
Distributed Component Technologies and their
Software Engineering Implications

Wolfgang Emmerich
Dept. of Computer Science
University College London

Gower St, London WC1E 6BT, UK
w. emmer ich©cs, ucl. ae. uk

Abstract
In this state of the art report, we review advances in
distributed component technologies, such as the Enter-
prise Java Beans specification and the CORBA Component
Model. We assess the state of industrial practice in the
use of distributed components. We show several architec-
tural styles for whose implementation distributed compo-
nents have been used successfully. We review the use of
iterative and incremental development processes and the no-
tion of model driven architecture. We then assess the state
of the art in research into novel software engineering meth-
ods and tools for the modelling, reasoning and deployment
of distributed components. The open problems identified
during this review result in the formulation of a research
agenda that will contribute to the systematic engineering of
distributed systems based on component technologies.

1. I N T R O D U C T I O N
The idea of constructing software in the same way as hard-
ware is constructed, i.e. by assembling reusable components
is as old as the discipline of software engineering itself. It
was, in fact, at the 1968 NATO Workshop, which is com-
monly considered as the birth of software engineering, that
McIllroy introduced the notion of components [30]. During
the last 30 years a number of people have refined the notion
of components and we shall use Michael Stal's definition
that treats a component as "a self-contained entity (black-
box) that exports functionality to its environment and may
Mso import functionality from its environment using well-
defined and open interfaces". In this context an interface
defines "the syntax and semantics of the functionality it
comprises" and "components may support their integration
into the surrounding environment by providing mechanisms,
such as introspection or configuration functionality" [43].

To date, software engineers have a number of different tech-
nologies at their disposM that implement these notions of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
1CSE'02, May 19-25, 2002, Orlando, Florida, USA.
Copyright 2002 ACM 1-58113-472-X/02/0005...$5.00.

components and interfaces. A large number of component
technologies exist, such as the more established local com-
ponent models, e.g Microsoft's Component Object Model
(COM) and Sun's JavaBeans, whose execution is confined
to just one machine. These component models have recently
been extended to allow for distributed execution across mul-
tiple machines in, e.g. Microsoft's COM+ and .NET, Sun's
Enterprise Java Beans (EJB) and the OMG's CORBA Com-
ponent Model (CCM). The availability of these technologies,
has enabled an approach to software development that is
often referred to as component-based development (CBD).
CBD involves the construction and deployment of software
systems that have been assembled from components. CBD
includes activities such as the discovery, engineering, pro-
curement of components, as well as the re-engineering of
legacy software for component assembly. Component deploy-
ment denotes the activities that are related to the transfer of
components into a run-time environment as well as the con-
figuration and customization of components without chang-
ing their implementation.

A large body of literature is available on the different aspects
of CBD [50, 15, 52] that we do not at tempt to reproduce in
this paper. The existing literature has a strong focus on
the more mature local component models. We complement
that literature in this paper by discussing the implications
that the availability of distributed component technologies
has for software engineering. We cover two main aspects:
We first discuss how practitioners can engineer distributed
software systems using distributed components with readily
available software engineering methods and techniques. We
then review software engineering research results that will,
we hope, lead to improvements in the state of the practice.

This paper is structured as follows: Section 2 presents the
different developments that influenced, and lead to the no-
tion of distributed components. In Section 3, we show ar-
chitectural styles that are supported by distributed com-
ponents in order to give an idea what can be achieved
with these technologies. We also discuss the importance
of iterative and incremental development processes, such as
the Unified Process [21], for distributed development and
we show how model driven architecture is achieved using
component-specific extensions of the Unified Modeling Lan-
guage (UML) [44]. Distributed Component-based systems
are often also developed in a distributed setting; in Sec-
tion 4, we review how such development can be supported

537

using state-of-the art consistency checking and linking tech-
niques. We also discuss in that section novel research into
the use of model checking techniques for component-based
architectures, as well as component deployment. In Sec-
tion 5, we indicate gaps in research on the systematic en-
gineering of distributed systems using components before
concluding the paper in Section 6.

2. THE ROAD TO DISTRIBUTED COMPO-
NENTS

For a long time it was claimed that object-orientation was
the solution to reusability of software. The proponents
of this view argued that object-orientation would provide
the encapsulation primitives necessary to implement Parnas '
ideas of information hiding and postulated that this would
naturally lead to reusable software. Object-orientation, in-
deed enabled the development of reusable class libraries,
such as the Standard Template Library [49] or Foundation
Classes for Java or Cq-q-. These class libraries provide par-
ticular type constructors, such as sets, lists, hash tables and
so on; however, software reuse in the large has never been
achieved by object-oriented development. Reuse of objects
is hampered by the large number of fine-grained classes gen-
erated during object-oriented modelling that are entangled
in a web of association, aggregation and generalization rela-
tionships. The large number of dependencies makes it dif-
ficult to take classes out of the context in which they were
developed and reuse them elsewhere. Reuse is also hindered
as classes need to be instantiated or be inherited from and
this involves hard core programming.

Components overcome this problem and provide more eas-
ily reusable units of code by clustering together related
classes into more coarse-grained implementational units that
provide one or more well-defined interfaces. More impor-
tantly though they provide mechanisms to assemble and
configure systems without requiring hard-core programming
skills. Examples of such component technologies include
Microsoff's Component Object Model (COM) [1], which
evolved from the Object Linking and Embedding (OLE)
technology and Sun's Java Beans, which drew a large num-
ber of ideas from Borland's Delphi. These technologies have
in common, that their execution is confined to just one ma-
chine and they are therefore often used for constructing user
interfaces. They do not provide any mechanisms for dis-
tr ibuted deployment (such as load balancing or replication),
nor do they provide for distributed communication mech-
anisms to interact with components that reside on other
machines.

Concurrently with the evolution of object models into lo-
cal component models the industry realized that it was no
longer viable to assume that object communication could
be confined to just one host. To address that problem, the
Object Management Group (OMG) defined the Common
Object Request Broker Architecture (CORBA) [39], which
supports the distributed communication of possibly hetero-
geneous objects across machine boundaries. CORBA pro-
vides a distributed object model that can be mapped to a
large number of object models embedded in programming
languages, and an interface definition language that can be
used to define the interface of a distributed object in a pro-
gramming language independent manner. CORBA defines

bindings to different programming languages so that client
objects can request operation invocations from server ob-
jects in one programming language and server objects can
be implemented in another programming language. CORBA
also provides a number of services that support locating
distributed objects, managing the state of objects on per-
sistent storage, letting objects participate in distributed
transactions and securing access and communication of dis-
tr ibuted objects. CORBA was influential in the develop-
ment of Java's Remote Method Invocation (RMI) specifica-
tion, which provides for invocation of Java methods across
machine boundaries, and for the definition of a distributed
invocation capability for COM that is common]y known as
DCOM [12]. For a detailed comparison of these technolo-
gies, refer to [4, 7].

The difficulties of creating reusable CORBA and RMI ob-
jects are similar to those of local object technologies dis-
cussed above. In many ways they are even more pronounced
for distributed objects as the designer of a distributed server
object needs to use particular implementations of persis-
tence, transaction, concurrency control and security ser-
vices, all of which make it even more difficult to reuse a
server object in a different setting. It is these obstacles that
led to the development of distributed component technolo-
gies. Central to the notion of distributed components is
the idea that the designer of a component should only be
concerned with the application or business logic and not be
burdened with the implementation of location, persistence,
transactional capabilities and security. These concerns are
provided for by the containers that are supplied within ap-
plication server products and control the creation of com-
ponents, their activation and deactivation, as well as the
execution of transactions.

There are specifications for three main distributed compo-
nent technologies. Microsoft's COM+ supports the execu-
tion of COM components in Microsoft's Transaction Server
and thus implements transactional and security capabilities
as well as distributed communication. Sun defined the En-
terprise Java Beans (EJB) specification as part of their En-
terprise Edition of the Java 2 platform [34]. The OMG
defined the CORBA Component Model (CCM) [41] in ca1
upwards compatible manner with EJB in order to extent
the expressive power of EJB and at the same time provide a
distributed component model for languages other than Java.

At the time of writing this paper COM and COM+ are om-
nipresent in installations of Microsoft's Windows operating
systems products and widely used. EJB has been largely
successful and it is probably fair to say that it is the most
widely used distributed component model at the time of
writing this paper. It is implemented in about 30 differ-
ent application server products. Analysts estimated the size
of the application server market in 2001 to be approx. 1.2
billion US$ and the most important vendors are BEA (We-
bLogic Server), IBM (WebSphere) and Iona (iPortM). There
are also a number of open source projects, such as JBoss and
OpenEJB. iCMG are the sole provider of a CCM product
and a few open source projects that implement the CCM,
e.g. OpenCCM [29] and MicoCCM [42].

538

3. COMPONENT-ORIENTED DEVELOP-
MENT PROCESSES: STATE OF THE
PRACTICE

In this section, we will review the distributed component
technologies that we introduced above and show how they
are used in practice. We will first provide an idea of the types
of software architectures that currently rely on distributed
component technologies and discuss two architectural styles
in which distributed component technologies play a key role.
We will then look at architecture-centric software develop-
ment processes, most notably the Unified Process and finally
we will the means by which the detailed design of distributed
components is supported by component-specific extensions
of the UML.

3.1 Use of Distributed Components in Archi-
tectural Styles

In this section, we discuss architectural styles that have
been successfully used in industrial projects by deploying
distributed component technologies.

Multi-tiered architectures are layered in such a way that
each different layer implements a particular concern and can
be executed potentially on different machines. Thus the
communication between the different tiers is often achieved
by using network protocols or distribution middleware.

We first discuss multi-tiered architectures that are deployed
across multiple hosts where components are used in mid-
dle tiers. We then discuss how components can be used to
wrap legacy systems so that they can be used in a seam-
less manner in multi-tiered architectures. We then review
the relationship between components and web services. We
conclude by discussing the use of components in architec-
tures for application services.

Components to Implement Business Logic: Figure 1
shows an example of a multi-tiered architecture that uses
a standard web browser as the device to display the user
interface. As browsers can be assumed to be installed on
any machine, this architecture appeals in situations where
the deployment costs need to be independent of the total
number of users. E-commerce or large-scale intranet appli-
cations are examples of such settings. The user interface to
be displayed is delivered in form of HTML pages by a pre-
sentation tier that might be implemented using Microsoft's
Active Server Pages, Java's Servlets or Java Server Pages
and they are transmitted to the display tier using the http
protocol. The server pages or servlets, in turn, rely on a
business object tier that executes the business logic of the
application. As these business objects might be executing
on different hosts, they would use Java remote method in-
vocation (RMI) or CORBA's Internet Inter-ORB Protocol
(IIOP) to facilitate the required remote interaction. In case
of an e-shopping application it would be in this business
object layer that the state of the shopping session would
be kept by updating a shopping cart object. The business
object layer would also drive the transactional behaviour
of the application by starting and committing transactions.
Finally, the business object tier relies on a persistence tier
that is most often built using a relational database in order
to implement persistence of the state of business objects and

changes to this state within transactions.

Display Tier I
(e.g. Browser)

~http
Presentation Tier

(e.g. Servlets)

rmi/iiop
Business Object Tier

(e.g. EJB)
S jdbc

(e.g. Persistence Tier I
Relational Database) I

Figure 1: Components for Business Objects

While it would be perfectly feasible to implement the func-
tionality of the business object tier without distributed ob-
ject technology, the use of EJB, MTS or CCM assists con-
siderably in addressing non-functional requirements, such
as scalability and reliability. Distributed component tech-
nologies provide very flexible means for changing the de-
ployment of components that implement the business ob-
jects. They allow for components to be replicated on clus-
ters of machines in order to bear the potentially significant
load of, for example, an e-shopping application with an un-
known number of concurrent users. Moreover, they provide
the primitives for a number of operations to be executed as
transactions and they implement the mapping of the state
of business objects onto persistent storage, potentially in a
manner transparent to the designer of the application.

Components for Legacy Wrapping: It is probably fair
to say that to date most industrial IT projects are not green
field developments. Instead new projects need to interoper-
ate with existing legacy IT infrastructures that have proven
to be reliable and have received a lot of investment. Exam-
ples of such legacy are enterprise resource planning systems,
flight reservation systems, financial accounting and settle-
ment systems and so on. The detailed discussion of such an
enterprise application integration is beyond the scope of this
paper, refer to [8]. Nevertheless, organizations are keen to
use new technologies for new developments; for example an
airline might want to offer direct access to flight reservations
over the Internet. Then a need arises to develop an integra-
tion of the multi-tier architecture that we discussed above
with the legacy flight reservation system. Again distributed
component architectures prove useful as they facilitate the
wrapping of these legacy systems in a set of interfaces so
that they can then be considered and used in the same way
as any other component.

Figure 2 shows how the multi-tiered architecture of Fig-
ure 1 has been extended with an adapter tier. The purpose
of adapters executing in this adapter tier is to provide a
uniform set of interfaces to the Enterprise Information Sys-
tems (EIS) tier and to avoid that the complexity of accessing
the EIS tier is spread across the remaining business object
tier. Adapters would access the EIS tier using whatever pro-
prietary interfaces these provide. Often these are message
queues, such as implementations of the Java Messaging Ser-

539

Display Tier
(e.g. Browser)

http

Presentation Tier
(e.g. Servlets)

rmi/iiop
Business Object Tier

(e.g. EJB)
rmi/iiop

Adapter Tier
(e.g. EJB)

$ e.g. jms
(e.g. EIS Tier

CICS, OS390, SAP) I

F i g u r e 2: L e g a c y W r a p p e r A r c h i t e c t u r e

vice [14], that define particular messages structures. Con-
nections with legacy systems might also be achieved through
databases or files with known schemas or formats or even
sockets.

Even though the provision of just one connector interface for
a legacy system is a vast improvement over previous prac-
tices that involved building dedicated interfaces between dif-
ferent systems, constructing a large number of such wrapper
components can be a significant endeavour. To enable EIS
system providers to build these adapters so that they can be
deployed throughout their customer base, Sun has defined a
new Java Connector Architecture [46]. It will allow vendors
of EIS systems to implement connectors to their systems in
a standardized manner so that any legacy adapter tier is
populated by reusable connectors.

3.2 Iterative and Incremental Development
The way distributed components are arranged in a particular
software architecture is largely driven by the non-functioned
requirements that a software system needs to meet. In par-
ticular, the choice of programming language, hardware and
operating system platform influences which particular dis-
tr ibuted component technology can be chosen. Moreover,
scedability and reliability requirements may impose the need
for replicating components across a number of machines.
Security requirements may demand access control, auditing
rand encrypted communication. Finally new systems often
have to be integrated with legacy systems.

There is a considerable risk in any new project that the cho-
sen architecture cannot satisfy the requirements that the
stakeholders stated. To date there are no analytic tech-
niques used in practice to identify and mitigate architectural
risks. Instead software architects adopt an incremented and
iterative development process, which was first suggested by
Mills [32], to mitigate such risks. Incremental and iterative
development is now part of many process models, most no-
tably the cleanroom software engineering approach [6], the
Objectory Process [22], the Unified Process [21], and vendor-
specific versions of it, such as the Rational Unified Process
(RUP) [26].

]noepllo~a]
Requirements

Analysis

Design

Implementation ! :

I
Test

Preliminary
Iterations

F i g u r e 3: U n i f i e d

Amount
of work

n I2 In In+l tn+2 Im Im+l

P r o c e s s : W o r k f l o w s gz P h a s e s

A main reason for the success of the Unified Process and
RUP is that it makes risk identification and mitigation cen-
tral activities. To achieve this, these processes introduce a
number of different phases. The Unified Process and RUP
identify an Inception, Elaboration, Construction and Tran-
sition phase as shown in Figure 3. The development team
performs during each phase one or more iterations that con-
sist of requirements, analysis, design, implementation and
testing workfiows. The result of each iteration is an incre-
ment that addresses a particular concern. Increments devel-
oped during the Elaboration phase are mostly prototypes
that are developed to show feasibility of an architecture and
to mitigate development risk, while those during Construc-
tion phase are aimed at developing the required functional-
ity. During Transition, the increments are beta-tested and
transferred into operation.

The focus during the first Inception phase is on the identi-
fication of those requirements that may carry certain risks.
For projects that involve distributed component technolo-
gies for meeting security, performance, scalability and reli-
ability requirements are certainly going to be among these.
The result of the Inception is then a prioritized risk list and
a plan of their mitigation during Elaboration phase. Most
projects would during the Elaboration phase develop one
or more architectural prototypes that elaborate an architec-
ture, i.e. build vertical slices through the different layers
shown in Figures 1 and 2. During the test of that iteration
these architecture prototypes can then be validated against
the previously identified requirements. Once a stable ar-
chitecture has been developed in this way, iterations in the
Construction phase develop new component interfaces and
implementations that provide the required functionality.

3.3 Model Driven Architecture
One of the problems with using distributed component tech-
nology for building distributed software systems is that there
are so many different and incompatible component platforms
available. Once a software architect has chosen one platform
it becomes very expensive and time consuming to port the
developed system to a different platform. For example, com-
ponents that have been developed for Enterprise Java Beans
are substantially different from C-~ components for .NET
and they would virtually need to be written completely
anew. To aggravate this problem, the projected lifetime of a
distributed software architecture and the components that

540

encapsulate the business logic is often significantly longer
than the life of a component platform itself.

The Object Management Group has developed a set of spec-
ifications that are referred to as Model Driven Architecture
(MDA) to address these problems [48]. The basic idea of
MDA is to use the UML for fully specifying both the static
interfaces and the dynamic behaviour of components in a
platform independent model (PIM). To define platform spe-
cific models (PSMs), the MDA specifications define a num-
ber of mappings from plain UML to UML profiles, which
are platform-specific extensions of the UML. The OMG has
adopted a number of these UML profiles, such as a UML
profile for CORBA and a UML profile for Enterprise Appli-
cation Integration and is working on further profiles, such
as a UML profile for WebServices and .NET. Further UML
profiles have been developed outside the OMG, for example
the UML profile for EJB [11] that was developed under the
Java Community Process charter by Rational and Sun.

The definition of profiles is enabled by UML's extension
mechanisms. In particular, UML profiles make extensive
use of UML stereotypes and tagged values. The EJB pro-
file, for example defines a stereotype <<EJBHomeInterface>>
that indicates that a UML class models an interface between
a container and an EJB class. The profiles also list a num-
ber of consistency constraints that extend the consistency
constraints defined in the UML semantics guides. For ex-
ample, the UML profile for EJB demands that the type of
any method parameter of an EJB home or EJB remote inter-
face can only be atomic (e.g. boolean, int etc), references to
remote objects or references to classes that are serializable.

Platform Independent I
Model of Application in UML |

OMG Mapping To EJB ~ ~e sin
I Platform Specific Model L
I of App,catio. in UML EJB Profile I XMI I

an~ 1 EJB Container I

F i g u r e 4: M o d e l D r i v e n A r c h i t e c t u r e for E J B

Figure 4 shows the artefacts and their dependencies involved
in using the model driven architecture approach for devel-
oping distributed components for the Enterprise Java Beans
platform. The business logic of components is specified in a
PIM by a standard UML case tool that stores the model in
XMI format [40], an XML encoding [2] for the Meta Object
Facility [38]. A mapping tool that implements the OMG
standard mapping of UML to EJB then generates a PSM
that uses UML extensions defined in the UML profile for
EJB. A CASE tool can then translate the PSM into the
different components that are necessary for an EJB deploy-
ment of the model, such as the Java code, a makefile that
is needed compiling the code, a Manifest file that defines
the content of the binary archive that is executed by an

EJB container and a deployment descriptor that defines on
which machines the components need to be deployed.

Even though the Model Driven Architecture specification is
relatively young, there are various implementations avail-
able. For example, Caboom of CalKey Technologies [23]
supports the full specification of components in UML. Ca-
boom provides the usual diagram types of the UML to define
the static interfaces of components and uses Activity dia-
grams for the visual specification of the behaviour of meth-
ods. Caboom can then generate EJB, COM and/or .NET
components and subsequent deployment information from
these UML models. The fact that all component platform
specific code is generated by model driven architecture en-
vironments, such as Caboom, not only facilitates the porta-
bility across platforms but also accelerates the development
of the components in the first place as the designers can
focus on the graphical specification of components rather
than their implementation in a particular component plat-
form. The first projects that have been completed with these
tools report productivity increases of about 35-70%.

4. COMPONENT-ORIENTED DEVELOP-
MENT PROCESSES: STATE OF THE
ART

While significant advances in building reliable, scalable and
secure systems have been made by using distributed compo-
nent technologies there is still a long way to go until we can
derive a component-based distributed software system for a
given a set of requirements in a systematic manner. Most
importantly, engineers need to be able to reason about the
appropriateness of models of distributed components with-
out having to go through as many development and deploy-
ment iterations. Moreover, we need to be able to understand
the extent to which component-oriented architectures can be
adjusted without having to modify the components, or even
worse having to change the platform that executes them.

In this section we provide an overview of some recent
software engineering research results that will advance
component-oriented development processes. We first assess
techniques that support reasoning about static and dynamic
properties of models for distributed components.

4.1 Reasoning about Component-based Ar-
chitectures

When classifying the different techniques that support rea-
soning about distributed component models, we distinguish
static and dynamic techniques. Static reasoning techniques
assess the internal static semantic correctness of models as
well as their relationship to other artefacts produced during
the software development process. Dynamic techniques sup-
port reasoning about the behavioural correctness of models.

S t a t i c C o n s i s t e n c y D e f i n i t i o n and Checks: Above we
outlined the use of the UML for modelling distributed com-
ponents in the OMG's MDA. MDA draws on a number of
UML profiles. For each of these profiles, the static semantics
are defined informally, which is clearly undesirable as these
informal descriptions are prone to incompleteness and am-
biguity. What is needed is a more rigorous and formal def-
inition of static consistency. Moreover, designers will need

541

V a E / / Foundat ion .Core .Assoc ia t ion[Qxmi . id] :
~xEa /Founda t io~ .Core .Assoc ia t io~ .aonnea t io~ /Founda t ion .Assoc ia t ionEnd :

~yEa / Foundat ion .Core .Assoaia t ion .conneat ion / Foundat ion .Assoa ia t ionEnd :
x / F o u n d a t i o n . C o r e . M o d e l E l e m e n t . n a m e / t e x t 0 = y / F o u n d a t i o n . C o r e . M o d e I E l e m e n t . n a r n e / t e x t 0 ~ x = y

F i g u r e 5: x l i nk i t R u l e for U M L C o r e

to be able to assess how conformant their platform specific-
models are with a particular profile. This demands the pro-
vision of consistency checks of PSMs against UML profiles.
To date, hardly any CASE tool used in industry provides
such checks. Finally, it is not uncommon that distributed
component models are developed in a distributed manner
themselves. This means that the consistency checking mech-
anisms are required to work in a distributed manner, which
again most CASE tools do not support.

Motivated by the above requirements, a number of groups
have worked on specifying static semantic and inter-
document consistency constraints. The literature on soft-
ware development environments includes many examples of
formalisms to specify static semantic constraints and how
to support them with development tools. More recently, the
OMG has defined an Object Constraint Language [53] that
is used to express the static constraints in the UML core
meta model.

In a response to a request for information that the OMG has
issued to start the OCL revision, Vaziri and Jackson outlined
the limitations of using OCL for defining UML and UML
profile static semantic constraints [51]. In particular, they
noted that OCL is very implementation orientated while a
more easily comprehensible constraint definition would need
to be of a declarative nature. Jackson also provided a con-
straint definition for the UML core in Alloy [20] that can
then be checked with the Alloy Constraint analyzer.

In our own work, we have developed a formal specification
language for static consistency constraints and a standards-
compliant distributed execution engine for this language.
In [35] we describe xlinkit, a consistency specification lan-
guage based on first order logic and an associated checking
service that executes the language. The operation of xlinkit
is quite simple. It is given a set of distributed XML re-
sources and a set of potentially distributed rules that relate
the content of those resources. The rules express consis-
tency constraints across the resource types, xlinkit returns
a set of XLinks, in the form of a linkbase, that support nav-
igation between elements of the XML resources. We have
defined a denotational semantics of our consistency speci-
fication language in [35]. Unlike standard first order logic,
xlinkit computes hyperlinks between inconsistent elements
instead of boolean values.

xlinkit leverages standard Internet technologies. It supports
document distribution and can support multiple deployment
models. It has a formal foundation and evaluation has shown
that it scales, both in terms of the size of documents and
in the number of rules, xlinkit has a more flexible architec-
ture than the Alloy model checker. Due to its reliance on
XML and Web technologies xlinkit supports checks between
distributed artefacts.

xlinkit is a very general technique that is amenable to check-
ing any kind of semi-structured and distributed markup.
In [36], we describe an application of xlinkit to UML. We
have specified the UML meta model constraints in xlinkit 's
rule language. We have then tested the performance of
xlinkit against industrial UML models that were represented
in the XML encoding defined in the XMI standard [40].
The performance measurements revealed satisfactory per-
formance results with most rules executing within a mat ter
of seconds even on files of several megabytes.

Figure 5 shows an example xlinkit rule that formalizes a
UML core semantic constraint. For reasons of readability,
we show it in the standard mathematical syntax rather than
the XML encoding that the xlinkit rule engine understands.
The rule specifies that the role names that can be attached
to association ends in UML models need to be unique. To
achieve that, we allow the use of XPath [5] expressions in
our formulae. The vocabulary used in the path expressions
shown in Figure 5 is determined by the XMI document type
definition defined by the OMG, which in turn was derived
from the UML meta model. The first quantifier of the rule
uses an XPath expression to select all associations included
in a UML model. Then for all pairs of association ends
within any of these associations we check that equality of
the names implies identity of the association ends.

In [37] we report an application of xlinkit that checks com-
pliance of distributed UML models against the UML profile
for EJB. The paper also describes how consistency of dis-
tr ibuted UML models can be checked against Java source
code and deployment descriptors. Thus, xlinkit can be used
to specify static consistency constraints among distributed
component models, component implementations and their
deployment descriptors.

Q u a l i t a t i v e D y n a m i c P r o p e r t i e s : The formal specifica-
tion of static semantic constraints and the ability to check
models against them assists designers of distributed compo-
nents to check that their UML models are meaningful. This
does not necessarily mean that models are correct because
static constraints cannot be used to validate any behavioural
properties of a model.

Due to their concurrent and parallel nature, the need to
check behavioural concerns is more pronounced in dis-
tr ibuted component models than for models of sequential
systems that execute on just one host. Systems designed
using distributed components might deadlock and should
satisfy safety and liveness properties.

Two different methods can be used for the automated ver-
ification of models against behavioural properties: theo-
rem proving and model checking. Theorem proving tech-
niques can cope with possibly infinite state space models,
but their use generally requires manual interaction and guid-

542

ance. Model checkers do not need such interaction but can-
not cope with infinite state spaces. By choosing the right
abstractions for models of distributed component systems a
finite, albeit large state space can be achieved.

A number of significant advances of model checkers, such
as Spin [17] and LTSA [28], were made during the 1990s.
Amongst others, the use of Binary Decision Diagrams and
compositional reachability analysis [3], together with signif-
icantly more powerful hardware have made it possible to
check models with very large state spaces. These advances
have enabled a strand of applied software engineering re-
search that uses model checking techniques for models of
distributed components with the aim to check them against
behavioural properties. A common thrust among several of
these approaches is the use of the UML and a mapping be-
tween the UML meta model and the languages that model
checkers use as an input. Cheung [31] and Lilius [27] trans-
late behavioural UML specifications expressed in state di-
agrams into Promela, the input language of Spin, with an
aim to provide a precise semantics for these diagrams. Inver-
ardi and Muccini [18] also derive Promela specifications from
UML state charts. They then translate sequence diagrams
that specify certain scenarios into linear temporal logic for-
mulae in order to check whether the specified scenarios are
behaviourally consistent with the component specifications.

In our own work [24, 25], we focus on model checking safety
and liveness properties that are induced by the synchro-
nization primitives and multi-threaded execution capabili-
ties provided by distributed component technologies, such as
the CCM or EJB. These component technologies only sup-
port a fixed number of such synchronization properties, such
as oneway, synchronous, deferred synchronous and asyn-
chronous execution in case of the CCM. Moreover, the ob-
ject adapters that control component execution in contain-
ers provide only a small number of multi-threading policies.
These policies control how concurrent invocations are han-
dled by the component and again there is only a few of these
policies, such as single threaded execution or use of a thread
pool to handle requests. We therefore extend platform spe-
cific UML profiles with stereotypes to express the use of
synchronization primitives in state diagrams and the use of
threading policies in a component class diagram. Moreover,
we use object diagrams to define the deployment of com-
ponents across distributed hosts. From these stereotyped
diagrams we then generate a process algebra representation
of the synchronization and threading behaviour for which a
Labelled Transition System can be automatically computed.
We then use reachability analysis to check for absence of
deadlocks, safety and liveness properties. If the reachability
analysis finds any deadlocks, safety or liveness property vio-
lations it produces a trace that leads from the initial state to
the state that violates that property. We then abstract that
trace into a UML sequence diagram that shows a scenario
for that property violation and is more meaningful to the
designer of the distributed component system than a trace
of labelled transitions.

There are a number of further approaches that use model
checking techniques in conjunction with distributed compo-
nent technologies without using the UML. In [18] Inverardi
et al. propose a way of constructing distributed architec-

tures from components in a deadlock-free manner. They
use Milner's CCS [33] to prove that the architectures con-
structed are actually deadlock free. They report in [19]
about an application of this technique to DCOM applica-
tions.

4.2 Component Deployment
Component technology providers offer a great number of
tools that can be used to manage and configure the deploy-
ment, but component deployment gained attention among
software engineering researchers only relatively recently.

Hall et al. identify the activities that are commonly associ-
ated with software deployment in [13]:

• Package all artefacts and configuration descriptions
needed to install a system (Release)

• Configure and assemble all artefacts needed to use a
released system (Install)

• Bring an installed system into a state that it can be
used (Activate)

• Deallocate all resources of an activated system and put
it into a state that it cannot be used (Deactivate)

• Modify an installed/activated release by selecting a
different configuration (Reconfigure)

• Modify an installed/activated release to adjust it to
changes in the operating environment (Adapt)

• Modify an installed/activated release by in-
stalling/activating a previously unavailable con-
figuration (Update)

• Remove the installed artefacts of a release from its
operating environment (Remove)

• Make a release unavailable (Retire)

Rutherford et al. put these activities into the perspective of
deploying distributed EJB-based components in [45]. They
then present the Bean Automated Reconfiguration frame-
worK (BARK), which supports some of the deployment ac-
tivities. The framework defines a high-level scripting lan-
guage that can be used for describing deployment scripts
that can then be executed on a number of distributed hosts
in order to perform installation, activation, deactivation and
reconfiguration actions. The tool that executes these scripts
provides different kinds of reliability guarantees for the ex-
ecution of these reconfiguration scripts. The tool supports,
in particular an atomic execution of scripts on a number of
distributed hosts by means of transactions that are imple-
mented using the two-phase commit protocol.

5. LOOKING AHEAD
In this section, we briefly discuss a number of research ques-
tions that may form part of a broader research agenda for
software engineering principles, methods and tools in sup-
port of the component-based development of distributed
software systems.

Q u a n t i t a t i v e R e a s o n i n g : Using the UML together with
model checking techniques as discussed above supports rea-
soning about the presence or absence of certain qualitative
properties, such as deadlocks, safety or liveness properties.
For distributed component architectures, however, it is also
important to be able to reason about quantitative properties

543

that these models will have when they are deployed in a cer-
tain way into a container of an application server. It would
be highly desirable to avoid costly risk mitigation iterations
during a development process and address the question of
whether an architecture scales and performs efficiently and
reliably by analytic means. The performance modelling lit-
erature includes a large body of work on stochastic process
algebras, which use distribution functions with which transi-
tions are executed [16, 9, 10]. Due to their compositional na-
ture, process algebras have been successfully used to model
distributed component systems as discussed above. It seems
natural to extend that research such that performance, seal-
ability and reliability properties of UML models can be ex-
pressed and analyzed with stochastic process algebras.

Quality of Serv ice A w a r e C o m p o n e n t D e p l o y m e n t :
Once the quantitative characteristics of the interactions be-
tween distributed components are modelled it would be ap-
propriate to avoid loosing that information further down the
development and deployment process. Instead, it would be
desirable to make the containers that execute components
aware of them so that they can proactively engage in meet-
ing these characteristics. Thus, the quantitative properties
expressed in an (extended) UML model about a set of com-
ponents become obligations for component execution that
is to be met by a container of an application server. These
quantitatively enriched models could then be translated into
a service level agreement, which governs the way how con-
tainers execute components. In particular, containers could
then monitor their actual performance, reliability and seal-
ability and compare it with the required quality of service
expressed defined in the service level agreement. In case of
under-performance, containers could then either proactively
take steps, such as the replication of particular components
in neighbouring containers, to meet the required service level
or report service level exceptions to administrators.

T r u s t e d C o m p o n e n t D e p l o y m e n t : Important new re-
quirements for component deployment arise when we con-
sider applications that are assembled from distributed com-
ponents that execute in different administrative domains.
This is particularly the case for component-based applica-
tion services. Firstly, the same components or containers
may potentially execute applications on behalf of competing
organizations. Consider a storage service provider, which
operates a specialized container that is customized for mass
storage of stateful components. That container may then be
used by potentially competing organizations, who would ex-
pect that neither the storage service provider nor any other
of its customers can access their data. Secondly, the service
level agreements that we discussed above now form part of
the contract between the different administrative domains
that are involved in providing components for the applica-
tion. Thus the monitoring of service execution now has to be
performed in a trustworthy manner and has to be exchanged,
potentially in a summarized form, between the administra-
tive domains as part of any service level monitoring.

A r c h i t e c t u r a l S t ab i l i t y : Architectural stability refers to
the property of a software architecture to meet changing re-
quirements. Addition or changes in functional requirements
can be addressed in distributed component-based architec-
tures by adding or upgrading the components in a business

object layer. Current distributed component containers sup-
port hot-deployment of new and hot-swapping of existing
components so that these changes can be performed without
even stopping applications. Moreover, as discussed above,
the deployment lifecycle is fairly well understood. Changes
in non-functional requirements, however, can stress an archi-
tecture considerably and might lead to architectural break
down. Such breakdowns occur if the container or application
server that has been selected to execute distributed compo-
nents does not provide sufficient deployment flexibility to be
able to meet the changed requirements and as a result the
container or application server has to be changed, which is
considerably more expensive than just adjusting the compo-
nent replication strategy. On the other hand, always using
the most advanced container product might be prohibitively
expensive for applications that might never exceed the scal-
ability boundaries that could also be met with, for example,
open source containers. Therefore in order to achieve archi-
tectural stability, it will be necessary to adjust requirements
elicitation and management techniques and elicit not just
the current non-functional requirements, but also to assess
the way in which they will develop over the lifetime of the
architecture. These ranges of requirements then need to in-
form the selection of distributed component technology and
subsequently the selection of application server products.

Workf low: The distributed component technologies that
we discussed in this paper are all being integrated with mes-
saging technologies that are used to exchange data asyn-
chronously. The Java Messaging Service is now part of
the Java 2 Enterprise Edition and the latest release of the
EJB specification includes Messaging Beans that are ca-
pable of handling incoming and outgoing messages. The
CORBA Component model natively supports asynchronous
communication by way of messaging and also the compo-
nent model in Microsoft's .NET integrates with Microsoft's
Message Queue (MSMQ). Components that direct the flow
of messages through a distributed architecture and in that
way control the workflow of an organization are becoming
available, too. Examples include IBM's MQSeries Workflow
or Microsoft's BizTalk Server. These systems need mod-
elling capabilities for workflows, formal semantics for the
workflow modelling languages, analysis methods and tools
to reason about workflow models and to monitor the compli-
ance of actual workflows with those prescribed in a workflow
model. A great deal of these problems have been addressed
in the software process literature. The more mechanical and
non-interactive workflows addressed using these distributed
component systems seem much more amenable to be solved
using the techniques that were originally developed for soft-
ware processes. It would therefore seem an interesting ex-
ercise to apply some of the software process research results
to these workflows.

6. SUMMARY AND CONCLUSIONS
In this paper, we have provided an overview of the dis-
tr ibuted component technologies that are available to date.
We have addressed the state of the practice in using these
component technologies. In particular, we have shown sev-
eral examples of architectural styles that use these technolo-
gies to deliver scalable distributed applications and integrate
them with legacy enterprise information systerns. We have
shown why iterative and incremental development processes

544

are appropria te for the development of dis t r ibuted compo-
nents. We have then presented the idea of model driven
architecture and sketched how component technology inde-
pendent development can be achieved. We have reviewed
the state of the art in developing distr ibuted components
and shown how developers are able to reason about static
and dynamic quali tative properties of models of dis tr ibuted
component. We then sketched the current s tate of the rela-
tively novel field of component deployment. Finally, we have
identified quanti tat ive reasoning about component models,
QoS aware deployment, t rusted execution, architectural sta-
bility and workflow across distr ibuted components as some
of the items on the software engineering research agenda for
distr ibuted component systems.

The market for dis tr ibuted component technology is worth
several billion US$ per annum. The market for professional
services that turn these technologies into solutions is prob-
ably at least as big. Thus, any software engineering re-
search results that are transferred and successfully applied
in this professional services market are likely to have a signif-
icant impact. I t is encouraging to see tha t previous trends
within the software engineering research community of ig-
noring current software development practice have to some
extent been abandoned. Even though UML and the dis-
t r ibuted component technologies available to date are far
from perfect and leave a lot to be desired from a formal
point of view they are what engineers use in practice. I t is
probably more important to live with these flaws and pack-
age research into a form tha t shows a clear route to appli-
cation for practicing software engineers. The research tha t
we have presented in this paper is firmly rooted in currently
development practice and stands a fair chance of having an
impact.

Acknowledgements
Together with partners in the UK, I ta ly and Germany, we
hope to address some of these questions in an upcoming joint
European Research Project on Trusted & quality of service
Aware Provision of Applicat ion Services (TAPAS) [47]. I
would like to thank Santosh Shrivastava, Fabio Panzieri,
Paul McKee and Werner Beckmann for the fruitful dis-
cussion about dis tr ibuted component research. Anthony
Finkelstein provided valuable comments on an earlier draft
of this paper.

7. REFERENCES
[1] D. Box. Essential COM. Addison Wesley, 1998.
[2] T. Bray, J. Paoli, and C. M. Sperberg-McQueen.

Extensible Markup Language. Recommendation
ht tp: / /www.w3.org/TR/1998/REC-xml-19980210,
World Wide Web Consortium, March 1998.

[3] S.-C. Cheung and J. Kramer. Checking Safety
Properties Using Compositional Reachabili ty
Analysis. A CM Transactions on Software Engineering
and Methodology, 8(1):49-78, 1999.

[4] P. E. Chung, Y. Huang, S. Yajnik, D. Liang, J. Shin,
C.-Y. Wang, and Y.-M. Wang. DCOM and CORBA:
Side by Side, Step by Step, and Layer by Layer. C-/--/-
Report, pages 18-29, January 1998.

[5] J. Clark and S. DeRose. XML Path Language
(XPath) Version 1.0. Recommendation

ht tp : / /www.w3.org/TR/1999/REC-xpath-19991116,
World Wide Web Consortium, November 1999.

[6] M. Dyer. The Cleanroom Approach to Quality
Software Development. John Wiley, 1992.

[7] W. Emmerich. Engineering Distributed Objects. John
Wiley & Sons, Apri l 2000.

[8] W. Emmerich, E. Ellmer, and H. Fieglein. T IGRA -
An Architectural Style for Enterprise Applicat ion
Integration. In Proc. of the 23 rd Int. Conf. on
Software Engineering, Toronto, Canada, pages
567-576. IEEE Computer Society Press, 2001.

[9] S. Gilmore and J. A. Hillston. The PEPA Workbench:
A Tool to support a Process Algebra-based Approach
to Performance Modelling. In Proc. of the 7 th Int.
Conference on Modelling Techniques and Tools for
Performance Evaluation, volume 794 of Lecture Notes
in Computer Science, pages 353-368. Springer, 1994.

[10] N. G5tz, U. Herzog, and M. Rettelbach. The
Integrat ion of Functional Specification and
Performance Analysis using Stochastic Process
Algebras. In Proe. of the 16 th Int. Symposium on
Computer Performance Modelling, Measurement and
Evaluation (PERFORMANCE 93), volume 729, pages
121-146. Springer, 1993.

[11] J. Greenfield. UML Profile For EJB. Rational
Software Corp., May 2001.

[12] R. Grimes. DCOM Programming. Wrox, 1997.
[13] R. S. Hall, D. M. Heimbigner, A. v. Hoek, and A. L.

Wolf. An Architecture for Post-Development
Configuration Management in a Wide-Area Network.
In Proc. of the 1997 Int. Conference on Distributed
Computing Systems, pages 269-278. IEEE Computer
Society Press, 1997.

[14] M. Hapner, R. Burridge, and R. Sharma. Java
Message Service Specification. Technical report, Sun
Microsystems, h t t p : / / j ava.sun.com/products / jms,
November 1999.

[15] G. T. Heineman and W. T. Councill, editors.
Component Based Software Engineering: Putting the
Pieces Together. Addison Wesley, 2001.

[16] J. A. Hillston. A Compositional Approach to
Performance Modelling. PhD thesis, Dept. of
Computer Science, University of Edinburgh, UK, 1994.

[17] G. J. Holzman. The Model Checker SPIN. IEEE
Transactions on Software Engineering, 23(5):279-295,
May 1997.

[18] P. Inverardi, H. Muccini, ~r~d P. Pelliccione. Checking
Architectural Models Consistency using SPIN. In
Proc. of the 16 th Automated Software Engineering
Conference, Coronado Island, CA, pages 346-349.
IEEE Computer Society Press, 2001.

[19] P. Inverardi and M. Tivoli. Automat ic Synthesis of
Deadlock free connectors for C O M / D C O M
Applications. In V. Gruhn, editor, Joint Proc. of the
8 th European Software Engineering Conference and
the 9 th ACM SIGSOFT Symposium on the
Foundations of Software Engineering, Vienna,
Austria, pages 121-131. ACM Press, 2001.

[20] D. Jackson, I. Schechter, and I. Shlyakhter. Alcoa: the
Alloy Constraint Analyzer. In Proc. of the 22 nd Int.
Conf. on Software Engineering, Limerick Ireland,
pages 730-733. ACM Press, 2000.

545

[21] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified
Software Development Process. Addison Wesley
Longman, Reading, MA, USA, 1999.

[22] I. Jacobson, M. Christerson, P. Jonsson, and
G. Overgaard. Object-Oriented Software Engineering:
A Use Case Driven Approach. Addison Wesley, 1992.

[23] B. Jaddav. Caboom White Paper. Technical report,
CalKey Technologies, Campbell, CA 95008, 2001.

[24] N. Kaveh and W. Emmerich. Deadlock Detection in
Distributed Object Systems. In V. Gruhn, editor,
Joint Proc. of the 8 th European Software Engineering
Conference and the 9 th ACM SIGSOFT Symposium
on the Foundations of Software Engineering, Vienna,
Austria, pages 44-51. ACM Press, 2001.

[25] N. Kaveh and W. Emmerich. Safety and Liveness
Analysis of Distributed Object Systems. Technical
Report RN/02/02, UCL-CS, 2002.

[26] P. Kruchten. The Rational Unified Process: An
Introduction. Addison Wesley Longman, 2000.

[27] J. Lilius and I. Paltor. A Tool for verifying UML
models. In Proc. of the 14 th Int. Conference on
Automated Software Engineering, Cocoa Beach,
Florida, pages 255-258. IEEE Computer Society
Press, 1999.

[28] J. Magee and J. Kramer. Concurrency: Models and
Programs - From Finite State Models to Java
Programs. John Wiley, 1999.

[29] R. Marvie and P. Merle. CORBA Component Model:
Discussion and Use with OpenCCM. Technical report,
Laboratoire d'Informatique Fondamentale de Lille,
Villeneuve d'Ascq, France, 2001.

[30] D. McIllroy. Mass produced software components. In
P. Naur and B. Randall, editors, Software
Engineering: Report on a Conference by the NATO
Science Committee, pages 138-155, Brussels, 1968.
NATO Scientific Affairs Division.

[31] W. E. McUmber and B. H. C. Cheung. A General
Framework for Formalizing UML with Formal
Languages. In Proc. of the 23 ~d Int. Conf. on Software
Engineering, Toronto, Canada, pages 433-442. IEEE
Computer Society Press, 2001.

[32] H. D. Mills. Top-Down Programming in Large
Systems. In R. Ruskin, editor, Debugging Techniques
in Large Systems. Prentice Hall, 1971.

[33] R. Milner. Communication and Concurrency.
Prentice-Hall, 1995.

[34] R. Monson-Haefel. Enterprise Javabeans. O'Reilly
UK, 1999.

[35] C. Nentwich, L. Capra, W. Emmerich, and
A. Finkelstein. xlinkit: A Consistency Checking and
Smart Link Generation Service. ACM Transactions on
Internet Technology, 2002. To appear.

[36] C. Nentwich, W. Emmerich, and A. Finkelstein. Static
Consistency Checking for Distributed Specifications.
In Proc. of the 16 th Automated Software Engineering
Conference, Coronado Island, CA, pages 115-124.
IEEE Computer Society, 2001.

[37] C. Nentwich, W. Emmerich, A. Finkelstein, and
E. Ellmer. Flexible Consistency Checking. Research
Note RN/01/40, UCL Department of Computer
Science, 2001.

[38] Object Management Group. The Meta Object Facility.
492 Old Connecticut Path, Framingham, MA 01701,
USA, 1997.

[39] Object Management Group. The Common Object
Request Broker: Architecture and Specification
Revision 2.2. 492 Old Connecticut Path, Framingham,
MA 01701, USA, February 1998.

[40] Object Management Group. XML Meta Data
Interchange (XMI) - Proposal to the OMG OA~4DTF
RFP 3: Stream-based Model Interchange Format
(SMIF). 492 Old Connecticut Path, Framingham, MA
01701, USA, October 1998.

[41] Object Management Group. CORBA Components -
Volume L 492 Old Connecticut Path, Frarningham,
MA 01701, USA, December 1999.

[42] F. Pilhofer. Writing and Using CORBA Components.
Technical report, FPX,
www.fpx.de/MicoCCM/download/mico-ccm.pdf,
2001.

[43] F. Pl~sil and M. Stal. An architectural view of
distributed objects and components in CORBA, Java
RMI and COM/DCOM. Software - Concepts and
Tools, 19(1):14-28, 1998.

[44] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified
Modeling Language Reference Manual. Addison
Wesley Longman, Reading, MA, USA, 1999.

[45] M. J. Rutherford, K. Anderson, A. Carzaniga, D. M.
Heimbigner, and A. L. Wolf. Reconfiguration in the
Enterprise Java Beans Component Model. In
J. Bishop, editor, Proc. of the I st IFIP//ACM Working
Conference on Component Deployment, Berlin,
Germany, Lecture Notes in Computer Science.
Springer, 2002. To appear.

[46] R. Sharma. Java 2 Enterprise Edition: J2EE
Connector Architecture Specification. Java Community
Process, JSR 016, Sun Microsystems, Palo Alto, CA,
2001.

[47] S. Shrivastava, W. Emmerich, F. Panzieri, V. Gruhn,
and J. Crowcroft. Trusted and QoS Aware Provision
of Application Services (TAPAS). Technical Annex to
Project Contract 34069, Commission of the European
Union, 2002.

[48] J. Siegel. Developing in OMG's Model Driven
Architecture. Technical Report 01-12-01, Object
Management Group, Framingham, Mass, November
2001.

[49] A. Stepanov and M. Lee. The Standard Template
Library. Hewlett Packard, Palo Alto, Cal, October
1995.

[50] C. Szyperski. Component Software: Beyond
Object-Oriented Programming. Addison Wesley, 1998.

[51] M. Vaziri and D. Jackson. Some Shortcomings of
OCL, the Object Constraint Language of UML.
Response to Object Management Group's Request for
Information on UML 2.0, MIT, December 1999.

[52] K. Wallnau, S. Hissam, and R. Seacord. Building
Systems from Commercial Components. Addison
Wesley, 2001.

[53] J. B. Warmer and A. G. Kleppe. The Object
Constraint Language: Precise Modeling With UML.
Addison Wesley, 1999.

546

