Eocus

[J [J [J
‘ Here's how an open-source development model can
help commercial software companies overcome many
of the challenges they face in growing their business. \
[J [J [J

Setting Up Shop:
The Business of
Open-Source Software

Frank Hecker, Netscape

’ r oftware companies face many challenges in growing their businesses.
v S Product lines must evolve—new products and add-ons to existing prod-
. ucts are essential to bring in new incremental revenue. Product quality
[must be monitored and improved. Engineering must support current
and older releases while still driving innovation. Employees must be motivated by
interesting opportunities and more than standard incentives. Many companies must
also recruit third-party developers and integrators, who in effect help sell the com-
pany’s products by increasing their value to customers.

These software business challenges are interconnected in two ways. First, most
if not all are functions of constrained resources. Few companies have enough peo-
ple, money, or time to do everything that needs doing, especially when competing
against larger companies with greater resources. Second, a strategy exists to address
all these challenges at once: turning some (or in exceptional cases all) of a com-
pany’s software products into open-source ones.

0740-7459/99/$10.00 © 1999 IEEE January/February 1999 f& IEEE Software 45

Eocus

A company can choose to make source code
_ freely available and still serve its own
business interests as a for-profit organization;

46

Making a product open-source means making
the source code for that product freely available
under liberal licensing terms, and with no licens-
ing fees. Others are free to take that software,
make changes to it, and use or distribute the re-
sulting modified versions as they see fit. When a

company makes the right products open-source
and chooses an appropriate business model, it
can ultimately benefit in ways that more than off-
set any short-term loss of profits that might stem
from no longer being able to sell those products
in the traditional way.

Eric Raymond's article “The Cathedral and the
Bazaar” (http://www.tuxedo.org/~esr/writings/
cathedral-bazaar) makes a case for open-source
development within an extended developer com-
munity as a way to create better software. My goal
in this article (a full-length version is available on the
Web at http://people.netscape.com/hecker/setting-
upshop.html) is to address the business realities of
open-source software. | write as someone who lob-
bied for an open-source strategy within a major com-
mercial software company (Netscape Communi-
cations Corp.) and closely observes and sometimes
participates in the implementation of that strategy.
Simply put, this article is about how to “set up shop”
in the “bazaar.”

“FREE” SOFTWARE

Open-source software and open-source devel-
opment projects have existed for many years under
the general term “free software.” The word “free” has
traditionally led commercial software vendors to
think “no revenue,”and customers of those compa-
nies to think “no support.” Thus most in the com-
mercial world saw free software as irrelevant, and
free-software developers as idealistic and naive.
Similarly, the writings of some free-software advo-
cates have seemed (in tone if not in substance) to
portray commercial software companies as inter-
ested only in short-term profits at the expense of
the long-term interests of users and the software
development community as a whole.

IEEE Software % January/February 1999

Perceptions about free software—pro and con—
have often been more absolute than reality warrants.
Even Richard Stallman, a free-software advocate
often thought hostile to commercial considerations,
did not argue in his “GNU Manifesto” (http://www.
gnu.org/gnu/manifesto.html) that software devel-
opment should always be an un-
paid or nonprofit activity. Rather
he proposed that for-profit busi-
ness models should treat soft-
ware as a professional service
rather than as intellectual prop-
erty. Similarly, many companies
have used software originating in the free-software
community as the basis for commercial products,
and in some cases have contributed to the devel-
opment of free software through donations of
money, hardware, or their employees'time.

Events like the growing success of the Linux op-
erating system (developed under the free-software
model) and Netscape’s release of Communicator
source code have focused more public attention
on the potential importance of free software to
businesses, as both users and for-profit producers
of software. These events have also led to the re-
casting of “free” software as “open-source” (http://
www.opensource.org/history.html) software, a
term that emphasizes the importance of making
source code freely available. It may also remind
people (at least subliminally) that a company can
choose to make source code freely available and
still serve its own business interests as a for-profit
organization.

Nonetheless, open-source software is still “free” in
that no license fees are charged for use or redistrib-
ution of binaries or source code, and users are free to
modify the source, create derivative works, and dis-
tribute those works. These freedoms are essential to
many free-software developers, while others em-
phasize the ability of open-source development to
produce better software. For a good discussion of
the tension between these views see Aaron Renn's
paper “Free’, ‘Open Source’, and Philosophies of
Software Ownership” (http://www.urbanophile.
com/arenn/hacking/fsvos.html).

A COUNTERINTUITIVE STRATEGY

Still, this strategy may seem counterintuitive or
even self-destructive, as it goes against years of tried
and true commercial practice. But consider an his-

Eacus

FREQUENTLY ASKED QUESTIONS

“How can | make any money if | give the software away?”

Just because you no longer charge traditional software li-
cense fees doesn't mean that you can't sell the software in some
form. For example, you could sell the software in a traditional re-
tail package with CD and hard-copy manual included, while still
allowing users to acquire the software at no charge through other
means (for example, downloading it over the Internet). Users
who are not price-sensitive may prefer to buy the retail product
based on its convenience and other attributes they find valuable.
You can also derive revenue from ancillary products and services
as discussed elsewhere in this article.

“If | make a product open-source, does that mean I'm no
longer committed to it?”

Even after you convert a product to open-source, you can and
should continue to have ultimate responsibility for it. Not only
will you exercise influence and oversight over the product’s evo-
lution, but you can and should continue to release an “official” bi-
nary version of the product, packaged for easy installation by
users and with full QA testing, product support, and branding.

“But customers don't really want to have source code and can't
take advantage of it anyway. Why would they prefer an open-
source product over a prepackaged binary product?”

Some customers do indeed want source code; others who
prefer not to deal with source code can use the prepackaged “of-
ficial” product binaries you'll continue to produce. Both sets of

customers benefit from the improved product quality and en-
hancements resulting from open-source development.

“Wouldn't this lead to fragmentation of the product into in-
compatible versions?”

This is one of the most common objections but need not be
anissue, both because of the particular dynamics of open-source
development as they have evolved over time and because your
company can actively minimize the possibility of this happening.
In particular, the free-software developer community has un-
written but historically effective rules that assign control of an
open-source project, including the right to designate “official” ver-
sions, to asingle entity (an individual, an informal group, or a for-
mal organization). As the product’s original developer, you are
the natural candidate, assuming you do the necessary things to
live up to your assigned role.

“What about the risk to customers from ‘rogue’ versions?”

Again, this has not proved problematic with open-source
products, both because of public review and because there is typ-
ically a single source (the original vendor) of the “official” version
that has undergone additional review and testing.

“What about providing technical support to customers with
modified versions?”

Continued on the next page

torical analogy. When Netscape first made the
Navigator Web browser available for unrestricted
download over the Internet, many questioned how
Netscape could possibly make money “giving the
software away.” In retrospect, many see this strat-
egy as a successful innovation that was key to
Netscape's rapid growth. The current interest in
open-source may signal another such industry-
changing event.

Certainly Netscape's own experience with open-
source development has been almost entirely pos-
itive. Since the Communicator source code was re-
leased, Netscape has received many contributions
of code from free-software developers, including
simple bug fixes, patches for ports to new platforms,
a new system of scripts and makefiles for building
the code, and an entire parser for the XML language;
Netscape has also had the benefit of detailed code

reviews, suggested design changes, and expert ad-
vice in various areas, most notably concerning in-
terpretation of W3 Consortium standards for HTML
and CSS. In December 1998 Netscape released its
first preview of software developed mainly under
the open-source model, its “Gecko” technology for
rendering Web pages (http://home.netscape.com/
newsref/pr/newsrelease711.html).

Other companies besides Netscape have also
benefited from the current interest in open-source
development; in particular, several companies pro-
viding open-source software have received funding
from venture capitalists and others. For example, Red
Hat Software, a distributor of the open-source Linux
operating system, received funding from Netscape,
Intel, and two venture capital firms (http://www.
redhat.com/release.phtm|?id=58). (Among other
reasons for this investment, the success of Red Hat

January/February 1999 % IEEE Software

47

Eocus

If you wish not to support modified versions of your product,
leave this to the general free-software community or to other
companies. You can also contract out to external developers to
provide such support as part of your own support offerings.

“Wouldn't customers be concerned with my open-source code
‘tainting’theirs if they used it for their own projects?”

To allay such concerns you can use a license, such as a BSD-
style license, that does not impose license restrictions on deriva-
tive works using the open-source code, or one like the MPL that
does not impose license restrictions on other code that calls (or
is called by) open-source code using a defined API.

“What about embarrassing things that people might discover
in our source code?”

You definitely want “bad” things in your source code to be ex-
posed, most notably bugs; open-source development increases
the chances that both major and minor bugs will be found and
fixed. Other potentially embarrassing things in your source code,
such as inappropriate language in comments, can and should be
removed when you prepare the source for public release.

“Wouldn't releasing my source code expose confidential plans
and strategies to competitors?”

Moving to an open-source model does imply sharing your prod-
uct strategies with external developers and letting them influence
those strategies; it also implies sharing those strategies with com-
petitors. However, this can also result in greater public support for

your strategies (because the outside world is helping you create
them), helping to counter those of your competitors. Also, releas-
ing source does notimply or require making all internal information
publicly available; in particular you can continue to closely control
confidential details of business plans and the like.

“Wouldn't people just use our code and our expertise without
our getting anything in return?”

This objection resembles the original objections to companies
like Netscape allowing downloading of software over the Internet
at a time when vendors saw software piracy as a major cause of
lost revenue. The answer to the objection is also similar: that the
benefits of a properly executed open-source strategy can well out-
weigh the costs. For example, every bug discovered and fixed by
a developer “out there” directly saves you money otherwise re-
quired for in-house QA and software maintenance. It also increases
the value of your software as a reliable product and can indirectly
lead to increased revenues for other products and services asso-
ciated with that software.

“What about competitors who might try to ‘hijack’ an open-
source product for their own purposes?”

Open-source licenses such as the GPL and MPL can be used to
enforce public disclosure and sharing of source code modifica-
tions. In the open-source world, competitors must play by the
same rules as everyone else, and those rules have evolved to min-
imize the chances of one individual or organization exercising
undue advantage.

48

Software and other Linux vendors potentially helps
vendors such as Netscape that provide software for
Linux and hardware vendors such as Intel that sell
processors on which Linux will run.)

UsING OPEN SOURCE TO MEET
BusINESS CHALLENGES

In the traditional software business model,
your company provides all (or almost all) of the
value to customers, and you realize revenues and
profits in return through traditional software li-
cense fees. In an open-source business model,
much of the value provided to customers will not
be provided solely by you, but rather by other de-
velopers who are attracted to working on your
open-source products and who will thus help aug-

IEEE Software % January/February 1999

ment your resources as opposed to your competi-
tors'. These “outside” developers may be motivated
by the prospect of working with software that
solves important problems for them and for oth-
ers, the possibility of future gain providing related
services and creating related products, the op-
portunity to increase their own personal knowl-
edge, or the ego satisfaction of enhancing their
reputation among their peers.

Thus, much of your potential success will depend
on the efforts of others willing to work for you “for
free"—you need free-software developers who will
contribute their work to your company, and to the de-
veloper community at large, without demanding or
receiving money or other tangible payment in return.
However, many free-software developers will not (and
should not) do such work unless you treat them fairly
and provide them with the freedoms and other in-

tangible “payments’that they do want (and demand).
This stemsin part from your company’s attitudes and
actions toward developers working with its products,
but is also formalized in the company’s choice of an
open-source license, specifying the terms and condi-
tions under which the company’s open-source prod-
ucts can be used, modified, and redistributed

Open-Source Licensing

Several standard license agreements have been
published for use with open-source software; some
work better than others for particular business mod-
els. All share some features (http://www.open-
source.org/osd.html), most notably making software
“free” to users both by being no-cost and by mini-
mizing restrictions on use and redistribution. These
features are needed for developers to feel fairly
treated and satisfied with the intangible rewards of
working with your software. Try to use one of these
existing licenses, or modify one to meet your needs:

+ You can release your software into the public
domain, with no license at all.

¢ Licenses like the BSD (Berkeley Software
Distribution) License (http:.//www.opensource.
org/bsd-license.html) place relatively few constraints
onwhat a developer may do (including creating pro-
prietary versions of open-source products).

¢ The GNU General Public License (GPL)
(http://www.gnu.org/copyleft/gpl.ntml) and vari-
ants attempt to constrain devel-
opers from making changes to
open-source products for com-
mercial purposes and then not
contributing those changes back
to the developer community.

¢ The Artistic License (http://language.perl.
com/misc/Artistic.html) modifies some of the more
controversial aspects of the GPL.

¢ The Mozilla Public License (MPL) (http://
www.mozilla.org/NPL/MPL-1.0.html) and variants
(including the Netscape Public License or NPL) go
further than the BSD and similar licenses in encour-
aging the release of derivative works as open-source
while still allowing developers to create proprietary
add-ons if they wish.

So How Do You Make a Profit?

Since you cannot use traditional software licenses
and license fees with open-source software, you
must find other ways of generating revenues and
profits based on the value you are providing to cus-
tomers. Doing this successfully requires selecting a

suitable business model and executing it well.
Several business models are available (names and
descriptions for the first four models are courtesy of
OpenSource.Org, http://www.opensource.org/).

¢ Support Sellers: Revenue comes from media
distribution, branding, training, consulting, custom
development, and post-sales support.

¢ Loss Leader: A no-charge open-source prod-
uct is used as a loss leader for traditional commer-
cial software.

+ Widget Frosting: Companies in business pri-
marily to sell hardware use the open-source
model for enabling software such as driver and
interface code.

¢ Accessorizing: A company distributes books,
computer hardware, and other physical items asso-
ciated with and supportive of open-source software.

+ Service Enabler: Open-source software is cre-
ated and distributed primarily to support access to
revenue-generating online services.

¢ Brand Licensing: One company charges other
companies for the right to use its brand names and
trademarks in creating derivative products.

+ SellIt, Free It: A company’s software products
start out their product life cycle as traditional com-
mercial products and then are continually converted
to open-source products when appropriate.

+ Software Franchising: This combines several
of the preceding models (in particular Brand

Licensing and Support Sellers). A company autho-
rizes others to use its brand names and trademarks
in creating associated organizations doing custom
software development in particular geographic
areas or vertical markets. The company might also
supply franchises with training and related services
in exchange for franchise fees of some sort.
Certain types of hybrid business models relax the
constraints surrounding open-source. For example,
acompany might use both traditional licensing and
open-source-like licensing “side by side”for the same
product, differentiating between users or between
different types of use. Alternately, acompany might
license source widely to any and all users, and even
allow “evaluation” licensing at no charge, but still
charge “right-to-modify”license fees and restrict re-
distribution of modified versions in some way. These

January/February 1999 % IEEE Software

Eacus

Making a profit requires selecting a suitable
business model and executing it well.

49

Eocus

Properly organized and coordinated; distributed
development can produce more products faster
and with higher quality than would be possible

in an isolated effort.

business models are not true open-source models
(http://www.opensource.org/osd.html), and many
free-software developers view them unfavorably, in
some cases starting competitive development ef-
forts simply to provide a more open alternative to
software released under a hybrid model. Some
companies, for example Troll Tech (http://www.
troll.no), have abandoned such models and moved
to full open-source licensing; it remains to be seen
how successful these types of hybrid business mod-
els can be in practice.

IMPLEMENTING AN OPEN-SOURCE
STRATEGY

Beyond selecting an appropriate license and
business model, what else might your company
have to do to implement an open-source strategy?

¢ Code sharing. For historical reasons your open-
source product may share a common source code
base with others of your products that will remain
proprietary. If so, make sure that open-source de-
velopment can proceed without complicating your
other internal development efforts; this may require
special licensing considerations and appropriate

modularization to enforce a clean separation.

¢ Third-party technology. If your product in-
cludes technology licensed from third parties, you
must treat such third-party code specially to create
areleasable open-source product. You might remove
the code entirely, seek permission to include third-
party code (perhaps under some special arrange-
ment), or replace it with open-source code provid-
ing equivalent or similar functionality. The presence
of third-party technology also can influence your
choice of open-source license.

+ Code sanitization. To ensure your source code
is ready for public distribution, you must remove or
revise inappropriate language, comments intended
for internal viewing only, and so on.

¢ Export control. If your company is located in
the US and your product contains security and cryp-
tographic code, to obtain export approval you will

50 IEEE Software % January/February 1999

almost certainly have to modify your product, in-
cluding removing all encryption code and security
code that calls that code (http://www.mozilla.
org/crypto-faghtml).

¢ Product development processes. Releasing
source for a product will almost certainly change the
way you do product development. Indeed, without
such changes you will not realize most of the bene-
fits of an open-source strategy. Some tips: form a
team responsible for your open-source efforts; pro-
vide infrastructure for external developers (news-
groups, source code repositories with revision con-
trol, special bug-reporting systems); and have your
own developers be ‘customers” of that infrastructure,
in principle no different than any other developers.

Open-source development processes

Suppose that you release one of your products
(whether existing or new) as open-source. How do
you coordinate the efforts of potentially hundreds or
even thousands of developers worldwide who
might be creating bug fixes, customized versions,
and add-on products all based on your source code?

At first glance, this seems impossible. However,
at least one successful project exists involving dis-
tributed and relatively loosely coordinated devel-
opment of software products—
a project arguably as complex
and functional as any commer-
cial product. That example is the
project that created the Linux op-
erating system kernel and the
body of free software (from the
GNU project and elsewhere) that
runs on top of it. The Linux experience offers many
lessons on how to organize software development
following an open-source strategy, and in particular
shows the benefits of open-source developmentin
improving the overall quality of Linux and GNU soft-
ware and enabling new features and add-on soft-
ware to be easily and quickly added. These benefits
have in turnincreased the attractiveness of Linux as
an alternative operating system platform. Raymond
discusses these lessons at length in “The Cathedral
and the Bazaar,” but following are some of the key
points and their implications.

Properly organized and coordinated, distributed
development can produce more products faster and
with higher quality than would be possible in aniso-
lated effort. As Raymond puts it, “The developer
who uses only his or her own brain in a closed pro-
jectis going to fall behind the developer who knows

how to create an open, evolutionary context in
which bug-spotting and improvements get done
by hundreds of people.” Substitute “software com-
pany”for ‘developer’and you have a basic theme of
this article; this approach offers you one way to com-
pete successfully with larger competitors without
having their internal resources.

Distributed development is jump-started and
proceeds most rapidly when there exists a body of
code in which developers can see the promise of so-
lutions to problems that interest them, and which
developers can use as a base for their own work to
solve those problems. One of your major roles would
be to provide this existing source code base initially,
and to continue to seed it with new contributions
in the form of new product features with accompa-
nying source code.

Higher-quality code can be generated faster
when you enlist other people to do not only bug de-
tection and reporting but bug fixing as well. Bug fix-
ers are in turn more motivated when you do fre-
quent releases that incorporate their fixes and
enable them to see the fruits of their efforts. Here
you would need ways to ensure that other devel-
opers' bug fixes are in fact incorporated back into
your source tree. This is both easier and harder than
using the Internet as your beta test site, as many
software companies are now doing by releasing
beta versions for general download: On the one
hand, developers with access to source would be
much more likely to not only find problems but also
reproduce, diagnose, and fix them. On the other
hand, they would have a much higher expectation
of you taking their contributions seriously. They
would request or even demand access to the actual
developers working on the components, and would
be even more turned off than regular users if they
received little or no response to their communica-
tions with you.

The Internet and the collaborative tools built
on top of it (e-mail, newsgroups, and so on) form
an indispensable infrastructure for coordinating
distributed developers. However, you must pro-
vide the proper social context, including having
development coordinators with the necessary so-
cial and communications skills to “lead without
coercion”and focus developers'energies into pro-
ductive channels. You must also select the teams
and team leaders carefully to develop products ac-
cording to this strategy; in particular find devel-
opers who have had previous experience with
free-software projects.

Whatever benefits open-source software of-
fers for meeting the challenges of software

businesses, there is no “free lunch.” You cannot sim-
ply release source code, put a few newsgroups up,
and expect distributed development to magically
self-organize.

However, the potential rewards are worth the ef-
fort. Open-source software is a “new” business tool
that offers the potential to achieve results that are
impossible with traditional software development
practices alone. O

About the Author

Frank Hecker is lead systems engineer
for the government sales group of
Netscape Communications Corporation;
he has worked in similar sales support
positions for Tandem Computers, Visix
Software, and Prime Computer. Besides
open-source software, his professional
interests include information systems
security and cryptography.

Hecker has BS degrees in applied mathematics and
physics from Centre College of Kentucky. He can be reached
at hecker@netscape.com; for other contact information, see
http://people.netscape.com/hecker.

This document represents Hecker’s personal opinions
only, and does not necessarily represent the official positions
of Netscape Communications Corporation.

January/February 1999 ,& IEEE Software

Eacus

51

