
focus

Wisdom, a
lightweight software

engineering
method, addresses
the needs of small

teams that develop
and maintain

interactive systems.
Small companies

leveraging on their
communication,

speed, and
flexibility can

benefit from
Wisdom’s process,

notation, and
project philosophy.

S
oftware process assessment and improvement models such as the
Capability Maturity Model, the Quality Improvement Paradigm,
and ISO 9001 are not suitable for small software developing com-
panies. Several studies1,2 concluded that small companies want to

improve their process and product quality but face organizational, cultural,
financial, and technical obstacles. In terms of organizational problems,
small companies have difficulties forming an internal dedicated process

0 7 4 0 - 7 4 5 9 / 0 0 / $ 1 0 . 0 0 © 2 0 0 0 I E E E S e p t e m b e r / O c t o b e r 2 0 0 0 I E E E S O F T W A R E 113

improvement group. New practices can af-
fect existing-product maintenance and client
demand. Management’s fear of high costs,
delayed time-to-market, and low return on
investment manifests in cultural problems.
Software engineers often resist new methods,
tools, technologies, and standards. Reaching
maturity levels—required to comply with
quality standards—is a long-term commit-
ment. Financial problems often arise because
allocating resources for quality groups and
hiring consultants are costly. Modern meth-
ods and tools are expensive and require
training (which temporarily reduces produc-
tivity). Finally, small companies can’t avoid
technical problems: tailoring complex soft-
ware engineering methods and techniques
that are designed for large companies is
costly and time consuming. Low-end tools
(for example, fourth-generation languages)
lack integration and support for manage-
ment tasks (for example, documentation,

configuration management, and so on).
Besides raising these problems in small

software companies, existing process assess-
ment and improvement models fail to benefit
from the strengths of such environments. For
instance, small companies are usually more
flexible and controllable and they react faster
than large companies. Also, communication is
usually enhanced in such companies both in-
ternally and toward external partners (clients,
technology providers, and consultants).

We developed Wisdom (Whitewater Inter-
active System Development with Object
Models) to address the specific needs of small
development teams who are required to build
and maintain interactive systems with the
highest process and product quality stan-
dards. The Wisdom software engineering
method has three important components:

■ a software process based on a user-
centered, evolutionary, and rapid-pro-

Wisdom:
A Software Engineering Method for
Small Software Development Companies

Nuno J. Nunes, University of Madeira

João F. Cunha, University of Porto

SE in the small

totyping model that is ideal for con-
structing and maintaining interactive
systems, such as those with a strong
Web-user-access component;

■ a set of conceptual modeling notations
(based on a simple Unified Modeling
Language subset) that support the mod-
eling of functional and nonfunctional
requirements (regarding user tasks and
interactions in particular); and

■ a pragmatic project management philos-
ophy based on open documentation and
tool-usage standards and requiring a
flexible team with efficient, open com-
munication channels between contrac-
tors, users, and developers.

Wisdom emerged from our experience
with small companies that were developing
software in ad hoc and chaotic ways, and it
has evolved over the years. This article
briefly presents our approach and outlines
how companies can apply it in context.

The Wisdom Process
Small companies have limited resources

and can’t afford disasters or failure. But hav-
ing “chaotic ways of working” doesn’t mean
they’re working disastrously or failing. In
fact, before software engineering researchers
invented the spiral model and the iterative
and incremental development process, small
companies were working chaotically and
making money. Having chaotic ways of
working means taking a “just do it” ap-
proach (also known as the “Nike approach”)
to software development—evolving proto-
types toward a finished product and always
urging toward implementation. It also means
having runaway projects, unrepeatable suc-
cess, and low-quality products.

To overcome managers’ and practitioners’
cultural barriers, we need a model that adapts
to their idiosyncrasies. Wisdom rationalizes
“just do it” and builds on what characterizes
small companies: speed, flexibility, and good
communication. Our approach leverages
those characteristics and is a natural evolu-
tion of the chaotic atmosphere into a user-
centered evolutionary prototyping model.

To implement Wisdom, we start by intro-
ducing the iteration concept; that is, the de-
velopment team states prototype objectives
and evaluates them at the end of the iteration.
This activity introduces a sense of completion

and control, very effective for gaining devel-
oper and manager support. The key ideas are
to raise the importance of progress measure-
ment and identify the major intervention ar-
eas for Wisdom’s process improvement tech-
niques. At this stage, the iteration should re-
flect the development team’s pace. The
iteration’s duration changes between compa-
nies and even between projects and develop-
ment teams. Enforcing a predetermined dura-
tion can introduce undesired disturbance. The
subsequent introduction of different activities
during the iteration cycle will eventually in-
crease the duration but will also reduce the
total number of iterations, keeping (hopefully
improving) the pace of the life cycle overall.
That way, we can maintain time-to-market
and support parallel product-development
and maintenance life cycles, therefore mini-
mizing the overall impact on the company.

Clearly identifying iterations raises the
need to introduce techniques for stating ob-
jectives and evaluating prototypes. It is im-
perative that the developers see the advan-
tage of using these techniques over the
random hacking they usually perform. In-
troducing complex and time-consuming
techniques will cause resistance, increase
training costs, and temporarily reduce pro-
ductivity, which will reflect on the company
and endanger the improvement effort. With
this in mind, we introduce participatory
techniques3,4 to aid requirements discovery
and jump-start process improvement. Re-
quirements discovery is a major problem
software developers face and drives all sub-
sequent activities. Participatory techniques
are also a good excuse for introducing mod-
eling notations such as the object-oriented
UML. At this stage, we hold short require-
ments-discovery sessions with small groups
of developers and end users. During these
sessions and subsequent internal brainstorm-
ing meetings, we introduce the Wisdom no-
tation for creating the requirements model.

We use the requirements model for stating
prototype goals. Depending on the model’s
complexity and the team’s maturity, we can
also use it for strategic decisions; that is, for
prioritizing development, identifying risks,
managing resources, scheduling, and so on.
This way, small companies can capitalize on
enhanced communication with end users to
capture critical process management informa-
tion. For example, the companies identify and

Wisdom
emerged from
our experience

with small
companies
that were
developing

software in ad
hoc and chaotic
ways, and it has

evolved over
the years.

1 1 4 I E E E S O F T W A R E S e p t e m b e r / O c t o b e r 2 0 0 01 1 4 I E E E S O F T W A R E S e p t e m b e r / O c t o b e r 2 0 0 01 1 4 I E E E S O F T W A R E S e p t e m b e r / O c t o b e r 2 0 0 0

negotiate risks and priorities with end users
during the participatory sessions, and the de-
velopment team evaluates these risks and pri-
orities for scheduling development and drive
deployments (prototype evolutions). We also
use the requirements model to evaluate the
evolving prototypes, enabling the team to
manage requirements and measure progress.
We also conduct prototype evaluation in
short participatory sessions with end users.
During the sessions, the development team
can reevaluate the risks and priorities identi-
fied when the prototype objectives were
stated. If problems arise, developers can react
fast, renegotiating the new development strat-
egy with end users as needed. Throughout the
process, we introduce different prototyping
techniques, from mockups to low- and high-
fidelity prototypes. We take special care to
prevent the development team from using hi-
fi prototypes in the early iterations. End users
have problems criticizing hi-fi prototypes, and
preventing the use of them can be an effective
way to postpone the implementation rush.

This goal-setting and evaluation cycle, an-
chored on the requirements model, forms Wis-
dom’s foundation. (Depending on the com-
pany, the complexity of its projects and mod-
els, and the development team’s size, we can
also introduce the analysis and design models.)
For example, a small company that works on
static Web design can work seamlessly under
this simple model. This doesn’t mean that
analysis or design isn’t performed in such envi-
ronments, but that those activities are embed-
ded in the prototype implementation, as they
are when you write a small spreadsheet pro-
gram. Therefore, development teams can ex-
pand the iterative cycle according to their
needs. Once we’ve implemented the Wisdom
process’s foundation, the other activities
emerge naturally and the improvement process
proceeds. As the process matures, the models
increase in complexity, and support activities
for project management come to the forefront.

A diagrammatic, model-based approach is
important in small companies because the
development team can use working models
to specify and document the software sys-
tems. Creating, managing, and maintaining
documentation becomes a consequence of
the development process and not an addi-
tional support activity. In Wisdom, we rec-
ommend an almost exclusive use of models
to document the project. The models emerge

from the participatory sessions as sticky
notes that development team translates to a
more formal specification in the subsequent
wrap-up sessions. Sometimes, models require
translation to textual descriptions for specific
purposes (for example, a contract for the
client), but they are not maintained as actual
development-process descriptions. Some
companies that were implementing ISO 9001
successfully used this approach to produce
documentation required for quality practices.

Wisdom doesn’t require direct tool sup-
port (such as CASE tool support). Teams us-
ing our approach would benefit from a trans-
parent, flexible integration of the UML’s
static diagrams with the relational schema or
of the user-interface-specific models with a
GUI builder, but modeling tools lack such in-
tegration with rapid-development tools. Nor
do they support several development activi-
ties, such as process management activities
(including development-task prioritization,
progress measurement, and traceability). Due
to the weak tool support, process manage-
ment activities are usually performed manu-
ally or with word processing or spreadsheet
software. Modeling tools also don’t focus on
the cognitive aspects involved in software de-
velopment—such as opportunistic design,
comprehension, and problem solving. With a
lightweight approach, we could join process
management features with the modeling
tools, thereby reducing the need for addi-
tional tools (and avoiding the acquisition and
training costs that new tools bring).

The Wisdom Notation
The Wisdom notation is a subset of the

UML, a standard object-oriented language
for visualizing, specifying, constructing, and
documenting a software-intensive system’s
artifacts.5 UML 1.1 has an overwhelming
233 concepts (84 basic and 149 diagram
concepts).6 UML predecessors (Object Mod-
eling Technique, Object Oriented Software
Engineering, and Booch) were methods, but
the UML is process-independent, which ex-
plains its number of concepts and the need
to put it into a method’s explicit context.

Figure 1 presents Wisdom’s four major
workflows and the corresponding activities,
models, and diagrams. As the illustration
shows, Wisdom is based on seven models
and uses four types of diagrams (two types
each of structural and behavioral diagrams).

S e p t e m b e r / O c t o b e r 2 0 0 0 I E E E S O F T W A R E 115S e p t e m b e r / O c t o b e r 2 0 0 0 I E E E S O F T W A R E 115S e p t e m b e r / O c t o b e r 2 0 0 0 I E E E S O F T W A R E 115

About the Authors

Nuno J. Nunes is a teaching assistant
at the Com-
puter Science
Unit of the
University of
Madeira. His
research in-
terests include
interaction
design, ob-

ject-oriented methods and languages,
and lightweight software engineering
techniques. He holds a five-year degree
in informatics from the Instituto Superior
Técnico of the University of Lisbon and
an MPhil in software engineering from
the University of Madeira. He is a mem-
ber of the ACM, SIGCHI, SigSoft, and the
IEEE Computer Society. Contact him at
Universidade da Madeira, Dep. de
Matemática, Campus Universitário da
Penteada, 9000-011 Funchal, Portugal;
njn@math.uma.pt.

João F. Cunha lectures at the University
of Porto on
information
systems and
databases. His
research in-
terests include
decision sup-
port systems
for opera-
tional transport planning, graphical user
interfaces, and electronic commerce. He
holds a first degree in electrical engineer-
ing from the University of Porto, an MSc
in operational research from Cranfield
University, and a PhD in computing sci-
ence from Imperial College. He is chair of
the IEEE Portugal section and a member
of the ACM. Contact him at Faculdade de
Engenharia da Universidade do Porto, Rua
dos Bragas, 4050-123 Porto, Portugal;
jfcunha@fe.up.pt.

We estimate that Wisdom uses approxi-
mately 39 basic and 29 diagram concepts—
68 total (29% of the UML 1.1’s total con-
cepts).6 Our proposal differs from existing
UML-based methods and processes, not
only because of the reduced number of con-
cepts, but also because of its focus on the in-
teractive aspects of the software systems.
Usability is recognized as significantly im-
pacting the quality, efficiency, and accept-
ability of the end products. Because small
companies tend to focus their development
contexts on custom or in-house develop-
ment, we leverage the usability aspects in
Wisdom. The interface architecture design
and user interface design focus the usability
aspects, prioritizing the development and
scheduling of prototype evolutions.

Requirements Workflow
The requirements workflow aims for the de-

velopment of a system that satisfies the cus-
tomer, including the end user. This workflow
includes creating the product’s high-level con-
cept, profiling the users, analyzing the users’
tasks, creating the domain (or business model),
and producing the requirements model. The
accomplishment of these activities depends on
the project’s complexity and the development
team’s maturity and size. Regardless, all of the

requirements workflow’s outputs are a conse-
quence of participatory sessions and the subse-
quent internal wrap-up. We only introduce the
notation on a need-to-know basis.

The Wisdom notation expresses func-
tional requirements, task flows, and non-
functional requirements with use cases and
activity diagrams. Because of the focus on in-
teractive applications, we use the essential in-
terpretation of use cases.7 An essential use
case is a complete, meaningful, and well-de-
fined task of interest to the user. Essential use
cases play a major role in our approach; they
drive the entire development process, binding
the evolutionary cycle together. In Wisdom,
they also serve as the major source for find-
ing and specifying analysis classes, task
flows, interaction contexts, and tasks (user-
interface-specific constructs). Additionally,
they work as containers for nonfunctional re-
quirements—a major problem in evolution-
ary prototyping approaches. In the require-
ments model, we use notes to attach non-
functional requirements to use cases either at
the model level (general requirements), at the
use cases level, or at the activity level (anno-
tating actions in activity diagrams). This ap-
proach reduces the number of artifacts to
manage and keeps nonfunctional require-
ments at the hierarchical level at which the
developers should consider them. Our ap-
proach enables the development team to
manage several types of constraints, includ-
ing technical, usability, and organizational
ones. The Wisdom notation details use cases
with task flows—a diagrammatic adaptation
of an essential use case narrative—expressed
in UML activity diagrams.

Task flows play a major role in Wisdom. A
task flow corresponds to a technology-free
and implementation-independent description
of user intentions and system responsibilities
in the course of accomplishing a specific task
(the essential use case). They replace textual
descriptions of essential use case narratives
that prevent the development team from man-
aging multiple success and failure scenarios.
Developers use activity diagrams throughout
the process to prototype and design the user
interface. They foster reuse of user interface
components and ensure the task and presenta-
tion models focus on the actual user tasks.
They also guarantee that the user interface re-
flects not the application’s internal structure,
but the actual structure of use—a well-known

1 1 6 I E E E S O F T W A R E S e p t e m b e r / O c t o b e r 2 0 0 0

Business or
domain model

Interiorize project

Requirements
discovery

Process
workflows

Requirements
workflow

Activities Models Diagrams

Internal system
analysis

Interface architecture
design

Analysis
workflow

Structural
diagrams

Behavior
diagramsInternal system

design

User interface
design

Design
workflow

Interaction model

Use case
model

Use case
diagrams

Class
diagrams

Activity
diagrams

Statechart
diagrams

Analysis model

Design model

Presentation model

Dialog
model

Figure 1. Workflows,
activities, models,
and diagrams in
Wisdom.

problem that influences product usability.
Figure 2 illustrates some typical require-

ments-workflow artifacts for a simple, well-
known example3,8 of a hotel reservation sys-
tem. Figure 2a shows the use case diagram
with one example of a nonfunctional require-
ment attached to two use cases. Figure 2b
shows a domain model representing the most
important objects in the context of the system.
Figure 2c shows an activity diagram detailing
the checkout use case. Round rectangles de-
note actions, which correspond to user inten-
tions in the customer and clerk swimlanes and
to system responsibilities in the system swim-
lane. Another nonfunctional requirement is at-
tached to the informed of no check-in data ac-
tion (a low-level constraint). Also, under the
system swimlane, we show how activities can
be used to identify and detail interaction con-
texts. Interaction contexts are a Wisdom-
specific extension to the UML; they play a cen-
tral role, supporting interface-architecture and
user interface design in our approach.

Analysis Workflow
The analysis workflow refines and struc-

tures the requirements described in the re-
quirements model. The purpose is to build a
requirements description that shapes the
whole system’s internal and user interface
structure in the developer’s language. In this
workflow, the major activities are identifying
and structuring both analysis classes and the
Wisdom-specific interaction classes (interac-
tion contexts and tasks). Analysis classes rep-
resent abstractions of domain concepts cap-
tured in the requirements workflow. They are
focused on functional requirements and post-
pone the handling of nonfunctional require-
ments until the design phase. Analysis classes

are divided according to the UML standard
profile for software development processes,
into entity (passive information), control
(complex business logic), and boundary (ex-
ternal communication). This partitioning
into three different types of objects distrib-
utes responsibilities, improving robustness,
reuse, and change location.

In Wisdom, we expand the UML analysis
framework, introducing two new user-inter-
face-specific constructs organized in the in-
teraction model.9 Interaction spaces are a
special kind of interaction class for model-
ing the interaction between the system and
its actors; that is, they are responsible for re-
ceiving and presenting information and re-
quests from and to the users. Interaction
spaces have actions instead of operations, as
well as stereotypical input and output ele-
ments that model, respectively, events the
user produces and information presented to
the user. Interaction spaces also have rela-
tionships that represent navigational or con-
tainment relations among them. The other
new construct proposed in Wisdom is the
task class stereotype. Tasks are a special
kind of interaction class for modeling the
structure of the dialogue between the user and
the system. Task classes are responsible for
task-level sequencing, maintaining consistency
for multiple interrelated interaction spaces,
and mapping back and forth between entity
and control classes and interaction spaces.

In the analysis workflow, Wisdom lever-
ages two major models. The analysis model
reflects the system’s internal structure and the
organization of analysis classes (entity, con-
trol, and boundary) to realize the system re-
sponsibilities. The interaction model struc-
tures the user interface architecture in terms of

S e p t e m b e r / O c t o b e r 2 0 0 0 I E E E S O F T W A R E 117

Get bill

Identify customer

[Customer not in system]

[Customer
in system]

Reservation Bill

Availability must
be real time

Use case diagram

Domain model

Customer SystemClerk
Checkout task flow

<<Initiator>>

<<Initiator>>

<<Initiator>>

1

Has

0..*

1 1..*

Ask to issue bill Issue customer bill

Deliver bill
to customer

Bill editor

Customer browser

Hotel

1..*

1..*

1..*
Stays

Customer

Room

Contains

Customer

(b) (c)

(a)
Clerk

Make reservation

Check in

Check out

Adequate
feedback should
prevent this state

Appoaches desk and
wants to check out

Check whether
customer is in system

Informed of no
check-in data

Unassign room
1

Figure 2. Example of
Wisdom require-
ments artifacts for a
hotel reservation
system, including
(a) a use case model
with a requirement
set and two users,
(b) a domain model
with the significant
objects labeled, and
(c) a checkout task
flow demonstrating
the connections of
relevant actions.

interaction classes (interaction space and task)
and how developers organize them to support
the user intentions. The user interface ac-
counts for approximately half the develop-
ment effort of interactive systems. Moreover,
in rapid-prototyping approaches, the user in-
terface architecture usually reflects the appli-
cation’s internal structure, compromising co-
herence and consistency. The Wisdom nota-
tion extends the UML to support effective user
interface design, fostering the development of
an adequate architecture that reflects users’
tasks and not the system’s internal structure.

Figure 3 illustrates two analysis-workflow
artifacts corresponding to the internal (analy-
sis model) and user interface (interaction
model) architectures of the hotel reservation
system. On the right is the analysis model,
with entity classes, control classes, and corre-
sponding communication relationships. Entity
classes correspond to passive information and
usually coincide with domain types. Control
classes represent coordination, sequencing
transactions, and control of other classes that
can’t be allocated to specific entity classes. On
the left is the interaction model, with task
classes, interaction space classes, and corre-
sponding communication relationships. Task
classes represent specific tasks users must per-
form to complete the use cases. Interaction
space classes correspond to abstractions of
physical user-interface components—usually
windows, forms, panes, and so on.

Design Workflow
The design workflow drives the system to

implementation, refining its shape and archi-
tecture. While analysis focuses only on func-
tional requirements, design also focuses on
nonfunctional requirements. At this level, de-
velopers manage constraints related to the de-
velopment environment (languages, data-
bases, GUIs, operating systems, and so on).
The major activities in this workflow reflect

the incremental refinement of the analysis and
interaction models. The Wisdom notation
leverages the separation of the internal func-
tional core from the specifics of the user inter-
face, driving the design workflow, fostering
reuse, and leading to robust implementations.

Technologies and tools available to small
software companies are a major design influ-
ence. Small companies usually adopt fourth-
generation languages, which influence the de-
velopment environment in several ways. They
include a relational database management sys-
tem, a graphical interface builder, and a re-
port-generation tool. They seldom support ob-
ject-oriented programming and integration
with high-end CASE tools (for example, mod-
eling tools). Wisdom is independent of devel-
opment and CASE tools. However, we recog-
nize the importance of producing models that
can be used, or smoothly transformed (even if
not automatically), to feed available tools.
Therefore, modeling in Wisdom represents a
good return on investment, because tools
available to small companies can sustain the
modeling. Another major factor in design is
supporting the evolutionary cycle. Once
passed on to the development tools (and ad-
mitting lack of integration), design models will
eventually become outdated. The process of
reverse-engineering design models, feeding
back the conceptual models, and maintaining
traceability is then the main source of prob-
lems. In light of available technology and
tools, lightweight notations that are easy to
use and learn, such as the ones we propose in
Wisdom, must support this process. The trans-
lation of Wisdom models into implementation
technologies—such as the relational schema or
a GUI—can be a simple, straightforward task.
For example, the entity classes in Figure 3
outline the application data model and can be
translated to a relational database structure
following well-known transformation rules.10

Because of the relative simplicity of such trans-
formation, this is clearly one area where rapid-
development tools could benefit from a direct
integration with modeling tools, or even the
use of a direct UML representation for the
data model.

Figure 4 illustrates several Wisdom design
artifacts for the hotel reservation system. On
the left are five detailed interaction spaces. The
resulting prototyped user interface is on the
right. Dependencies from left to right show de-
sign decisions the user interface technology

1 1 8 I E E E S O F T W A R E S e p t e m b e r / O c t o b e r 2 0 0 01 1 8 I E E E S O F T W A R E S e p t e m b e r / O c t o b e r 2 0 0 01 1 8 I E E E S O F T W A R E S e p t e m b e r / O c t o b e r 2 0 0 01 1 8 I E E E S O F T W A R E S e p t e m b e r / O c t o b e r 2 0 0 0 S e p t e m b e r / O c t o b e r 2 0 0 0 I E E E S O F T W A R E 1181 1 8 I E E E S O F T W A R E S e p t e m b e r / O c t o b e r 2 0 0 0

Interaction model Analysis model

Customer browser Period

Room

Customer

Reservation

Stay

Bill

Room browser

Customer editor

Identify customer

Create customer

Assign room

Create reservation

Bill customer

Reservation editor

Bill editor

Check availability

Availability

Room scheduler

Reservation
handler

Payment

Reservation browser

Availability browser

Figure 3. Example of
Wisdom analysis
artifacts for a hotel
reservation system.
Underlined circles
are entity classes,
circles with a top
arrow are control
classes, circles with
a stick figure and a
computer are task
classes, and circles
with a center arrow
are interaction space
classes.

constrains. Several different mappings of Wis-
dom interaction spaces exist. For example, the
containment relationship between the cus-
tomer browser interaction space and the three
types of customer interaction spaces maps as a
tabbed GUI element. Also, as illustrated in the
figure, input elements map as GUI elements
that the user is able to manipulate (editable
text fields, combo boxes, and so on) and out-
put elements as GUI elements that the user
cannot manipulate (noneditable fields, icons,
and so on). Actions (and navigational rela-
tionships, sometimes) map as buttons.

We’ve implemented Wisdom in several
small software companies in Portu-
gal. Our experience shows that small

companies want to improve their practices and
can take advantage of new developments in soft-
ware engineering. Although we tailored our ap-
proach for small companies, small development
teams within large development companies or
user organizations can use it.

Wisdom has been efficient in a wide range
of projects, such as Web site designs, interac-
tive web applications, decision support sys-
tems, and distributed embedded systems.11

Wisdom’s user-centered perspective and the
new user-interface-specific notational aspects

have improved product usability with gains in
terms of efficiency, user satisfaction, reduced
complexity, and cost.

References
1. F. Cattaneo, A. Fuggetta, and L. Lavazza, “An Experience

in Process Assessment,” Proc. ICSE ’95, IEEE Computer
Soc. Press, Los Alamitos, Calif., 1995, pp. 115–121.

2. E. Demirörs et al., “Process Improvement towards ISO
9001 Certification in a Small Software Organization,”
Proc. ICSE ’98, IEEE CS Press, 1998, pp. 435–438.

3. T. Dayton, A. McFarland, and J. Kramer, “Bridging
User Needs to Object Oriented GUI Prototype via Task
Object Design,” User Interface Design, CRC Press,
Boca Raton, Fla., 1998, pp. 15–56.

4. M. Muller and S. Kuhn, “Participatory Design,”
Comm. ACM, Vol. 36, No. 3, June 1993, pp. 24–28.

5. G. Booch, J. Rumbaugh, and I. Jacobson, The UML
User Guide, Addison-Wesley, Reading, Mass., 1999.

6. X. Castellani, “Overviews of Models Defined with
Charts of Concepts, Information System Concepts,”
Proc. IFIP WG 8.1 Int’l Working Conf. ISCO4, Kluwer,
Dordrecht, The Netherlands, 1999, pp. 235–256.

7. L. Constantine and L. Lockwood, Software for Use: A
Practical Guide to the Models and Methods of Usage-
Centered Design, Addison-Wesley, Reading, Mass, 1999.

8. D. Roberts et al., Designing for the User with OVID,
MacMillan, Indianapolis, Ind., 1998.

9. N. Nunes and J.F. Cunha, “Wisdom: A UML-Based Archi-
tecture for Interactive Systems,” to be published in Proc.
DSV-IS 2000 Workshop, Springer-Verlag, New York, 2000.

10. M. Blaha and W. Permelani, Object-Oriented Modeling
for Database Applications, Prentice Hall, Upper Saddle
River, N.J., 1998.

11. N. Nunes and J.F. Cunha, “Whitewater Interactive Sys-
tem Design with Object Models,” to be published in
Object Modeling and User Interface Design, M. van
Harmelen, ed., Addison-Wesley, 2000.

S e p t e m b e r / O c t o b e r 2 0 0 0 I E E E S O F T W A R E 119

Figure 4. Transfor-
mation of the hotel-
reservation-system
design view model
into a GUI.

<<Interaction space>>
Customer browser

<<Input element>>
Customer name
<<Action>>
Find

<<Interaction space>>
Other customers

<<Output element>>
Customer name
<<Action>>
Make reservation
Edit
Cancel

<<Contains>>

<<Interaction space>>
Reserved customers
<<Output element>>
Reservation number
Customer name
<<Action>>
Check in
Edit
Cancel

<<Contains>>

<<Interaction space>>
Customers preferences
<<Input element>>
Smoking
Bed
Location

<<Contains>>

<<Interaction space>>
Customer editor

<<Input element>>
Name
Address
Zip Code
City
Country
Phone
Fax
Birthdate
Age
<<Action>>
Save
Cancel

<<Navigates>>

<<Interaction space>>
Staying customers

<<Output element>>
Room number
Customer name
<<Action>>
Check out
Edit
Cancel

<<Contains>>

