueistwo for all kinds of INTEGERs and REALSs.

Example
i =radix(2.3) ! i is assigned the value 2

RANDOM_NUMBER Subroutine

Description
Uniformly distributed pseudorandom number or numbersintherange 0<x<1. Thegen-
erator uses a multiplicative congruential algorithm with a period of approximately 2%

Syntax
RANDOM_NUMBER (harvest)

Arguments

harvest must be of type REAL. Itisan INTENT(OUT) argument. It can be ascalar or an
array variable. Itsvalueisone or several pseudorandom numbers uniformly distributed in
therange 0<x<1.

Example
real, dinension(8) :: x
call random nunber(x) ! each elenment of x is assigned
! a pseudor andom nurmber

RANDOM_SEED Subroutine

Description
Set or query the pseudorandom number generator used by RANDOM_NUMBER. If no
argument is present, the processor sets the seed to a predetermined value.

Syntax
RANDOM_SEED (size, put, get)

Optional Arguments

sizemust be ascalar of typedefault INTEGER. Itisan INTENT(OUT) variable. Itissetto
the number of default INTEGERS the processor usesto hold the seed. For LF95 thisvalue
isone.

Lahey/Fujitsu Fortran 95 Language Reference 197

Chapter 2 Alphabetical Reference

put must be a default INTEGER array of rank one and size greater than or equal to size. Itis
an INTENT(IN) argument and is used by the processor to set the seed value.

get must be adefault INTEGER array of rank one and size greater than or equal tosize. Itis
an INTENT(OUT) argument and is set by the processor to the current value of the seed.

Exactly one or zero arguments must be present.

Example
call random seed I initialize the generator
call random seed(size=k) ! k set to size of seed
call random seed(put=seed(1l:k)) ! set user seed
call random seed(get=ol d(1:k)) I get current seed

RANGE Function

Description
Decimal range of the data type of a number.

Syntax
RANGE (X)

Arguments
X must be of numeric type.

Result

Theresult isascalar default INTEGER. If x isof type INTEGER, theresult valueisINT
(LOG10 (huge)), where hugeisthelargest positiveinteger inthe datatype of x. If xisof type
REAL or COMPLEX, theresult valueisINT (MIN (LOG10 (huge), - LOG10 (tiny))), where
huge and tiny are the largest and smallest positive numbers in the data type of x.

Example
i =range(4.2) ! i is assigned the value 37

READ Statement

Description

The READ statement transfers values from an i nput/output unit to the entities specifiedin an
input list or a namelist group.

Lahey/Fujitsu Fortran 95 Language Reference

READ Satement

Syntax
READ (io-control-specs) [inputs]

or
READ format [, inputs]

Where:
inputs is a comma-separated list of variable
or io-implied-do

variableisavariable.
io-implied-do is (inputs, implied-do-control)
implied-do-control is do-variable = start, end [, increment]

start, end, and increment are scal ar numeric expressions of type INTEGER, REAL or double-
precision REAL.

do-variableis ascalar variable of type INTEGER, REAL or double-precision REAL.

io-control-specs is a comma-separated list of
[UNIT =] io-unit

or [FMT =] format

or [NML =] namelist-group-name
or REC =record

or IOSTAT = stat

or ERR = errlabel

or END = endlabel

or EOR = eorlabel

or ADVANCE = advance

or SIZE = size

io-unit is an externad file unit
or*

format is aformat specification (see “ Input/Output Editing” beginning on page 24).
namelist-group-name is the name of a namelist group.
record is the number of the direct access record that is to be read.

stat isa scalar default INTEGER variable that is assigned a positive value if an error condi-
tion occurs, a negative value if an end-of-file or end-of-record condition occurs, and zero
otherwise.

errlabel isalabel that isbranched to if an error condition occurs and no end-of-record con-
dition or end-of-file condition occurs during execution of the statement.

endlabel isalabel that isbranched to if an end-of-file condition occurs and no error condition
occurs during execution of the statement.

Lahey/Fujitsu Fortran 95 Language Reference 199

Chapter 2 Alphabetical Reference

200

eorlabel isalabel that is branched to if an end-of-record condition occurs and no error con-
dition or end-of-file condition occurs during execution of the statement.

advanceisascalar default CHARACTER expression that evaluates to NO if non-advancing
input/output isto occur, and Y ESif advancing input/output isto occur. The default valueis
YES.

sizeisascalar default INTEGER variable that is assigned the number of characters trans-
ferred by data edit descriptors during execution of the current non-advancing i nput/output
statement.

Remarks

io-control-specs must contain exactly one io-unit, and must not contain both a format and a
namelist-group-name.

A namelist-group-name must not appear if inputsis present.

If the optional characters UNIT= are omitted before io-unit, io-unit must be the first item in
io-control-specs. If the optional characters FM T= are omitted before format, format must be
the second item in io-control-specs. If the optional characters NML= are omitted before
namelist-group-name, namelist-group-name must be the second item in io-control-specs.

If io-unitisaninterna file, io-control-specs must not contain a REC= specifier or anamelist-
group-name.

If the REC= specifier is present, an END= specifier must not appear, a namelist-group-name
must not appear, and format must not be an asterisk indicating list-directed 1/0.

An ADVANCE= specifier can appear only in formatted sequentia /0 with an explicit for-
mat specification (format-expr) whose control list does not contain an internal file specifier.
If an EOR= or SIZE= specifier is present, an ADVANCE= specifier must also appear with
thevalue NO.

The do-variableof an implied-do-control that is contai ned within another io-implied-do must
not appear as the do-variable of the containing io-implied-do.

Example
read*, a,b,c ! read into a, b, and c using list-
I directed i/o
read (3, fm="(e7.4)") x
I read in x fromunit 3 using e fornmat
read 10, i,j,k
! read ini, j, and k using format at
I label 10

Lahey/Fujitsu Fortran 95 Language Reference

REAL Function

REAL Function

Description
Convert to REAL type.

Syntax
REAL (a, kind)

Required Arguments
a must be of type INTEGER, REAL, or COMPLEX.

Optional Arguments
kind must be a scalar INTEGER expression that can be evaluated at compile time.

Result

Theresult isof type REAL. If kindis present, the kind isthat specified by kind. Theresult’s
valueisaREAL representation of a. If aisof type COMPLEX, theresult’svalueisaREAL
representation of the real part of a.

Example
b =real(-3) ! bis assigned the value -3.0

REAL Statement

Description
The REAL statement declares entities of type REAL.

Syntax
REAL [kind-selector] [[, attribute-list] ::] entity [, entity] ...

Where:

kind-selector is ([KIND =] scalar-int-initialization-expr)

scalar-int-initialization-expr isa scalar INTEGER expression that can be evaluated at com-
pile time.

attribute-list isacomma-separated list from the following attributes: PARAMETER, ALLO-
CATABLE, DIMENSION(array-spec), EXTERNAL, INTENT (IN) or INTENT (OUT) or
INTENT (IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE,
TARGET.

entity is entity-name [(array-spec)] [= initialization-expr]
or function-name [(array-spec)]

Lahey/Fujitsu Fortran 95 Language Reference 201

Chapter 2 Alphabetical Reference

array-spec is an array specification.

initialization-expr is an expression that can be evaluated at compile time.
entity-name is the name of a data object being declared.

function-name is the name of a function being declared.

Remarks

The same attribute must not appear more than once in a REAL statement.

function-name must be the name of an external, intrinsic, or statement function, or afunction
dummy procedure.

The = initialization-expr must appear if the statement contains a PARAMETER attribute.

If = initialization-expr appears, a double colon must appear before the list of entities. Each
entity has the SAVE attribute, unlessit isin a named common block.

202 Lahey/Fuijitsu Fortran 95 Language Reference

REPEAT Function

The = initialization-expr must not appear if entity-name is a dummy argument, a function
result, an object in anamed common block unless the type declarationisin ablock data pro-
gram unit, an object in ablank common, an allocatable array, a pointer, an external name, an
intrinsic name, or an automatic object.

An array declared withaPOINTER or an ALLOCATABLE attribute must be specified with
a deferred shape.

An array-spec for a function-name that does not have the POINTER attribute or the ALLO-
CATABLE attribute must be specified with an explicit shape.

An array-spec for afunction-name that does have the POINTER attribute or the ALLOCAT-
ABLE attribute must be specified with a deferred shape.

If the POINTER attributeisspecified, the TARGET, INTENT, EXTERNAL, or INTRINSIC
attribute must not be specified.

If the TARGET attributeis specified, the POINTER, EXTERNAL, INTRINSIC, or
PARAMETER attribute must not be specified.

The PARAMETER attribute must not be specified for dummy arguments, pointers, allocat-
able arrays, functions, or objectsin a common block.

The INTENT and OPTIONAL attributes can be specified only for dummy arguments.
An entity must not have the PUBLIC attribute if its type has the PRIVATE attribute.

The SAVE attribute must not be specified for an object that isin acommon block, adummy
argument, a procedure, a function result, or an automatic data object.

An entity must not have the EXTERNAL attribute if it has the INTRINSIC attribute.

AnentityinaREAL statement must not havethe EXTERNAL or INTRINSIC attribute spec-
ified unlessit is afunction.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute.

An entity must not be explicitly given any attribute more than once in a scoping unit.

Example
real :: a, b, ¢ ! a, b, and c are of type real
real, dinmension (2, 4) :: d
! dis a2 by 4 array of real
real :: e =2.0 I real eis initialized

REPEAT Function

Description
Concatenate copies of a string.

Lahey/Fujitsu Fortran 95 Language Reference 203

Chapter 2 Alphabetical Reference

Syntax
REPEAT (string, ncopies)

Arguments
string must be scalar and of type CHARACTER

ncopies must be a scalar non-negative INTEGER.

Result
Theresultisascaar of type CHARACTER with length equal to ncopies times the length of
string. Itsvalueisequal to the concatenation of ncopies copies of string.

Example
character (len=6) :: n
n =repeat('ho' ,3) ! nis assigned the value 'hohoho'

RESHAPE Function

204

Description
Construct an array of a specified shape from agiven array.

Syntax
RESHAPE (source, shape, pad, order)

Required Arguments
source can be of any type and must be array-valued. If pad isabsent or of size zero, the size
of source must be greater than or equal to the product of the values of the elements of shape.

shape must be an INTEGER array of rank one and of constant size. Its size must be positive
and less than or equal to seven. It must not have any negative elements.

Optional Arguments
pad must be array-valued and of the same type and type parameters as source.

order must be of type INTEGER and of the same shape as shape. Itsvalue must be a permu-
tation of (1, 2, ..., n), where nisthe size of shape. If order isabsent, it isasif it were present
with thevalue (1, 2, ..., n).

Result

Theresult isan array of shape shape with the same type and type parameters as source. The
elements of the result, taken in permuted subscript order, order (1), ..., order(n), are those of
sourcein array element order followed if necessary by elements of one or more copies of pad
in array element order.

Lahey/Fujitsu Fortran 95 Language Reference

RETURN Satement

Example
x = reshape((/1,2,3,4/), (/3,2/), pad=(/0/))
I x is assigned |1 4|
! |2 0]
! | 3 0]

RETURN Statement

Description
The RETURN statement compl etes execution of aprocedure and transfers control back tothe
statement following the procedure invocation.

Syntax
RETURN [scalar-int-expr]

Where:
scalar-int-expr isascalar INTEGER expression.

Remarks

If scalar-int-expr is present and has a value n between 1 and the number of asterisksin the
subprogram's dummy argument list, the CALL statement that invoked the subroutine trans-
fers control to the statement identified by the nth alternate return specifier in the actual
argument list.

Example
subroutine zee (a, b)
inplicit none
real, intent(in out) :: a, b

if (a>b) then

return ! subroutine conpleted
el se

a=a*b

return I subroutine conpleted
end if

end subroutine zee

REWIND Statement

Description
The REWIND statement positions the specified file at itsinitial point.

Lahey/Fujitsu Fortran 95 Language Reference 205

Chapter 2 Alphabetical Reference

Syntax
REWIND unit-number

or
REWIND (position-spec-list)

Where:
unit-number isascalar INTEGER expression corresponding to the input/output unit number
of an external file.

position-spec-list is[[UNIT =] unit-number][, ERR = label][, IOSTAT = stat | where
UNIT=, ERR=, and IOSTAT= can bein any order but if UNIT=isomitted, then unit-number
must be first.

label isastatement label that is branched to if an error condition occurs during execution of
the statement.

stat isavariable of type INTEGER that is assigned a positive value if an error condition
occurs, a hegative value if an end-of-file or end-of-record condition occurs, and zero
otherwise.

Remarks
Rewinding afile that is connected but does not exist has no effect.

Example
rewind 10 ! file connected to unit 10 rewound
rewind (10, err = 100)
I file connected to unit 10 rewound
! on error goto |abel 100

RRSPACING Function

206

Description
Reciprocal of relative spacing near a given number; x divided by SPACING(X).

Syntax
RRSPACING (X)

Arguments
X must be of type REAL.

Result
Theresult isof the sametypeand kind asx. Itsvalueisthereciprocal of the spacing, near X,
of REAL numbers of the kind of x.

Lahey/Fujitsu Fortran 95 Language Reference

SAVE Satement

Example
r =rrspacing(-4.7) ! r is assigned the value 0.985662E+07

SAVE Statement

Description

The SAVE statement specifiesthat all objectsin the statement retain their association, allo-
cation, definition, and value after execution of a RETURN or END statement of a
subprogram.

Syntax
SAVE[[::] saved-entities]

Where:
saved-entities is a comma-separated list of object-name
or / common-block-name /

object-name is the name of a data object.
common-block-name is the name of acommon block.

Remarks

Objects declared with the SAVE attribute in a subprogram are shared by all instances of the
subprogram.

The SAVE attribute must not be specified for an object that isin acommon block, adummy
argument, a procedure, a function result, or an automatic data object.

A SAVE statement without a saved-entities list specifies that all allowable objectsin the
scoping unit have the SAVE attribute.

If acommon block is specified in a SAVE statement other than in the main program, it must
be specified in every scoping unit in which it appears except in the main program.

A SAVE statement in the main program has no effect.

Example
save i,j,/myblock/,k ! i,j,k and comron bl ock
! mybl ock have the save
I attribute

Lahey/Fujitsu Fortran 95 Language Reference 207

Chapter 2 Alphabetical Reference

SCALE Function

Description
Multiply a number by a power of two.

Syntax
SCALE (x, i)

Arguments
x must be of type REAL.

i must be of type INTEGER.

Result _
Theresult is of the sametypeand kind asx. Itsvalueis x x 2'.

Example
x = scale(1.5,3) ! x is assigned the value 12.0

SCAN Function

208

Description
Scan astring for any one of a set of characters.

Syntax
SCAN (string, set, back)

Required Arguments
string must be of type CHARACTER.

set must be of the same kind and type as string.

Optional Arguments
back must be of type LOGICAL.

Result

Theresult is of type default INTEGER. If back is absent, or if it is present with the value
false, the value of the result is the position number of the leftmost character in string that is
inset. If backis present with the value true, the value of the result is the position number of
the rightmost character in string that isin set.

Lahey/Fujitsu Fortran 95 Language Reference

SEGMENT Function

Example
i = scan ("Lalalalala","la") ! i is assigned the
I value 2
i = scan ("Lalal aLALA", "l a", back=.true.)
I i is assigned the
I value 6

SEGMENT Function

Description
Get the segment portion of the memory address of a variable, substring, array reference, or
external subprogram.

Syntax
SEGMENT (item)

Arguments
item can be of any type. It isthe name for which to return a segment. item must have the
EXTERNAL attribute.

Result
Theresult is of type INTEGER. It isthe segment portion of the memory address of item.

Example
i = segnent(a) ! get the segnment portion of the address of a

SELECT CASE Statement

Description

The SELECT CASE statement begins a CASE construct. It contains an expression that,
when evaluated, produces a case index. The caseindex is used in the CASE construct to
determine which block in a CASE construct, if any, is executed.

Syntax
[construct-name : | SELECT CASE (case-expr)

Where:
construct-name is an optional name for the CASE construct.

case-expr isascaar expression of type INTEGER, LOGICAL, or CHARACTER.

Lahey/Fujitsu Fortran 95 Language Reference 209

Chapter 2 Alphabetical Reference

Remarks

If the SELECT CASE statement isidentified by a construct-name, the corresponding END
SELECT statement must be identified by the same construct name. If the SELECT CASE
statement is not identified by a construct-name, the corresponding END SELECT statement
must not be identified by a construct name. If a CASE statement isidentified by a construct-
name, the corresponding SELECT CASE statement must specify the same construct-name.

Example
sel ect case (i+j)
case (:-1)
I executed if i+j<0
case (0)
L I executed if i+j==
case (1,4,7)
. I executed if i+==(1 or 4 or 7)
case default
I executed if none of the other case
I selectors match i +]
end sel ect

SELECTED_INT_KIND Function

210

Description
Kind type parameter of an INTEGER data type that represents all integer values n with
-10"<n<10".

Syntax
SELECTED_INT_KIND (r)

Arguments
r must be ascalar INTEGER.

Result

Theresult isascalar of type default INTEGER. Itsvalueisequal to the kind type parameter
of the INTEGER data type that accommodates all values nwith —10" <n < 10" . If no such
kind isavailable, theresult is-1. If morethan one kind is available, the return value isthe
value of the kind type parameter of the kind with the smallest decimal exponent range.

Example
i nteger (kind=selected_int_kind(3)) :: i,j
I i and j are of a data type with a decinal range of
I at least -1000 to 1000

Lahey/Fujitsu Fortran 95 Language Reference

SELECTED_REAL_KIND Function

SELECTED_REAL_KIND Function

Description
Kind type parameter of a REAL data type with decimal precision of at least p digitsand a
decimal exponent range of at least r.

Syntax
SELECTED_REAL_KIND (p, r)

Optional Arguments
p must be ascalar INTEGER.

r must be ascalar INTEGER.

Result

Theresult isascalar of typedefault INTEGER. Itsvalueisequal to thekind type parameter
of the REAL datatype with decimal precision of at least p digits and a decimal exponent
range of at least r. If nosuchkind isavailabletheresultis-1if the precisionisnot available,
-2 if therange is not available, and -3 if neither isavailable. If morethan onekind is avail-
able, the return value is the value of the kind type parameter of the kind with the smallest
decimal precision.

Example
real, (kind=selected_real_kind(3,3)) :: a,b
! a and b are of a data type with a decimal range of
I at least -1000 to 1000 and a precision of at |east
! 3 decimal digits

SEQUENCE Statement

Description
The SEQUENCE statement can only appear in aderived type definition. It specifiesthat the
order of the component definitions is the storage sequence for objects of that type.

Syntax
SEQUENCE

Remarks

If aderived type definition contains a SEQUENCE statement, the derived type isasequence
type.

Lahey/Fujitsu Fortran 95 Language Reference 211

Chapter 2 Alphabetical Reference

If SEQUENCE is present in aderived type definition, all derived types specified in compo-
nent definitions must be sequence types.

Example
type zee
sequence I zee is a sequence type
real :: a,b,c ! a,b,c is the storage sequence for zee

end type zee

SET _EXPONENT Function

Description
Model representation of a number with exponent part set to a power of two.

Syntax
SET_EXPONENT (X, i)

Arguments
x must be of type REAL.

i must be of type INTEGER.

Result
Theresult is of the same type and kind as x. Itsvalueisthe FRACTION(x)* 2.

Example
a = set_exponent (4.6, 2) ! ais assigned 2.3

SHAPE Function

212

Description
Shape of an array.

Syntax
SHAPE (source)

Arguments
source can be of any type and can be array-vaued or scalar. 1t must not be an assumed-size
array. It must not beapointer that isdisassociated or an all ocatable array that isnot all ocated.

Lahey/Fujitsu Fortran 95 Language Reference

S GN Function

Result
Theresultisadefault INTEGER array of rank one whose sizeistherank of source and whose
value is the shape of source.

Example
i = shape(b(1:9,-2:3,10))! i is assigned the val ue
I (/9,6,10/)
SIGN Function
Description

Transfer of sign.

Syntax
SIGN (a, b)

Arguments
a must be of type INTEGER or REAL.

b must be of the same type and kind as a.

Result

Theresult is of the sametype and kind asa. Itsvalueisthe |al , if b isgreater than or equal
to positive zero; and —|a| , if b isless than or equal to negative zero.

Example
a =sign (30,-2) ! ais assigned the value -30

SIN Function

Description
Sine.

Syntax
SIN (X)

Arguments
x must be of type REAL or COMPLEX.

Lahey/Fujitsu Fortran 95 Language Reference 213

Chapter 2 Alphabetical Reference

Result

Theresult is of the same type and kind as x. Itsvalueisa REAL or COMPLEX representa-
tion of the sine of x.

Example
r =sin(.5 ! r is assigned the value 0.479426

SINH Function

Description
Hyperbolic sine.

Syntax
SINH ()

Arguments
x must be of type REAL.

Result

Theresult is of the same type and kind asx. ItsvalueisaREAL representation of the hyper-
bolic sine of x.

Example
r =sinh(.5) ! r is assigned the value 0.521095

SIZE Function

214

Description
Size of an array or adimension of an array.

Syntax
SIZE (array, dim)

Required Arguments

array can be of any type. 1t must not be ascalar and must not be a pointer that is disassociated
or an alocatable array that is not allocated.

Lahey/Fujitsu Fortran 95 Language Reference

SPACING Function

Optional Arguments

dimmust of type INTEGER and must be adimension of array. If array isassumed-size, dim
must be present and less than the rank of array

Result

Theresult isascalar of type default INTEGER. If dimis present, the result is the extent of
dimension dim of array. If dimis absent, the result is the number of elementsin array.

Example
integer, dimension (3,-4:0) :: i
integer :: Kk,j
j = size (i) ! j is assigned the value 15
k = size (i, 2) ! k is assigned the value 5

SPACING Function

Description

Absolute spacing near a given number; the difference between x and the next representable
number whose absolute value is greater than that of x.

Syntax
SPACING (X)

Arguments
X must be of type REAL.

Result
Theresult is of the sametype and kind asx. Itsvalueisthe spacing of REAL values, of the

kind of x, near x.

Example
X = spacing(4.7) ! x is assigned the value 0.476837E-06

SPREAD Function

Description
Adds adimension to an array by adding copies of a data object along a given dimension.

Lahey/Fujitsu Fortran 95 Language Reference 215

Chapter 2 Alphabetical Reference

Syntax
SPREAD (source, dim, ncopies)

Arguments
sour ce can be of any type and can be scalar or array-valued. Itsrank must belessthan seven.

dim must be ascalar of type INTEGER with avalueintherange 1<dim<n+ 1, wheren
istherank of source.

ncopies must be a scalar of type INTEGER.

Result

The result is an array of the same type and kind as source and of rank n + 1, where nisthe
rank of source. If sourceisscalar, the shape of the result is MAX (ncopies, 0) and each ele-
ment of the result hasavalue equal to source. If sourceisarray-valued with shape(d,, d,, ...,
d,), the shape of theresultis(d,, d,, ..., dgim1, MAX(ncopies, 0), dgim1, ---» d,) and the element
of the result with subscripts(ry, ry, ..., I'.1) hasthe value source(ry, ro, ..., raimar Fdimeas - Fer).

Example
real, dimension(2) :: b=(/1,2/)
real, dimension(2,3) :: a
a = spread(b,2,3) ! ais assigned |1 1 1|
|2 2 2|
SQRT Function
Description
Square Root.
Syntax
SQRT (x)
Arguments
x must be of type REAL or COMPLEX. If XisREAL, itsvalue must be greater than or equal
to zero.
Result

Theresult isof the samekind and typeasx. If xisof type REAL, theresult valueisaREAL
representation of the squareroot of x. If xisof type COMPLEX, the result valueisthe prin-
cipal valuewith the real part greater than or equal to zero. When thereal part of theresultis
zero, the imaginary part is greater than or equal to zero.

216 Lahey/Fujitsu Fortran 95 Language Reference

Satement Function Satement

Example
X = sqrt(16.0) ! x is assigned the value 4.0

Statement Function Statement

Description
A statement function is afunction defined by a single statement.

Syntax
function-name ([dummy-args]) = scalar-expr

Where:
function-name is the name of the function being defined.

dummy-args is a comma-separated list of dummy argument names.
scalar-expr isascalar expression.

Remarks

scalar-expr can be composed only of literal or named constants, scalar variables, array ele-
ments, references to functions and function dummy procedures, and intrinsic operators.

If areferenceto a statement function appears in scalar-expr, its definition must have been
provided earlier in the scoping unit and must not be the name of the statement function being
defined.

Each scalar variablereferencein scalar-expr must be either areference to adummy argument
of the statement function or areference to a variable local to the same scoping unit asthe
statement function statement.

The dummy arguments have a scope of the statement function statement.

A statement function must not be supplied as a procedure argument.

Example
nmean(a,b) = (a + b) / 2
¢ = nmean(2.0,3.0) ! c is assigned the value 2.5

STOP Statement

Description
The STOP statement terminates execution of the program.

Lahey/Fujitsu Fortran 95 Language Reference 217

Chapter 2 Alphabetical Reference

Syntax
STOP| stop-code]

Where:
stop-codeisascalar CHARACTER constant or aseries of 1to 5 digits.

Remarks
When a STOP statement is reached, the optional stop-code is displayed.

Example
if (a>b) then
st op ! program execution term nated
end if

SUBROUTINE Statement

218

Description

The SUBROUTINE statement begins a subroutine subprogram and specifies its dummy
argument names and whether it is recursive.

Syntax
[PURE] [ELEMENTAL] [RECURSIVE] SUBROUTINE subroutine-name ([
dummy-arg-names])

Where:

subroutine-name is the name of the subroutine.

dummy-arg-names is a commarseparated list of dummy argument names.
Remarks

PURE, ELEMENTAL, and RECURSIVE can be in any order.

A pure subroutine has the prefix PURE or ELEMENTAL.

An ELEMENTAL subroutine has the prefix ELEMENTAL.

A pure subroutine must not contain any operation that could conceivably result in an assign-
ment or pointer assignment to a common variable, a variable accessed by use or host
association, or an INTENT (IN) dummy argument; nor shall a pure subroutine contain any
operation that could conceivably perform any external file 1/0 or STOP operation.

The specification of a pure subroutine must specify the intents of all dummy arguments
except procedure arguments, alternate return indicators, and arguments with the POINTER
attribute.

Lahey/Fujitsu Fortran 95 Language Reference

SUM Function

Local variables of pure subroutines must not have the SAVE attribute, either by explicit dec-
laration or by initialization in atype declaration or DATA statement.

Dummy arguments of elemental subroutines must be scalar and must not have the POINTER
attribute. They must not appear in any specification expressions except as the argument to
one of theintrinsic functions BIT_SIZE, KIND, LEN, or the numeric inquiry functions.

Dummy arguments of elemental subroutines must not be dummy procedures.

The keyword RECURSIVE must be present if the subroutine directly or indirectly callsitself
or a subroutine defined by an ENTRY statement in the same subprogram. RECURSIVE
must also be present if a subroutine defined by an ENTRY statement directly or indirectly
callsitself, another subroutine defined by an ENTRY statement, or the subroutine defined by
the SUBROUTINE statement.

Example
pure subroutine zee (barl, bar?2)

SUM Function

Description
Sum of elements of an array, along a given dimension, for which amask istrue.

Syntax
SUM (array, dim, mask)

Required Arguments
array must be of type INTEGER, REAL, or COMPLEX. It must not be scalar.

Optional Arguments

dimmust beascalar INTEGER intherange 1 < dim< n, wherenistherank of array. The
corresponding dummy argument must not be an optional dummy argument.

mask must be of type LOGICAL and must be conformable with array.

Result

Theresult is of the sametype and kind as array. Itisscalar if dimisabsent or if array has
rank one; otherwise the result is an array of rank n-1 and of shape

(dy, dy, ... dgim—1:94im+ 15 ---»dy) where (d;, d,, ...,d,) istheshapeof array. If dim
is absent, the value of the result isthe sum of the values of al the elements of array. If dim
ispresent, the value of theresult isthe sum of the values of al elementsof array along dimen-
siondim. If maskispresent, the elements of array for which mask isfalse are not considered.

Lahey/Fujitsu Fortran 95 Language Reference 219

Chapter 2 Alphabetical Reference

Example
integer, dinension (2,2) :: m= reshape((/1,2,3,4/),(/2,2/))
! mis the array |1 3|
! | 2 4]

sum(m I i is assigned 10

sun{m di nel) I j is assigned [3,7]

i
j
k

sum(m mask=nm»2) ! k is assigned 7

SYSTEM Function (Linux only)

Description
Execute a system command as if from the system command line.

Syntax
SYSTEM (cmd)

Arguments

cmd must be of type CHARACTER. Itisan INTENT(IN) argument that is a system com-
mand to be executed asiif it were typed on the system command line.

Result

Theresultisof typedefault INTEGER. Thevalueof theresult isthe exit status of the system
command.

Example
if (system("ls > current.dir") /=0) wite(*,*) "Error"

! puts a listing of the current directory into
I the file "current.dir’

SYSTEM Subroutine

Description
Execute a system command as if from the system command line.

220 Lahey/Fuijitsu Fortran 95 Language Reference

SYSTEM_CLOCK Subroutine

Syntax (Windows)
SYSTEM (cmd, dosbox, spawn)

Syntax (Linux)
SYSTEM (cmd)

Required Arguments

cmd must be of type CHARACTER. Itslength must not be greater than 122. Itisan
INTENT(IN) argument that is a system command to be executed asif it were typed on the
system command line.

Optional Arguments

dosbox must be of type LOGICAL. Itisan INTENT(IN) argument that hasthe value trueif
anew DOS box isto be opened (required for internal commands like DIR) and false
otherwise.

spawn must be of type LOGICAL. Itisan INTENT(IN) argument that has the value true if
the command or program to be executed is to be spawned as a separate process and false
otherwise.

Example
call system("dir > current.dir")
! puts a listing of the current directory into
! the file 'current.dir’

SYSTEM_CLOCK Subroutine

Description
INTEGER data from the real-time clock.

Syntax
SYSTEM_CLOCK (count, count_rate, count_max)

Optional Arguments
count must be a scalar of type default INTEGER. Itisan INTENT (OUT) argument. Its
valueis set to the current value of the processor clock or to

-HUGE(O) if no clock is available.

count_rate must be a scalar of type default INTEGER. Itisan INTENT (OUT) argument.
It is set to the number of processor clock counts per second, or to zero if thereis no clock.

Lahey/Fujitsu Fortran 95 Language Reference 221

Chapter 2 Alphabetical Reference

count_max must be a scalar of type default INTEGER. Itisan INTENT (OUT) argument.
It is set to the maximum value that count can have, or zero if thereis no clock.

Example

call systemclock(c, cr, cm C is set to current

|
I val ue of processor

I clock. cr is set to

! the count_rate, and cm
| is set to the

I count _max

TAN Function

Description
Tangent.

Syntax
TAN (x)

Arguments
X must be of type REAL.

Result
Theresultisof the sametypeand kind asx. ItsvalueisaREAL representation of the tangent
of Xx.

Example
r =tan(.5) ! r is assigned the value 0.546302

TANH Function

Description
Hyperbolic tangent.

Syntax
TANH ()

Arguments
X must be of type REAL.

222 Lahey/Fujitsu Fortran 95 Language Reference

TARGET Satement

Result

Theresult is of the sametype and kind asx. ItsvalueisaREAL representation of the hyper-
bolic tangent of x.

Example
r =tanh(.5) ! r is assigned the value 0.462117

TARGET Statement

Description

The TARGET statement specifiesalist of object namesthat have the target attribute and thus
can have pointers associated with them.

Syntax
TARGET [::] object-name [(array-spec)] [, object-name [(array-spec)]] ...

Where:
object-name is the name of a data object.

array-spec is an array specification.

Example

target a,b,c ! a,b, and c¢c have the target attribute

TIMER Subroutine

Description
Hundredths of seconds elapsed since midnight.

Syntax
TIMER (iticks)

Arguments

iticks must be of type default INTEGER. It is assigned the hundredths of a second elapsed
since midnight on the system clock.

Lahey/Fujitsu Fortran 95 Language Reference 223

Chapter 2 Alphabetical Reference

Example
call timer (iticks)

TINY Function

Description
Smallest representabl e positive number of datatype.

Syntax
TINY ()

Arguments
x must be of type REAL.

Result

Theresult isascalar of the sametypeand kind asx. Itsvalueisthe smallest positive number
in the data type of x.

Example
a=tiny (4.0) ! ais assigned 0.117549E-37

TRANSFER Function

224

Description
Interpret the physical representation of anumber with the type and type parameters of agiven
number.

Syntax
TRANSFER (source, mold, size)

Required Arguments
source can be of any type.
mold can be of any type.

Optional Arguments

size must be a scalar of type INTEGER. The corresponding actual argument must not be a
optional dummy argument.

Lahey/Fujitsu Fortran 95 Language Reference

TRANSPOSE Function

Result

Theresult is of the same type and type parameters asmold. If mold isascalar and sizeis
absent theresultisascalar. If mold isarray-valued and size is absent, the result isarray val-
ued and of rank one. Itssizeisassmall as possible such that it is not shorter than source. |If
sizeis present, the result is array-valued of rank one and of size size.

If the physical representation of the result isthe same length as the physical representation of
source, the physical representation of the result isthat of source. If the physical representa-
tion of the result islonger than that of source, the physical representation of the leading part
of theresult isthat of source and thetrailing part is undefined. If the physical representation
of theresult is shorter than that of source, the physical representation of the result isthe lead-
ing part of source.

Example
real :: a
integer :: i
a = transfer(i,a) ! ais assigned the physical
I representation of i

TRANSPOSE Function

Description
Transpose an array of rank two.

Syntax
TRANSPOSE (matrix)

Arguments
matrix can be of any type. It must be of rank two.

Result

Theresult is of the same type, kind, and rank as matrix. Itsshapeis(n, m), where (m, n) is
the shape of matrix. Element (i, j) of the result has the value matrix(j, i).

Lahey/Fujitsu Fortran 95 Language Reference 225

Chapter 2 Alphabetical Reference

Example
i nteger, dinmension(2,3):: a =reshape((/1,2,3,4,5,6/),(/2,3/))
! represents the matrix |1 3 5]

|2 4 6|
integer, dinension(3,2) :: b
b = transpose(a) ! b is assigned the value
! |1 2]
! |3 4|
! |5 6]

TRIM Function

Description
Omit trailing blanks.

Syntax
TRIM (string)

Arguments
string must be of type CHARACTER and must be scalar.

Result
Theresult is of the sametype and kind as string. Itsvalue and length are those of string with
trailing blanks removed.

Example
shorter = trin("longer ")
! shorter is assigned the value "longer"

Type Declaration Statement

SeeINTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, CHARACTER, or
TY PE statement.

TYPE Statement

Description
Thisform of the TY PE statement begins a derived type definition.

226 Lahey/Fujitsu Fortran 95 Language Reference

TYPE Satement

Syntax
TYPE[[, access-spec] ::] type-name
Where:

access-spec isPUBLIC
or PRIVATE

type-name is the name of the derived type being defined.

Remarks

access-spec is permitted only if the derived type definition is within the specification part of
amodule.

If acomponent of aderived typeis of atype declared to be private, either the definition must
contain the PRIVATE statement or the derived type must be private.

type-name must not be the name of an intrinsic type nor of another accessible derived type
name.

Example
type coordi nates
real :: x , y =40.0 ! default value for y specified
end type coordi nates

TYPE Statement

Description
Thisform of the TY PE statement specifies that all entities whose names are declared in the
statement are of the derived type named in the statement.

Syntax
TY PE (type-name) [, attribute-list ::] entity [, entity] ...

Where:
type-name is the name of a derived type previously defined in a derived-type definition.

attribute-list isacomma-separated list from the following attributes: PARAMETER, ALLO-
CATABLE, DIMENSION(array-spec), EXTERNAL, INTENT (IN) or INTENT (OUT) or
INTENT (IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE,
TARGET.

entity is entity-name [(array-spec)] [= initialization-expr]

or function-name [(array-spec)]

array-spec isan array specification.

Lahey/Fujitsu Fortran 95 Language Reference 227

Chapter 2 Alphabetical Reference

228

initialization-expr is an expression that can be evaluated at compile time.
entity-name is the name of a data object being declared.

function-name is the name of a function being declared.

Remarks
The same attribute must not appear more than once in a TY PE statement.

function-name must be the name of an external, statement, or intrinsic function, or afunction
dummy procedure.

The = initialization-expr must appear if the statement contains a PARAMETER attribute.

If = initialization-expr appears, a double colon must appear before the list of entities. Each
entity has the SAVE attribute, unlessit isin a named common block.

The = initialization-expr must not appear if entity-name is adummy argument, a function
result, an object in anamed common block unless the type declarationisin ablock data pro-
gram unit, an object in blank common, an allocatable array, a pointer, an external name, an
intrinsic name, or an automatic object.

The ALLOCATABLE attribute can be used only when declaring an array that isnot a
dummy argument or a function result.

An array declared with aPOINTER or an ALLOCATABLE attribute must be specified with
adeferred shape.

An array-spec for a function-name that does not have the POINTER attribute must be spec-
ified with an explicit shape.

An array-spec for afunction-name that does have the POINTER attribute must be specified
with a deferred shape.

If the POINTER attributeis specified, the TARGET, INTENT, EXTERNAL, or INTRINSIC
attribute must not be specified.

If the TARGET attributeis specified, the POINTER, EXTERNAL, INTRINSIC, or
PARAMETER attribute must not be specified.

The PARAMETER attribute must not be specified for dummy arguments, pointers, allocat-
able arrays, functions, or objectsin a common block.

The INTENT and OPTIONAL attributes can be specified only for dummy arguments.
An entity must not have the PUBLIC attribute if its type has the PRIVATE attribute.

The SAVE attribute must not be specified for an object that isin acommon block, adummy
argument, a procedure, a function result, or an automatic data object.

An entity must not have the EXTERNAL attribute if it has the INTRINSIC attribute.

Lahey/Fujitsu Fortran 95 Language Reference

UBOUND Function

Anentity inaTY PE statement must not havethe EXTERNAL or INTRINSIC attribute spec-
ified unlessit isafunction.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute.

An entity must not be given explicitly any attribute more than once in a scoping unit.

Example
type zee
real :: a, b
integer :: i
end type zee
type (zee) :: a, b, c ! a, b, and ¢ are of type zee
type (zee), dimension (2, 4) :: d
I dis a2 by 4 array of type zee
type (zee) :: e = zee(2.0, 3.5, -1)
I eisinitialized

UBOUND Function

Description
Upper bounds of an array or adimension of an array.

Syntax
UBOUND (array, dim)

Required Arguments

array can be of any type. 1t must not be ascalar and must not be a pointer that is disassociated
or an alocatable array that is not allocated.

Optional Arguments
dim must of type INTEGER and must be adimension of array.

Result

Theresult isof type default INTEGER. If dimis present, the result isascalar with the value
of the upper bound of array. If dimis absent, the result is an array of rank one with values
corresponding to the upper bounds of each dimension of array.

Theresult is zero for zero-sized dimensions.

Lahey/Fujitsu Fortran 95 Language Reference 229

Chapter 2 Alphabetical Reference

Example
i nteger, dinension (3,-4:0) :: i
integer :: k, j(2)
j = ubound (i) ! j is assigned the value [3,0]
k = ubound (i, 2) ! k is assigned the value 0

UNDFL Subroutine (Windows Only)

Description

Theinitia invocation of the UNDFL subroutine masks the underflow interrupt on the float-
ing-point unit. Iflag must be set to true on the first invocation. Subseguent invocations
return true or false in the Iflag variable if the exception has occurred or not occurred,
respectively.

Syntax
UNDFL (Iflag)

Arguments
Iflag must be of type LOGICAL. Itisassigned the value trueif an underflow exception has
occurred, and false otherwise.

Example
call undfl (lIflag) ! nmask the underflow interrupt

UNPACK Function

Description
Unpack an array of rank one into an array under control of a mask.

Syntax
UNPACK (vector, mask, field)

Arguments
vector can be of any type. It must be of rank one. Its size must be at least aslarge as the
number of true elements in mask.

mask must be of type LOGICAL. It must be array-valued.

field must be of the same type and type parameters as vector. It must be conformable with
mask.

230 Lahey/Fujitsu Fortran 95 Language Reference

USE Satement

Result

Theresult isan array of the same type and type parameters as vector and the same shape as
mask. Theelement of the result that correspondsto theith element of mask, in array-element
order, hasthe value vector (i) fori = 1, 2, ..., t, where t isthe number of true valuesin mask.
Each other element hasthe valuefield if field is scalar or the corresponding element in field,

if fieldisan array.
Example
i nteger, dinension(9) :: ¢ =(/0,3,2,4,3,2,5,1,2/)
| ogical, dinension(2,2) :: d
integer, dinmension(2,2) :: e
d reshape((/.false.,.true.,.true.,.false./), (/2, 2/))

unpack(c, mask=d, fi el d=-1)
is assigned |-1 3|
| 0 -1

@ 1

e
|
|

USE Statement

Description
The USE specifies that a specified module is accessible by the current scoping unit. 1t also
provides a means of renaming or limiting the accessibility of entitiesin the module.

Syntax
USE module[, rename-list]

or
USE module, ONLY: [only-list]

Where:
module is the name of a module.

rename-list is a comma-separated list of local-name => use-name

only-list is a comma-separated list of access-id
or [local-name => use-name |

local-name is the local name for the entity specified by use-name
use-name is the name of an entity in the specified module

access-id is use-name

or generic-spec

generic-spec is generic-name

or OPERATOR (defined-operator)
or ASSIGNMENT (=)

Lahey/Fujitsu Fortran 95 Language Reference 231

Chapter 2 Alphabetical Reference

generic-name is the name of a generic procedure.

defined-operator is one of theintrinsic operators
or .op-name.

op-name is a user-defined name for the operation.

Remarks
If no local-name is specified, the local name is use-name.

A USE statement without ONLY provides access to all PUBLIC entitiesin the specified
module.

A USE statement with ONLY provides access only to those entities that appear in the only-
list.

If more than one USE statement appearsin a scoping unit, the rename-lists and only-listsare
treated as one concatenated rename-list.

If two or more generic interfaces that are accessible in the same scoping unit have the same
name, same operator, or are assignments, they are interpreted as a single generic interface.

Two or more accessible entities, other than generic interfaces, can have the same name only
if no entity is referenced by this name in the scoping unit.

An entity can be accessed by more than one |ocal-name.

A local-name must not be respecified with differing attributes in the scoping unit that con-
tainsthe USE statement, except that it can appear inaPUBLIC or PRIVATE statement inthe
scoping unit of amodule.

Forward references to modules are not allowed in LF95. That is, if amoduleis used in the
same source file in which it resides, the module program unit must appear before its use.

Example

use ny_lib, aleph => al pha
I use all public entities in ny_lib, and
! refer to al pha as aleph locally to prevent
I conflict with alpha in this_nodul e bel ow

use this_nodule, only: alpha, beta, operator(+)
! use only al pha, beta, and the defined
! operator (+) fromthis_nodul e

%VAL Function

232

Description
Pass an item to a procedure by value. %V AL can only be used as an actual argument.

Lahey/Fujitsu Fortran 95 Language Reference

VERIFY Function

Syntax
%VAL (item)

Arguments

item can be anamed data object of type INTEGER, REAL, or LOGICAL. Itisthedataobject
for which to return an address. itemisan INTENT(IN) argument.

Result
The result isthe value of item. Its C datatypeisasfollows:

Table 10: VAL result types

Fortran Type Fortran Kind C type
INTEGER 1 long int
INTEGER 2 long int
INTEGER 4 long int
REAL 4 float
must not be passed by value; if
passed by reference (without
CARG) it isa pointer to a structure
COMPLEX 4 of the form:
struct complex {
float rea_part;
float imaginary_part;};
LOGICAL 1 unsigned long
LOGICAL 4 unsigned long
CHARACTER 1 must not be passed by value with
VAL
Example

i = nmy_c_function(val(a)) ! a is passed by val ue

VERIFY Function

Description
Verify that a set of characters contains all the charactersin a string.

Lahey/Fujitsu Fortran 95 Language Reference 233

Chapter 2 Alphabetical Reference

WHERE

Syntax
VERIFY (string, set, back)

Required Arguments
string must be of type CHARACTER.

set must be of the same kind and type as string.

Optional Arguments
back must be of type LOGICAL.

Result

Theresult is of type default INTEGER. If back isabsent, or if it is present with the value
false, the value of the result is the position number of the leftmost character in string that is
not in set. If back is present with the value true, the value of the result isthe position number
of the rightmost character in string that is not in set. The value of the result is zero if each
character in stringisin set, or if string has length zero.

Example
i =verify ("Lalalalala","l") ! i is assigned the
I value 1
i = verify ("Lal al aLALA", "LA", back=.true.)
! i is assigned the
I value 6
Construct
Description

The WHERE construct controls which elements of an array will be affected by ablock of
assignment statements. Thisis also known as masked array assignment.

234 Lahey/Fujitsu Fortran 95 Language Reference

WHERE Construct

Syntax
WHERE (mask-expr)
[assignment-stmt]
[assignment-stmt]

[ELSEWHERE (mask-expr)]
[assignment-stmt]
[assignment-stmt]

[ELSEWHERE]
[assignment-stmt]
[assignment-stmt]

END WHERE

Where:
mask-expr isa LOGICAL expression.

assignment-stmt is an assignment statement.

Remarks

The variable on the left-hand side of assignment-stmt must have the same shape as mask-
expr.

When assignment-stnt is executed, the right-hand side of the assignment is evaluated for all
elements where mask-expr is true and the result assigned to the corresponding elements of
the left-hand side.

If a non-elemental function reference occurs in the right-hand side of assignment-stmt, the
function is evaluated without any masked control by the mask-expr.

mask-expr is evaluated at the beginning of the masked array assignment and the result value
governs the masking of assignmentsin the WHERE statement or construct. Subsequent
changes to entities in mask-expr have no effect on the masking.

assignment-stmt must not be a defined assignment.

There can be multiple EL SEWHERE statements with mask-exprs.

Example
where (b>c) I begi n where construct
b=-1
el sewhere
b=1
end where

Lahey/Fujitsu Fortran 95 Language Reference 235

Chapter 2 Alphabetical Reference

WHERE Statement

236

Description

The WHERE statement is used to mask the assignment of valuesin array assignment state-
ments. The WHERE statement can begin a WHERE construct that contains zero or more
assignment statements, or can itself contain an assignment statement.

Syntax
WHERE (mask-expr) [assignment-stimt |

Where:
mask-expr isaLOGICAL expression.

assignment-stmt is an assignment statement.

Remarks

If the WHERE statement contains no assignment-stnt, it specifies the beginning of a
WHERE construct.

The variable on the left-hand side of assignment-stmt must have the same shape as mask-
expr.

When assignment-stnt is executed, the right-hand side of the assignment is evaluated for all
elements where mask-expr is true and the result assigned to the corresponding elements of
the left-hand side.

If a non-elemental function reference occurs in the right-hand side of assignment-stmt, the
function is evaluated without any masked control by the mask-expr.

mask-expr is evaluated at the beginning of the masked array assignment and the result value
governs the masking of assignmentsin the WHERE statement or construct. Subsequent
changes to entities in mask-expr have no effect on the masking.

assignment-stmt must not be a defined assignment.

Example

! a, b, and c are arrays

where (a>b) a = -1 ! where statenent

where (b>c) I begi n where construct
b=-1

el sewhere
b=1

end where

Lahey/Fujitsu Fortran 95 Language Reference

WRITE Satement

WRITE Statement

Description
The WRITE statement transfers values to an input/output unit from the entities specified in
an output list or a namelist group.

Syntax
WRITE (io-control-specs) [outputs]

Where:
outputs is a comma-separated list of expr
or io-implied-do

expr isavariable.
io-implied-do is (outputs, implied-do-control)
implied-do-control is do-variable = start, end [, increment |

start, end, and increment are scal ar numeric expressions of type INTEGER, REAL or double-
precision REAL.

do-variableis ascalar variable of type INTEGER, REAL or double-precision REAL.

io-control-specsis a comma-separated list of
[UNIT =] io-unit

or [FMT =] format

or [NML =] namelist-group-name
or REC =record

or IOSTAT = stat

or ERR = errlabel

or END = endlabel

or EOR = eorlabel

or ADVANCE = advance

or SIZE = size

io-unit is an externa file unit
or*

format is aformat specification (see “ Input/Output Editing” beginning on page 24).
namelist-group-name is the name of a namelist group.
record is the number of the direct-access record that is to be written.

stat isascalar default INTEGER variable that is assigned a positive value if an error condi-
tion occurs and zero otherwise.

errlabel isalabel that isbranched to if an error condition occurs and no end-of-record con-
dition or end-of-file condition occurs during execution of the statement.

Lahey/Fujitsu Fortran 95 Language Reference 237

Chapter 2 Alphabetical Reference

238

endlabel isalabel that isbranched to if an end-of-file condition occurs and no error condition
occurs during execution of the statement.

eorlabel isalabel that is branched to if an end-of-record condition occurs and no error con-
dition or end-of-file condition occurs during execution of the statement.

advanceisascalar default CHARACTER expression that evaluates to NO if non-advancing
input/output isto occur, and Y ESif advancing input/output isto occur. The default valueis
YES.

sizeisascalar default INTEGER variable that is assigned the number of characters trans-
ferred by data edit descriptors during execution of the current non-advancing i nput/output
Statement.

Remarks

io-control-specs must contain exactly one io-unit, and must not contain both aformat and a
namelist-group-name.

A namelist-group-name must not appear if outputsis present.

If the optional characters UNIT= are omitted before io-unit, io-unit must be the first item in
io-control-specs. If the optional characters FM T= are omitted before format, format must be
the second item in io-control-specs. If the optional characters NML= are omitted before
namelist-group-name, namelist-group-name must be the second item in io-control-specs.

If io-unitisaninternal file, io-control-specs must not contain a REC= specifier or anamelist-
group-name.

If the REC= specifier is present, an END= specifier must not appear, a namelist-group-name
must not appear, and format must not be an asterisk indicating list-directed 1/0.

An ADVANCE= specifier can appear only in formatted sequential 1/0 with an explicit for-
mat specification (format-expr) whose control list does not contain an internal file specifier.
If an EOR= or SIZE= specifier is present, an ADVANCE= specifier must also appear with
the value NO.

Thedo-variableof animplied-do-control that is contai ned within another io-implied-do must
not appear as the do-variable of the containing io-implied-do.

If an array appears as an output item, it istreated as if the elements were specified in array-
element order.

If aderived type object appearsasan output item, itistreated asif all of the componentswere
specified in the same order asin the definition of the derived type.

Lahey/Fujitsu Fortran 95 Language Reference

WRITE Satement

Example
wite (*,*) a,b,c ! wite a, b, and c using list-
I directed i/o
wite (3, fnt="(e7.4)") x
I wite x to unit 3 using e fornmat
wite 10, i,j,k
' wite i, j, and k using format on
I line 10

Lahey/Fujitsu Fortran 95 Language Reference 239

Chapter 2 Alphabetical Reference

240 Lahey/Fujitsu Fortran 95 Language Reference

Fortran 77/
Compatibility

This chapter discussesissuesthat affect the behavior of Fortran 77 and Fortran 90 code when
processed by LF95.

Different Interpretation Under Fortran 95

Standard Fortran 95 is a superset of standard Fortran 90 and a standard-conforming Fortran
90 program will compile properly under Fortran 95. There are, however, two situationsin
which the program’ s interpretation may differ.

» Thebehavior of the SIGN intrinsic function is different if the second argument is
negative real zero.

» Fortran 90 hasmore intrinsic proceduresthan Fortran 77. Therefore, a standard-con-
forming Fortran 77 program may have a different interpretation under Fortran 90 if
it invokes a procedure having the same name as one of the new standard intrinsic pro-
cedures, unless that procedure is specified in an EXTERNAL statement as
recommended for non-intrinsic functions in the appendix to the Fortran 77 standard.

Different Interpretation Under Fortran 90

Standard Fortran 90 is a superset of standard Fortran 77 and a standard-conforming Fortran
77 program will compile properly under Fortran 90. There are, however, some situationsin
which the program’ s interpretation may differ.

» Fortran 77 permitted aprocessor to supply more precision derived fromaREAL con-
stant than can be contained in a REAL datum when the constant is used to initialize
aDOUBLE PRECISION dataobjectinaDATA statement. Fortran 90 does not per-
mit this option.

Lahey/Fujitsu Fortran 95 Language Reference 241

Appendix A Fortran 77 Compatibility

If anamed variablethat isnot in acommon block isinitialized inaDATA statement
and does not have the SAVE attribute specified, Fortran 77 left its SAVE attribute
processor-dependent. Fortran 90 specifies that this named variable has the SAVE
attribute.

Fortran 77 required that the number of characters required by the input list must be
less than or equal to the number of charactersin the record during formatted input.
Fortran 90 specifiesthat the input record islogically padded with blanksif there are
not enough charactersin the record, unless the PAD="NO" option is specified in an
appropriate OPEN statement.

Fortran 90 has more intrinsic proceduresthan Fortran 77. Therefore, astandard-con-
forming Fortran 77 program may have a different interpretation under Fortran 90 if
itinvokesaprocedure having the same name as one of the new standard intrinsic pro-
cedures, unless that procedure is specified in an EXTERNAL statement as

recommended for non-intrinsic functions in the appendix to the Fortran 77 standard.

Obsolescent Features

The following features are obsolescent or deleted from the Fortran 95 standard. While these

features are still supported in LF95, their use in new code is not recommended:

Arithmetic IF
REAL and double-precision DO control variables and DO loop control expressions

shared DO termination and termination on a statement other than END DO or
CONTINUE

Branching to an END IF statement from outside its I F block
Alternate return

PAUSE statement

ASSIGN statement and assigned GOTO statement
Assigned format specifier

nH (Hollerith) edit descriptor

Computed GOTO statement

Statement functions

DATA statements amongst executable statements
Assumed-length CHARACTER functions
Fixed-source form

CHARACTER* form of CHARACTER declaration

242 Lahey/Fujitsu Fortran 95 Language Reference

New In Fortran 95

The following Fortran 95 features were not present in Fortran 77. Fortran 95 features that

were not present in Fortran 90 are marked with an asterisk.

Miscellaneous
free source form
enhancements to fixed source form:
“;" statement separator
“1"” trailing comment
names may be up to 31 charactersin length
both upper and lower case characters are accepted
INCLUDE line
relational operators in mathematical notation
enhanced END statement
IMPLICIT NONE
binary, octal, and hexadecimal constants
quotation marks around CHARACTER constants

Data
enhanced type declaration statements
new attributes:
extended DIMENSION attribute
ALLOCATABLE
POINTER
TARGET
INTENT
PUBLIC
PRIVATE
kind and length type parameters
derived types
pointers

Lahey/Fujitsu Fortran 95 Language Reference

243

Appendix B New in Fortran 95

Operations

extended intrinsic operators
extended assignment
user-defined operators

Arrays

automatic arrays

allocatable arrays

assumed-shape arrays

array sections

array expressions

masked array assignment (WHERE statement and construct)
FORALL statement*

Execution Control
CASE construct
enhance DO construct
CY CLE statement
EXIT statement

Input/Output

binary, octal, and hexadecimal edit descriptors
engineering and scientific edit descriptors
namelist formatting

partia record capabilities (non-advancing 1/0)
extra OPEN and INQUIRE specifiers

Procedures

keyword arguments

optional arguments

INTENT attribute

derived type actual arguments and functions
array-valued functions

recursive procedures

user-defined generic procedures
user-defined elemental procedures*
pure procedures*

specification of procedure interfaces
internal procedures

244 Lahey/Fujitsu Fortran 95 Language Reference

Modules

New Intrinsic Procedures
NULL*
PRESENT
numeric functions
CEILING
FLOOR
MODULO
character functions
ACHAR
ADJUSTL
ADJUSTR
IACHAR
LEN_TRIM
REPEAT
SCAN
TRIM
VERIFY
kind Functions
KIND
SELECTED_INT_KIND
SELECTED_REAL_KIND
LOGICAL
numeric inquiry functions
DIGITS
EPSILON
HUGE
MAXEXPONENT
MINEXPONENT
PRECISION
RADIX
RANGE
TINY
BIT _SIZE
bit manipulation functions
BTEST
IAND
IBCLR
IBITS
IBSET
IEOR
IOR
ISHFT

Lahey/Fujitsu Fortran 95 Language Reference

245

Appendix B New in Fortran 95

ISHFTC
NOT

TRANSFER

floating-point manipulation functions
EXPONENT
FRACTION
NEAREST
RRSPACING
SCALE
SET_EXPONENT
SPACING

vector and matrix multiply functions
DOT_PRODUCT
MATMUL

array reduction functions
ALL
ANY
COUNT
MAXVAL
MINVAL
PRODUCT
SUM

array inquiry functions
ALLOCATED
LBOUND
SHAPE
SIZE
UBOUND

array construction functions
MERGE
FSOURCE
PACK
SPREAD
UNPACK

RESHAPE

array manipulation functions
CSHFT
EOSHIFT
TRANSPOSE

array location functions
MAXLOC
MINLOC

ASSOCIATED

246 Lahey/Fujitsu Fortran 95 Language Reference

intrinsic subroutines
CPU_TIME*
DATE_AND_TIME
MVBITS
RANDOM_NUMBER
RANDOM_SEED
SYSTEM_CLOCK

Lahey/Fujitsu Fortran 95 Language Reference 247

Appendix B New in Fortran 95

248 Lahey/Fujitsu Fortran 95 Language Reference

Intrinsic Procedures

The tables in this chapter offer a synopsis of procedures included with Lahey Fortran. For
detailed information on individual procedures, see the chapter “ Alphabetical Reference” on

page 59.

All proceduresin thesetablesareintrinsic. Specific function names may be passed as actual
arguments except for where indicated by an asterisk in the tables. Note that for almost all
programming situations it is best to use the generic procedure name.

Lahey/Fujitsu Fortran 95 Language Reference 249

Appendix C

Intrinsic Procedures

250

Table 11: Numeric Functions

Name
Soecific Function Type Argument Type | Description Class
Names
ABS Numeric Numeric
CABS REAL 4 COMPLEX_4
CDABS REAL_8 COMPLEX_8
CQABS REAL_16 COMPLEX_16
gﬁgg 23 ::—?6 23 IE_?G Absolute Value. Elemental
IABS INTEGER_4 INTEGER 4
12ABS INTEGER 2 INTEGER 2
IIABS INTEGER 2 INTEGER 2
JIABS INTEGER 4 INTEGER 4
AIMAG REAL COMPLEX Imaginary part of
DIMAG REAL_8 COMPLEX_8 acomplex num- Elemental
QIMAG REAL 16 COMPLEX_16 | ber.
AINT REAL REAL Truncationto a
DINT REAL_8 REAL_8 whole number Elemental
QINT REAL_16 REAL_16)
ANINT REAL REAL REAL representa-
DNINT REAL_8 REAL_8 tion of the nearest | Elemental
ONINT REAL_16 REAL_16 whole number.
Smallest INTE-
CEILING | INTEGER 4 | REAL GER greater than | o iy
or equal to anum-
ber.
CMPLX COMPLEX Numeric Convert to tvpe
DCMPLX | COMPLEX_8 | Numeric COMPLEXyp Elementa
QCMPLX COMPLEX_16 | Numeric '
CONJG COMPLEX COMPLEX Coniucate of a
DCONJG | COMPLEX_8 | COMPLEX_8 Com’ ng O bey | Elementd
QCONJG | COMPLEX_16 | COMPLEX_16 P '
DBLE REAL 8 Numeric Convert to dou-
DREAL” REAL 8 COMPLEX 8 ble-precision Elemental
DFLOAT* REAL 8 INTEGER_4 RE/—I\DL tvoe
DBLEQ REAL 8 REAL_16 YPpe:

Lahey/Fujitsu Fortran 95 Language Reference

Table 11: Numeric Functions

Name

Soecific Function Type Argument Type | Description Class

Names

DIM INTEGER or INTEGER or

REAL REAL .

DDIM REAL_8 REAL_8 g:tsv‘i'ef;e:v?’gcﬁum_

QDIM REAL_16 REAL_16 bersif the differ- | Elemental

IDIM INTEGER 4 INTEGER 4 ence is boditiver

12DIM INTEGER 2 INTEGER 2 - Oth%rwise :

IIDIM INTEGER 2 INTEGER 2)

JIDIM INTEGER 4 INTEGER 4
Double-precision

DPROD REAL_8 REAL_4 REAL product, | Elementd
Exponent part of

EXPO- the model repre-

NENT REAL REAL sentation of a Elementdl
number.
Greatest INTE-

FLOOR INTEGER 4 REAL GER lessthan or Elemental
equal to anumber.
Fraction part of

FRAC- the physical repre-

TION REAL REAL sentation of a Elemental
number.

INT INTEGER Numeric

IDINT* INTEGER REAL_8

IQINT* INTEGER REAL 16

IFIX* INTEGER REAL 4

INT2* INTEGER 2 Numeric

INT4* INTEGER 4 Numeric

HFIX* INTEGER 2 REAL_4 ggg’?“eo INTE | £ lemental

[INT* INTEGER 2 REAL_4 ype.

JINT* INTEGER 4 REAL 4

IIDINT* INTEGER 2 REAL 8

JIDINT* INTEGER 4 REAL 8

HFIX* INTEGER 2 REAL 4

JIFIX* INTEGER 4 REAL 4

Lahey/Fujitsu Fortran 95 Language Reference 251

Appendix C

Intrinsic Procedures

Table 11: Numeric Functions

Name
Soecific Function Type Argument Type | Description Class
Names
MAX INTEGER or INTEGER or
REAL REAL
AMAXO* REAL 4 INTEGER 4
AMAX1* REAL 4 REAL 4
DMAX1* REAL_8 REAL_8
QMAX1* REAL_16 REAL 16
MAXO* INTEGER 4 INTEGER 4
MAX1* INTEGER 4 REAL 4 Maximum value. Elemental
2MAX0* INTEGER 2 INTEGER 2
IMAXO* INTEGER 2 INTEGER 2
JMAX0* INTEGER 4 INTEGER 4
IMAX1* INTEGER 2 REAL 4
JMAX1* INTEGER 4 REAL 4
AIMAXO* REAL 4 INTEGER 2
AIMAXO* REAL 4 INTEGER 4
MIN INTEGER or INTEGER or
REAL REAL
AMINO* REAL_4 INTEGER_4
AMIN1* REAL_4 REAL_4
DMIN1* REAL_8 REAL_8
QMIN1* REAL_16 REAL_16
MINO* INTEGER_4 INTEGER_4
MIN1* INTEGER_4 REAL_4 Minimum value. Elemental
[2MINO* INTEGER 2 INTEGER_2
IMINO* INTEGER 2 INTEGER 2
JMINO* INTEGER 4 INTEGER 4
IMIN1* INTEGER 2 REAL_4
JMIN1* INTEGER 4 REAL_4
AIMINO* REAL_4 INTEGER_2
AIJMINO* REAL_4 INTEGER 4

252 Lahey/Fujitsu Fortran 95 Language Reference

Table 11: Numeric Functions

Name
Soecific Function Type Argument Type | Description Class
Names
MOD INTEGER or INTEGER or
REAL REAL
AMOD REAL 4 REAL 4
DMOD REAL_8 REAL_8 Remainder Elemental
QMOD REAL 16 REAL 16 '
12MOD INTEGER 2 INTEGER 2
IMOD INTEGER 2 INTEGER 2
JMOD INTEGER 4 INTEGER 4
MODULO 'RNETAELGER or 'RNETAELGER o | Modulo. Elemental
Nearest number of
NEAREST | REAL REAL agivendaatype | oo
inagiven direc-
tion.
NINT INTEGER REAL
IDNINT INTEGER 4 REAL_8
IQNINT INTEGER 4 REAL_16
I2NINT INTEGER 2 REAL Nearest INTE- Elemental
ININT INTEGER 4 REAL 4 GER.
JNINT INTEGER_2 REAL 4
IIDNNT INTEGER 2 REAL 8
JIDNNT INTEGER 4 REAL 8
REAL REAL Numeric
FLOAT* REAL 4 INTEGER
NGL* REAL 4 REAL_8
NGLQ* REAL 4 REAL_16 Convert to REAL
Elemental
FLOATI* REAL_4 INTEGER 2 type.
FLOATJ* REAL_4 INTEGER 4
DFLOTI* REAL_8 INTEGER 2
DFLOTJ* REAL_8 INTEGER 4
Reciprocal of rel-
FNR(BSPAC' REAL REAL ative spacing near | Elemental

agiven number.

Lahey/Fujitsu Fortran 95 Language Reference 253

Appendix C

Intrinsic Procedures

254

Table 11: Numeric Functions

Name
Soecific Function Type Argument Type | Description Class
Names
Multiply a num-
REAL and
SCALE REAL INTEGER ber by apower of | Elemental
two.
Model representa-
SET tion of a number
EXPO- REAL :QNE_I'_A‘é‘GaEng with exponent Elemental
NENT part set to a power
of two.
SIGN INTEGER or INTEGER or
REAL REAL
DS GN REAL_8 REAL_8
QSIGN REAL 16 REAL 16 .
ISGN INTEGER 4 INTEGER 4 | /ransferofsign. | Elemental
129GN INTEGER 2 INTEGER 2
IS GN INTEGER 2 INTEGER 2
JISGN INTEGER 4 INTEGER 4
Absolute spacing
SPACING REAL REAL near agiven num- | Elemental
ber.

Lahey/Fujitsu Fortran 95 Language Reference

Table 12: Mathematical Functions

Name
Soecific Function Type Argument Type | Description Class
Names
ACOS REAL REAL Arccosine, Elemental
DACOS REAL_8 REAL_8)
ASIN REAL REAL .
DASN REAL 8 REAL 8 Arcsine. Elemental
ATAN REAL REAL
DATAN REAL 8 REAL_ 8 Arctangent. Elemental
Arctangent of y/x
sy R mea | frose |
DATAN2 REAL_8 REAL_8 9
- - the complex num-
ber (x.y)).
COos REAL or REAL or
COMPLEX COMPLEX
CCOSs COMPLEX_4 COMPLEX_4
CDCOS COMPLEX_8 COMPLEX_8 Cosine. Elemental
CQCOs COMPLEX_16 | COMPLEX_16
DCOS REAL_8 REAL_8
QCOSs REAL_16 REAL_16
COSH REAL REAL Hvberbalic
DCOSH REAL_8 REAL_8 o Elemental
QCOH REAL_16 REAL_16)
EXP REAL or REAL or
COMPLEX COMPLEX
CEXP COMPLEX_4 COMPLEX_4
CDEXP COMPLEX_8 COMPLEX_8 Exponential. Elemental
CQEXP COMPLEX 16 | COMPLEX 16
DEXP REAL 8 REAL 8
QEXP REAL_16 REAL_16

Lahey/Fujitsu Fortran 95 Language Reference 255

Appendix C

Intrinsic Procedures

256

Table 12: Mathematical Functions

Name
Soecific Function Type Argument Type | Description Class
Names
LOG REAL or REAL or
COMPLEX COMPLEX
ALOG REAL 4 REAL_4
CLOG COMPLEX 4 COMPLEX 4 .
CDLOG COMPLEXZS COMPLEXZS Natural logarithm. | Elemental
CQLOG COMPLEX_16 | COMPLEX_16
DLOG REAL_8 REAL_8
QLOG REAL_16 REAL_16
LOG10 REAL REAL
ALOG10 REAL 4 REAL 4 Common loga Elemental
DLOG10 REAL_8 REAL_8 rithm.
QLOGI10 REAL_16 REAL_16
SIN REAL or REAL or
COMPLEX COMPLEX
CSIN COMPLEX_4 | COMPLEX_4
CDSIN COMPLEX_8 COMPLEX_8 Sine. Elemental
CQSIN COMPLEX_16 | COMPLEX_16
DSIN REAL_8 REAL_8
QSIN REAL_16 REAL_16
SINH REAL REAL
DSINH REAL_8 REAL_8 Hyperbolic sine. Elemental
QSINH REAL_16 REAL_16
SQRT REAL or REAL or
COMPLEX COMPLEX
CQRT COMPLEX 4 COMPLEX 4
CDSQRT COMPLEX_8 COMPLEX_8 Square root. Elemental
CQSQRT COMPLEX 16 | COMPLEX 16
DSQRT REAL_8 REAL_8
QSQRT REAL_16 REAL_16
TAN REAL REAL
DTAN REAL_8 REAL_8 Tangent. Elemental
QTAN REAL_16 REAL_16

Lahey/Fujitsu Fortran 95 Language Reference

Table 12: Mathematical Functions

Name

Soecific Function Type Argument Type | Description Class
Names

TANH REAL REAL Hvperbolic tan-

DTANH REAL_8 REAL_8 gnF: Elemental
QTANH REAL_16 REAL_16 gent.

Lahey/Fujitsu Fortran 95 Language Reference

257

Appendix C

Intrinsic Procedures

Table 13: Character Functions

Name Description Class
ACHAR Ch_aracter in aspecified position of the ASCI|I col- Elemental
lating sequence.
ADJUSTL Adj us_t to th_e_left, removing leading blanks and Elemental
inserting trailing blanks.
ADJUSTR Adj ug to the _rlght, removing trailing blanks and Elemental
inserting leading blanks.
CHAR G_|ven character in the collating sequence of thea Elemental
given character set.
IACHAR Position of a character in the ASCII collating Elemental
sequence.
Position of a character in the processor collating
ICHAR sequence associated with the kind of the character. Elemental
INDEX Starting position of a substring within a string. Elemental
LEN Length of a CHARACTER data object. Inquiry
LEN TRIM Length of a CHARACTER entity without trailing Elemental
- blanks.
Test whether astring islexically greater than or
LGE equal to another string based on the ASCII collat- | Elemental
ing sequence.
Test whether astring islexically greater than
LGT another string based on the ASCII collating Elemental
sequence.
Test whether astring is lexically less than or equal
LLE to another string based on the ASCI| collating Elemental
sequence.
Test whether astring is lexically less than another
LLT string based on the ASCI| collating sequence. Elemental
REPEAT Concatenate copies of astring. g(r;n:orma—
SCAN Scan a string for any one of a set of characters. Elemental

258 Lahey/Fujitsu Fortran 95 Language Reference

Table 13: Character Functions

Name Description Elhes

TRIM Omit trailing blanks. Transforma-
tional

VERIEY Verify that a set of characters contains al the char- Elemental

actersin astring.

Lahey/Fujitsu Fortran 95 Language Reference

259

Appendix C

Intrinsic Procedures

260

Table 14: Array Functions

Name Description Class

Determine whether al valuesin amask are true Transforma:
ALL

along a given dimension. tional
ALLOCATED Indicate whether an allocatable array has been allo- Inqiry

cated.

Determine whether any values are true in a mask Transforma:
ANY

along a given dimension. tional

Count the number of true elementsinamask along | Transforma-
COUNT . ; X .

agiven dimension. tional

Circular shift of all rank one sectionsin an array.

Elements shifted out at one end are shifted in at the Transforma
CSHIFT other. Different sections can be shifted by differ- tional

ent amounts and in different directions by using an

array-valued shift.
DOT_ S Transforma-
PRODUCT Dot-product multiplication of vectors. tional

End-off shift of all rank one sectionsin an array.

Elements are shifted out at one end and copies of
EOSHIET boundary values are shifted in at the other. Differ- | Transforma-

ent sections can be shifted by different amounts tional

and in different directions by using an array-valued

shift.
LBOUND Lower bounds of an array or adimension of an Inquiry

array.
MATMUL Matrix multiplication. Transformar

tional

Location of the first element in array having the Transforma

MAXLOC maximum value of the elements identified by .
tional

mask.

Maximum value of elements of an array, along a Transforma-
MAXVAL . . . :) .

given dimension, for which amask istrue. tional
MERGE Choose dternative values based on the value of a Elemental

mask.

Lahey/Fujitsu Fortran 95 Language Reference

Table 14: Array Functions

Name Description Class
MINLOC Location of the first element in array having the Transforma
minimum value of the elementsidentified by mask. | tional
MINVAL Minimum value of elements of an array, along a Transforma
given dimension, for which amask istrue. tional
Pack an array into avector under control of a Transforma
PACK .
mask. tional
Product of elements of an array, along agiven Transforma
PRODUCT dimension, for which amask istrue. tional
RESHAPE C_onstruct an array of aspecified shape from a Transforma—
given array. tional
SHAPE Shape of an array. Inquiry
SIZE Size of an array or adimension of an array. Inquiry
Addsadimensionto an array by adding copiesof a | Transforma-
SPREAD . . i . .
data object along a given dimension. tional
SUM Sum of elements of an array, along agiven dimen- | Transforma-
sion, for which amask is true. tional
TRANSPOSE Transpose an array of rank two. ggina?orma—
UBOUND Upper bounds of an array or adimension of an Inquiry
array.
UNPACK Unpack an array of rank one into an array under Transforma—
control of amask. tional

Lahey/Fujitsu Fortran 95 Language Reference

261

Appendix C Intrinsic Procedures
Table 15: Inquiry and Kind Functions
Name Description Class
ALLOCATED Indicate whether an allocatable array has been allo- Inairy
cated.
ASSOCIATED Igr;(tjl cate whether a pointer is associated with atar- Inquiry
BIT_SIZE Size, in bits, of a data object of type INTEGER. Inquiry
DIGITS Number of significant binary digits. Inquiry
EPSILON Posm_ve value that is almost negligible compared Inquiry
to unity.
HUGE Largest representable number of datatype. Inquiry
KIND Kind type parameter. Inquiry
LBOUND Lower bounds of an array or adimension of an Inquiry
array.
LEN Length of a CHARACTER data object. Inquiry
MAXEXPO- Maximum binary exponent of data type. Inquiry
NENT
MINEXPO- Minimum binary exponent of data type. Inquiry
NENT
PRECISION Decimal precision of datatype. Inquiry
PRESENT Determine whether an optional argument is Inairy
present.
RADIX Number base of the physical representation of a Inquiry
number.
RANGE Decimal range of the data type of a number. Inquiry
SELECTED Kind type paramet_er of anl NTEGER datatype Transforma
INT KIND that represents all integer values n with tional
- -10'<n<10".
Kind type parameter of a REAL data type with :
SELECTED_ decimal precision of at least p digits and a decimal Transforma
REAL_KIND tional
- exponent range of at least r.
262 Lahey/Fujitsu Fortran 95 Language Reference

Table 15: Inquiry and Kind Functions

Name Description Class

SHAPE Shape of an array. Inquiry

SIZE Size of an array or adimension of an array. Inquiry

TINY Smallest representabl e positive number of data Inqiry
type.

UBOUND Upper bounds of an array or adimension of an Inairy

array.

Lahey/Fujitsu Fortran 95 Language Reference

263

Appendix C

Intrinsic Procedures

264

Table 16: Bit Manipulation Procedures

Name
ecific Function Type Argument Type | Description Class
Fecifi |
Names
BTEST LOGICAL_4 INTEGER
BITEST LOGICAL_4 INTEGER 2 Bit testing. Elemental
BJTEST LOGICAL_4 INTEGER_4
IAND INTEGER INTEGER Bit-wise [ogical
IIAND INTEGER 2 INTEGER 2 AND d Elemental
JIAND INTEGER 4 INTEGER 4 '
IBCLR INTEGER INTEGER Clear one hit to
IIBCLR INTEGER 2 INTEGER 2 260 Elemental
JIBCLR INTEGER 4 INTEGER 4 ’
IBITS INTEGER INTEGER Extract a
IIBITS INTEGER 2 INTEGER 2 uence of bits Elemental
JIBITS INTEGER 4 INTEGER 4 q)
IBSET INTEGER INTEGER
[IBSET INTEGER 2 INTEGER 2 Set abit to one. Elemental
JIBSET INTEGER 4 INTEGER 4
IEOR INTEGER INTEGER Bit-wise loqical
IIEOR INTEGER 2 INTEGER_2 axclUsive OgR Elemental
JIEOR INTEGER 4 INTEGER 4 ’
IOR INTEGER INTEGER Bit-wise loqical
lIOR INTEGER 2 INTEGER_2 inclLsive o%e Elemental
JIOR INTEGER 4 INTEGER 4 ’
ISHFT INTEGER INTEGER
[ISHFT INTEGER 2 INTEGER 2 Bit-wise shift. Elemental
JISHFT INTEGER 4 INTEGER 4
ISHFTC INTEGER INTEGER Bit-wise circular
[ISHFTC INTEGER_2 INTEGER_2 shift of rightmost | Elemental
JISHFTC INTEGER 4 INTEGER 4 bits.
Copy a sequence
of bitsfrom one .
MVBITS INTEGER INTEGER data Subroutine
object to another.

Lahey/Fujitsu Fortran 95 Language Reference

Table 16: Bit Manipulation Procedures

Name
Soecific Function Type Argument Type | Description Class
Names
NOT INTEGER INTEGER Bit-wise loqical
INOT INTEGER 2 INTEGER 2 com Iemengt Elemental
JNOT INTEGER 4 INTEGER_4 P)
Table 17: Other Intrinsic Functions

Name Description Class
LOGICAL Convert between kinds of LOGICAL. Elemental
NULL Disassociated pointer. Elemental

Interpret the physical representation of a number Transforma
TRANSFER with the type and type parameters of a given num- tional

ber.

Table 18: Standard Intrinsic Subroutines
Name Description Class
CPU_TIME CPU time. Subroutine
DATE_AND_ Date and real-time clock data. Subroutine
TIME
MVBITS quy a sequence of bits from one INTEGER data Subroutine

object to ancther.
RANDOM _ Uniformly distributed pseudorandom number or Subroutine
NUMBER numbersin therange 0< x<1.

Set or query the pseudorandom number generator
RANDOM _ used by RANDOM_NUMBER. If no argument is Subroutine
SEED present, the processor sets the seed to a predeter-

mined value.
SYSTEM _ . .
CLOCK INTEGER data from the real-time clock. Subroutine

Lahey/Fujitsu Fortran 95 Language Reference 265

Appendix C

Intrinsic Procedures

266

Table 19: VAX/IBM Intrinsic Functions Without Fortran 90 Equivalents

Name
ecific Function Type Argument Type | Description Class

Soecif |
Names
ACOSD REAL_4 REAL 4 Arccosinein
DACOSD REAL_8 REAL_8 dearoes Elemental
QACOSD | REAL_16 REAL_16 egrees.
ALGAMA REAL 4 REAL 4 L od gamma func-
DLGAMA | REAL 8 REAL 8 tiog 9 Elemental
QLGAMA | REAL 16 REAL 16 '
ASIND REAL_4 REAL 4 Arcsinein
DASIND REAL_8 REAL_8 dearoes Elemental
QASIND REAL_16 REAL_16 egrees.
ATAND REAL 4 REAL 4 Arctangent in
DATAND REAL_8 REAL_8 q reeg Elemental
QATAND REAL_16 REAL_16 egrees.

Arctangent of y/x
ATAN2D REAL_4 REAL_4 (principal value of
DATAN2D | REAL 8 REAL 8 :Eg ig%‘q’”?g(‘tn%fm_ Elemental
QATAN2D | REAL 16 REAL_16 P

ber (x,y)) in

degrees.
COSD REAL_4 REAL 4
DCOD REAL_8 REAL_8 Cosinein degrees. | Elemental
QCOSD REAL_16 REAL_16
COTAN REAL_4 REAL 4
DCOTAN REAL_8 REAL_8 Cotangent. Elemental
QCOTAN REAL_16 REAL_16
ERF REAL 4 REAL 4
DERF REAL_8 REAL_8 Error function. Elemental
QERF REAL_16 REAL_16
ERFC REAL 4 REAL 4 Error function
DERFC REAL_8 REAL_8 complement Elemental
QERFC REAL_16 REAL_16 P '

Lahey/Fujitsu Fortran 95 Language Reference

Table 19: VAX/IBM Intrinsic Functions Without Fortran 90 Equivalents

Name

Soecific Function Type Argument Type | Description Class
Names

GAMMA REAL 4 REAL 4

DGAMMA REAL_8 REAL_8 Gammafunction. | Elementa
QGAMMA | REAL_16 REAL_16

SIND REAL 4 REAL 4

DSND REAL 8 REAL 8 Sinein degrees. Elemental
QSIND REAL_16 REAL_16

TAND REAL 4 REAL 4 Tangent in

DTAND REAL 8 REAL 8 J rge% Elemental
QTAND REAL_16 REAL_16 egrees.

IZEXT INTEGER 2 LOGICAL_1

IZEXT2 INTEGER 2 INTEGER 2

JZEXT INTEGER 4 LOGICAL_4 Zero extend. Elemental
JZEXT2 INTEGER 4 INTEGER 2

JZEXT4 INTEGER 4 INTEGER 4

Lahey/Fujitsu Fortran 95 Language Reference 267

Appendix C

Intrinsic Procedures

268

Table 20: Utility Procedures

Name Description Class
CARG Passitemto aprocedure asa C datatype by value. | Utility
CARG can only be used as an actual argument. Function
DLL EXPORT Spemf;_/ W_hlch_procedures should be availableina | Utility _
- dynamic-link library. Subroutine
DLL IMPORT Specify Whl _ch procedures areto beimported from | Ultility .
- adynamic-link library. Subroutine
Theinitial invocation of the DVCHK subroutine
masks the divide-by-zero interrupt on the floating-
point unit. Subsequent invocations return true or Utilit
DVCHK faseinthelflag variableif the exception has Subrguti ne
occurred or not occurred, respectively. DVCHK
will not check or mask zero divided by zero. Use
INVALOP to check for a zero divided by zero.
ERROR Print a message to the console with a subprogram | Utility
traceback, then continue processing. Subroutine
Terminate the program and set the DOS error Utility
EXIT .
level. Subroutine
Empty the buffer for an input/output unit by writ- Utilit
FLUSH ing to its corresponding file. Notethat this does Subrguti ne
not flush the DOS file buffer.
. Utility
GETCL Get command line. Subroutine
- . . Utility
GETENV Get the specified environment variable. 4
Function
Theinitial invocation of the INVALOP subroutine
masks the invalid operator interrupt on the float- Utilit
INVALOP ing-point unit. Subsequent invocations return true Subrguti ne
or falseinthelflag variable if the exception has
occurred or not occurred, respectively.
|OSTAT MSG Get _arunt| me 1/O error message then continue pro- | Utility _
- cessing. Subroutine
NDPERR Report floating point exceptions. Utility
Function

Lahey/Fujitsu Fortran 95 Language Reference

Table 20: Utility Procedures

Name Description Class
NDPEXC Mask all floating point exceptions. Utility .
Subroutine
Get the DOS offset portion of the memory address Utilit
OFFSET of avariable, substring, array reference, or external Y
Function
subprogram.
Theinitial invocation of the OVEFL subroutine
masks the overflow interrupt on the floating-point Utilit
OVEFL unit. Subseguent invocationsreturn true or falsein Subrguti ne
the Iflag variable if the exception has occurred or
not occurred, respectively.
Get the memory address of avariable, substring, Utility
POINTER .
array reference, or external subprogram. Function
Set fill character for numeric fields that are wider Utilit
PRECFILL than supplied numeric precision. The default is y
0 Subroutine
Set prompt for subsequent READ statements. For- | Ultility
PROMPT . .
tran default is no prompt. Subroutine
Get the DOS segment portion of the memory Utilit
SEGMENT address of avariable, substring, array reference, or y
Function
external subprogram.
SYSTEM Execut_e aDOS command asif from the DOS com- | Utility _
mand line. Subroutine
Theinitial invocation of the UNDFL subroutine
masks the underflow interrupt on the floating-point Utilit
UNDFL unit. Subseguent invocationsreturn true or falsein Subrguti ne
the Iflag variable if the exception has occurred or
not occurred, respectively.
VAL Pass an item to a procedure by value. VAL can Utility
only be used as an actual argument. Function
Causes a Windows 3.1 program to yield control to
YIELD Windows so that computation-intensive operations | Utility
do not monopolize the processor. YIELD has no Function

effect under other supported operating systems.

Lahey/Fujitsu Fortran 95 Language Reference

269

Appendix C Intrinsic Procedures

270 Lahey/Fujitsu Fortran 95 Language Reference

Porting Extensions

The following non-standard features are supported by LF95. Note that for service proce-
dures, amodule SERVICE_ROUTINES is provided. Use SERVICE_ROUTINES to have
the compiler check interfaces for the various service procedures. Seethe USE statement for
details on how to use amodule.

* Dollar sign asaletter

» Backslash as aspecia character

* Unlimited number of continuation linesin free or fixed source form
* Omission of required significant blanksin free source form
* DO UNTIL statement

* FIND statement

» STRUCTURE statement

* END STRUCTURE statement

* UNION statement

* END UNION statement

* MAP statement

* END MAP statement

* RECORD statement

* Non-standard POINTER statement

* AUTOMATIC statement and attribute

» STATIC statement and attribute

* VALUE statement and attribute

* VOLATILE statement and attribute

Lahey/Fujitsu Fortran 95 Language Reference 271

Appendix D Porting Extensions

272

DLL_IMPORT statement
DLL_EXPORT statement

BY TE statement

Double-precision COMPLEX constants
Hollerith constants

Bdigitsform of binary constant

digitsO form of octal constant

X'digits' form of hexadecimal constant
‘digits’ X form of hexadecimal constant
Zdigits form of hexadecimal constant

Binary, Octal, or Hexadecimal constant inaDATA, PARAMETER, or type decla
ration statement

‘" period structure component separator

type*n formin type declaration, FUNCTION or IMPLICIT statement (e.g.
INTEGER*4)

/literal-constant/ form of initialization in type declaration statement
IMPLICIT UNDEFINED statement

Namelist input/output on internal file

Variable format expressions

NUM specifier

ACTION =*'BOTH’

FORM = ‘TRANSPARENT’ (use FORM=BINARY instead)
TOTALREC specifier

STATUS=‘SHR’

Gw edit descriptor

$ edit descriptor

\ edit descriptor

R edit descriptor

D,E F, G,1,L,B, OorZ descriptor without w, d or eindicators

& name...& end namelist record

Lahey/Fujitsu Fortran 95 Language Reference

e VAL and LOC intrinsic functions

e Thefollowing service subroutines: ABORT, BEEP, BIC, BIS, CLOCK, CLOCKM,
DATE, EXIT, ERRSAV, ERRSTR, ERRSET, ERRTRA, FDATE,
FREE,GETARG, GETDAT, GETLOG, GETPARM, GETTIM, GMTIME, IBTOD,
IDATE, IETOM, ITIME, IVALUE, LTIME, MTOIE, PERROR, PRNSET,
QSORT, SETRCD, SETBIT, SIGNAL, SLEEP

» Thefollowing service functions: ACCESS, ALARM, BIT, CHDIR, CHMOD,
CTIME, DRAND, DTIME, ETIME, FGETC, FPUTC, FSEEK, FSTAT, FTELL,
GETC, GETCWD, GETFD, GETPID, HOSTNM, IARGC, IERRNO, INMAX,
IOINIT, IRAND, JDATE, KILL, LNBLNK, LONG, LSTAT, MALLOC, NARGS,
PUTC, RAN, RAND, RENAME, RINDEX, RTC, SECOND, SECNDS, SETDAT,
SETTIM, SHORT, STAT, TIME, TIMEF, UNLINK

Additional information on serviceroutinesisinthefiler eadnme_servi ce_routi nes. t xt .

Lahey/Fujitsu Fortran 95 Language Reference 273

Appendix D Porting Extensions

274 Lahey/Fujitsu Fortran 95 Language Reference

e Glossary

action statement: A single statement specifying a computational action.

actual argument: Anexpression, avariable, aprocedure, or an alternate return specifier that
is specified in a procedure reference.

allocatablearray: A named array havingthe ALLOCATABLE attribute. Only when it has
space alocated for it does it have a shape and may it be referenced or defined.

argument: An actual argument or a dummy argument.

argument association: The relationship between an actual argument and a dummy argu-
ment during the execution of a procedure reference.

argument keyword: A dummy argument name. It may be used in a procedure reference
ahead of the equals symbol provided the procedure has an explicit interface.

array: A setof scalar data, all of the same type and type parameters, whose individual ele-
ments are arranged in a rectangular pattern. It may be a named array, an array section, a
structure component, a function value, or an expression. Itsrank is at least one.

array element: One of the scalar datathat make up an array that iseither named or isastruc-
ture component.

array pointer: A pointer to an array.

array section: A subobject that isan array and is not a structure component.
array-valued: Having the property of being an array.

assignment statement: A statement of the form *‘variable = expression’’.
association: Name association, pointer association, or storage association.

assumed-sizearray: A dummy array whosesizeisassumed from the associated actual argu-
ment. Itslast upper bound is specified by an asterisk.

attribute: A property of adata object that may be specified in atype declaration statement.

Lahey/Fujitsu Fortran 95 Language Reference 275

Appendix E Glossary

276

automatic data object: A dataobject that isaloca entity of a subprogram, that is not a
dummy argument, and that has a nonconstant CHARACTER length or array bound.

belong: If an EXIT or aCY CLE statement contains a construct name, the statement belongs
to the DO construct using that name. Otherwise, it belongsto the innermost DO construct in
which it appears.

block: A sequence of executable constructs embedded in another executable construct,
bounded by statements that are particular to the construct, and treated as an integral unit.

block data program unit: A program unit that providesinitial values for data objectsin
named common blocks.

bounds: For anamed array, the limits within which the values of the subscripts of its array
elements must lie.

character: A letter, digit, or other symbol.
character string: A seguence of characters numbered from lefttoright 1,2, 3,. . .

collating sequence: An ordering of all the different characters of a particular kind type
parameter.

common block: A block of physical storagethat may be accessed by any of the scoping units
in an executable program.

component: A constituent of a derived type.

conformable: Two arrays are said to be conformable if they have the same shape. A scalar
is conformable with any array.

conformance: An executable program conforms to the standard if it uses only those forms
and relationships described therein and if the executable program has an interpretation
according to the standard. A program unit conforms to the standard if it can be included in
an executable program in a manner that allows the executable program to be standard con-
forming. A processor conformsto the standard if it executes standard-conforming programs
in amanner that fulfills the interpretations prescribed in the standard.

connected:
For an external unit, the property of referring to an external file.

For an external file, the property of having an external unit that refersto it.

constant: A dataobject whose value must not change during execution of an executabl e pro-
gram. It may be anamed constant or aliteral constant.

constant expression: An expression satisfying rulesthat ensure that its value does not vary
during program execution.

construct: A seguence of statements starting with a CASE, DO, IF, or WHERE statement
and ending with the corresponding terminal statement.

data: Plura of datum.

Lahey/Fujitsu Fortran 95 Language Reference

data entity: A dataobject, the result of the evaluation of an expression, or the result of the
execution of afunction reference (called the function result). A data entity has a data type
(either intrinsic or derived) and has, or may have, adatavalue (the exception is an undefined
variable). Every data entity has arank and isthus either a scalar or an array.

data object: A dataentity that is a constant, a variable, or a subobject of a constant.

datatype: A named category of datathat is characterized by a set of values, together with a
way to denote these values and a collection of operations that interpret and manipulate the
values. For anintrinsic type, the set of data values depends on the values of the type
parameters.

datum: A single quantity that may have any of the set of values specified for its data type.

definable: A variableisdefinableif itsvalue may be changed by the appearance of itsname
or designator on the left of an assignment statement. An allocatable array that has not been
allocated isan example of adata object that isnot definable. An example of a subobject that
isnot definableis Cwhen Cisan array that isaconstant and | isan INTEGER variable.

defined: For a data object, the property of having or being given avalid value.

defined assignment statement: Anassignment statement that isnot an intrinsic assignment
statement and i s defined by asubroutine and aninterface block that specifiesASSIGNMENT

().

defined operation: An operation that is not an intrinsic operation and is defined by afunc-
tion that is associated with a generic identifier.

derived type: A type whose data have components, each of whichiseither of intrinsic type
or of another derived type.

designator: See subobject designator.

disassociated: A pointer is disassociated following execution of aDEALLOCATE or NUL-
LIFY statement, or following pointer association with a disassociated pointer.

dummy argument: An entity whose name appears in the parenthesized list following the
procedure name in a FUNCTION statement, a SUBROUTINE statement, an ENTRY state-
ment, or a statement function statement.

dummy array: A dummy argument that is an array.
dummy pointer: A dummy argument that is a pointer.
dummy procedure: A dummy argument that is specified or referenced as a procedure.

elemental: An adjective applied to an intrinsic operation, procedure, or assignment state-
ment that is applied independently to elements of an array or corresponding elements of a set
of conformable arrays and scalars.

Lahey/Fujitsu Fortran 95 Language Reference 277

Appendix E Glossary

278

entity: Theterm used for any of thefollowing: aprogram unit, a procedure, an operator, an
interface block, acommon block, an external unit, a statement function, atype, anamed vari-
able, an expression, acomponent of a structure, a named constant, a statement label, a
construct, or anamelist group.

executable construct: A CASE, DO, IF, or WHERE construct or an action statement.
executable program: A set of program units that includes exactly one main program.

executable statement: An instruction to perform or control one or more computational
actions.

explicit interface: For a procedure referenced in a scoping unit, the property of being an
internal procedure, amodule procedure, anintrinsic procedure, an external procedurethat has
an interface block, arecursive procedure reference in its own scoping unit, or adummy pro-
cedure that has an interface block.

explicit-shape array: A named array that is declared with explicit bounds.

expression: A seguence of operands, operators, and parentheses. It may beavariable, acon-
stant, afunction reference, or may represent a computation.

extent: The size of one dimension of an array.

external file: A segquence of records that existsin a medium external to the executable
program.

external procedure: A procedurethat isdefined by an external subprogram or by ameans
other than Fortran.

external subprogram: A subprogram that is not contained in amain program, module, or
another subprogram.

external unit: A mechanism that is used to refer to an external file. Itisidentified by anon-
negative INTEGER.

file: Aninterna file or an externa file.
function: A procedure that isinvoked in an expression.
function result: The data object that returns the value of a function.

function subprogram: A sequence of statements beginning witha FUNCTION statement
that is not in an interface block and ending with the corresponding END statement.

genericidentifier: A lexical token that appearsin an INTERFACE statement and is associ-
ated with all the procedures in the interface block.

global entity: Anentity identified by alexical token whose scopeisan executable program.
It may be a program unit, acommon block, or an external procedure.

Lahey/Fujitsu Fortran 95 Language Reference

host: A main program or subprogram that contains an internal procedure is called the host
of the internal procedure. A module that contains a module procedure is called the host of
the module procedure.

host association: The process by which an internal subprogram, module subprogram, or
derived type definition accesses entities of its host.

initialization expression: An expression that can be evaluated at compile time.

implicit interface: A procedure referenced in a scoping unit other than its own is said to
haveanimplicit interfaceif the procedureis an external procedure that does not have aninter-
face block, adummy procedure that does not have an interface block, or a statement function.

inquiry function: Anintrinsic function whose result depends on properties of the principal
argument other than the value of the argument.

intent: An attribute of adummy argument that is neither a procedure nor a pointer, which
indicates whether it is used to transfer data into the procedure, out of the procedure, or both.

instance of a subprogram: The copy of a subprogram that is created when a procedure
defined by the subprogram is invoked.

interface block: A sequence of statements from an INTERFACE statement to the corre-
sponding END INTERFACE statement.

interfacebody: A sequence of statementsin an interface block froma FUNCTION or SUB-
ROUTINE statement to the corresponding END statement.

interface of a procedure: See procedure interface.

internal filee A CHARACTER variablethat is used to transfer and convert data from inter-
nal storageto internal storage.

internal procedure: A procedure that is defined by an internal subprogram.
internal subprogram: A subprogram contained in a main program or another subprogram.

intrinsic: An adjective applied to types, operations, assignment statements, and procedures
that are defined in the standard and may be used in any scoping unit without further definition
or specification.

invoke:
To call asubroutine by a CALL statement or by a defined assignment statement.

To call afunction by areference to it by name or operator during the evaluation of
an expression.

keyword: Statement keyword or argument keyword.

kind type parameter: A parameter whose values label the available kinds of an intrinsic
type.

label: See statement label.

Lahey/Fujitsu Fortran 95 Language Reference 279

Appendix E Glossary

280

length of a character string: The number of charactersin the character string.

lexical token: A sequence of one or more characters with an indivisible interpretation.
line: A source-form record containing from O to 132 characters.

literal constant: A constant without a name.

local entity: An entity identified by alexical token whose scope is a scoping unit.

main program: A program unit that is not a module, subprogram, or block data program
unit.

module: A program unit that contains or accesses definitions to be accessed by other pro-
gram units.

module procedure: A procedure that is defined by a modul e subprogram.

module subprogram: A subprogram that is contained in a module but is not an internal
subprogram.

name: A lexical token consisting of aletter followed by up to 30 alphanumeric characters
(letters, digits, and underscores).

name association: Argument association, use association, or host association.
named: Having a name.

named constant: A constant that has a name.

numerictype: INTEGER, REAL or COMPLEX type.

object: Dataobject.

obsolescent feature: A featurein FORTRAN 77 that is considered to have been redundant
but that is still in frequent use.

operand: An expression that precedes or succeeds an operator.
operation: A computation involving one or two operands.
operator: A lexical token that specifies an operation.

pointer: A variablethat hasthe POINTER attribute. A pointer must not be referenced or
defined unlessit is pointer associated with atarget. If itisan array, it does not have a shape
unlessit is pointer associated.

pointer assignment: The pointer association of apointer with atarget by the execution of a
pointer assignment statement or the execution of an assignment statement for a data object of
derived type having the pointer as a subobject.

pointer assignment statement: A statement of the form ‘‘ pointer-name => target’’.

pointer associated: The relationship between a pointer and atarget following a pointer
assignment or avalid execution of an ALLOCATE statement.

Lahey/Fujitsu Fortran 95 Language Reference

pointer association: The process by which a pointer becomes pointer associated with a
target.

present: A dummy argument ispresent in an instance of asubprogramif it isassociated with
an actual argument and the actual argument isadummy argument that is present in the invok-
ing procedure or is not adummy argument of the invoking procedure.

procedure: A computation that may be invoked during program execution. It may be a
function or a subroutine. 1t may be an intrinsic procedure, an external procedure, a module
procedure, an internal procedure, adummy procedure, or a statement function. A subpro-
gram may define more than one procedure if it contains ENTRY statements.

procedureinterface: The characteristics of a procedure, the name of the procedure, the
name of each dummy argument, and the generic identifiers (if any) by which it may be
referenced.

processor: Thecombination of acomputing system and the mechanism by which executable
programs are transformed for use on that computing system.

program: See executable program and main program.

program unit: Thefundamental component of an executable program. A sequence of state-
ments and comment lines. It may be amain program, amodule, an external subprogram, or
ablock data program unit.

rank: The number of dimensions of an array. Zero for ascaar.
record: A sequence of valuesthat istreated as a whole within afile.

reference: The appearance of adata object name or subobject designator in acontext requir-
ing the value at that point during execution, or the appearance of a procedure name, its
operator symbol, or a defined assignment statement in a context requiring execution of the
procedure at that point.

scalar:
A single datum that is not an array.

Not having the property of being an array.

scope: That part of an executable program within which alexical token has asingle inter-
pretation. It may be an executable program, a scoping unit, asingle statement, or a part of a
Statement.

scoping unit: One of the following:
A derived-type definition,

Aninterface body, excluding any derived-type definitions and interface bodies con-
tained within it, or

A program unit or subprogram, excluding derived-type definitions, interface bodies,
and subprograms contained within it.

Lahey/Fujitsu Fortran 95 Language Reference 281

Appendix E Glossary

282

section subscript: A subscript, vector subscript, or subscript triplet in an array section
selector.

selector: A syntactic mechanism for designating:
Part of adataobject. It may designate asubstring, an array element, an array section,
or a structure component.

The set of values for which a CASE block is executed.

shape: For an array, the rank and extents. The shape may be represented by the rank-one
array whose elements are the extents in each dimension.

size: For an array, the total number of elements.

specification expression: A scalar INTEGER expression that can be evaluated on entry to
the program unit at the time of execution.

statement: A sequence of lexical tokens. It usually consists of asingleline, but the amper-
sand symbol may be used to continue a statement from one line to another and the semicolon
symbol may be used to separate statements within aline.

statement entity: An entity identified by alexical token whose scope is a single statement
or part of a statement.

statement function: A procedure specified by a single statement that is similar in form to
an assignment statement.

statement keyword: A word that is part of the syntax of a statement and that may be used
to identify the statement.

statement label: A lexical token consisting of up to five digitsthat precedes a statement and
may be used to refer to the statement.

stride: The increment specified in a subscript triplet.
structure: A scalar data object of derived type.

structure component: The part of a data object of derived type corresponding to a compo-
nent of itstype.

subobject: A portion of a named data object that may be referenced or defined indepen-
dently of other portions. It may be an array element, an array section, a structure component,
or asubstring.

subobject designator: A name, followed by one or more of the following: component
selectors, array section selectors, array element selectors, and substring selectors.

subprogram: A function subprogram or a subroutine subprogram.

subroutine: A procedure that isinvoked by a CALL statement or by a defined assignment
statement.

Lahey/Fujitsu Fortran 95 Language Reference

subroutine subprogram: A sequence of statements beginning witha SUBROUTINE state-
ment that is not in an interface block and ending with the corresponding END statement.

subscript: One of thelist of scalar INTEGER expressions in an array element selector.

subscript triplet: Aniteminthelist of an array section selector that contains a colon and
specifies aregular sequence of INTEGER values.

substring: A contiguous portion of a scalar character string. Note that an array section can
include a substring selector; the result is called an array section and not a substring.

target: A named data object specified in atype declaration statement containing the TAR-
GET attribute, adata object created by an ALLOCATE statement for apointer, or asubobject
of such an object.

type: Datatype.

type declaration statement: AnINTEGER, REAL, DOUBLE PRECISION, COMPLEX,
CHARACTER, LOGICAL, or TY PE statement.

type parameter: A parameter of anintrinsic datatype. KIND= and LEN= are thetype
parameters.

type parameter values: The values of the type parameters of a data entity of an intrinsic
datatype.

ultimate component: For aderived-type or astructure, acomponent that is of intrinsic type
or hasthe POINTER attribute, or an ultimate component of a component that is a derived
type and does not have the POINTER attribute.

undefined: For adata object, the property of not having a determinate value.

use association: The association of hames in different scoping units specified by a USE
Statement.

variable: A data object whose value can be defined and redefined during the execution of
an executable program. It may be anamed data object, an array element, an array section, a
structure component, or a substring.

vector subscript: A section subscript that isan INTEGER expression of rank one.

wholearray: A named array.

Lahey/Fujitsu Fortran 95 Language Reference 283

Appendix E Glossary

284 Lahey/Fujitsu Fortran 95 Language Reference

ASCII Character Set

FORTRAN programs may use the full ASCII Character Set aslisted below. The characters
arelisted in collating sequence from first to last. Characters preceded by up arrows (*) are
ASCII Control Characters.

DOSuses <cont r ol - Z> (*Z) for the end-of-file delimiter and <cont r ol - M> (M) for car-
riage return. To enter these two charactersin a CHARACTER constant, use concatenation
and the CHAR function.

Lahey/Fujitsu Fortran 95 Language Reference 285

Appendix F ASCII Character Set

Attempting to input or output ~Z (end-of-file), *M(new line), or ~C (break) in a sequential
fileis not recommended and may produce undesirable results.

Table 21: ASCII Chart

Character \Zii(e Ds;lilrjneal ﬁﬁgr” Description
@ 00 0 NUL null<R>
A 01 1 SCH start of heading
"B 02 2 STX start of text
rC 03 3 ETX break, end of text
D 04 4 EOT end of transmission
~E 05 5 ENQ enquiry
F 06 6 ACK acknowledge
"G 07 7 BEL bell
"H 08 8 BS backspace
N 09 9 HT horizontal tab
N 0A 10 LF linefeed
K 0B 11 VT vertical tab
AL oC 12 FF form feed
"M 0D 13 CR carriage return
N OE 14 SO shift out
O OF 15 Sl shiftin
P 10 16 DLE datalink escape
~Q 11 17 DC1 device control 1
AR 12 18 DC2 device control 2
"S 13 19 DC3 device control 3
AT 14 20 DC4 device control 4
U 15 21 NAK negative acknowledge

286 Lahey/Fuijitsu Fortran 95 Language Reference

Table 21: ASCII Chart

HEX

Decimal

ASCII

Character value value Abbr. Description
AV 16 22 SYN synchronousidle
AW 17 23 ETB end of transmission block
X 18 24 CAN cancel
Y 19 25 EM end of medium
nZ 1A 26 SuB end-of-file
Al 1B 27 ESC escape
N 1C 28 FS file separator
A 1D 29 GS group separator
AN 1E 30 RS record separator

n 1F 31 us unit separator
20 32 SP space, blank

! 21 33 ! exclamation point
22 34 guotation mark

23 35 # number sign

$ 24 36 $ dollar sign

% 25 37 % percent sign

& 26 38 & ampersand

‘ 27 39 ‘ apostrophe

(28 40 (left parenthesis

) 29 41) right parenthesis

* 2A 42 * asterisk

+ 2B 43 + plus

, 2C 44 , comma

- 2D 45 - hyphen, minus

Lahey/Fujitsu Fortran 95 Language Reference

287

Appendix F ASCII Character Set

Table 21: ASCII Chart

Character HEX DEEHmE el Description
Value Value Abbr.

2E 46 period, decimal point
/ 2F 47 / slash, dant
0 30 48 0 zero
1 31 49 1 one
2 32 50 2 two
3 33 51 3 three
4 34 52 4 four
5 35 53 5 five
6 36 54 6 Six
7 37 55 7 seven
8 38 56 8 eight
9 39 57 9 nine

3A 58 colon
; 3B 59 ; semicolon
< 3C 60 < less than
= 3D 61 = equals
> 3E 62 > greater than
? 3F 63 ? question mark
@ 40 64 @ commercial at sign
A 41 65 A uppercase A
B 42 66 B uppercase B
C 43 67 C uppercase C
D 44 68 D) uppercase D
E 45 69 E uppercase E

288 Lahey/Fujitsu Fortran 95 Language Reference

Table 21: ASCII Chart

HEX

Decimal

ASCII

Character value value Abbr. Description
F 46 70 F uppercase F
G 47 71 G uppercase G
H 48 72 H uppercase H
I 49 73 | uppercase |
J 4A 74 J uppercase J
K 4B 75 K uppercase K
L 4C 76 L uppercase L
M 4D 77 M uppercase M
N 4E 78 N uppercase N
(0] 4F 79 o uppercase O
P 50 80 P uppercase P
Q 51 81 Q uppercase Q
R 52 82 R uppercase R
S 53 83 S uppercase S
T 54 84 T uppercase T
U 55 85 u uppercase U
Y, 56 86 \Y uppercase V
w 57 87 w uppercase W
X 58 88 X uppercase X
Y 59 89 Y uppercase Y
z 5A 90 z uppercase Z
[5B 91 [left bracket
\ 5C 92 \ backslash
1 5D 93] right bracket

Lahey/Fujitsu Fortran 95 Language Reference

289

Appendix F ASCII Character Set

290

Table 21: ASCII Chart

Character HEX DEEHmE el Description
Value Value Abbr.
A 5E 94 " up-arrow, circumflex, caret
_ 5F 95 UND back-arrow, underscore
‘ 60 96 GRA grave accent
a 61 97 LCA lowercase a
b 62 98 LCB lowercase b
c 63 99 LCC lowercase ¢
d 64 100 LCD lowercased
e 65 101 LCE lowercase e
f 66 102 LCF lowercase f
g 67 103 LCG lowercase g
h 68 104 LCH lowercase h
i 69 105 LCl lowercasei
j 6A 106 LA lowercase j
k 6B 107 LCK lowercase k
I 6C 108 LCL lowercase |
m 6D 109 LCM lowercase m
n 6E 110 LCN lowercase n
0 6F 111 LCO lowercase o
p 70 112 LCP lowercase p
q 71 113 LCQ lowercase q
r 72 114 LCR lowercase r
s 73 115 LCS lowercase s
t 74 116 LCT lowercase t

Lahey/Fujitsu Fortran 95 Language Reference

Table 21: ASCII Chart

HEX

Decimal

ASCII

Character value value Abbr. Description
u 75 117 LCuU lowercase u
v 76 118 Lcv lowercase v
w 77 119 LCW lowercase w
X 78 120 LCX lowercase x
y 79 121 LCY lowercase y
z 7A 122 LCz lowercase z
{ 7B 123 LBR left brace
| 7C 124 VLN vertical line
} 7D 125 RBR right brace
~ 7E 126 TIL tilde

7F 127 DEL, RO | delete, rubout

Lahey/Fujitsu Fortran 95 Language Reference

291

Appendix F ASCII Character Set

292 Lahey/Fujitsu Fortran 95 Language Reference

Index

Symbols
%VAL function 232

A

A edit descriptor 27

ABS function 59, 250

ACCESS= specifier 145, 182

ACHAR function 59, 258

ACOS function 60, 255

ACOSD function 266

action statement 275

ACTION= specifier 145, 182

actual argument 275

adjustable array 15

ADJUSTL function 60, 258

ADJUSTR function 61, 258

ADVANCE-= specifier 199, 237

AIMAG function 61, 250

AIMAXO function 252

AIMINO function 252

AINT function 62, 250

AIMAXO function 252

AJIMINO function 252

ALGAMA function 266

ALL function 62, 260

allocatable array 13, 275

ALLOCATABLE attribute 9

ALLOCATABLE statement 35,
63-64

ALLOCATE statement 18, 37, 64—
65

ALLOCATED function 66, 260,
262

ALOG function 256

ALOGI10 function 256

aternate return 49

AMAXO function 252

AMAX1 function 252

AMINO function 252

AMINI1 function 252

AMOD function 253

ANINT function 66, 250

ANY function 67, 260

apostrophe edit descriptor 30

apostrophes 30
argument 275
argument association 275
argument keyword 275
arguments
aternate return 49
intent 47
keyword 47
optional 48
procedure 4749
arithmetic | F statement 33, 68
arithmetic operators 20
array 275
array constructor 15
array element 11, 275
array element order 11
array pointer 13, 275
array reference 10
array section 11, 12, 275
arrays 10-15
adjustable 15
alocatable 13
assumed shape 14
assumed size 14
automatic 15
constructor 15
dynamic 12
element 11
element order 11
pointer 13
reference 10
section 11, 12
subscript triplet 11
vector subscript 12
array-valued 275
ASIN function 69, 255
ASIND function 266
ASSIGN statement 38, 70
assigned GOTO statement 33, 69

assignment and storage statements 37—

38

assignment statement 38, 7071, 275

assignments
defined 53
ASSOCIATED function 72, 262

Lahey/Fujitsu Fortran 95 Language Reference

association 275
assumed-shape array 14
assumed-size array 275
assumed-sized array 14
asterisk comment character 3
ATAN function 72, 255
ATAN2 function 73, 255
ATANZ2D function 266
ATAND function 266
attribute 8-9, 275

automatic array 15
automatic data object 276
AUTOMATIC statement 271

B

B edit descriptor 25

BACKSPACE statement 22, 37, 73—
74

belong 276

binary files 23

BIT_SIZE function 74, 262

BITEST function 264

BJTEST function 264

BLANK= specifier 145, 182

blanks 3

block 276

block data 54

block data program unit 276

BLOCK DATA statement 38, 54, 75

BLOCKSIZE= specifier 145, 182

BN edit descriptor 29

bounds 276

BTEST function 75, 264

BYTE statement 272

BZ edit descriptor 29

C
C comment character 3
CABSfunction 250
CALL statement 33, 76
CARG function 78, 268
carriage control 24
CARRIAGECONTROL=
specifier 145, 182
CASE construct 79

293

Index

CASE DEFAULT 80
CASE statement 33, 80, 81-82
CCOSfunction 255
CDABS function 250
CDCOS function 255
CDEXP function 255
CDLOG function 256
CDSIN function 256
CDSQRT function 256
CEILING function 82, 250
CEXPfunction 255
CHAR function 83, 258
character 276
CHARACTER constant edit
descriptors 30
CHARACTER datatype 4, 7
CHARACTER edit descriptor 27,
30
CHARACTER literal 7
character set 1
CHARACTER statement 35, 84—
86
character string 276
CLOG function 256
CLOSE statement 37, 86-87
CMPLX function 87, 250
collating sequence 276
colon edit descriptor 29
column 3
comments 3
asterisk 3
trailing 3
common block 35, 58, 88, 276
COMMON statement 35, 88-90
COMPLEX datatype 4,7
COMPLEKX literal 7
COMPLEX statement 35, 90-91
component 276
computed GOTO statement 33,
92
concatenation operator 20
conformable 276
conformance 276
CONJG function 92, 250
connected 276
constant 6
constant expression 276
construct 276
construct name 40
constructors

array 15

structure 17
constructs

executable 40
CONTAINS statement 38, 46, 93-94
continuation character 4
continuation line 3, 4, 271
CONTINUE statement 33, 94
control edit descriptors 28
control statements 33-34
COS function 94, 255
COSD function 266
COSH function 95, 255
COTAN function 266
COUNT function 95, 260
CPU_TIME subroutine 96, 265
CQABSfunction 250
CQCOSfunction 255
CQSQRT function 256
CSHIFT function 97, 260
CSIN function 256
CSQRT function 256
CYCLE statement 33, 98

D
D edit descriptor 25
DABS function 250
DACOS function 255
DACOQOSD function 266
DASIN function 255
DASIND function 266
data 4-19, 276
literal 6
named 8
data edit descriptors 25
dataentity 277
dataobject 277
DATA statement 35, 98-100
datatype 277
data types
CHARACTER 4,7
COMPLEX 4,7
DOUBLE PRECISION 4
INTEGER 4
LOGICAL 4,7
REAL 4,6
datatypes INTEGER 6
DATAN function 255
DATAN2Z function 255
DATANZ2D function 266

294 Lahey/Fujitsu Fortran 95 Language Reference

DATAND function 266
DATE_AND_TIME subroutine 100,
265
datum 277
DBLE function 102, 250
DBLEQ function 250
DCMPLX function 250
DCONJG function 250
DCOSfunction 255
DCOSD function 266
DCOSH function 255
DCOTAN function 266
DDIM function 251
DEALLOCATE statement 38, 102—
103
deferred-shape specifier 13
definable 277
defined 277
defined assignment 53
defined assignment statement 277
defined operation 277
defined operations 51
DELIM= specifier 145, 182
DERF function 266
DERFC function 266
derived type component reference 17
derived types 16-18, 55, 277
component reference 17
declaration 17
definition 16
structure constructor 17
derived-type definition 16
DEXP function 255
DFLOAT function 250
DFLOTI function 253
DFLOTJfunction 253
DGAMMA function 267
DIGITS 103
DIGITSfunction 103, 262
DIM function 103, 251
DIMAG function 250
DIMENSION attribute 8
DIMENSION statement 10, 35, 104—
105
DINT function 250
DIRECT= specifier 145
disassociated 277
DLGAMA function 266
DLL_EXPORT statement 35, 105
DLL_IMPORT statement 35, 106

Index

DLOG function 256

DLOGI10 function 256

DMAX1 function 252

DMIN1 function 252

DMOD function 253

DNINT function 250

DO statement 33, 107-108

DO UNTIL statement 271

DOT_PRODUCT function 108,
260

DOUBLE PRECISION datatype 4

DOUBLE PRECISION
statement 35, 109-110

DPROD function 111, 251

DREAL function 250

DSIGN function 254

DSIN function 256

DSIND function 267

DSINH function 256

DSQRT function 256

DTAN function 256

DTAND function 267

DTANH function 257

dummy argument 277

dummy array 277

dummy pointer 277

dummy procedure 49, 277

DVCHK subroutine 111, 268

dynamic arrays 12

E
E edit descriptor 25
edit descriptors 24-30
A 27
apostrophe 30
B 25
BN 29
BZ 29
CHARACTER 27, 30
CHARACTER constant 30
colon 29
control 28
D 25
data 25
E 25
EN 26
ES 27
F 25
G 28
generaized 28

H 30

1 25

INTEGER 25

L 27

LOGICAL 27

numeric 25

0 25

P 29

position 28

Q25

quotation mark 30

REAL 25

S 29

slash 29

SP 29

SS 29

T 28

TL 28

TR 28

X 28

Z25
elemental 277
elemental procedure 42
elemental procedures 47
ELSE IF statement 33, 112
EL SE statement 33, 112, 139
EL SEWHERE statement 33, 113, 235
EN edit descriptor 26
END DO statement 33, 114
END IF statement 34, 116, 139
END MAP statement 271
END SELECT statement 34, 80, 116
END statement 38, 113-114
END STRUCTURE statement 271
END TY PE statement 16
END UNION statement 271
END WHERE statement 34, 117, 235
END= specifier 199, 237
ENDFILE statement 22, 37, 115
entity 278
ENTRY statement 34, 117-118
EOR= specifier 199, 237
EQOSHIFT function 119, 260
EPSILON function 120, 262
EQUIVALENCE statement 35, 121—

122
ERF function 266
ERFC function 266
ERR= specifier 74, 86, 115, 145, 182,
199, 206, 237

ERROR subroutine 122, 268
ES edit descriptor 27
executable construct 278
executable constructs 40
executable program 278
executable statement 278
EXIST= specifier 145

EXIT statement 34, 123
EXIT subroutine 123, 268
EXP function 123, 255
explicit interface 55, 278
explicit interfaces 50
explicit-shape array 278
EXPONENT function 124, 251
expression 278

expressions 19-52

extent 278

EXTERNAL attribute 8
external file 278

external function 45
external procedure 41, 278
EXTERNAL statement 35, 124
external subprogram 278
external unit 278

F

F edit descriptor 25
file 278
file position 22
filetypes 22-23
FILE= specifier 145, 182
files 22-24
carriage control 24
formatted direct 22
formatted sequential 22
internal 23
position 22
unformatted direct 23
unformatted sequential 23
FIND statement 271
fixed source form 2
FLEN= specifier 145
FLOAT Function 253
FLOATI function 253
FLOATJfunction 253
FLOOR function 125, 251
FLUSH subroutine 126, 268
FMT= specifier 199, 237
FORALL construct 126
FORALL statement 127

Lahey/Fujitsu Fortran 95 Language Reference

295

Index

FORM= specifier 145, 182
format control 25
format specification 24

FORMAT statement 24, 37, 128—

130
formatted direct file 22
formatted input/output 24-30
formatted sequential file 22
FORMATTED= specifier 145
FRACTION function 131, 251
free source form 3
function 278
function reference 44
function result 278
FUNCTION statement 38, 45,
131-133
function subprogram 278
functions 43
external 45
reference 44
statement 45

G
G edit descriptor 28
GAMMA function 267
Gammafunction 154
generalized edit descriptor 28
generic identifier 278
generic interfaces 51
generic procedure 42
GETCL subroutine 133, 268
GETENV function 133
global data 55
global entity 278
GOTO
computed 33, 92

GOTO statement 34, 123, 134,

156

H

H edit descriptor 30
HFIX function 251
Hollerith constant 30, 272
host 279

host association 57, 279
HUGE function 134, 262

|
| edit descriptor 25

I2ABS function 250
12DIM function 251
I2MAXO function 252
I2MINO function 252
I2MOD function 253
I2NINT function 253
I2SIGN function 254
IABSfunction 250
IACHAR function 135, 258
IAND function 135, 264
IBCLR function 136, 264
IBITS function 136, 264
IBSET function 137, 264
ICHAR function 137, 258
IDIM function 251
IDINT function 251
IDNINT function 253
IEOR function 138, 264
IF construct 138

|F statement 34, 140
IFIX function 251

IF-THEN statement 34, 139, 140

ITABS function 250
ITAND function 264
[IBCLR function 264
[IBITS function 264
[IBSET function 264
[IDIM function 251
IIDINT function 251
IIDNNT function 253
IIEOR function 264
IIFIX function 251
IINT function 251
IIOR function 264
[ISHFT function 264
[ISHFTC function 264
[ISIGN function 254
IMAXO function 252
IMAX1 function 252
IMINO function 252
IMIN1 function 252
IMOD function 253
implicit interface 279
IMPLICIT statement 8, 35, 141
implicit typing 8
IMPLICIT UNDEFINED
statement 272
implied-do 99, 191, 199, 237
INCLUDE line 143
INDEX function 143, 258

296 Lahey/Fujitsu Fortran 95 Language Reference

ININT function 253
initialization expression 20, 279
INOT function 265
input/output 21-32
edit descriptors 24-30
editing 24-32
formatted 24-30
list-directed 30
namelist 32
non-advancing 22
statements 37
input/output units 21
preconnected 21
INQUIRE statement 37, 144-148
inquiry function 279
instance of a subprogram 279
INT function 148, 251
INT2 function 251
INT4 function 251
INTEGER datatype 4, 6
INTEGER division 21
INTEGER edit descriptors 25
INTEGER literal 6
INTEGER statement 35, 149-151
intent 279
INTENT attribute 9, 47
INTENT statement 35, 151
interface block 50, 279
interface body 279
INTERFACE statement 38, 50, 152
interfaces 49-53
explicit 50, 55
generic 51
interna file 23, 279
internal procedure 41, 46, 279
internal subprogram 279
intrinsic 279
INTRINSIC attribute 9
intrinsic data types 4
intrinsic operations 20
INTRINSIC statement 36, 154
INVALOP subroutine 155, 268
invoke 279
IOR function 155, 185, 230, 264
|OSTAT= specifier 74, 86, 115, 145,
182, 199, 206, 237
IOSTAT_MSG subroutine 156, 268
IQINT function 251
IQNINT function 253
ISHFT function 156, 264

Index

ISHFTC function 157, 264
ISIGN function 254
|ZEXT function 267
|ZEXT2 function 267

J

JABS function 250
JIAND function 264
JBCLR function 264
JIBITSfunction 264
JIBSET function 264
JDIM function 251
JDINT function 251
JIDNNT function 253
JEOR function 264
JFIX function 251
JINT function 251
JOR function 264
JISHFT function 264
JISHFTC function 264
JISIGN function 254
JMAXO function 252
JMAX1 function 252
JMINO function 252
JMIN1 function 252
JMOD function 253
JININT function 253
JINOT function 265
JZEXT function 267
JZEXT2 function 267
JZEXT4 function 267

K

keyword 279

keyword argument 47
kind 4

KIND function 157, 262
kind type parameter 4, 279

L

L edit descriptor 27
label 279

LBOUND function 158, 260, 262

LEN function 159, 258, 262
LEN_TRIM function 159
length 6

length of acharacter string 280

length type parameter 6
LENTRIM function 258

lexical token 280
LGE function 160, 258
LGT function 160, 258
line 280
list-directed formatting 30
list-directed input/output 30
literal constant 6, 280
literal data 6
literals
CHARACTER 7
COMPLEX 7
INTEGER 6
LOGICAL 7
REAL 6
LLE function 161, 258
LLT function 161, 258
LOC function 273
local entity 280
LOG function 162, 256
LOG10 function 162, 256
LOGICAL datatype 4,7
LOGICAL edit descriptor 27
LOGICAL function 163, 265
LOGICAL literal 7
logical operators 20
LOGICAL statement 36, 163-165

M

main program 54, 280

MAP statement 271

masked array assignment 234

MATMUL function 165, 260

MAX function 166, 252

MAXO function 252

MAX1 function 252

MAXEXPONENT function 167, 262

MAXLOC function 167, 260

MAXVAL function 168, 260

MERGE function 169, 260

MIN function 170, 252

MINO function 252

MIN1 function 252

MINEXPONENT function 170, 262

MINLOC function 171, 261

MINVAL function 172, 261

MOD function 172, 253

module 280

module procedure 56, 280

MODULE PROCEDURE
statement 36, 174

MODULE statement 38, 55, 173—
174
module subprogram 280
modules 55
name conflicts 56
use 56
MODULO function 175, 253
MVBITS subroutine 176, 264, 265

N

name 280
name association 280
NAME= specifier 145
named constant 280
named data 8
NAMED= specifier 145
namelist formatting 32
namelist input/output 32
NAMELIST statement 32, 36, 176—
177
names 1
NDPERR function 177
NDPERR subroutine 268
NDPEXC subroutine 178, 269
NEAREST function 178, 253
NEXTREC= specifier 145
NINT function 179, 253
NML= specifier 32, 199, 237
non-advancing input/output 22
NOT function 179, 265
NULL function 180, 265
NULLIFY statement 38, 180
NUMBER= specifier 145
numeric edit descriptors 25
numeric type 280

O edit descriptor 25
obsolescent feature 280
obsolescent features 242
OFFSET function 181, 269
OPEN statement 21, 37, 181-184
OPENED-= specifier 145
operand 280
operation 280
operations

defined 51

intrinsic 20
operator 280
operators 20

Lahey/Fujitsu Fortran 95 Language Reference 297

Index

arithmetic 20
concatenation 20
logical 20
optional argument 48
OPTIONAL attribute 9, 48
OPTIONAL statement 36, 48,
184
OVEFL subroutine 184, 269

P

P edit descriptor 29
PACK function 185, 230, 261
PAD= specifier 145, 182
PARAMETER attribute 8
PARAMETER statement 36, 186
PAUSE statement 34, 186
pointer 280
pointer assignment 280
pointer assignment statement 18,
38, 187, 280

pointer associated 280
pointer association 281
POINTER attribute 8, 18
POINTER function 188, 269
POINTER statement 18, 36, 188
pointers 18-19

association 18

declaration 18

pointer assignment

statement 18

position edit descriptors 28
POSITION= specifier 145, 182
PRECFILL subroutine 189, 269
PRECISION function 189, 262
pre-connected units 21
present 281
PRESENT function 48, 190, 262
PRINT statement 37, 190-192
PRIVATE attribute 9
PRIVATE statement 16, 36, 193
procedure 281
procedure arguments 47-49
procedure interface 281
procedures 41-53

arguments 4749

dummy 49

elemental 42

externa 41

function 43

generic 42

interface 49-53

internal 41, 46

module 56

specific 42

subroutine 42
processor 281
PRODUCT function 194, 261
program 281
PROGRAM statement 38, 54, 194
program structure statements 38-39
program unit 281
program units 53-57

block data 54

main program 54

module 55
PROMPT subroutine 195, 269
PUBLIC attribute 9
PUBLIC statement 36, 195
pure procedures 46

Q

Q edit descriptor 25
QABS function 250
QACOSD function 266
QASIND function 266
QATANZ2D function 266
QATAND function 266
QCMPLX function 250
QCONJfunction 250
QCOSfunction 255
QCOSD function 266
QCOSH function 255
QCOTAN function 266
QDIM function 251
QERF function 266
QERFC function 266
QEXP function 255
QGAMMA function 267
QIMAG function 250
QLGAMA function 266
QLOG function 256
QLOG10 function 256
QMAX1 function 252
QMINL1 function 252
QMOD function 253
ONINT function 250
QSIGN function 254
QSIN function 256
QSIND function 267
QSINH function 256

298 Lahey/Fujitsu Fortran 95 Language Reference

QSQRT function 256

QTAN function 256

QTAND function 267

QTANH function 257

quotation mark edit descriptor 30
quotation marks 30

R

RADIX function 196, 262

RANDOM_NUMBER
subroutine 197, 265

RANDOM_SEED subroutine 197,
265

RANGE function 198, 262

rank 281

READ statement 37, 198-200

READ-= specifier 145

READWRITE= specifier 145

REAL datatype 4, 6

REAL edit descriptors 25

REAL function 201, 253

REAL literal 6

REAL statement 36, 201-203

RECL= specifier 145, 182

record 281

RECORD statement 271

recursion 46

RECURSIVE attribute 46

reference 281

relational operators 20

REPEAT function 203, 258

RESHAPE function 15, 204, 261

RESULT option 46

RETURN statement 34, 205

REWIND statement 22, 37, 205

RRSPACING function 206, 253

S

S edit descriptor 29

SAVE attribute 9

SAVE statement 36, 207
scalar 281

scale factor 29

SCALE function 208, 254
SCAN function 208, 258
scope 57, 281

scoping unit 39, 55, 57, 281
section subscript 282
SEGMENT function 209, 269
SELECT CASE statement 34, 80,

Index

209-210
SELECTED_INT_KIND
function 4, 210, 262
SELECTED_REAL_KIND
function 5, 211, 262
selector 282
SEQUENCE statement 16, 36, 211
SEQUENTIAL= specifier 145
SET_EXPONENT function 212,
254
shape 282
SHAPE function 212, 261, 263
SIGN function 213, 254
significant blank 271
SIN function 213, 256
SIND function 267
SINH function 214, 256
size 282
SIZE function 214, 261, 263
SIZE= specifier 199, 237
slash edit descriptor 29
SNGL function 253
SNGLQ function 253
source form 24
fixed 2
free 3
SP edit descriptor 29
SPACING function 215, 254
special characters 1
specific procedure 42
specification expression 20, 282
specification statements 35-37
SPREAD function 215, 261
SQRT function 216, 256
SS edit descriptor 29
statement 282
statement entity 282
statement function 282
statement function statement 38,
45, 217
statement keyword 282
statement label 2, 282
statement order 39
statement separator 3, 4
statements 32
assignment and storage 37-38
control 33-34
input/output 37
order 39
program structure 38-39

specification 35-37
STATIC statement 271
STATUS= specifier 86, 182
STOP statement 34, 217
stride 282
structure 282
structure component 282
structure constructor 17
STRUCTURE statement 271
subobject 282
subobject designator 282
subprogram 282
subroutine 282
SUBROUTINE statement 39, 43, 218
subroutines 42
subscript 283
subscript triplet 11, 283
substring 9, 12, 283
SUM function 219, 261
SYSTEM function 220
SY STEM subroutine 220, 269
SYSTEM_CLOCK subroutine 221,

265

T

T edit descriptor 28

TAN function 222, 256

TAND function 267

TANH function 222, 257

target 18, 283

TARGET attribute 8, 18
TARGET statement 18, 36, 223
TIMER subroutine 223

TINY function 263

TL edit descriptor 28

TR edit descriptor 28

trailing comment 3
TRANSFER function 224, 265
TRANSPOSE function 225, 261
TRIM function 226, 259

type declaration statement 8, 283
type parameter 283

type parameter values 283
TYPE statement 36, 226, 227

U

UBOUND function 229, 261, 263
ultimate component 283
undefined 283

UNDFL subroutine 230, 269

unformatted direct file 23

unformatted sequential file 23

UNFORMATTED= specifier 145

UNION statement 271

UNIT= specifier 74, 86, 115, 145,
182, 199, 206, 237

units 21

UNPACK function 230, 261

use association 283

USE statement 37, 56, 231-232

\%

VAL function 269, 273
VALUE statement 271

variable 283

vector subscript 12, 283
VERIFY Function 233

VERIFY function 259

W

WHERE construct 234-235
WHERE statement 34, 235, 236
WRITE statement 37, 237-239
WRITE= specifier 145

X
X edit descriptor 28

Y
YIELD subroutine 239

Z
Z edit descriptor 25

Lahey/Fujitsu Fortran 95 Language Reference 299

	Introduction
	Manual Organization
	Notational Conventions

	Elements of Fortran
	Character Set
	Names
	Statement Labels
	Source Form
	Fixed Source Form
	Free Source Form

	Data
	Intrinsic Data Types
	Kind
	Length
	Literal Data
	Named Data
	Substrings
	Arrays
	Dynamic Arrays
	Array Constructors
	Derived Types
	Structure Constructors
	Pointers

	Expressions
	Intrinsic Operations

	Input/Output
	Pre-Connected Input/Output Units
	Files

	Input/Output Editing
	Format Control
	Data Edit Descriptors
	Control Edit Descriptors
	Character String Edit Descriptors
	List-Directed Formatting
	Namelist Formatting

	Statements
	Control Statements
	Specification Statements
	Input/Output Statements
	Assignment and Storage Statements
	Program Structure Statements
	Statement Order

	Executable Constructs
	Construct Names

	Procedures
	Intrinsic Procedures
	Subroutines
	Functions
	Internal Procedures
	Recursion
	Pure Procedures
	Elemental Procedures
	Procedure Arguments
	Procedure Interfaces

	Program Units
	Main Program
	Block Data Program Units
	Module Program Units

	Scope
	Data Sharing

	Alphabetical Reference
	ABS Function
	ACHAR Function
	ACOS Function
	ADJUSTL Function
	ADJUSTR Function
	AIMAG Function
	AINT Function
	ALL Function
	ALLOCATABLE Statement
	ALLOCATE Statement
	ALLOCATED Function
	ANINT Function
	ANY Function
	Arithmetic IF Statement (obsolescent)
	ASIN Function
	Assigned GOTO Statement (obsolescent)
	ASSIGN Statement (obsolescent)
	Assignment Statement
	ASSOCIATED Function
	ATAN Function
	ATAN2 Function
	BACKSPACE Statement
	BIT_SIZE Function
	BLOCK DATA Statement
	BTEST Function
	CALL Statement
	CARG Function
	CASE Construct
	CASE Statement
	CEILING Function
	CHAR Function
	CHARACTER Statement
	CLOSE Statement
	CMPLX Function
	COMMON Statement
	COMPLEX Statement
	Computed GOTO Statement
	CONJG Function
	CONTAINS Statement
	CONTINUE Statement
	COS Function
	COSH Function
	COUNT Function
	CPU_TIME Subroutine
	CSHIFT Function
	CYCLE Statement
	DATA Statement
	DATE_AND_TIME Subroutine
	DBLE Function
	DEALLOCATE Statement
	DIGITS Function
	DIM Function
	DIMENSION Statement
	DLL_EXPORT Statement
	DLL_IMPORT Statement
	DO Construct
	DO Statement
	DOT_PRODUCT Function
	DOUBLE PRECISION Statement
	DPROD Function
	DVCHK Subroutine (Windows Only)
	ELSE IF Statement
	ELSE Statement
	ELSEWHERE Statement
	END Statement
	END DO Statement
	ENDFILE Statement
	END IF Statement
	END SELECT Statement
	END WHERE Statement
	ENTRY Statement
	EOSHIFT Function
	EPSILON Function
	EQUIVALENCE Statement
	ERROR Subroutine
	EXIT Statement
	EXIT Subroutine
	EXP Function
	EXPONENT Function
	EXTERNAL Statement
	FLOOR Function
	FLUSH Subroutine
	FORALL Construct
	FORALL Statement
	FORMAT Statement
	FRACTION Function
	FUNCTION Statement
	GETCL Subroutine
	GETENV Subroutine
	GOTO Statement
	HUGE Function
	IACHAR Function
	IAND Function
	IBCLR Function
	IBITS Function
	IBSET Function
	ICHAR Function
	IEOR Function
	IF Construct
	IF-THEN Statement
	IF Statement
	IMPLICIT Statement
	INCLUDE Line
	INDEX Function
	INQUIRE Statement
	INT Function
	INTEGER Statement
	INTENT Statement
	INTERFACE Statement
	INTRINSIC Statement
	INVALOP Subroutine
	IOR Function
	IOSTAT_MSG Subroutine
	ISHFT Function
	ISHFTC Function
	KIND Function
	LBOUND Function
	LEN Function
	LEN_TRIM Function
	LGE Function
	LGT Function
	LLE Function
	LLT Function
	LOG Function
	LOG10 Function
	LOGICAL Function
	LOGICAL Statement
	MATMUL Function
	MAX Function
	MAXEXPONENT Function
	MAXLOC Function
	MAXVAL Function
	MERGE Function
	MIN Function
	MINEXPONENT Function
	MINLOC Function
	MINVAL Function
	MOD Function
	MODULE Statement
	MODULE PROCEDURE Statement
	MODULO Function
	MVBITS Subroutine
	NAMELIST Statement
	NDPERR Function (Windows Only)
	NDPEXC Subroutine (Windows Only)
	NEAREST Function
	NINT Function
	NOT Function
	NULL Function
	NULLIFY Statement
	OFFSET Function
	OPEN Statement
	OPTIONAL Statement
	OVEFL Subroutine (Windows Only)
	PACK Function
	PARAMETER Statement
	PAUSE Statement (obsolescent)
	Pointer Assignment Statement
	POINTER Function
	POINTER Statement
	PRECFILL Subroutine
	PRECISION Function
	PRESENT Function
	PRINT Statement
	PRIVATE Statement
	PRODUCT Function
	PROGRAM Statement
	PROMPT Subroutine
	PUBLIC Statement
	RADIX Function
	RANDOM_NUMBER Subroutine
	RANDOM_SEED Subroutine
	RANGE Function
	READ Statement
	REAL Function
	REAL Statement
	REPEAT Function
	RESHAPE Function
	RETURN Statement
	REWIND Statement
	RRSPACING Function
	SAVE Statement
	SCALE Function
	SCAN Function
	SEGMENT Function
	SELECT CASE Statement
	SELECTED_INT_KIND Function
	SELECTED_REAL_KIND Function
	SEQUENCE Statement
	SET_EXPONENT Function
	SHAPE Function
	SIGN Function
	SIN Function
	SINH Function
	SIZE Function
	SPACING Function
	SPREAD Function
	SQRT Function
	Statement Function Statement
	STOP Statement
	SUBROUTINE Statement
	SUM Function
	SYSTEM Function (Linux only)
	SYSTEM Subroutine
	SYSTEM_CLOCK Subroutine
	TAN Function
	TANH Function
	TARGET Statement
	TIMER Subroutine
	TINY Function
	TRANSFER Function
	TRANSPOSE Function
	TRIM Function
	Type Declaration Statement
	TYPE Statement
	TYPE Statement
	UBOUND Function
	UNDFL Subroutine (Windows Only)
	UNPACK Function
	USE Statement
	%VAL Function
	VERIFY Function
	WHERE Construct
	WHERE Statement
	WRITE Statement

	Fortran 77 Compatibility
	Different Interpretation Under Fortran 95
	Different Interpretation Under Fortran 90
	Obsolescent Features

	New in Fortran 95
	Intrinsic Procedures
	Porting Extensions
	Glossary
	ASCII Character Set
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

