
Distributed Component Technologies and their 
Software Engineering Implications 

Wolfgang Emmerich 
Dept. of Computer Science 
University College London 

Gower St, London WC1E 6BT, UK 
w. emmer ich©cs, ucl. ae. uk 

Abstract  
In this state of the art report, we review advances in 
distributed component technologies, such as the Enter- 
prise Java Beans specification and the CORBA Component 
Model. We assess the state of industrial practice in the 
use of distributed components. We show several architec- 
tural styles for whose implementation distributed compo- 
nents have been used successfully. We review the use of 
iterative and incremental development processes and the no- 
tion of model driven architecture. We then assess the state 
of the art in research into novel software engineering meth- 
ods and tools for the modelling, reasoning and deployment 
of distributed components. The open problems identified 
during this review result in the formulation of a research 
agenda that will contribute to the systematic engineering of 
distributed systems based on component technologies. 

1. I N T R O D U C T I O N  
The idea of constructing software in the same way as hard- 
ware is constructed, i.e. by assembling reusable components 
is as old as the discipline of software engineering itself. It 
was, in fact, at the 1968 NATO Workshop, which is com- 
monly considered as the birth of software engineering, that 
McIllroy introduced the notion of components [30]. During 
the last 30 years a number of people have refined the notion 
of components and we shall use Michael Stal's definition 
that treats a component as "a self-contained entity (black- 
box) that exports functionality to its environment and may 
Mso import functionality from its environment using well- 
defined and open interfaces". In this context an interface 
defines "the syntax and semantics of the functionality it 
comprises" and "components may support their integration 
into the surrounding environment by providing mechanisms, 
such as introspection or configuration functionality" [43]. 

To date, software engineers have a number of different tech- 
nologies at their disposM that implement these notions of 
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components and interfaces. A large number of component 
technologies exist, such as the more established local com- 
ponent models, e.g Microsoft's Component Object Model 
(COM) and Sun's JavaBeans, whose execution is confined 
to just  one machine. These component models have recently 
been extended to allow for distributed execution across mul- 
tiple machines in, e.g. Microsoft's COM+ and .NET, Sun's 
Enterprise Java Beans (EJB) and the OMG's CORBA Com- 
ponent Model (CCM). The availability of these technologies, 
has enabled an approach to software development that  is 
often referred to as component-based development (CBD). 
CBD involves the construction and deployment of software 
systems that have been assembled from components. CBD 
includes activities such as the discovery, engineering, pro- 
curement of components, as well as the re-engineering of 
legacy software for component assembly. Component deploy- 
ment denotes the activities that  are related to the transfer of 
components into a run-time environment as well as the con- 
figuration and customization of components without chang- 
ing their implementation. 

A large body of literature is available on the different aspects 
of CBD [50, 15, 52] that we do not at tempt to reproduce in 
this paper. The existing literature has a strong focus on 
the more mature local component models. We complement 
that  literature in this paper by discussing the implications 
that the availability of distributed component technologies 
has for software engineering. We cover two main aspects: 
We first discuss how practitioners can engineer distributed 
software systems using distributed components with readily 
available software engineering methods and techniques. We 
then review software engineering research results that  will, 
we hope, lead to improvements in the state of the practice. 

This paper is structured as follows: Section 2 presents the 
different developments that  influenced, and lead to the no- 
tion of distributed components. In Section 3, we show ar- 
chitectural styles that are supported by distributed com- 
ponents in order to give an idea what can be achieved 
with these technologies. We also discuss the importance 
of iterative and incremental development processes, such as 
the Unified Process [21], for distributed development and 
we show how model driven architecture is achieved using 
component-specific extensions of the Unified Modeling Lan- 
guage (UML) [44]. Distributed Component-based systems 
are often also developed in a distributed setting; in Sec- 
tion 4, we review how such development can be supported 
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using state-of-the art consistency checking and linking tech- 
niques. We also discuss in that section novel research into 
the use of model checking techniques for component-based 
architectures, as well as component deployment. In Sec- 
tion 5, we indicate gaps in research on the systematic en- 
gineering of distributed systems using components before 
concluding the paper in Section 6. 

2. THE ROAD TO DISTRIBUTED COMPO- 
NENTS 

For a long time it was claimed that object-orientation was 
the solution to reusability of software. The proponents 
of this view argued that  object-orientation would provide 
the encapsulation primitives necessary to implement Parnas '  
ideas of information hiding and postulated that  this would 
naturally lead to reusable software. Object-orientation, in- 
deed enabled the development of reusable class libraries, 
such as the Standard Template Library [49] or Foundation 
Classes for Java or Cq-q-. These class libraries provide par- 
ticular type constructors, such as sets, lists, hash tables and 
so on; however, software reuse in the large has never been 
achieved by object-oriented development. Reuse of objects 
is hampered by the large number of fine-grained classes gen- 
erated during object-oriented modelling that  are entangled 
in a web of association, aggregation and generalization rela- 
tionships. The large number of dependencies makes it dif- 
ficult to take classes out of the context in which they were 
developed and reuse them elsewhere. Reuse is also hindered 
as classes need to be instantiated or be inherited from and 
this involves hard core programming. 

Components overcome this problem and provide more eas- 
ily reusable units of code by clustering together related 
classes into more coarse-grained implementational units that 
provide one or more well-defined interfaces. More impor- 
tantly though they provide mechanisms to assemble and 
configure systems without requiring hard-core programming 
skills. Examples of such component technologies include 
Microsoff's Component Object Model (COM) [1], which 
evolved from the Object Linking and Embedding (OLE) 
technology and Sun's Java Beans, which drew a large num- 
ber of ideas from Borland's Delphi. These technologies have 
in common, that  their execution is confined to just  one ma- 
chine and they are therefore often used for constructing user 
interfaces. They do not provide any mechanisms for dis- 
tr ibuted deployment (such as load balancing or replication), 
nor do they provide for distributed communication mech- 
anisms to interact with components that  reside on other 
machines. 

Concurrently with the evolution of object models into lo- 
cal component models the industry realized that  it was no 
longer viable to assume that  object communication could 
be confined to just  one host. To address that  problem, the 
Object Management Group (OMG) defined the Common 
Object Request Broker Architecture (CORBA) [39], which 
supports the distributed communication of possibly hetero- 
geneous objects across machine boundaries. CORBA pro- 
vides a distributed object model that  can be mapped to a 
large number of object models embedded in programming 
languages, and an interface definition language that can be 
used to define the interface of a distributed object in a pro- 
gramming language independent manner. CORBA defines 

bindings to different programming languages so that  client 
objects can request operation invocations from server ob- 
jects in one programming language and server objects can 
be implemented in another programming language. CORBA 
also provides a number of services that support locating 
distributed objects, managing the state of objects on per- 
sistent storage, letting objects participate in distributed 
transactions and securing access and communication of dis- 
tr ibuted objects. CORBA was influential in the develop- 
ment of Java's Remote Method Invocation (RMI) specifica- 
tion, which provides for invocation of Java methods across 
machine boundaries, and for the definition of a distributed 
invocation capability for COM that  is common]y known as 
DCOM [12]. For a detailed comparison of these technolo- 
gies, refer to [4, 7]. 

The difficulties of creating reusable CORBA and RMI ob- 
jects are similar to those of local object technologies dis- 
cussed above. In many ways they are even more pronounced 
for distributed objects as the designer of a distributed server 
object needs to use particular implementations of persis- 
tence, transaction, concurrency control and security ser- 
vices, all of which make it even more difficult to reuse a 
server object in a different setting. It is these obstacles that 
led to the development of distributed component technolo- 
gies. Central to the notion of distributed components is 
the idea that  the designer of a component should only be 
concerned with the application or business logic and not be 
burdened with the implementation of location, persistence, 
transactional capabilities and security. These concerns are 
provided for by the containers that  are supplied within ap- 
plication server products and control the creation of com- 
ponents, their activation and deactivation, as well as the 
execution of transactions. 

There are specifications for three main distributed compo- 
nent technologies. Microsoft's COM+ supports the execu- 
tion of COM components in Microsoft's Transaction Server 
and thus implements transactional and security capabilities 
as well as distributed communication. Sun defined the En- 
terprise Java Beans (EJB) specification as part of their En- 
terprise Edition of the Java 2 platform [34]. The OMG 
defined the CORBA Component Model (CCM) [41] in ca1 
upwards compatible manner with EJB in order to extent 
the expressive power of EJB and at the same time provide a 
distributed component model for languages other than Java. 

At the time of writing this paper COM and COM+ are om- 
nipresent in installations of Microsoft's Windows operating 
systems products and widely used. EJB has been largely 
successful and it is probably fair to say that it is the most 
widely used distributed component model at the time of 
writing this paper. It is implemented in about 30 differ- 
ent application server products. Analysts estimated the size 
of the application server market in 2001 to be approx. 1.2 
billion US$ and the most important  vendors are BEA (We- 
bLogic Server), IBM (WebSphere) and Iona (iPortM). There 
are also a number of open source projects, such as JBoss and 
OpenEJB. iCMG are the sole provider of a CCM product 
and a few open source projects that  implement the CCM, 
e.g. OpenCCM [29] and MicoCCM [42]. 

538 



3. COMPONENT-ORIENTED DEVELOP- 
MENT PROCESSES: STATE OF THE 
PRACTICE 

In this section, we will review the distributed component 
technologies that we introduced above and show how they 
are used in practice. We will first provide an idea of the types 
of software architectures that  currently rely on distributed 
component technologies and discuss two architectural styles 
in which distributed component technologies play a key role. 
We will then look at architecture-centric software develop- 
ment processes, most notably the Unified Process and finally 
we will the means by which the detailed design of distributed 
components is supported by component-specific extensions 
of the UML. 

3.1 Use of Distributed Components in Archi- 
tectural Styles 

In this section, we discuss architectural styles that have 
been successfully used in industrial projects by deploying 
distributed component technologies. 

Multi-tiered architectures are layered in such a way that 
each different layer implements a particular concern and can 
be executed potentially on different machines. Thus the 
communication between the different tiers is often achieved 
by using network protocols or distribution middleware. 

We first discuss multi-tiered architectures that are deployed 
across multiple hosts where components are used in mid- 
dle tiers. We then discuss how components can be used to 
wrap legacy systems so that  they can be used in a seam- 
less manner in multi-tiered architectures. We then review 
the relationship between components and web services. We 
conclude by discussing the use of components in architec- 
tures for application services. 

Components to Implement Business Logic: Figure 1 
shows an example of a multi-tiered architecture that  uses 
a standard web browser as the device to display the user 
interface. As browsers can be assumed to be installed on 
any machine, this architecture appeals in situations where 
the deployment costs need to be independent of the total 
number of users. E-commerce or large-scale intranet appli- 
cations are examples of such settings. The user interface to 
be displayed is delivered in form of HTML pages by a pre- 
sentation tier that might be implemented using Microsoft's 
Active Server Pages, Java's Servlets or Java Server Pages 
and they are transmitted to the display tier using the http 
protocol. The server pages or servlets, in turn, rely on a 
business object tier that  executes the business logic of the 
application. As these business objects might be executing 
on different hosts, they would use Java remote method in- 
vocation (RMI) or CORBA's Internet Inter-ORB Protocol 
(IIOP) to facilitate the required remote interaction. In case 
of an e-shopping application it would be in this business 
object layer that the state of the shopping session would 
be kept by updating a shopping cart object. The business 
object layer would also drive the transactional behaviour 
of the application by starting and committing transactions. 
Finally, the business object tier relies on a persistence tier 
that is most often built using a relational database in order 
to implement persistence of the state of business objects and 

changes to this state within transactions. 

Display Tier I 
(e.g. Browser) 

~http 
Presentation Tier 

(e.g. Servlets) 

rmi/iiop 
Business Object Tier 

(e.g. EJB) 
S jdbc 

(e.g. Persistence Tier I 
Relational Database) I 

Figure 1: Components for Business Objects 

While it would be perfectly feasible to implement the func- 
tionality of the business object tier without distributed ob- 
ject technology, the use of EJB, MTS or CCM assists con- 
siderably in addressing non-functional requirements, such 
as scalability and reliability. Distributed component tech- 
nologies provide very flexible means for changing the de- 
ployment of components that implement the business ob- 
jects. They allow for components to be replicated on clus- 
ters of machines in order to bear the potentially significant 
load of, for example, an e-shopping application with an un- 
known number of concurrent users. Moreover, they provide 
the primitives for a number of operations to be executed as 
transactions and they implement the mapping of the state 
of business objects onto persistent storage, potentially in a 
manner transparent to the designer of the application. 

Components for Legacy Wrapping: It is probably fair 
to say that to date most industrial IT projects are not green 
field developments. Instead new projects need to interoper- 
ate with existing legacy IT infrastructures that have proven 
to be reliable and have received a lot of investment. Exam- 
ples of such legacy are enterprise resource planning systems, 
flight reservation systems, financial accounting and settle- 
ment systems and so on. The detailed discussion of such an 
enterprise application integration is beyond the scope of this 
paper, refer to [8]. Nevertheless, organizations are keen to 
use new technologies for new developments; for example an 
airline might want to offer direct access to flight reservations 
over the Internet. Then a need arises to develop an integra- 
tion of the multi-tier architecture that we discussed above 
with the legacy flight reservation system. Again distributed 
component architectures prove useful as they facilitate the 
wrapping of these legacy systems in a set of interfaces so 
that they can then be considered and used in the same way 
as any other component. 

Figure 2 shows how the multi-tiered architecture of Fig- 
ure 1 has been extended with an adapter tier. The purpose 
of adapters executing in this adapter tier is to provide a 
uniform set of interfaces to the Enterprise Information Sys- 
tems (EIS) tier and to avoid that the complexity of accessing 
the EIS tier is spread across the remaining business object 
tier. Adapters would access the EIS tier using whatever pro- 
prietary interfaces these provide. Often these are message 
queues, such as implementations of the Java Messaging Ser- 
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F i g u r e  2: L e g a c y  W r a p p e r  A r c h i t e c t u r e  

vice [14], that  define particular messages structures. Con- 
nections with legacy systems might also be achieved through 
databases or files with known schemas or formats or even 
sockets. 

Even though the provision of just  one connector interface for 
a legacy system is a vast improvement over previous prac- 
tices that  involved building dedicated interfaces between dif- 
ferent systems, constructing a large number of such wrapper 
components can be a significant endeavour. To enable EIS 
system providers to build these adapters so that  they can be 
deployed throughout their customer base, Sun has defined a 
new Java Connector Architecture [46]. It will allow vendors 
of EIS systems to implement connectors to their systems in 
a standardized manner so that  any legacy adapter tier is 
populated by reusable connectors. 

3.2 Iterative and Incremental Development 
The way distributed components are arranged in a particular 
software architecture is largely driven by the non-functioned 
requirements that a software system needs to meet. In par- 
ticular, the choice of programming language, hardware and 
operating system platform influences which particular dis- 
tr ibuted component technology can be chosen. Moreover, 
scedability and reliability requirements may impose the need 
for replicating components across a number of machines. 
Security requirements may demand access control, auditing 
rand encrypted communication. Finally new systems often 
have to be integrated with legacy systems. 

There is a considerable risk in any new project that  the cho- 
sen architecture cannot satisfy the requirements that  the 
stakeholders stated. To date there are no analytic tech- 
niques used in practice to identify and mitigate architectural 
risks. Instead software architects adopt an incremented and 
iterative development process, which was first suggested by 
Mills [32], to mitigate such risks. Incremental and iterative 
development is now part of many process models, most no- 
tably the cleanroom software engineering approach [6], the 
Objectory Process [22], the Unified Process [21], and vendor- 
specific versions of it, such as the Rational Unified Process 
(RUP) [26]. 

]noepllo~a ] 
Requirements 

Analysis 

Design 

Implementation ! : 

I 
Test 

Preliminary 
Iterations 

F i g u r e  3: U n i f i e d  
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P r o c e s s :  W o r k f l o w s  gz P h a s e s  

A main reason for the success of the Unified Process and 
RUP is that  it makes risk identification and mitigation cen- 
tral activities. To achieve this, these processes introduce a 
number of different phases. The Unified Process and RUP 
identify an Inception, Elaboration, Construction and Tran- 
sition phase as shown in Figure 3. The development team 
performs during each phase one or more iterations that  con- 
sist of requirements, analysis, design, implementation and 
testing workfiows. The result of each iteration is an incre- 
ment that  addresses a particular concern. Increments devel- 
oped during the Elaboration phase are mostly prototypes 
that  are developed to show feasibility of an architecture and 
to mitigate development risk, while those during Construc- 
tion phase are aimed at developing the required functional- 
ity. During Transition, the increments are beta-tested and 
transferred into operation. 

The focus during the first Inception phase is on the identi- 
fication of those requirements that  may carry certain risks. 
For projects that  involve distributed component technolo- 
gies for meeting security, performance, scalability and reli- 
ability requirements are certainly going to be among these. 
The result of the Inception is then a prioritized risk list and 
a plan of their mitigation during Elaboration phase. Most 
projects would during the Elaboration phase develop one 
or more architectural prototypes that  elaborate an architec- 
ture, i.e. build vertical slices through the different layers 
shown in Figures 1 and 2. During the test of that  iteration 
these architecture prototypes can then be validated against 
the previously identified requirements. Once a stable ar- 
chitecture has been developed in this way, iterations in the 
Construction phase develop new component interfaces and 
implementations that  provide the required functionality. 

3.3 Model Driven Architecture 
One of the problems with using distributed component tech- 
nology for building distributed software systems is that  there 
are so many different and incompatible component platforms 
available. Once a software architect has chosen one platform 
it becomes very expensive and time consuming to port the 
developed system to a different platform. For example, com- 
ponents that have been developed for Enterprise Java Beans 
are substantially different from C-~ components for .NET 
and they would virtually need to be written completely 
anew. To aggravate this problem, the projected lifetime of a 
distributed software architecture and the components that  
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encapsulate the business logic is often significantly longer 
than the life of a component platform itself. 

The Object Management Group has developed a set of spec- 
ifications that  are referred to as Model Driven Architecture 
(MDA) to address these problems [48]. The basic idea of 
MDA is to use the UML for fully specifying both the static 
interfaces and the dynamic behaviour of components in a 
platform independent model (PIM). To define platform spe- 
cific models (PSMs), the MDA specifications define a num- 
ber of mappings from plain UML to UML profiles, which 
are platform-specific extensions of the UML. The OMG has 
adopted a number of these UML profiles, such as a UML 
profile for CORBA and a UML profile for Enterprise Appli- 
cation Integration and is working on further profiles, such 
as a UML profile for WebServices and .NET. Further UML 
profiles have been developed outside the OMG, for example 
the UML profile for EJB [11] that was developed under the 
Java Community Process charter by Rational and Sun. 

The definition of profiles is enabled by UML's extension 
mechanisms. In particular, UML profiles make extensive 
use of UML stereotypes and tagged values. The EJB pro- 
file, for example defines a stereotype <<EJBHomeInterface>> 
that indicates that  a UML class models an interface between 
a container and an EJB class. The profiles also list a num- 
ber of consistency constraints that extend the consistency 
constraints defined in the UML semantics guides. For ex- 
ample, the UML profile for EJB demands that the type of 
any method parameter of an EJB home or EJB remote inter- 
face can only be atomic (e.g. boolean, int etc), references to 
remote objects or references to classes that are serializable. 

Platform Independent I 
Model of Application in UML | 

OMG Mapping To EJB ~ ~e sin 
I Platform Specific Model L 
I of App,catio. in UML EJB Profile I XMI I 

an~ 1 EJB Container I 

F i g u r e  4: M o d e l  D r i v e n  A r c h i t e c t u r e  for E J B  

Figure 4 shows the artefacts and their dependencies involved 
in using the model driven architecture approach for devel- 
oping distributed components for the Enterprise Java Beans 
platform. The business logic of components is specified in a 
PIM by a standard UML case tool that  stores the model in 
XMI format [40], an XML encoding [2] for the Meta Object 
Facility [38]. A mapping tool that  implements the OMG 
standard mapping of UML to EJB then generates a PSM 
that uses UML extensions defined in the UML profile for 
EJB. A CASE tool can then translate the PSM into the 
different components that are necessary for an EJB deploy- 
ment of the model, such as the Java code, a makefile that 
is needed compiling the code, a Manifest file that defines 
the content of the binary archive that  is executed by an 

EJB container and a deployment descriptor that defines on 
which machines the components need to be deployed. 

Even though the Model Driven Architecture specification is 
relatively young, there are various implementations avail- 
able. For example, Caboom of CalKey Technologies [23] 
supports the full specification of components in UML. Ca- 
boom provides the usual diagram types of the UML to define 
the static interfaces of components and uses Activity dia- 
grams for the visual specification of the behaviour of meth- 
ods. Caboom can then generate EJB, COM and/or  .NET 
components and subsequent deployment information from 
these UML models. The fact that all component platform 
specific code is generated by model driven architecture en- 
vironments, such as Caboom, not only facilitates the porta- 
bility across platforms but  also accelerates the development 
of the components in the first place as the designers can 
focus on the graphical specification of components rather 
than their implementation in a particular component plat- 
form. The first projects that have been completed with these 
tools report productivity increases of about 35-70%. 

4. COMPONENT-ORIENTED DEVELOP- 
MENT PROCESSES: STATE OF THE 
ART 

While significant advances in building reliable, scalable and 
secure systems have been made by using distributed compo- 
nent technologies there is still a long way to go until we can 
derive a component-based distributed software system for a 
given a set of requirements in a systematic manner. Most 
importantly, engineers need to be able to reason about the 
appropriateness of models of distributed components with- 
out having to go through as many development and deploy- 
ment iterations. Moreover, we need to be able to understand 
the extent to which component-oriented architectures can be 
adjusted without having to modify the components, or even 
worse having to change the platform that executes them. 

In this section we provide an overview of some recent 
software engineering research results that will advance 
component-oriented development processes. We first assess 
techniques that  support reasoning about static and dynamic 
properties of models for distributed components. 

4.1 Reasoning about Component-based Ar- 
chitectures 

When classifying the different techniques that support rea- 
soning about distributed component models, we distinguish 
static and dynamic techniques. Static reasoning techniques 
assess the internal static semantic correctness of models as 
well as their relationship to other artefacts produced during 
the software development process. Dynamic techniques sup- 
port reasoning about the behavioural correctness of models. 

S t a t i c  C o n s i s t e n c y  D e f i n i t i o n  and  Checks:  Above we 
outlined the use of the UML for modelling distributed com- 
ponents in the OMG's MDA. MDA draws on a number of 
UML profiles. For each of these profiles, the static semantics 
are defined informally, which is clearly undesirable as these 
informal descriptions are prone to incompleteness and am- 
biguity. What  is needed is a more rigorous and formal def- 
inition of static consistency. Moreover, designers will need 
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F i g u r e  5: x l i nk i t  R u l e  for U M L  C o r e  

to be able to assess how conformant their platform specific- 
models are with a particular profile. This demands the pro- 
vision of consistency checks of PSMs against UML profiles. 
To date, hardly any CASE tool used in industry provides 
such checks. Finally, it is not uncommon that distributed 
component models are developed in a distributed manner 
themselves. This means that the consistency checking mech- 
anisms are required to work in a distributed manner, which 
again most CASE tools do not support. 

Motivated by the above requirements, a number of groups 
have worked on specifying static semantic and inter- 
document consistency constraints. The literature on soft- 
ware development environments includes many examples of 
formalisms to specify static semantic constraints and how 
to support them with development tools. More recently, the 
OMG has defined an Object Constraint Language [53] that  
is used to express the static constraints in the UML core 
meta  model. 

In a response to a request for information that  the OMG has 
issued to start the OCL revision, Vaziri and Jackson outlined 
the limitations of using OCL for defining UML and UML 
profile static semantic constraints [51]. In particular, they 
noted that  OCL is very implementation orientated while a 
more easily comprehensible constraint definition would need 
to be of a declarative nature. Jackson also provided a con- 
straint definition for the UML core in Alloy [20] that  can 
then be checked with the Alloy Constraint analyzer. 

In our own work, we have developed a formal specification 
language for static consistency constraints and a standards- 
compliant distributed execution engine for this language. 
In [35] we describe xlinkit, a consistency specification lan- 
guage based on first order logic and an associated checking 
service that  executes the language. The operation of xlinkit 
is quite simple. It is given a set of distributed XML re- 
sources and a set of potentially distributed rules that  relate 
the content of those resources. The rules express consis- 
tency constraints across the resource types, xlinkit returns 
a set of XLinks, in the form of a linkbase, that  support nav- 
igation between elements of the XML resources. We have 
defined a denotational semantics of our consistency speci- 
fication language in [35]. Unlike standard first order logic, 
xlinkit computes hyperlinks between inconsistent elements 
instead of boolean values. 

xlinkit leverages standard Internet technologies. It supports 
document distribution and can support multiple deployment 
models. It has a formal foundation and evaluation has shown 
that  it scales, both in terms of the size of documents and 
in the number of rules, xlinkit has a more flexible architec- 
ture than the Alloy model checker. Due to its reliance on 
XML and Web technologies xlinkit supports checks between 
distributed artefacts. 

xlinkit is a very general technique that  is amenable to check- 
ing any kind of semi-structured and distributed markup. 
In [36], we describe an application of xlinkit to UML. We 
have specified the UML meta model constraints in xlinkit 's 
rule language. We have then tested the performance of 
xlinkit against industrial UML models that  were represented 
in the XML encoding defined in the XMI standard [40]. 
The performance measurements revealed satisfactory per- 
formance results with most rules executing within a mat ter  
of seconds even on files of several megabytes. 

Figure 5 shows an example xlinkit rule that  formalizes a 
UML core semantic constraint. For reasons of readability, 
we show it in the standard mathematical  syntax rather than 
the XML encoding that  the xlinkit rule engine understands. 
The rule specifies that  the role names that  can be attached 
to association ends in UML models need to be unique. To 
achieve that,  we allow the use of XPath  [5] expressions in 
our formulae. The vocabulary used in the path expressions 
shown in Figure 5 is determined by the XMI document type 
definition defined by the OMG, which in turn was derived 
from the UML meta model. The first quantifier of the rule 
uses an XPath  expression to select all associations included 
in a UML model. Then for all pairs of association ends 
within any of these associations we check that  equality of 
the names implies identity of the association ends. 

In [37] we report an application of xlinkit that  checks com- 
pliance of distributed UML models against the UML profile 
for EJB. The paper also describes how consistency of dis- 
tr ibuted UML models can be checked against Java source 
code and deployment descriptors. Thus, xlinkit can be used 
to specify static consistency constraints among distributed 
component models, component implementations and their 
deployment descriptors. 

Q u a l i t a t i v e  D y n a m i c  P r o p e r t i e s :  The formal specifica- 
tion of static semantic constraints and the ability to check 
models against them assists designers of distributed compo- 
nents to check that  their UML models are meaningful. This 
does not necessarily mean that  models are correct because 
static constraints cannot be used to validate any behavioural 
properties of a model. 

Due to their concurrent and parallel nature, the need to 
check behavioural concerns is more pronounced in dis- 
tr ibuted component models than for models of sequential 
systems that  execute on just one host. Systems designed 
using distributed components might deadlock and should 
satisfy safety and liveness properties. 

Two different methods can be used for the automated ver- 
ification of models against behavioural properties: theo- 
rem proving and model checking. Theorem proving tech- 
niques can cope with possibly infinite state space models, 
but their use generally requires manual interaction and guid- 
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ance. Model checkers do not need such interaction but can- 
not cope with infinite state spaces. By choosing the right 
abstractions for models of distributed component systems a 
finite, albeit large state space can be achieved. 

A number of significant advances of model checkers, such 
as Spin [17] and LTSA [28], were made during the 1990s. 
Amongst others, the use of Binary Decision Diagrams and 
compositional reachability analysis [3], together with signif- 
icantly more powerful hardware have made it possible to 
check models with very large state spaces. These advances 
have enabled a strand of applied software engineering re- 
search that uses model checking techniques for models of 
distributed components with the aim to check them against 
behavioural properties. A common thrust among several of 
these approaches is the use of the UML and a mapping be- 
tween the UML meta model and the languages that model 
checkers use as an input. Cheung [31] and Lilius [27] trans- 
late behavioural UML specifications expressed in state di- 
agrams into Promela, the input language of Spin, with an 
aim to provide a precise semantics for these diagrams. Inver- 
ardi and Muccini [18] also derive Promela specifications from 
UML state charts. They then translate sequence diagrams 
that specify certain scenarios into linear temporal logic for- 
mulae in order to check whether the specified scenarios are 
behaviourally consistent with the component specifications. 

In our own work [24, 25], we focus on model checking safety 
and liveness properties that are induced by the synchro- 
nization primitives and multi-threaded execution capabili- 
ties provided by distributed component technologies, such as 
the CCM or EJB. These component technologies only sup- 
port a fixed number of such synchronization properties, such 
as oneway, synchronous, deferred synchronous and asyn- 
chronous execution in case of the CCM. Moreover, the ob- 
ject adapters that control component execution in contain- 
ers provide only a small number of multi-threading policies. 
These policies control how concurrent invocations are han- 
dled by the component and again there is only a few of these 
policies, such as single threaded execution or use of a thread 
pool to handle requests. We therefore extend platform spe- 
cific UML profiles with stereotypes to express the use of 
synchronization primitives in state diagrams and the use of 
threading policies in a component class diagram. Moreover, 
we use object diagrams to define the deployment of com- 
ponents across distributed hosts. From these stereotyped 
diagrams we then generate a process algebra representation 
of the synchronization and threading behaviour for which a 
Labelled Transition System can be automatically computed. 
We then use reachability analysis to check for absence of 
deadlocks, safety and liveness properties. If the reachability 
analysis finds any deadlocks, safety or liveness property vio- 
lations it produces a trace that leads from the initial state to 
the state that violates that  property. We then abstract that 
trace into a UML sequence diagram that shows a scenario 
for that property violation and is more meaningful to the 
designer of the distributed component system than a trace 
of labelled transitions. 

There are a number of further approaches that  use model 
checking techniques in conjunction with distributed compo- 
nent technologies without using the UML. In [18] Inverardi 
et al. propose a way of constructing distributed architec- 

tures from components in a deadlock-free manner. They 
use Milner's CCS [33] to prove that the architectures con- 
structed are actually deadlock free. They report in [19] 
about an application of this technique to DCOM applica- 
tions. 

4.2 Component Deployment 
Component technology providers offer a great number of 
tools that  can be used to manage and configure the deploy- 
ment, but component deployment gained attention among 
software engineering researchers only relatively recently. 

Hall et al. identify the activities that  are commonly associ- 
ated with software deployment in [13]: 

• Package all artefacts and configuration descriptions 
needed to install a system (Release) 

• Configure and assemble all artefacts needed to use a 
released system (Install) 

• Bring an installed system into a state that  it can be 
used (Activate) 

• Deallocate all resources of an activated system and put 
it into a state that it cannot be used (Deactivate) 

• Modify an installed/activated release by selecting a 
different configuration (Reconfigure) 

• Modify an installed/activated release to adjust it to 
changes in the operating environment (Adapt) 

• Modify an installed/activated release by in- 
stalling/activating a previously unavailable con- 
figuration (Update) 

• Remove the installed artefacts of a release from its 
operating environment (Remove) 

• Make a release unavailable (Retire) 

Rutherford et al. put these activities into the perspective of 
deploying distributed EJB-based components in [45]. They 
then present the Bean Automated Reconfiguration frame- 
worK (BARK), which supports some of the deployment ac- 
tivities. The framework defines a high-level scripting lan- 
guage that can be used for describing deployment scripts 
that can then be executed on a number of distributed hosts 
in order to perform installation, activation, deactivation and 
reconfiguration actions. The tool that executes these scripts 
provides different kinds of reliability guarantees for the ex- 
ecution of these reconfiguration scripts. The tool supports, 
in particular an atomic execution of scripts on a number of 
distributed hosts by means of transactions that are imple- 
mented using the two-phase commit protocol. 

5. LOOKING AHEAD 
In this section, we briefly discuss a number of research ques- 
tions that  may form part of a broader research agenda for 
software engineering principles, methods and tools in sup- 
port of the component-based development of distributed 
software systems. 

Q u a n t i t a t i v e  R e a s o n i n g :  Using the UML together with 
model checking techniques as discussed above supports rea- 
soning about the presence or absence of certain qualitative 
properties, such as deadlocks, safety or liveness properties. 
For distributed component architectures, however, it is also 
important to be able to reason about quantitative properties 
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that these models will have when they are deployed in a cer- 
tain way into a container of an application server. It would 
be highly desirable to avoid costly risk mitigation iterations 
during a development process and address the question of 
whether an architecture scales and performs efficiently and 
reliably by analytic means. The performance modelling lit- 
erature includes a large body of work on stochastic process 
algebras, which use distribution functions with which transi- 
tions are executed [16, 9, 10]. Due to their compositional na- 
ture, process algebras have been successfully used to model 
distributed component systems as discussed above. It seems 
natural  to extend that  research such that  performance, seal- 
ability and reliability properties of UML models can be ex- 
pressed and analyzed with stochastic process algebras. 

Quality of Serv ice  A w a r e  C o m p o n e n t  D e p l o y m e n t :  
Once the quantitative characteristics of the interactions be- 
tween distributed components are modelled it would be ap- 
propriate to avoid loosing that  information further down the 
development and deployment process. Instead, it would be 
desirable to make the containers that  execute components 
aware of them so that they can proactively engage in meet- 
ing these characteristics. Thus, the quantitative properties 
expressed in an (extended) UML model about a set of com- 
ponents become obligations for component execution that 
is to be met by a container of an application server. These 
quantitatively enriched models could then be translated into 
a service level agreement, which governs the way how con- 
tainers execute components. In particular, containers could 
then monitor their actual performance, reliability and seal- 
ability and compare it with the required quality of service 
expressed defined in the service level agreement. In case of 
under-performance, containers could then either proactively 
take steps, such as the replication of particular components 
in neighbouring containers, to meet the required service level 
or report service level exceptions to administrators. 

T r u s t e d  C o m p o n e n t  D e p l o y m e n t :  Important  new re- 
quirements for component deployment arise when we con- 
sider applications that  are assembled from distributed com- 
ponents that  execute in different administrative domains. 
This is particularly the case for component-based applica- 
tion services. Firstly, the same components or containers 
may potentially execute applications on behalf of competing 
organizations. Consider a storage service provider, which 
operates a specialized container that  is customized for mass 
storage of stateful components. That  container may then be 
used by potentially competing organizations, who would ex- 
pect that neither the storage service provider nor any other 
of its customers can access their data. Secondly, the service 
level agreements that  we discussed above now form part of 
the contract between the different administrative domains 
that  are involved in providing components for the applica- 
tion. Thus the monitoring of service execution now has to be 
performed in a trustworthy manner and has to be exchanged, 
potentially in a summarized form, between the administra- 
tive domains as part of any service level monitoring. 

A r c h i t e c t u r a l  S t ab i l i t y :  Architectural stability refers to 
the property of a software architecture to meet changing re- 
quirements. Addition or changes in functional requirements 
can be addressed in distributed component-based architec- 
tures by adding or upgrading the components in a business 

object layer. Current distributed component containers sup- 
port hot-deployment of new and hot-swapping of existing 
components so that  these changes can be performed without 
even stopping applications. Moreover, as discussed above, 
the deployment lifecycle is fairly well understood. Changes 
in non-functional requirements, however, can stress an archi- 
tecture considerably and might lead to architectural break 
down. Such breakdowns occur if the container or application 
server that has been selected to execute distributed compo- 
nents does not provide sufficient deployment flexibility to be 
able to meet the changed requirements and as a result the 
container or application server has to be changed, which is 
considerably more expensive than just  adjusting the compo- 
nent replication strategy. On the other hand, always using 
the most advanced container product might be prohibitively 
expensive for applications that  might never exceed the scal- 
ability boundaries that  could also be met with, for example, 
open source containers. Therefore in order to achieve archi- 
tectural stability, it will be necessary to adjust requirements 
elicitation and management techniques and elicit not just  
the current non-functional requirements, but also to assess 
the way in which they will develop over the lifetime of the 
architecture. These ranges of requirements then need to in- 
form the selection of distributed component technology and 
subsequently the selection of application server products. 

Workf low:  The distributed component technologies that  
we discussed in this paper are all being integrated with mes- 
saging technologies that  are used to exchange data asyn- 
chronously. The Java Messaging Service is now part of 
the Java 2 Enterprise Edition and the latest release of the 
EJB specification includes Messaging Beans that  are ca- 
pable of handling incoming and outgoing messages. The 
CORBA Component model natively supports asynchronous 
communication by way of messaging and also the compo- 
nent model in Microsoft's .NET integrates with Microsoft's 
Message Queue (MSMQ). Components that  direct the flow 
of messages through a distributed architecture and in that 
way control the workflow of an organization are becoming 
available, too. Examples include IBM's MQSeries Workflow 
or Microsoft's BizTalk Server. These systems need mod- 
elling capabilities for workflows, formal semantics for the 
workflow modelling languages, analysis methods and tools 
to reason about workflow models and to monitor the compli- 
ance of actual workflows with those prescribed in a workflow 
model. A great deal of these problems have been addressed 
in the software process literature. The more mechanical and 
non-interactive workflows addressed using these distributed 
component systems seem much more amenable to be solved 
using the techniques that were originally developed for soft- 
ware processes. It would therefore seem an interesting ex- 
ercise to apply some of the software process research results 
to these workflows. 

6. SUMMARY AND CONCLUSIONS 
In this paper, we have provided an overview of the dis- 
tr ibuted component technologies that  are available to date. 
We have addressed the state of the practice in using these 
component technologies. In particular, we have shown sev- 
eral examples of architectural styles that  use these technolo- 
gies to deliver scalable distributed applications and integrate 
them with legacy enterprise information systerns. We have 
shown why iterative and incremental development processes 
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are appropria te  for the development of dis t r ibuted compo- 
nents. We have then presented the idea of model driven 
architecture and sketched how component technology inde- 
pendent  development can be achieved. We have reviewed 
the state of the art  in developing distr ibuted components 
and shown how developers are able to reason about  static 
and dynamic quali tative properties of models of dis tr ibuted 
component. We then sketched the current s tate of the rela- 
tively novel field of component deployment. Finally, we have 
identified quanti tat ive reasoning about component models, 
QoS aware deployment, t rusted execution, architectural  sta- 
bility and workflow across distr ibuted components as some 
of the items on the software engineering research agenda for 
distr ibuted component systems. 

The market for dis tr ibuted component technology is worth 
several billion US$ per annum. The market  for professional 
services that  turn these technologies into solutions is prob- 
ably at least as big. Thus, any software engineering re- 
search results that  are transferred and successfully applied 
in this professional services market  are likely to have a signif- 
icant impact.  I t  is encouraging to see tha t  previous trends 
within the software engineering research community of ig- 
noring current software development practice have to some 
extent been abandoned. Even though UML and the dis- 
t r ibuted component technologies available to date  are far 
from perfect and leave a lot to be desired from a formal 
point of view they are what  engineers use in practice. I t  is 
probably more important  to live with these flaws and pack- 
age research into a form tha t  shows a clear route to appli- 
cation for practicing software engineers. The research tha t  
we have presented in this paper  is firmly rooted in currently 
development practice and stands a fair chance of having an 
impact. 
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