Learning to Fly

Claude Sammut
Scott Hurst
Dana Kedzier

School of Computer Science and Engineering
University of New South Wales
Sydney, Australia

Abstract

This paper describes experiments in applying in-
ductive learning to the task of acquiring a com-
plex motor skill by observing human subjects. A
flight simulation program has been modified to
log the actions of a human subject as he or she
flies an aircraft. The log file is used to create the
input to an induction program. The output from
the induction program is tested by running the
simulator in autopilot mode where the autopilot
code is derived from the decision tree formed by
induction. The autopilot must fly the plane ac-
cording to a strictly defined flight plan.

Donald Michie

The Turing Institute
36 North Hanover Street
Glasgow, G1 2AD
United Kingdom

behaviour. Michie, Bain and Hayes-Michie (1990) used an
induction program to learn rules for balancing a pole (in
simulation) and earlier work by Donaldson (1960),
Widrow and Smith (1964) and Chambers and Michie
(1969) demonstrated the feasibility of learning by imita-
tion, also for pole-balancing. To our knowledge, the au-
topilot described here is the most complex control system
constructed by machine learning methods. The task we se
ourselves was to teach the autopilot how to take off; fly
to a set altitude and distance; turn around and land. We de
scribe our experiments with a particular aircraft simulation
and discuss the problems encountered and how they wer:
solved. We also discuss some of the remaining difficul-
ties.

1. THE PROBLEM 2. THE FLIGHT SIMULATOR

In this paper, we report on experiments that demonstratg, s sorce code to a flight simulator was made available
machine learning of a reactive strategy to control a dyg, s py Silicon Graphics Incorporated. The central con-
n?W'C sysrt]em b?é obser:vmg a cc;fntrollefrl_tr;]at IS allre.adYroI mechanism of the simulator is a loop that interrogates
skilled in t Ie ta‘; - We have IEnOd' |edr? Ight simulation e aircraft controls and updates the state of the simulatior
program to log the actions taken by a human subject as R, ging to a set of equations of motion. Before repeating
or she flies an alr_craft. The log file is us_ed to create thg,o loop, the instruments in the display are updated. The
input to an induction program. The quality of the outpulgjmjator gives the user a choice of aircraft to fly. We

from the induction program is tested by running the simupaye restricted all of our experiments to the simulation of
lator in autopilot mode where the autopilot code is derived, cessna, being easier for our subjects to learn to fly thar
from the decision tree formed by induction. the various fighters or larger aircraft available.

A practical motivation for trying to solve this problem is 5ne feature of the flight simulator that has had a signifi-
that it is often difficult to construct controllers for com- .o+ effect on our experiments is that it is non-determinis-
plex systems using classical methods. Anderson ang. The simulator runs on a multi-tasking Unix system,
Miller (1991) describe a problem with present-day auyot on 4 dedicated real-time system. Thus, it is not possi-
tolanders, name]y that they are not dgsigned_to handige ¢ give a guaranteed real-time respoﬁse because th
large gusts of wind when close to landing. Similar probsjight simulator can be interrupted by other processes or
lems occur for helicopter pilots who must manoeuvre,q raffic. If nothing is done to compensate for these in-
their aircraft in high winds while there is a load slung beghtions, a person operating the simulator would notice
neath the helicopter. Learning by trial-and-error could bga¢ the program’s response to control actions would
used in simulation, but if we already have a skilled congpange |f no other processes were stealing CPU time it
troller, namely, @ human pilot, then it is more economicaly,|d respond quickly but it could become very sluggish
to learn by observing the pilot. when other processes were competing for the CPU.

Wh|lehcpntrol sa/_sterlns have been the subject of ”l:“Ch "o minimise the effects of variations in execution speed,
fsearc In mac 'Te earning Iln r?cerE)t yetz)ars, we QOW %he simulator regularly interrogates a real-time clock. This
ew attempts to learn control rules by observing humags seq to calculate the number of main control loops be-



ing executed each second. If the simulation has slowed turn is when the last grid line was reached. This corre-
down since the last interrogation, the time interval used in  sponds to about 42,000 feet. The turn is considered
solving the equations of motion is altered to allow the complete when the azimuth is between 140° and 180°.
simulation to ‘catch up’. The time interval is also change

in response to an increase in execution speed. To a humah
operator, who has a sense of time, this approximates uni-
form response. However, these adjustments do not ensure
a perfectly uniform response. Therefore, to an autopilot
that has no external sense of time, the effects of its co®. Descend to the runway, keeping in line. The subjects
trol actions will be somewhat different from one run to  were given the hint that they should have an ‘aiming
the next and even during one flight. point’ near the beginning of the runway.

We have chosen to treat this problem as a challenge. If w& Land on the runway.

are able to devise rules that can control a noisy system,

we will have done well and in fact, the rules that haveye will refer to the performance of a control action as an
been generated can handle considerable variation. Thus w&ent’. During a flight, up to 1,000 events can be
can be optimistic that the methods we are developing cacorded. With three pilots and 30 flights each the com-

be extended to more complex systems that have real digtete data set consists of about 90,000 events. The dat
turbances such as wind and genuinely noisy controls.  recorded in each event are:

Line up on the runway. The aircraft was considered to
be lined up when the aircraft's azimuth is less than 5°
off the heading of the runway and the twist is less that
+10° from horizontal.

Another ‘feature’ that we discovered about the Silicon

Graphics flight simulator is that the rudder does not have @h_ground boolean: is the plane on the ground?
realistic effect on the aircraft. Fortunately this did not af-9_limit boolean: have we exceeded the plane’s g
fect us since none of our pilots used the rudder. While a_ limit
real pilot would frown upon this practice, it is possible toWing_stall boolean: has the plane stalled?
fly a real airplane without using the rudder (the rudder igWIst integer: 0 to 360" (in tenths of a degree,
used in turns to stop the plane from ‘sliding’ with the re- ) see below) .
sult that the g-forces are not directed towards the floor s@€vation integer: 0 to 360" (in tenths of a degree,
they should be). ) see below) .

azimuth integer: 0 to 360" (in tenths of a degree,

see below)

3. LOGGING FLIGHT INFORMATION roll_speed integer: 0 to 360° (in tenths of a degree
The display update has been modified so that when the pi- per second)
lot performs a control action by moving the control stickelevation speed integer: 0 to 360° (in tenths of a degree
(the mouse) or changing the thrust or flaps settings, the per second)
state of the simulation is written to a log file. Initially, azimuth_speed integer: 0 to 360° (in tenths of a degree
we obtained the services of 20 volunteers, believing that per second)
the more logs we had from a variety of subjects the morairspeed integer: (in knots)
robust would be our rules. As we discuss later, we foundlimbspeed integer: (feet per second)
that it was better to collect many logs from a small numE/W distance real: E/W distance from centre of run-
ber of pilots. All the results presented below are derived way (in feet)
from the logs of three subjects who each ‘flew’ 30 times. altitude real: (in feet)

N/Sdistance real: N/S distance from northern end of
runway (in feet)
integer: (in pounds)

At the start of a flight, the aircraft is pointing North,
down the runway. The subject is required to fly a We"'de'fuel
fined flight plan that consists of the following manoeu-

. rollers real: +4.3
vres: elevator real: £3.0
. rudder real: not used
1. Take off and fly to an altitude of 2,000 feet. thrust integer: 0 to 100%
2. Level out and fly to a distance of 32,000 feet from theflaps integer: 0°, 10° or 20°

starting point.

The elevation of the aircraft is the angle of the nose rela-
Yive to the horizon. The azimuth is the aircraft's compass
. S fleading and the twist is the angle of the wings relative to
particular point in the scenery that corresponds 10 thhe horizon. The elevator angle is changed by pushing the

heading. mouse forward (positive) or back (negative). The rollers
4. At a North/South distance of 42,000 feet, turn left toare changed by pushing the mouse left (positive) or right
head back towards the runway. The scenery contairf§€egative). Thrust and flaps are incremented and decre-

grid marks on the ground. The starting point for themented in fixed steps by keystrokes. The angular effects_oi
the elevator and rollers are cumulative. For example, in

3. Turn right to a compass heading of approximatel
330°. The subjects were actually told to head toward



straight and level flight, if the stick is pushed left, the air-induction program to the data, we perform some analysis
craft will roll anti-clockwise. The aircraft will continue to assist it.

rolling until the stick is centred. The thrust and flaps set: . . .
tings are absolute. We have used C4.5 (Quinlan, 1987) as the induction pro-

gram in these experiments. Learning reactive strategies is
A valid criticism of our data collection method is that wea task for which C4.5 was never intended. However, we
are not recording the same information that the subject ishose it for our initial investigation because we are famil-
using and thus we make it difficult for the induction pro-iar with it and it is reliable and well known. Having the
gram to reproduce the pilot’s behaviour. For example, isource code also made it easier for us to generate the dec
was mentioned previously that subjects use an aimingion trees as if-statements in C. This was necessary st
point on the runway to adjust their trajectory while ap-that the decision tree code be inserted into the simulator.
proaching the runway. No information directly related to

an aiming point is recorded in the data. Our assumption ISUSTOMISED AUTOPILOTS

that enough other data are recorded to allow the inducti

program to do its job. OJI’Jhe learning task was simplified by restricting induction

to one set of pilot data at a time. Thus, an autopilot has
RESPONSE TIMES been co_ngtructed for each of the three subj'ects yvho gener

ated training data. The reason for separating pilot data is
When an event is recorded, the state of the simulation #hat each pilot can fly the same flight plan in different
the instant that an action is performed could be outputvays. For example, straight and level flight can be main-
However, there is always a delay in response to a stimuained by adjusting the throttle. When an airplane’s eleva-
lus, so ideally we should output the state of the simulation is zero, it can still climb since higher speeds increase
tion when the stimulus occurred along with the action thalift. Adjusting the throttle to maintain a steady altitude is
was performed some time later in response to the stimuhe correct way of achieving straight and level flight.
lus. But how do we know what the stimulus was?However, another way of maintaining constant altitude is
Unfortunately there is no way of knowing. Human re-to make regular adjustments to the elevators causing the
sponses to sudden stimuli take approximately one secoradrplane to pitch up or down. One of the subjects flew
but this can vary considerably. For example, while flying,stage 2 by adjusting the throttle, the other two adjusted
the pilot usually anticipates where the aircraft will be inthe elevators. We want the induction program to learn a
the near future and prepares the response before the stinmensistent way of flying, so we are training it to emulate
lus occurs. a particular pilot.

Our approach has been is as follows. Each time the simuy-
lator passes through its main control loop, the curren LIGHT STAGES

state of the simulation is stored in a circular buffer. WeThe data from each flight were segmented into the sever
estimate how many loops are executed each second. Whetages described in section 3. In the flight plan described,
a control action is performed, the action is output, alonghe pilot must achieve several, successive goals, corre-
with the state of the simulation as it was some time besponding to the end of each stage. Each stage requires
fore. How much earlier is determined by the size of thelifferent manoeuvre. Having already defined the sub-tasks
buffer. Of the three subjects used in these experimentand told the human subjects what they are, we gave the
one operated the simulator with a delay of 40 loopsearning program the same advantage.

(corresponding to a two or three second delay) and the

other two subjects used a 20 loop delay (between one amsECI|SION TREES AND CONTROL
one and a half seconds). ACTIONS

4. DATA ANALYSIS In each stage we construct four separate decision trees, on
for each of the elevator, rollers, thrust and flaps. A pro-
Even with a well-specified flight plan such as the one wegram filters the flight logs generating four input files for
are using here, there is a large degree of variation in the induction program. The attributes of a training exam-
way different subjects fly. Because of this variation, theple are the flight parameters described earlier. The depen
number of flights we have is not sufficient to allow an in-dent variable or class value is the attribute describing a
duction program to distinguish useful actions from noisecontrol action. Thus, when generating a decision tree for
using the raw data. However, it would not be very practiflaps, the flaps column is treated as the class value and thi
cal if it were necessary to fly hundreds of flights beforeother columns in the data file, including the settings of
anything useful could be obtained. So before applying ththe elevator, rollers and thrust, are treated as ordinary at
tributes.



800

600

&
o
=]
8
LL
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Thrust
Figure 1. Frequency of thrust values in stage 6
considered idle. Another reasonable clustering of values
DETERMINING CLASS VALUES could be to group values from 15 to 35 together.

C4.5 expects class values to be discrete but the values_ ];RBSOL UTE AND INCREMENTAL
elevator, rollers, thrust and flaps are numeric. We wil

; . ; 2. X . CONTROLS
soon be experimenting with decision tree induction pro-
grams that have numeric output. However, for these exAn event is recorded when there is a change in one of the
periments, a preprocessor breaks up the action settingentrol settings. A change is determined by keeping the
into sub-ranges that can be given discrete labels. Sulprevious state of the simulation in a buffer. If any of the
ranges are chosen by analysing the frequency of occurrencentrol settings are different in the current state, a change
of action values. This analysis must be done for each pilas recognised. For example, if the thrust is being reduced
to correctly reflect differing flying styles. There are two from 100% to 40%, all of the values in between are
disadvantages to this method. One is that if the sub-rangescorded. For thrust, these values are easily eliminated a:
are poorly chosen, the rules generated will use controlsoise during induction.

that are too fine or too coarse. Secondly, C4.5 has ng. - :
Iﬁ]l_s not so easy to eliminate spurious values from the el-

concept of ordered class values, so classes cannot be co
bined during the construction of the decision tree. evator and rollers data. Both thrust and flaps can be set tc

a particular value and left. However, the effects of the ele-
Figure 1 shows the frequency of thrust values in stage @ator and rollers are cumulative. If we want to bank the
of the data for one pilot. Since thrust is controlled by aircraft to the left, the stick will be pushed left for a short
keystroke, it is increased and decreased by a fixed amoutitne and then centred since keeping it left will cause the
10%. The values with very low frequencies are those thatirplane to roll. Thus, the stick will be centred after most
were passed through on the way to a desired setting. Tledevator or roller actions. This means that many low ele-
graph reflects the facts that this pilot held the thrust atator and roller values will be recorded as the stick is
100% until the approach to the runway began. The thrugtushed out and returned to the centre position.

was then brought down to 40% immediately and graduallyl_o ensure that records of low elevator and roller values do
decreased to 10% where it remained for most of the ap-

proach. Close to the runway, the thrust was cut to 0 angdot swamp the other data, another filter program removes

the plane glided down the rest of the wa all but the steady points and extreme points in stick
Y movement. Figure 2 shows a small sample of roller set-

In this case, class values corresponding to 0, 10, 15, 16ings during a flight. Each point on the graph represents
25, 30, 35, 40 and 100 were used. Anything above 40%ne event. Clearly many of the points are recorded as par
was considered full-throttle. Anything below 10% wasof a single movement. The filter program looks for points



0.8
0.4 \‘
0.2 \

0.0

Rollers

-0.2 /
-04 -/

-0.6

Event

Figure 2. Change in rolle

of inflection in the graph and only passes those on to thstrange rules can turn up. For example, the rule below for
induction program. In this graph, only the points markedhrust in the descent stage was derived from data that wa:

in black will get through the filter. not filtered as described above. There were 2,513 example:
in the training set, the minimum split size was set to 5
5. GENERATING THE AUTOPILOT (since the data from five flights were combined) and the

) . confidence parameter was set to 0.1%.
After processing the data as described above, we can fi-

nally submit them to C4.5 to be summarised as rules thaf r speed > 127 : thrust_100

can be executed in a controller. ai rspeed <= 127 :
| X feet > 121.33 : thrust_30
PRUNING THE DECISION TREE | X feet <= 121.33 :

el evation <= -43 :

Z feet > -11514.8 : thrust_O

Z feet <= -11514.8 :

clinbspeed <= -13 : thrust_O
clinbspeed > -13 :

| Zfeet > -18475.8 : thrust_10

| Z feet <= -18475.8 :

| | Y_feet <= 1535.21 : thrust_20
I

a

C4.5 has two parameters that can be varied by the userltol |
adjust tree pruning. We have experimented with them tp | |
try to obtain the simplest workable rules. One parameter | |
controls C4.5’'s confidence level. That is, the program | |
will prune the decision tree so that it maintains a minid | |
mum classification accuracy with respect to test data. Thie | |
second parameter controls the minimum number of ink ||
stances required for a split. For example, if this parameteir I I
is set to 10, then no branch in the tree will be created u "

less at least 10 examples descend down that branch. [

I
I
I
I
| | Y feet > 1535.21 : thrust_10
evation > -43 :
Y feet <= 638.76 : thrust_25
Y feet > 638.76 :

Z feet <= -26230.1 : thrust_15

I
| Zfeet > -26230.1 : thrust_20

We proceed by generating decision trees using the defa bit |
parameter settings, testing the rules in the simulator and |
then gradually adjusting the parameters to obtain simple(s . . . .
rules. This continues until the rule ‘breaks, ie. it is no nl)t/ t—Pﬁ flf(sttt\lxyo “”tef Oft:]h'ts “r’]le atrr? ofllnteregt.at pre-t
sent. The first line states that when the airspeed is greate
longer able to control the plane correctly. than 127 knots then the thrust should be 100%. When the
TIME AND CAUSALITY airspeed is less than or equal to 127 knots the thrgst i<
lower. The exact value being determined by the remainder
The rules constructed by C4.5 are purely reactive. Thegf the decision tree. Thus C4.5 has correctly detected &
make decisions on the basis of the values in a single staterrelation between speed and thrust. Unfortunately it uses
of the simulation. The induction program has no concepthe speed to determine the thrust when it should be the

of time or causality. In connection with this, someother way around.



By introducing the response time delays described in sec-

tion 3 and the filtering in section 4 causality problems car%VERAGI NG CONTROL SETTINGS

be overcome to some extent, but rules like this someEarlier we had shown how we eliminate intermediate val-
times still occur. At present the only way around this isues in roller and elevator actions so that the induction
to hope that savage pruning will improve the rule. For thegrogram is not swamped with spurious data. The rules
case above, C4.5 was re-run, this time with the minimunghat result from this data can set values instantaneously a

split size set to 500 resulting in the following rule: if the stick were moved with infinite speed from one posi-
tion to another. Clearly this is unrealistic. When control
Z feet <= -30642 : thrust_100 values are taken from the delay buffer, they enter anothet
Z feet > -30642 : circular buffer. The controls are set to the average of the
elevation > -43 : thrust_20 values in the buffer. This ensures that controls change

smoothly. The larger the buffer, the more gentle are the
control changes. By experimentation, we have found that a
buffer length of 5 approximates the speed with which the
guman pilots moved the controls.

Z feet <= -16382 : thrust_ 10

|
|
| Z feet >-16382 : thrust_0O

el evation <= -43 :
I
I

This is quite sensible. Z_feet is the distance from th

runway. As the airplane nears the runway, it decreas
thrust progressively. The elevation rule says that if thee}f' FLYING ON AUTOPILOT

nose is pointing down by more than 4.3” then increase thgfe have succeeded in synthesising control rules for a
thrust to 20%. This will cause the nose to rise and theBomplete flight, including a safe landing. The rules fly the

the thrust will be reduced to 0 or 10% depending on th&essna in a manner very similar to that of the pilot whose
distance from the runway. While we wish the aircraft todata were used to construct the rules. In some cases, th
descend during this stage of the flight, it should not deautopilot flies more smoothly than the human pilot. We

scend too steeply. This rule, working with the elevatorgemonstrate how these rules operate by describing the con
rule controls the angle of descent. trollers built for the first four stages. The last three stages

We believe that learning could be improved by including?"® 100 complex to include in this paper.
some knowledge of causality in the system so that it is
able to correctly identify dependencies among variables. STAGE 1

The critical rule at take-off is the elevator rule:
6. LINKING THE AUTOPILOT WITH
THE SIMULATOR elevation > 4 : level pitch

. . . . el evation <= 4 :
To test the induced rules, the original autopilot code in th? airspeed <= 0 : level pitch

simulator is replaced by the rules. A post-processor cor)- ajrspeed > 0 : pitch_up_5
verts C4.5’s decision trees into if-statements in C so that T

they can be incorporated into the flight simulator easilyThjs states that as thrust is applied and the elevation is
Hand-crafted C code determines which stage the flight hagye|, pull back on the stick until the elevation increases
reached and decides when to change stages. The approprigi&1°. Because of the delay, the final elevation usually
rules for each stage are then selected in a switch statemegiaches 11° which is close to the values usually obtainec
Each stage has four, independent if-statements, one fgg, the pilot.pi t ch_up_5 indicates a large elevator ac-

each action. tion, whereaspi t ch_up_1 would indicate a gentle ele-
vator action. The other significant control at this stage is
DELAYS ﬂaps:

When the data from the human pilots were recorded, a de- ,

lay to account for human response time was included! evation <= 6 : full_flaps
Since the rules were derived from this data, their effect§ €vation > 6 : no_flaps
should be delayed by the same amount as was used when . . o
the data were recorded. When a rule fires, instead of Iettir@nce the aircraft has reached an elevation angle of 6, the
it effect a control setting directly, the rule’s output value/l@Ps are raised.

is stored in a circular buffer. There is one for each of the

four controls. The value used for the control setting is one

of the previous values in the buffer. A lag constant definegTAGe 2

how far to go back into the buffer to get the control set- o ) ] .

ting. The size of the buffer must be set to give a lag thdf stage 2, the autopilot is required to attain level flight.
approximates the lag when the data were recorded. Again this is done through the elevator rule:

clinbspeed <= 13 : level _pitch
clinbspeed > 13 : pitch_down_1



When the climb rate exceeds 13 feet/second push the stiS8TAGE 4

forward gently to bring climb rate down. While this rule he stage 4 rules are more complex than those for the
makes sense, it does not completely stop the climb. Th-Ez 9 P

pilot timed the application of the control carefully so thatpreeevr:Oursezt'c?ges?fnTﬂfirggks ﬂ:)evrgrfmrﬂiriitan?_ﬁte)le, atpeey rhea}v
by the time the stick was re-centred the climb rate waB€€" 9reatly simplified by pruning. They P
zero and remained so. This rule brings the climb rate do ented to illustrate an important point, that is that rules

significantly but does not zero it. As a result, the aircraf an work in tandem alt_hough there is no explicit link be-
climbs more than the pilot would have allowed it to. ween them. The following rules are for the rollers and el-

evator in a sharp turn left.

STAGE 3 azimuth > 114 : right_roll _1
Stage 3 requires a gentle right turn. The rollers rule is: azinuth <= 114 :

| twist <=8 : left_roll_4
twist <= -23 : left roll 3 | twist >8: no_roll
twist >-23:
| azimuth <= -25: no_roll
| azimuth >-25: right_roll_2

twist <= 2 : level_pitch
twist > 2 :
| twist <= 10 : pitch_up_1

. . . twist > 10 : pitch_up_2
C4.5 was designed to handle categorical and numeric vall— P P

ues, but it was not designed to handle values like angles sharp turn requires coordination between roller and ele-
and compass headings that are circular. To help it a littl&/ator actions. As the aircraft banks to a steep angle, the
values such as twist and azimuth (compass headingjevator is pulled back. The rollers rule states that while
which range from 0 to 360° were converted to ranges frorthe compass heading has not yet reached 114°, bank lef
-180° to +180°. Thus, the roll rule states that while theprovided that the twist angle does not exceed 8°. The ele-
twist is less than 23° from horizontal and the aircraft isvator rule states that as long as the aircraft has no twist
heading North, bank right. When the twist has reached 232ave the elevator at level pitch. If the twist exceeds 2°
bank left to steady the aircraft. The azimuth rule ensuréien pull back on the stick. The stick must be pulled back
that the airplane will not bank right again if its heading ismore sharply for a greater twist. Since the rollers cause
more than 25° off North. twist, the elevator rule is invoked to produce a coordinated
turn.

8000 ~

Autopilot
.= = Trainer

6000 SCRIIIEII R R R R
4000 [\~ 1 X\ T MR s

2000 © - 0\ =t VAN T = e A A

Cross-range (E/W/ distance)

-2000 * T T T T T T T z g g
-50000 -40000 -30000 -20000 -10000 0

N/S Distance from start of runway

Figure 3: Cross-range Profile for Trainer and Autopilot

-7-



3000
Autopilot
- — = Trainer
-
2000% « c s e e RECICERIEE P e ot i LD I
- 7
8 _—
-~
=2 ~
= ~
< ~
\ .
10004 « + - s s e N N NG e
. ~ . .
N
: ~
~
T~
-50000 -40000 -30000 -20000

N/S Distance from start of runway

Figure 4: Altitude Profile for Trainer and Autopilot

to the runaway. Future experiments will attempt to quan-
THE COMPLETE FLIGHT tify this difference in performance.

The best way of measuring the performance of the rules i
to compare a flight by a human pilot with a flight by theg' CONCLUSION
autopilot. Figures 3 and 4 show profiles of a flight by oneAlmost all applications of inductive learning, so far, have
of the human pilots plotted with the profiles of a flight by been in classification tasks such as medical diagnosis. Fo
the autopilot derived from that pilot’s data. Figure 3example, medical records of patients’ symptoms and ac-
shows the ground track of the aircraft while Figure 4companying diagnoses made by physicians are entered int
shows a horizontal view of the flight path. Note that thean induction program which constructs rules that will au-
vertical and horizontal axes are shown at different scales. tomatically diagnose new patients on the basis of the pre-
vious data. The output is a classification. Just as diagnos:
8. DISCUSSION tic rules can be learned by observing a physician at work,
we should be able to learn how to control a system by
atching a human operator at work. In this case, the date

h in i q derived f h rovided to the induction program are logs of the actions
are shown in figures 4 and 5 was derived from a human Payen py the operator in response to changes in the sys

lot who had to make many course corrections during hig,m, "\we have used a simple procedural model for induc-
flights. While such a flight is not a pretty sight, it pro- 4ye|y puilding sets of control rules. An induced rule-set
vides useful data for the induction program. Pilots who ar@ gt tes a “strategy” for the given sub-task — a kind of
frugal in their use of the controls give few examples of;jagsifier that maps state records into action names, rathe
what to do when things go wrong. than mapping patient records into disease names. But ir
We have observed a “clean-up” effect noted in Michieboth the medical and control cases, there is a fundamenta
Bain and Hayes-Michie (1990). The flight log of any difference to be drawn between a purely symptomatic
trainer will contain many spurious actions due to humar¢lassification and one based on an understanding of the
inconsistency and corrections required as a result of inalomain’s causality. The latter requires declarative models
tention. It appears that effects of these examples a@ble to support “what if" analysis, recognising that
pruned away by C4.5, leaving a control rule which fliesactions (just like diseases) occur in response to, and resul
very smoothly. This effect was particularly noticeable inin, changes in the system being controlled. Symptomatic
the approach stage of the flight when the trainer performeglassification only deals with static data and does not cope
many roll manoeuvres to keep the aircraft lined-up on th&xplicitly with temporal and causal relations.

runway. We have informally observed that the autopilot

does a much better job of maintaining a steady glide path

One of the interesting things we have learned in this stu
is that good pilots are bad! The autopilot whose profile

-8-



ity and using structured and constructive induction to help

feasibility of learning a specific control task. The next?nake the control rules more compact and more readable.

challenge is to build a generalised method that can lear

basic skills that can be used in a variety of tasks. The eCKNOWL EDGMENTS

skills become building blocks that can be assembled intgim Kehoe and Peter Horne conducted the human reactiot
a complete new controller to meet the demands of a spe¢ime studies and collected much valuable data. Mark
fied task. Pendrith performed many of the modifications to the flight

One of the limitations we have encountered with existingmulator. Silicon Graphics Incorporated made the source

learning algorithms is that they can only use the primitiv ode of the flight simulator available. This research has

attributes supplied in the data. This results in control rule88€n supported by the Australian Research Council anc

that cannot be understood by a human expertn® University of New South Wales.

Constructive induction (or predicate invention) may be

necessary to build higher-level attributes that simplify theREFERENCES

rules. A methodology for doing this, using the human ex-

pert as the source of the required backward-chained contr8nderson, C. W. and Miller, W. T. (1991). A set of chal-
hierarchy, is known as “structured induction” (Shapiro, lenging control problems. In Miller, Sutton and
1987). Our requirement now is for progress towards au- Werbos (Eds.)Neural Networks for Control, MIT
tomating this kind of structuring (see Muggleton and Press.

Buntine, 1988). Chambers, R. A. and Michie, D. (1969). Man-machine
Machine learning of control systems may lead to a better co-operation on a learning task. In R. Parslow, R.
understanding of subcognitive skills which are inaccessi- Prowse and R. Elliott-Green (Eds.Lomputer

ble to introspection. For example, if you are asked by Graphics. Techniques and Applications London:
what method you ride a bicycle, you will not be able to  Plenum.

provide an adequate answer because that skill has beg 14500 p. E. K. (1960). Error decorrelation: a tech-
learned and is executed at a subconscious level. By moni- nique for m'atc.hin.g a class of functions Hroceed.ings

toring the performance of a subcognitive skill, we are able of the Third International Conference on Medical

to construct a functional description of that skill in the Electronics, (pp. 173-178)

form of symbolic rules. This not only reveals the nature ' ’

of the skill but also may be used as an aid to trainindgdichie, D., Bain, M., and Hayes-Michie, J.E. (1990).
since the student can be explicitly shown what he or she Cognitive models from subcognitive skills. In M.
is doing. Grimble, S. McGhee and P. Mowforth (Eds.)
Knowledge-base Systems in Industrial Control. Peter

Learning control rules by induction provides a new way of Peregrinus.

building complex control systems quickly and easily.
Where these involve safety critical tasks, the “clean-up’Muggleton, S. and Buntine, W. (1988). Machine inven-
effect mentioned in the Discussion holds particular inter- tion of first-order predicates by inverting resolution. In
est. While our experiments have been primarily concerned Proceedings of the Fifth International Machine.
with flight automation, inductive methods can be applied Learning Conference (pp. 339-352). Ann Arbor,
to a wide range of related problems. For example, an Michigan: Morgan Kaufmann,.

anaesthetist can be seen as controlling a patient in an op- . T -
erating theatre in much the same way as a pilot contro@u:n![an’ t‘.J' RI'J(1987|)' fsl\;lmplll\jlymr? desizlzl_on Zt;ees.
an aircraft. The anaesthetist monitors the patient’'s condi- znszggfna ournal of Man-iMachine Judies, 2/,
tion just as a pilot monitors the aircraft’s instruments. '

The anaesthetist changes dosages of drugs and gases tsalmmut, C. and Michie, D. (1991). Controlling a 'black-
ter the state of a system (the patient) in the same way that box' simulation of a spacecrafil Magazine, 12(1),

a pilot alters thrust and attitude to control the state of a 56-63.

system (the aircraft). A flight plan can be divided into . N

stages where different control strategies are required, eg2Piro, A.D. (1987)Sructured Induction in Expert
take-off, straight and level flight, landing, etc. So too, the YStems. Addison-Wesley.

administration of anaesthetics can be divided into stagegvidrow, B. and Smith, F. W. (1964). Pattern recognising
putting the patient to sleep, maintaining a steady state control systems. In J. T. Tou and R. H. Wilcox
during the operation and revival after the procedure has (gEds.), Computer and Information Sciences Clever
been completed. Process control in safety-critical applica- Hume Press.

tions in industry should also be mentioned.

Our current research is aimed at producing a reliable and
reproducible method for building controllers. Future work
will be directed towards understanding the effects of causal-



