
- 1 -

Learning to Fly

Claude Sammut
Scott Hurst

Dana Kedzier

School of Computer Science and Engineering
University of New South Wales

Sydney, Australia

Donald Michie

The Turing Institute
36 North Hanover Street

Glasgow, G1 2AD
United Kingdom

Abstract

This paper describes experiments in applying in-
ductive learning to the task of acquiring a com-
plex motor skill by observing human subjects. A
flight simulation program has been modified to
log the actions of a human subject as he or she
flies an aircraft. The log file is used to create the
input to an induction program. The output from
the induction program is tested by running the
simulator in autopilot mode where the autopilot
code is derived from the decision tree formed by
induction. The autopilot must fly the plane ac-
cording to a strictly defined flight plan.

1 . THE PROBLEM

In this paper, we report on experiments that demonstrate
machine learning of a reactive strategy to control a dy-
namic system by observing a controller that is already
skilled in the task. We have modified a flight simulation
program to log the actions taken by a human subject as he
or she flies an aircraft. The log file is used to create the
input to an induction program. The quality of the output
from the induction program is tested by running the simu-
lator in autopilot mode where the autopilot code is derived
from the decision tree formed by induction.

A practical motivation for trying to solve this problem is
that it is often difficult to construct controllers for com-
plex systems using classical methods. Anderson and
Miller (1991) describe a problem with present-day au-
tolanders, namely that they are not designed to handle
large gusts of wind when close to landing. Similar prob-
lems occur for helicopter pilots who must manoeuvre
their aircraft in high winds while there is a load slung be-
neath the helicopter. Learning by trial-and-error could be
used in simulation, but if we already have a skilled con-
troller, namely, a human pilot, then it is more economical
to learn by observing the pilot.

While control systems have been the subject of much re-
search in machine learning in recent years, we know of
few attempts to learn control rules by observing human

behaviour. Michie, Bain and Hayes-Michie (1990) used an
induction program to learn rules for balancing a pole (in
simulation) and earlier work by Donaldson (1960),
Widrow and Smith (1964) and Chambers and Michie
(1969) demonstrated the feasibility of learning by imita-
tion, also for pole-balancing. To our knowledge, the au-
topilot described here is the most complex control system
constructed by machine learning methods. The task we set
ourselves was to teach the autopilot how to take off; fly
to a set altitude and distance; turn around and land. We de-
scribe our experiments with a particular aircraft simulation
and discuss the problems encountered and how they were
solved. We also discuss some of the remaining difficul-
ties.

2 . THE FLIGHT SIMULATOR

The source code to a flight simulator was made available
to us by Silicon Graphics Incorporated. The central con-
trol mechanism of the simulator is a loop that interrogates
the aircraft controls and updates the state of the simulation
according to a set of equations of motion. Before repeating
the loop, the instruments in the display are updated. The
simulator gives the user a choice of aircraft to fly. We
have restricted all of our experiments to the simulation of
a Cessna, being easier for our subjects to learn to fly than
the various fighters or larger aircraft available.

One feature of the flight simulator that has had a signifi-
cant effect on our experiments is that it is non-determinis-
tic. The simulator runs on a multi-tasking Unix system,
not on a dedicated real-time system. Thus, it is not possi-
ble to give a guaranteed real-time response because the
flight simulator can be interrupted by other processes or
I/O traffic. If nothing is done to compensate for these in-
terruptions, a person operating the simulator would notice
that the program’s response to control actions would
change. If no other processes were stealing CPU time it
would respond quickly but it could become very sluggish
when other processes were competing for the CPU.

To minimise the effects of variations in execution speed,
the simulator regularly interrogates a real-time clock. This
is used to calculate the number of main control loops be-

- 2 -

ing executed each second. If the simulation has slowed
down since the last interrogation, the time interval used in
solving the equations of motion is altered to allow the
simulation to ‘catch up’. The time interval is also changed
in response to an increase in execution speed. To a human
operator, who has a sense of time, this approximates uni-
form response. However, these adjustments do not ensure
a perfectly uniform response. Therefore, to an autopilot
that has no external sense of time, the effects of its con-
trol actions will be somewhat different from one run to
the next and even during one flight.

We have chosen to treat this problem as a challenge. If we
are able to devise rules that can control a noisy system,
we will have done well and in fact, the rules that have
been generated can handle considerable variation. Thus we
can be optimistic that the methods we are developing can
be extended to more complex systems that have real dis-
turbances such as wind and genuinely noisy controls.

Another ‘feature’ that we discovered about the Silicon
Graphics flight simulator is that the rudder does not have a
realistic effect on the aircraft. Fortunately this did not af-
fect us since none of our pilots used the rudder. While a
real pilot would frown upon this practice, it is possible to
fly a real airplane without using the rudder (the rudder is
used in turns to stop the plane from ‘sliding’ with the re-
sult that the g-forces are not directed towards the floor as
they should be).

3 . LOGGING FLIGHT INFORMATION

The display update has been modified so that when the pi-
lot performs a control action by moving the control stick
(the mouse) or changing the thrust or flaps settings, the
state of the simulation is written to a log file. Initially,
we obtained the services of 20 volunteers, believing that
the more logs we had from a variety of subjects the more
robust would be our rules. As we discuss later, we found
that it was better to collect many logs from a small num-
ber of pilots. All the results presented below are derived
from the logs of three subjects who each ‘flew’ 30 times.

At the start of a flight, the aircraft is pointing North,
down the runway. The subject is required to fly a well-de-
fined flight plan that consists of the following manoeu-
vres:

1. Take off and fly to an altitude of 2,000 feet.

2. Level out and fly to a distance of 32,000 feet from the
starting point.

3. Turn right to a compass heading of approximately
330˚. The subjects were actually told to head toward a
particular point in the scenery that corresponds to that
heading.

4. At a North/South distance of 42,000 feet, turn left to
head back towards the runway. The scenery contains
grid marks on the ground. The starting point for the

turn is when the last grid line was reached. This corre-
sponds to about 42,000 feet. The turn is considered
complete when the azimuth is between 140˚ and 180˚.

5. Line up on the runway. The aircraft was considered to
be lined up when the aircraft's azimuth is less than 5˚
off the heading of the runway and the twist is less that
±10˚ from horizontal.

6. Descend to the runway, keeping in line. The subjects
were given the hint that they should have an ‘aiming
point’ near the beginning of the runway.

7. Land on the runway.

We will refer to the performance of a control action as an
‘event’. During a flight, up to 1,000 events can be
recorded. With three pilots and 30 flights each the com-
plete data set consists of about 90,000 events. The data
recorded in each event are:

on_ground boolean: is the plane on the ground?
g_limit boolean: have we exceeded the plane’s g

limit
wing_stall boolean: has the plane stalled?
twist integer: 0 to 360˚ (in tenths of a degree,

see below)
elevation integer: 0 to 360˚ (in tenths of a degree,

see below)
azimuth integer: 0 to 360˚ (in tenths of a degree,

see below)
roll_speed integer: 0 to 360˚ (in tenths of a degree

per second)
elevation_speed integer: 0 to 360˚ (in tenths of a degree

per second)
azimuth_speed integer: 0 to 360˚ (in tenths of a degree

per second)
airspeed integer: (in knots)
climbspeed integer: (feet per second)
E/W distance real: E/W distance from centre of run-

way (in feet)
altitude real: (in feet)
N/S distance real: N/S distance from northern end of

runway (in feet)
fuel integer: (in pounds)
rollers real: ±4.3
elevator real: ±3.0
rudder real: not used
thrust integer: 0 to 100%
flaps integer: 0˚, 10˚ or 20˚

The elevation of the aircraft is the angle of the nose rela-
tive to the horizon. The azimuth is the aircraft’s compass
heading and the twist is the angle of the wings relative to
the horizon. The elevator angle is changed by pushing the
mouse forward (positive) or back (negative). The rollers
are changed by pushing the mouse left (positive) or right
(negative). Thrust and flaps are incremented and decre-
mented in fixed steps by keystrokes. The angular effects of
the elevator and rollers are cumulative. For example, in

- 3 -

straight and level flight, if the stick is pushed left, the air-
craft will roll anti-clockwise. The aircraft will continue
rolling until the stick is centred. The thrust and flaps set-
tings are absolute.

A valid criticism of our data collection method is that we
are not recording the same information that the subject is
using and thus we make it difficult for the induction pro-
gram to reproduce the pilot’s behaviour. For example, it
was mentioned previously that subjects use an aiming
point on the runway to adjust their trajectory while ap-
proaching the runway. No information directly related to
an aiming point is recorded in the data. Our assumption is
that enough other data are recorded to allow the induction
program to do its job.

RESPONSE TIMES

When an event is recorded, the state of the simulation at
the instant that an action is performed could be output.
However, there is always a delay in response to a stimu-
lus, so ideally we should output the state of the simula-
tion when the stimulus occurred along with the action that
was performed some time later in response to the stimu-
lus. But how do we know what the stimulus was?
Unfortunately there is no way of knowing. Human re-
sponses to sudden stimuli take approximately one second
but this can vary considerably. For example, while flying,
the pilot usually anticipates where the aircraft will be in
the near future and prepares the response before the stimu-
lus occurs.

Our approach has been is as follows. Each time the simu-
lator passes through its main control loop, the current
state of the simulation is stored in a circular buffer. We
estimate how many loops are executed each second. When
a control action is performed, the action is output, along
with the state of the simulation as it was some time be-
fore. How much earlier is determined by the size of the
buffer. Of the three subjects used in these experiments,
one operated the simulator with a delay of 40 loops
(corresponding to a two or three second delay) and the
other two subjects used a 20 loop delay (between one and
one and a half seconds).

4 . DATA ANALYSIS

Even with a well-specified flight plan such as the one we
are using here, there is a large degree of variation in the
way different subjects fly. Because of this variation, the
number of flights we have is not sufficient to allow an in-
duction program to distinguish useful actions from noise
using the raw data. However, it would not be very practi-
cal if it were necessary to fly hundreds of flights before
anything useful could be obtained. So before applying the

induction program to the data, we perform some analysis
to assist it.

We have used C4.5 (Quinlan, 1987) as the induction pro-
gram in these experiments. Learning reactive strategies is
a task for which C4.5 was never intended. However, we
chose it for our initial investigation because we are famil-
iar with it and it is reliable and well known. Having the
source code also made it easier for us to generate the deci-
sion trees as if-statements in C. This was necessary so
that the decision tree code be inserted into the simulator.

CUSTOMISED AUTOPILOTS

The learning task was simplified by restricting induction
to one set of pilot data at a time. Thus, an autopilot has
been constructed for each of the three subjects who gener-
ated training data. The reason for separating pilot data is
that each pilot can fly the same flight plan in different
ways. For example, straight and level flight can be main-
tained by adjusting the throttle. When an airplane’s eleva-
tion is zero, it can still climb since higher speeds increase
lift. Adjusting the throttle to maintain a steady altitude is
the correct way of achieving straight and level flight.
However, another way of maintaining constant altitude is
to make regular adjustments to the elevators causing the
airplane to pitch up or down. One of the subjects flew
stage 2 by adjusting the throttle, the other two adjusted
the elevators. We want the induction program to learn a
consistent way of flying, so we are training it to emulate
a particular pilot.

FLIGHT STAGES

The data from each flight were segmented into the seven
stages described in section 3. In the flight plan described,
the pilot must achieve several, successive goals, corre-
sponding to the end of each stage. Each stage requires a
different manoeuvre. Having already defined the sub-tasks
and told the human subjects what they are, we gave the
learning program the same advantage.

DECISION TREES AND CONTROL
ACTIONS

In each stage we construct four separate decision trees, one
for each of the elevator, rollers, thrust and flaps. A pro-
gram filters the flight logs generating four input files for
the induction program. The attributes of a training exam-
ple are the flight parameters described earlier. The depen-
dent variable or class value is the attribute describing a
control action. Thus, when generating a decision tree for
flaps, the flaps column is treated as the class value and the
other columns in the data file, including the settings of
the elevator, rollers and thrust, are treated as ordinary at-
tributes.

- 4 -

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

200

400

600

800

Figure 1. Frequency of thrust values in stage 6

Thrust

F
re

qu
en

cy

DETERMINING CLASS VALUES

C4.5 expects class values to be discrete but the values for
elevator, rollers, thrust and flaps are numeric. We will
soon be experimenting with decision tree induction pro-
grams that have numeric output. However, for these ex-
periments, a preprocessor breaks up the action settings
into sub-ranges that can be given discrete labels. Sub-
ranges are chosen by analysing the frequency of occurrence
of action values. This analysis must be done for each pilot
to correctly reflect differing flying styles. There are two
disadvantages to this method. One is that if the sub-ranges
are poorly chosen, the rules generated will use controls
that are too fine or too coarse. Secondly, C4.5 has no
concept of ordered class values, so classes cannot be com-
bined during the construction of the decision tree.

Figure 1 shows the frequency of thrust values in stage 6
of the data for one pilot. Since thrust is controlled by a
keystroke, it is increased and decreased by a fixed amount,
10%. The values with very low frequencies are those that
were passed through on the way to a desired setting. The
graph reflects the facts that this pilot held the thrust at
100% until the approach to the runway began. The thrust
was then brought down to 40% immediately and gradually
decreased to 10% where it remained for most of the ap-
proach. Close to the runway, the thrust was cut to 0 and
the plane glided down the rest of the way.

In this case, class values corresponding to 0, 10, 15, 10,
25, 30, 35, 40 and 100 were used. Anything above 40%
was considered full-throttle. Anything below 10% was

considered idle. Another reasonable clustering of values
could be to group values from 15 to 35 together.

ABSOLUTE AND INCREMENTAL
CONTROLS

An event is recorded when there is a change in one of the
control settings. A change is determined by keeping the
previous state of the simulation in a buffer. If any of the
control settings are different in the current state, a change
is recognised. For example, if the thrust is being reduced
from 100% to 40%, all of the values in between are
recorded. For thrust, these values are easily eliminated as
noise during induction.

It is not so easy to eliminate spurious values from the el-
evator and rollers data. Both thrust and flaps can be set to
a particular value and left. However, the effects of the ele-
vator and rollers are cumulative. If we want to bank the
aircraft to the left, the stick will be pushed left for a short
time and then centred since keeping it left will cause the
airplane to roll. Thus, the stick will be centred after most
elevator or roller actions. This means that many low ele-
vator and roller values will be recorded as the stick is
pushed out and returned to the centre position.

To ensure that records of low elevator and roller values do
not swamp the other data, another filter program removes
all but the steady points and extreme points in stick
movement. Figure 2 shows a small sample of roller set-
tings during a flight. Each point on the graph represents
one event. Clearly many of the points are recorded as part
of a single movement. The filter program looks for points

- 5 -

50403020100

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

Figure 2. Change in rollers

Event

R
ol

le
rs

of inflection in the graph and only passes those on to the
induction program. In this graph, only the points marked
in black will get through the filter.

5 . GENERATING THE AUTOPILOT

After processing the data as described above, we can fi-
nally submit them to C4.5 to be summarised as rules that
can be executed in a controller.

PRUNING THE DECISION TREE

C4.5 has two parameters that can be varied by the user to
adjust tree pruning. We have experimented with them to
try to obtain the simplest workable rules. One parameter
controls C4.5’s confidence level. That is, the program
will prune the decision tree so that it maintains a mini-
mum classification accuracy with respect to test data. The
second parameter controls the minimum number of in-
stances required for a split. For example, if this parameter
is set to 10, then no branch in the tree will be created un-
less at least 10 examples descend down that branch.

We proceed by generating decision trees using the default
parameter settings, testing the rules in the simulator and
then gradually adjusting the parameters to obtain simpler
rules. This continues until the rule ‘breaks, ie. it is no
longer able to control the plane correctly.

TIME AND CAUSALITY

The rules constructed by C4.5 are purely reactive. They
make decisions on the basis of the values in a single state
of the simulation. The induction program has no concept
of time or causality. In connection with this, some

strange rules can turn up. For example, the rule below for
thrust in the descent stage was derived from data that was
not filtered as described above. There were 2,513 examples
in the training set, the minimum split size was set to 5
(since the data from five flights were combined) and the
confidence parameter was set to 0.1%.

airspeed > 127 : thrust_100
airspeed <= 127 :
| X_feet > 121.33 : thrust_30
| X_feet <= 121.33 :
| | elevation <= -43 :
| | | Z_feet > -11514.8 : thrust_0
| | | Z_feet <= -11514.8 :
| | | | climbspeed <= -13 : thrust_0
| | | | climbspeed > -13 :
| | | | | Z_feet > -18475.8 : thrust_10
| | | | | Z_feet <= -18475.8 :
| | | | | | Y_feet <= 1535.21 : thrust_20
| | | | | | Y_feet > 1535.21 : thrust_10
| | elevation > -43 :
| | | Y_feet <= 638.76 : thrust_25
| | | Y_feet > 638.76 :
| | | | Z_feet <= -26230.1 : thrust_15
| | | | Z_feet > -26230.1 : thrust_20

Only the first two lines of this rule are of interest at pre-
sent. The first line states that when the airspeed is greater
than 127 knots then the thrust should be 100%. When the
airspeed is less than or equal to 127 knots the thrust is
lower. The exact value being determined by the remainder
of the decision tree. Thus C4.5 has correctly detected a
correlation between speed and thrust. Unfortunately it uses
the speed to determine the thrust when it should be the
other way around.

- 6 -

By introducing the response time delays described in sec-
tion 3 and the filtering in section 4 causality problems can
be overcome to some extent, but rules like this some-
times still occur. At present the only way around this is
to hope that savage pruning will improve the rule. For the
case above, C4.5 was re-run, this time with the minimum
split size set to 500 resulting in the following rule:

Z_feet <= -30642 : thrust_100
Z_feet > -30642 :
| elevation > -43 : thrust_20
| elevation <= -43 :
| | Z_feet <= -16382 : thrust_10
| | Z_feet > -16382 : thrust_0

This is quite sensible. Z_feet is the distance from the
runway. As the airplane nears the runway, it decreases
thrust progressively. The elevation rule says that if the
nose is pointing down by more than 4.3˚ then increase the
thrust to 20%. This will cause the nose to rise and then
the thrust will be reduced to 0 or 10% depending on the
distance from the runway. While we wish the aircraft to
descend during this stage of the flight, it should not de-
scend too steeply. This rule, working with the elevator
rule controls the angle of descent.

We believe that learning could be improved by including
some knowledge of causality in the system so that it is
able to correctly identify dependencies among variables.

6 . LINKING THE AUTOPILOT WITH
THE SIMULATOR

To test the induced rules, the original autopilot code in the
simulator is replaced by the rules. A post-processor con-
verts C4.5’s decision trees into if-statements in C so that
they can be incorporated into the flight simulator easily.
Hand-crafted C code determines which stage the flight has
reached and decides when to change stages. The appropriate
rules for each stage are then selected in a switch statement.
Each stage has four, independent if-statements, one for
each action.

DELAYS

When the data from the human pilots were recorded, a de-
lay to account for human response time was included.
Since the rules were derived from this data, their effects
should be delayed by the same amount as was used when
the data were recorded. When a rule fires, instead of letting
it effect a control setting directly, the rule’s output value
is stored in a circular buffer. There is one for each of the
four controls. The value used for the control setting is one
of the previous values in the buffer. A lag constant defines
how far to go back into the buffer to get the control set-
ting. The size of the buffer must be set to give a lag that
approximates the lag when the data were recorded.

AVERAGING CONTROL SETTINGS

Earlier we had shown how we eliminate intermediate val-
ues in roller and elevator actions so that the induction
program is not swamped with spurious data. The rules
that result from this data can set values instantaneously as
if the stick were moved with infinite speed from one posi-
tion to another. Clearly this is unrealistic. When control
values are taken from the delay buffer, they enter another
circular buffer. The controls are set to the average of the
values in the buffer. This ensures that controls change
smoothly. The larger the buffer, the more gentle are the
control changes. By experimentation, we have found that a
buffer length of 5 approximates the speed with which the
human pilots moved the controls.

7 . FLYING ON AUTOPILOT

We have succeeded in synthesising control rules for a
complete flight, including a safe landing. The rules fly the
Cessna in a manner very similar to that of the pilot whose
data were used to construct the rules. In some cases, the
autopilot flies more smoothly than the human pilot. We
demonstrate how these rules operate by describing the con-
trollers built for the first four stages. The last three stages
are too complex to include in this paper.

STAGE 1

The critical rule at take-off is the elevator rule:

elevation > 4 : level_pitch
elevation <= 4 :
| airspeed <= 0 : level_pitch
| airspeed > 0 : pitch_up_5

This states that as thrust is applied and the elevation is
level, pull back on the stick until the elevation increases
to 4˚. Because of the delay, the final elevation usually
reaches 11˚ which is close to the values usually obtained
by the pilot. pitch_up_5 indicates a large elevator ac-
tion, whereas, pitch_up_1 would indicate a gentle ele-
vator action. The other significant control at this stage is
flaps:

elevation <= 6 : full_flaps
elevation > 6 : no_flaps

Once the aircraft has reached an elevation angle of 6˚, the
flaps are raised.

STAGE 2

In stage 2, the autopilot is required to attain level flight.
Again this is done through the elevator rule:

climbspeed <= 13 : level_pitch
climbspeed > 13 : pitch_down_1

- 7 -

0-10000-20000-30000-40000-50000
-2000

0

2000

4000

6000

8000

Trainer

Figure 3: Cross-range Profile for Trainer and Autopilot

N/S Distance from start of runway

C
ro

ss
-r

an
ge

 (
E

/W
/ d

is
ta

nc
e)

Autopilot

When the climb rate exceeds 13 feet/second push the stick
forward gently to bring climb rate down. While this rule
makes sense, it does not completely stop the climb. The
pilot timed the application of the control carefully so that
by the time the stick was re-centred the climb rate was
zero and remained so. This rule brings the climb rate down
significantly but does not zero it. As a result, the aircraft
climbs more than the pilot would have allowed it to.

STAGE 3

Stage 3 requires a gentle right turn. The rollers rule is:

twist <= -23 : left_roll_3
twist > -23 :
| azimuth <= -25 : no_roll
| azimuth > -25 : right_roll_2

C4.5 was designed to handle categorical and numeric val-
ues, but it was not designed to handle values like angles
and compass headings that are circular. To help it a little,
values such as twist and azimuth (compass heading)
which range from 0 to 360˚ were converted to ranges from
-180˚ to +180˚. Thus, the roll rule states that while the
twist is less than 23˚ from horizontal and the aircraft is
heading North, bank right. When the twist has reached 23˚
bank left to steady the aircraft. The azimuth rule ensure
that the airplane will not bank right again if its heading is
more than 25˚ off North.

STAGE 4

The stage 4 rules are more complex than those for the
previous stages. To make them understandable, they have
been greatly simplified by over-pruning. They are pre-
sented to illustrate an important point, that is that rules
can work in tandem although there is no explicit link be-
tween them. The following rules are for the rollers and el-
evator in a sharp turn left.

azimuth > 114 : right_roll_1
azimuth <= 114 :
| twist <= 8 : left_roll_4
| twist > 8 : no_roll

twist <= 2 : level_pitch
twist > 2 :
| twist <= 10 : pitch_up_1
| twist > 10 : pitch_up_2

A sharp turn requires coordination between roller and ele-
vator actions. As the aircraft banks to a steep angle, the
elevator is pulled back. The rollers rule states that while
the compass heading has not yet reached 114˚, bank left
provided that the twist angle does not exceed 8˚. The ele-
vator rule states that as long as the aircraft has no twist,
leave the elevator at level pitch. If the twist exceeds 2˚
then pull back on the stick. The stick must be pulled back
more sharply for a greater twist. Since the rollers cause
twist, the elevator rule is invoked to produce a coordinated
turn.

- 8 -

0-10000-20000-30000-40000-50000
0

1000

2000

3000

Figure 4: Altitude Profile for Trainer and Autopilot

N/S Distance from start of runway

A
lti

tu
de

Trainer

Autopilot

THE COMPLETE FLIGHT

The best way of measuring the performance of the rules is
to compare a flight by a human pilot with a flight by the
autopilot. Figures 3 and 4 show profiles of a flight by one
of the human pilots plotted with the profiles of a flight by
the autopilot derived from that pilot’s data. Figure 3
shows the ground track of the aircraft while Figure 4
shows a horizontal view of the flight path. Note that the
vertical and horizontal axes are shown at different scales.

8 . DISCUSSION

One of the interesting things we have learned in this study
is that good pilots are bad! The autopilot whose profiles
are shown in figures 4 and 5 was derived from a human pi-
lot who had to make many course corrections during his
flights. While such a flight is not a pretty sight, it pro-
vides useful data for the induction program. Pilots who are
frugal in their use of the controls give few examples of
what to do when things go wrong.

We have observed a “clean-up” effect noted in Michie,
Bain and Hayes-Michie (1990). The flight log of any
trainer will contain many spurious actions due to human
inconsistency and corrections required as a result of inat-
tention. It appears that effects of these examples are
pruned away by C4.5, leaving a control rule which flies
very smoothly. This effect was particularly noticeable in
the approach stage of the flight when the trainer performed
many roll manoeuvres to keep the aircraft lined-up on the
runway. We have informally observed that the autopilot
does a much better job of maintaining a steady glide path

to the runaway. Future experiments will attempt to quan-
tify this difference in performance.

9 . CONCLUSION

Almost all applications of inductive learning, so far, have
been in classification tasks such as medical diagnosis. For
example, medical records of patients’ symptoms and ac-
companying diagnoses made by physicians are entered into
an induction program which constructs rules that will au-
tomatically diagnose new patients on the basis of the pre-
vious data. The output is a classification. Just as diagnos-
tic rules can be learned by observing a physician at work,
we should be able to learn how to control a system by
watching a human operator at work. In this case, the data
provided to the induction program are logs of the actions
taken by the operator in response to changes in the sys-
tem. We have used a simple procedural model for induc-
tively building sets of control rules. An induced rule-set
constitutes a “strategy” for the given sub-task – a kind of
classifier that maps state records into action names, rather
than mapping patient records into disease names. But in
both the medical and control cases, there is a fundamental
difference to be drawn between a purely symptomatic
classification and one based on an understanding of the
domain’s causality. The latter requires declarative models
able to support “what if” analysis, recognising that
actions (just like diseases) occur in response to, and result
in, changes in the system being controlled. Symptomatic
classification only deals with static data and does not cope
explicitly with temporal and causal relations.

- 9 -

In our preliminary study we were able to demonstrate the
feasibility of learning a specific control task. The next
challenge is to build a generalised method that can learn
basic skills that can be used in a variety of tasks. These
skills become building blocks that can be assembled into
a complete new controller to meet the demands of a speci-
fied task.

One of the limitations we have encountered with existing
learning algorithms is that they can only use the primitive
attributes supplied in the data. This results in control rules
that cannot be understood by a human expert.
Constructive induction (or predicate invention) may be
necessary to build higher-level attributes that simplify the
rules. A methodology for doing this, using the human ex-
pert as the source of the required backward-chained control
hierarchy, is known as “structured induction” (Shapiro,
1987). Our requirement now is for progress towards au-
tomating this kind of structuring (see Muggleton and
Buntine, 1988).

Machine learning of control systems may lead to a better
understanding of subcognitive skills which are inaccessi-
ble to introspection. For example, if you are asked by
what method you ride a bicycle, you will not be able to
provide an adequate answer because that skill has been
learned and is executed at a subconscious level. By moni-
toring the performance of a subcognitive skill, we are able
to construct a functional description of that skill in the
form of symbolic rules. This not only reveals the nature
of the skill but also may be used as an aid to training
since the student can be explicitly shown what he or she
is doing.

Learning control rules by induction provides a new way of
building complex control systems quickly and easily.
Where these involve safety critical tasks, the “clean-up”
effect mentioned in the Discussion holds particular inter-
est. While our experiments have been primarily concerned
with flight automation, inductive methods can be applied
to a wide range of related problems. For example, an
anaesthetist can be seen as controlling a patient in an op-
erating theatre in much the same way as a pilot controls
an aircraft. The anaesthetist monitors the patient’s condi-
tion just as a pilot monitors the aircraft’s instruments.
The anaesthetist changes dosages of drugs and gases to al-
ter the state of a system (the patient) in the same way that
a pilot alters thrust and attitude to control the state of a
system (the aircraft). A flight plan can be divided into
stages where different control strategies are required, eg.
take-off, straight and level flight, landing, etc. So too, the
administration of anaesthetics can be divided into stages:
putting the patient to sleep, maintaining a steady state
during the operation and revival after the procedure has
been completed. Process control in safety-critical applica-
tions in industry should also be mentioned.

Our current research is aimed at producing a reliable and
reproducible method for building controllers. Future work
will be directed towards understanding the effects of causal-

ity and using structured and constructive induction to help
make the control rules more compact and more readable.

ACKNOWLEDGMENTS

Jim Kehoe and Peter Horne conducted the human reaction
time studies and collected much valuable data. Mark
Pendrith performed many of the modifications to the flight
simulator. Silicon Graphics Incorporated made the source
code of the flight simulator available. This research has
been supported by the Australian Research Council and
the University of New South Wales.

REFERENCES

Anderson, C. W. and Miller, W. T. (1991). A set of chal-
lenging control problems. In Miller, Sutton and
Werbos (Eds.), Neural Networks for Control, MIT
Press.

Chambers, R. A. and Michie, D. (1969). Man-machine
co-operation on a learning task. In R. Parslow, R.
Prowse and R. Elliott-Green (Eds.), Computer
Graphics: Techniques and Applications London:
Plenum.

Donaldson, P. E. K. (1960). Error decorrelation: a tech-
nique for matching a class of functions. In Proceedings
of the Third International Conference on Medical
Electronics, (pp. 173-178).

Michie, D., Bain, M., and Hayes-Michie, J.E. (1990).
Cognitive models from subcognitive skills. In M.
Grimble, S. McGhee and P. Mowforth (Eds.)
Knowledge-base Systems in Industrial Control. Peter
Peregrinus.

Muggleton, S. and Buntine, W. (1988). Machine inven-
tion of first-order predicates by inverting resolution. In
Proceedings of the Fifth International Machine.
Learning Conference (pp. 339-352). Ann Arbor,
Michigan: Morgan Kaufmann,.

Quinlan, J. R. (1987). Simplifying decision trees.
International Journal of Man-Machine Studies, 27,
221-234.

Sammut, C. and Michie, D. (1991). Controlling a 'black-
box' simulation of a spacecraft. AI Magazine, 12(1),
56-63.

Shapiro, A.D. (1987). Structured Induction in Expert
Systems. Addison-Wesley.

Widrow, B. and Smith, F. W. (1964). Pattern recognising
control systems. In J. T. Tou and R. H. Wilcox
(Eds.), Computer and Information Sciences Clever
Hume Press.

