
Web design
frameworks combine
generic conceptual,
navigational, and
context schemas.
Such frameworks
offer developers a
conceptual approach
to maximize design
reuse, rather than
code reuse, in Web
applications. The
authors apply the
object-oriented
hypermedia design
extension, OOHDM-
Frame, to determine
key architectural
components and
design structures
that lend themselves
to reuse.

B
uilding Web applications is a complex
and time-consuming process. Such a
task requires an understanding of the
underlying domain—objects, behav-

iors, and application rules, for example. The task
also requires that we carefully design the applica-
tions’ navigational structure and user interface.
User needs determine which navigation facilities
to include, such as indexes, guided tours, and
landmarks. The interface must guide the user
through the sea of Web information by giving
feedback on actions and by presenting the infor-
mation clearly and meaningfully.

Another aspect to Web applications’ complex-
ity is that they often integrate distributed data or
behavior repositories and usually support differ-
ent user profiles. Applications typically evolve
over time. As a result, they must be built modu-
larly, taking into account the application’s behav-
ior, the need for easy navigation within an
application, and the user interface. In addition,
applications must be rapidly deployed with zero
defects. To meet these concerns, software devel-
opment should focus on reuse, combining the
reuse of both design and components for efficient
implementation of new applications.

We’ve designed several Web applications such
as academic department Web sites, thematic por-
tals, knowledge management portals, and online
stores with our object-oriented hypermedia design
method.1 OOHDM considers Web applications as
navigational views over an object model and pro-

vides basic constructs for navigation, such as con-
texts and indexes, and for user interface design.
OOHDM lets us apply well-known object-oriented
software engineering practices to build applica-
tions involving navigation. OOHDM supports
several types of reuse directly; other types of reuse
can be achieved through extensions of OOHDM
such as OOHDM-Frame. We’re seeking ways to
maximize reuse in the development process, since
we’ve observed a certain degree of commonality
among navigation and interface solutions in sim-
ilar application domains.

In this article, we introduce Web design frame-
works—that is, a set of generic designs—as a way
to reuse design in Web applications. We use
OOHDM as a conceptual framework within which
to discuss types of reuse. The most extensive type
of reuse is achieved through complete application
architectures, which are specified using OOHDM-
Frame (an extension of OOHDM) in our exam-
ples. We also discuss the relation between Web
design frameworks and Web application frame-
works, arguing that although both must be inte-
grated, the former can be specified independently
of the latter.

The underlying concepts—reusing conceptual
design, navigation design, abstract interface
design, and implementation aspects of software
development—also apply to other approaches,
such as the WebML and HDM2000 design
methodologies.2,3

Separation of concerns
Application domains grow ever more sophisti-

cated, users need easier browsing to access more
multimedia data, and new appliances require
easy-to-use Web interfaces. To help designers
manage the problem of the Web’s complexity, we
can separate three essential modeling concerns
with the OOHDM: application behavior, naviga-
tional modeling, and interface design. Separation
of concerns provides not only a solid ground for
Web software evolution but also a basis for maxi-
mizing design and implementation reuse.

Application behavior
The core of every software application, Web

based or not, is its domain or conceptual model.
It must reflect which objects the application deals
with, their relationships, and behaviors. In
OOHDM, we specify the conceptual model with
the Unified Modeling Language (UML) notation
(http://www.rational.com/uml/resources/
documentation/index.jsp).

20 1070-986X/01/$10.00 © 2001 IEEE

Engineering Web
Applications for
Reuse

Daniel Schwabe and Luiselena Esmeraldo
Catholic University of Rio de Janeiro (PUC)

Gustavo Rossi and Fernando Lyardet
La Plata University

Web Engineering

Web applications are distinguished by their
navigational architecture—they’re basically hyper-
media applications. We must define which objects
(nodes) users will perceive and how they will tra-
verse the hyperspace (via links, indexes, and so
on). We define nodes and links according to user
profile and task.

In the rest of this article, we base our discus-
sions and examples on conference paper review
systems: Web-based applications that help con-
ference program committees manage the process
of receiving and evaluating conference papers.
Figure 1 shows a possible conceptual model for
this application. This model lets reviewers express
their degree of interest in certain papers and indi-
cate their degree of expertise concerning confer-
ence topics.

Navigational modeling
To support part of the conference paper review

process, we defined a “view” over this schema in
which nodes (Person, Paper, and Review) and links
are observers—design patterns—of conceptual class-
es as Figure 2 (next page) shows.4 Design patterns
capture known good solutions to recurring design

problems. Therefore, they represent design knowl-
edge culled from the solutions given by experienced
designers that have encountered these same prob-
lems before, possibly with slight variations.
Applying a design patterns is a form of design reuse.

Each node class consists of attributes combined
from different conceptual classes. Links indicate
navigation paths and reflect conceptual relation-
ships. For example, in Figure 2, the node class
Person incorporates Expertise and Topic as attrib-
utes; similarly, Paper incorporates Topic as an
attribute. Therefore, node class Person is an
observer over the Person, Expertise, and Topic
conceptual classes.

In OOHDM, we extended UML for defining
node and link classes. We define node attributes
with an object query language that lets us pick
attributes from classes related to the observed
class.1 The navigational schema contains node
classes and link relationships that indicate the
basic navigation architecture. The navigational
schema contains only links derived from “seman-
tic” relationships (for example, the relationship
IsAuthorOf between Person and Paper in Figure
2). Finer grained links that indicate, for example,

21

Jan
uary–M

arch
 2001

Person

Name
Address
E-mail
Password

PC chair PC member Reviewer

Coordinates

Paper

Title
Type: [Full, Short, Poster]
Status: [Accepted,
 Rejected,
 ToBeDiscussed]
Content
CameraReadyContent

Topic

Name
Description

Review

Confidence:
 [High, Medium, Low]
Technical quality
Relevance
CommentsPC
CommentsAuthors
Recommendation:
 [Accept, Weak Accept,
 Neutral, Weak Reject,
 Reject]
Final?: [Yes, No]

Expertise

Degree:
 [High, Medium, Low]

Interest

Degree:
 [High, Medium, Low]

Reviews

HasConflict

HasInterest
Knows

 IsAbout

Makes

IsAuthorOf

PC Program committee

Figure 1. Conceptual

model for the conference

paper review system.

papers by the same author or papers reviewed by
the same reviewer, are expressed as part of navi-
gational contexts, explained next.

In OOHDM, we define navigational contexts as
sets of nodes that can be accessed with indexes
and traversed freely or in some order. Contexts
can be defined by a query predicate, such as all
instances of the node class Paper on the topic of
hypermedia. We specify navigational contexts
with a slight addition to UML by considering the
contexts’ nature as sets of nodes. The navigation-
al context schema also shows indexes and notable
entry points in the hyperspace (landmarks).

An index is a navigation object serving as an
access structure containing references to other
navigation objects. The same node can appear in
more than one context—Paper by author and
Paper by reviewer—with different attributes and
outgoing links, for example, to reach the next/pre-
vious node in the context. These differences are
expressed with InContext classes (decorators
with the semantics defined by Gamma et al.4 A
decorator is a well-known design pattern that
allows the adding of attributes to an existing class,
under certain conditions.). Figure 3 shows a pos-
sible navigational context schema.

In Figure 3, rectangular boxes with solid bor-

ders denote contexts (sets of nodes); the label of
each gray area indicates the class of the elements
in the contexts within it. For example, Person
alphabetical stands for an alphabetized list of per-
sons (either reviewers or authors, or both). This
information is actually contained in accompany-
ing context specification cards—data structures
that detail constraints and other aspects of instan-
tiation.1 Boxes with dashed borders indicate access
structures (indexes), which also have correspond-
ing access structure specification cards.

In the conference paper review system, we
specify that papers can be navigated in several
ways, such as by reviewer or by topic. This appli-
cation allows submission of new papers, creation
of reviews, and registration of new reviewers.
Contexts whose elements (that is, objects that
belong to it) might change during navigation are
called dynamic contexts. Correspondingly, there
are dynamic contexts (denoted by a black bar on
the right), within which new instances of the
appropriate navigation classes can be created. The
application also permits the instantiation of rela-
tions, such as the assignment of a paper to a
reviewer, which may occur during navigation of
the Paper by Reviewer Interest context. This is also
represented by the dynamic contexts.

22

IE
EE

 M
ul

ti
M

ed
ia

Person

Name
Address
E-mail
Password
Category: [PC chair, PC member
 reviewer]
Expertise:
 {<T: Topic, self Knows T,
 Knows.Expertise.Degrees>}*
InterestedPapers:
 {<P: Paper,
 self HasInterest P,
 HasInterest.Interest.Degree>}*

Coordinates

Paper

Title
Abstract
Type: [Full, Short, Poster]
Topics:
 {T: Topic, self IsAbout T}*
Status: [Accepted, Rejected,
 ToBeDiscussed]
Content
CameraReadyContentReview

Reviewer: P.name, P:Person, P makes self
Paper: P.id, P: Paper, self reviews P
Confidence
Technical quality
Originality
Relevance
CommentsPC
CommentsAuthors
Recommendation:
 [Accept, Weak Accept, Neutral, Weak
 Reject, Reject]
Final?: [Yes, No]

Makes

HasConflict

Reviews

HasInterest

IsAuthorOf

Figure 2. Navigation

class model for the

conference paper review

system.

Because operations in this domain depend on
the reviewer’s identity, the main menu has a pro-
tected access structure, indicated by the small
black oval above it in Figure 3. This means that
only authorized reviewers can access it and con-
tinue navigation. The access structure specifica-
tion card lists the different user classes and access
rights.

Interface design
Finally, the third modeling concern involves

the user interface specification. For a given navi-
gational model (a particular user profile), we
might have to define different interface models
according to the particular interface device to be
used—for example, an Internet browser or a
mobile phone. In OOHDM, we’ve used a formal
model of interface objects that also considers the

interface as a set of observers of navigation objects
but space precludes further discussion.

A major advantage of using OOHDM for soft-
ware design is that it lets us unambiguously iden-
tify these three design concerns independent of
implementation. Even for a non-object-oriented
implementation (such as combining relational
stores with active server page or Java server page
generation), however, it offers a clear understand-
ing of the design aspects and their rationale, which
simplifies system evolution and maintenance.

Design reuse
Classifying concerns as conceptual, naviga-

tional, and interface-related models gives us a
rationale for design reuse. In the conceptual
model, we could of course apply object-oriented
reuse techniques such as defining abstract classes;

23

Person

Alphabetical

By topic

By paper

By review status

Creation

Paper

By ID

By topic

By reviewer

By review status

Creation

By acceptance
status

Review

By paper

By reviewer

Creation

Main menu

Paper IDs

By coordinator

By reviewer
interest

By author

Topics
Persons

Review
status

Persons

Review/
acceptance

status

Figure 3. A navigational

context schema for the

conference paper review

system. The dashed

boxes indicate access

structures (indexes).

we could also build application frameworks by
systematically applying design patterns.4,5 Our
goal, however, is to push framework technology
further into the Web domain through Web design
frameworks.

Navigation patterns let us record, convey, and
reuse design experience.6 For instance, set-based
navigation—which recommends organizing
objects into meaningful sets (from the application
point of view)—helps designers support tasks such
as selecting items of interest in an electronic store,
or picking a paper for reviewing. In object-oriented
design, these patterns extend the basic Web navi-
gation paradigm to solve recurrent problems. For
example, the Landmark navigation pattern lets us
model relevant nodes (points of reference) that
must be reachable from every point in the appli-
cation.6 In Figure 3, the nodes are indicated by
arrows with a black circle at the source.

Although the kind of reuse provided by pat-
terns is valuable, complex Web applications need
to maximize reusing larger design structures (the
whole navigation topology or structure plus asso-
ciated functionality). These design structures may
arise at the application (conceptual level) or dur-
ing navigational design. For example, the activi-
ties triggered when users order an item online is
usually similar regardless of site. The way in which
users navigate to locate and purchase items online
is also usually similar.

Designers should find ways to express these
commonalities by reusing generic designs such
that only aspects unique to a particular site—for
example, payment procedures or different ways of
browsing—should be designed or programmed.

Similarly, although different conference paper
review systems might vary in the individual proce-
dures for selecting papers—for example, a two-
tiered system versus a single-tiered system—they all
have common functionality, such as reviewer reg-
istration, paper submission, assignment of paper to
referees, and review submission (see http://
www.cyberchair.org, http://dagwood.cs.byu.edu/
PaperReview/, or http://witanweb.iit.nrc.ca/).

Object-oriented frameworks
An object-oriented application framework is a

reusable design built from a set of abstract and
concrete classes and a model of object collabora-
tions in a particular domain. An application
framework acts as the skeleton of a set of applica-
tions that can be specialized for a particular appli-
cation. When many applications must be
constructed in the same domain, frameworks pro-

vide templates for supporting their commonali-
ties and accommodating variations. These tem-
plates usually take the form of abstract classes that
must be subclassed with concrete classes.
Alternatively, the classes are filled with “hook”
methods implemented by the application’s
designer.7 A key aspect of a framework is hot
spots—places in the framework where the design-
er introduces an application’s variations, or dif-
ferences, in the same domain as the framework.

A hot spot identifies a place in the framework
that the application designer can introduce an
application’s specificities; a hot spot delimits
where reuse ends. For example, “paper assignment
procedure” might be a hot spot in the paper
review framework; actual applications will have
different assignment procedures. Another exam-
ple would be “payment method” in an electronic
store—different stores accept different methods.

The basic philosophy behind frameworks—
building reusable designs—can be applied to Web
applications. However, we must carefully analyze
and understand the variation points in Web appli-
cation design models and the kind of abstractions
involved in this kind of application. Unfortunately,
current modeling languages (such as UML) don’t
support framework specifications well. Existing
approaches emphasize a specific programming lan-
guage. Instead, we use a simple notation, OOHDM-
Frame, to develop generic Web designs that let us
either generate an application framework (in a par-
ticular language) or specify a complete, running
application in the intended domain.

Web design framework
Web design frameworks are environment- and

language-independent whereas Web application
frameworks are programmed in a specific lan-
guage. A Web design framework contains a
reusable application model in a particular domain
that can later be instantiated into specific appli-
cations in that domain.

Our previous discussion on separation of con-
cerns gives us a basis for characterizing a Web
application’s components, which we can use to
design for reuse. Figure 4, which extends the
OOHDM approach, shows an abstract diagram of
a Web framework. It indicates what we call points
of flexibility: design components where we design
the framework’s hot spots.

Figure 4 shows two main generic models—con-
ceptual and navigational. A view mechanism
describes the navigational model. (A view is meant
here as a mapping between the two elements.)

24

IE
EE

 M
ul

ti
M

ed
ia

The navigational model itself has two submod-
els—the generic navigation schema and the gener-
ic navigational context schema. Each model has
points of flexibility that we can design for reuse
using, for example, a subclassing mechanism.

Reuse in the conceptual model. As Figure 4
shows, we can specify hot spots in two places—the
conceptual model and the navigational model. We
can achieve genericity (genericness) in the con-
ceptual model, through the particular hot spots
that are allowed, with object-oriented techniques.5

In particular, the hot spots of the conceptual
model for the application domain can be defined
according to Pree.7 Briefly, this definition states
that hot spots are framework components that will
be replaced, either by class or subclass definition
or by code rewriting, for a particular case.

For the conference paper review system, we can
extend the conceptual model by defining sub-
classes. For instance, we could subclass paper as
full paper, short paper, poster, and so forth.
Because designing for reuse at the conceptual level
employs well-known object-oriented techniques,5

we focus instead on designing reusable naviga-
tional models.

Reuse in the navigational model. We can
achieve variability (the degrees of freedom
allowed in the framework) in the navigational
model in different ways:

❚ By building completely new applications from
the same conceptual model (such as defining

a new user profile). For example, we could
build an application permitting program com-
mittee members to delegate evaluation of
papers to others, previously unknown (to the
system), or we could include a view for the
conference’s general chair to evaluate the
review process’ status.

❚ By defining a generic navigational schema,
which allows adding new node or link classes
and refining the definition of attributes. We
could redefine a review’s Recommendation
attribute, for instance, as numeric values rather
than enumerated as specified in the schema in
Figure 2 (Accepted, Rejected, ToBeDiscussed).

❚ By achieving a generic navigational context
schema—that is, defining abstract access struc-
tures and navigational contexts. We could
establish alternatives for grouping papers (into
navigation contexts) by recommendation type,
by review status, by referee preference, by
author, and so on.

A Web design framework thus combines a generic
conceptual schema and generic navigational and
context schemas. This gives us a generic platform
from which we can change the underlying appli-
cation model, add or refine profiles or tasks, and
define different navigation topologies for specific
applications. We create a particular application by
implementing the hot spots in each schema,
developing a concrete design, and mapping this
design into an implementation environment.

25

Jan
uary–M

arch
 2001

Generic
conceptual
model

Generic
navigational
model

Points of flexibility

Adding new
classes (sub-
classing)

Adding views
(representing a new
user profile)

Adding navigational
classes or modifying
view definitions

Generic
navigational
schema

Generic
navigational
contexts schema

View mechanism

Adding navigational
contexts and
indexes

Figure 4. Components of

a Web design

framework.

Specifying Web design frameworks
We’ve added simple primitives to OOHDM for

specifying flexible design structures. This modi-
fied notation is called OOHDM-Frame. We focus
here on using OOHDM to create generic Web
design models; see elsewhere for notation details.8

As we’ll show, we can achieve genericity in dif-
ferent ways. We might need to build completely
different applications in the same domain (for
example, different kinds of electronic stores). Or
we might need to accommodate different user
profiles (views) in the abstract model of one appli-
cation and then customize it for each new user
profile of the same store.

Genericity in the conceptual model
Creating a generic conceptual model requires

abstracting the classes and behavior of different
applications in the family. OOHDM-Frame uses
UML to specify generic conceptual models. The
only extension to UML is that dashed elements
are optional.

Specifying different user profiles
Accommodating variations in user profiles, and

reusing what is common to all of them, lies mid-
way between the conceptual and the navigational
model. Each Web application is considered a view
of the conceptual model. Given a particular con-
ceptual model (generic in a domain or specific for
an application), we can reuse it for different user
profiles, as Figure 2 exemplified for Person in the
navigation schema.

Specifying generic navigational schema
The navigational schema expresses which nodes

the user will navigate, which attributes those
objects will contain, and which links connect those
objects. Therefore, node and link classes represent
a Web application’s basic navigational architecture.
When designing a Web framework, we can specify
abstract node classes (with fewer attributes) and
link classes. These classes should be specialized for
a particular application in the domain, much as
they are in the conceptual model.

26

IE
EE

 M
ul

ti
M

ed
ia

Person

Alphabetical

By paper

Link derived
with review

Creation

Paper

By ID

By reviewer

Creation

Review

By paper

By reviewer

Creation

Main menu

Paper IDs

By author

Persons

Persons

Paper property

Link derived
with person

Link derived
with person

By property

0

0

0

0

Figure 5. Generic

context schema for the

conference paper review

system. Double-dashed

border indicates generic

elements (contexts or

access structures). Here,

“Paper property” is a

generic index (access

structure).

The viewing mechanism, which allows the
definition of attributes inside a node, is more
involved. For example, the Review class in the
navigation schema in Figure 2 has imported the
attributes Reviewer (the name of the person that
created the Review) and Paper (the ID of the
reviewed paper). Similarly, Reviewer has an exper-
tise list of pairs <topic, degree>, derived from
the conceptual relation class Expertise associated
with the Knows relation between Person and
Topic.

Expressing abstract navigational contexts
Different applications in the same domain can

contain different navigational contexts. In some
conferences, for example, reviewers might be
allowed to “bid for” (request reviewing) papers of
interest. In this situation, a context gathering all
papers of interest for each reviewer would be help-
ful to the program committee chair to make the
final assignments.

To express such generic contexts, the OOHDM
primitives are extended within OODHM-Frame
with the notion of a generic context, which stands
for a possible set of contexts. We define these con-
texts parametrically by stating constraints over
the properties that define possible instances. The
double-dashed rectangles in Figure 5 denote such
generic contexts. For example, the Paper by prop-
erty generic context in Figure 5 stands for a set of
contexts based on Paper properties. Some ex-
amples would be Recommendation=Accepted,
Status=ToBeDiscussed, and so on. Generic
contexts are further specified through specifica-
tion cards (see Figure 6).

The same parameterization approach applies
to link-derived contexts: those whose defining
property is based on a 1 – n link. For example, the
generic context Paper by link derived with person
can be instantiated into any context based on any
relation between Paper and Person, such as “has
interest,” “has conflict,” or “reviews.” Similarly,
generic access structures allow specifying abstract
indexes that can be later instantiated into con-
crete ones. The Paper property in Figure 5 is a
generic index that can be instantiated into sever-
al indexes, according to the particular contexts
instantiated for the Paper by property generic
context.

When concrete contexts and access structures
appear in the generic context schema, all applica-
tions derived from this framework must include
them. In a sense, these contexts and structures are
common to all applications built with the frame-

work for the given domain. In our example, the
context schema in Figure 5 specifies that all paper
review systems must

❚ create new reviews,

❚ submit (create) papers,

❚ register (create) reviewers,

❚ navigate among reviewers in alphabetical order,

❚ navigate among all reviewers of a given paper,

❚ navigate among all papers by their IDs, and

❚ navigate among all papers assigned to a given
reviewer.

In addition, Review can be navigated by paper ID
or by reviewer.

One possible instantiation of the generic con-
text schema in Figure 5 appears in Figure 3. The
Paper by property generic context in Figure 5 has
been instantiated in Figure 3 into two concrete
contexts—Paper by acceptance status and Paper by
review status. The Paper by link derived with per-
son (Figure 5) has been instantiated in Figure 3
into a single context—Paper by reviewer interest.

Instantiating a Web design framework
We can implement the design in a Web envi-

ronment in many ways. We briefly discuss two
here: instantiating the design framework into an
OOHDM model and implementing the resulting
model in the Web, and implementing the design
framework using a Web application framework.5

27

Jan
uary–M

arch
 2001

Paper by property generic context

Cardinality: 0 to n

Communicability: 0

Possible types: [static | session dynamic] +
[index access]

Consistency/instantiation constraints:
Definition predicate must be based only on
paper attributes

User restrictions: Program Committee Chair
or Person, where Person reviews Paper

Type: simple

Paper by
property

 0

Figure 6. A generic

context specification

card.

Web application model
We first instantiate the abstract model into a

valid OOHDM model, then implement it with
standard Web tools. The process for deriving a con-
crete OOHDM model from an OOHDM-Frame
specification involves defining concrete classes
(conceptual and navigational) and contexts from
the generic diagrams.

To map an OOHDM model into a Web appli-
cation, we used OOHDM-Web,1,9 which is an
implementation environment for OOHDM
designs. A complete OOHDM design can be repre-
sented in OOHDM-Web with special-purpose data
structures, which are basically nested lists of
attribute-value pairs. These data structures contain
class definitions, navigation context definitions,
access structure definitions, and interface defini-
tions. The description of database entries that store
instance data is also included.

Context definitions comprise the query defini-
tion that selects the elements belonging to the
context; the same is true for access structure defi-
nitions. Interface definitions are mixed HTML
templates, one for each class in each context
where it appears. The mixed HTML templates are
pure HTML formatting instructions interspersed
with function calls to a library of predefined func-
tions, which are part of the OOHDM-Web envi-
ronment. These functions allow retrieval of object
attributes, or reference to other objects in speci-
fied contexts. We define reference functions to
cause, when activated by users, the destination

object to appear in the appropriate context, using
the template defined for that context.

We’ve generalized this approach for dealing with
OOHDM-Frame models by allowing substitution of
generic definitions for concrete ones whenever
appropriate. The resulting representation describes
the framework’s generic design. The instantiation
process substitutes generic definitions in the frame-
work by the definitions (using the OOHDM-Web
representation) of their corresponding instantiated
elements. For example, a generic class-derived con-
text can be substituted by specific class-derived con-
texts in the instantiated framework. We achieve this
by replacing, in the data structure that describes the
framework, the generic context description by spe-
cific context descriptions.

Ultimately, when all hot spots have been
plugged into the corresponding concrete applica-
tion elements, the resulting data structure is a
valid OOHDM-Web representation of the final
instantiated application. Our current implemen-
tation doesn’t automatically support all constraint
verifications—the designer must do those manu-
ally while instantiating the framework.

Web application framework
Web design frameworks for a particular appli-

cation domain can also be mapped to an object-
oriented framework. In a sense, the design
frameworks thereby document the application
frameworks’ design.

We implemented an object-oriented architec-
ture that lets designers implement Web applica-
tion frameworks for specific domains. This
architecture contains classes that support the core
OOHDM primitives—nodes, links, indexes, and
contexts. The abstract classes can be plugged into
domain specific classes (such as Paper and Person)
to extend the behavior of these application class-
es with navigation functionality.

The designer next implements the generic con-
ceptual model with an object-oriented program-
ming language such as Java. For each application,
the designer either creates subclasses or instanti-
ates the domain classes and connects them with
the navigation classes and objects derived from
the OOHDM-Frame generic navigational schema.

This architecture decouples the application
and navigational model from the components
that provide dynamic content generation on the
Web and persistence. The components range from
the Common Gateway Interface (CGI) and
Internet Server Application Programming
Interface (ISAPI) to active server pages (ASPs) and

28

IE
EE

 M
ul

ti
M

ed
ia

We implemented an object-

oriented architecture that

lets designers implement

Web application frameworks

for specific domains. This

architecture contains classes

that support the core

OOHDM primitives—nodes,

links, indexes, and contexts.

Java server pages (JSPs). Decoupling lets a Web
application framework be designed independent
of particular commercial technologies so it can
evolve seamlessly as Figure 7 shows.

In the architecture shown in Figure 7, the appli-
cation model contains all application behavior
(from the OOHDM-Frame generic conceptual
model) expressed with an object-oriented lan-
guage. Meanwhile, the navigation server contains
classes that provide the ability to access nodes in
different contexts, managing the navigation spaces
and linking among nodes. The entire HTML ren-
dering task is performed on the Web server side by
either a custom third-party CGI/ISAPI module or
through dynamic HTML. The other components
manage persistence and dynamic page generation,
typically page servers like ASP or JSP.

Problems of reuse
So far we’ve discussed some of the technical

problems involved in reuse. Additionally, the
investment needed to design and implement a
Web (or an object-oriented) framework is impor-
tant in coming up with the abstractions for later
refinement and instantiation into an application.
Moreover, using a framework is difficult, as we
must understand those abstractions (generally
poorly documented) to instantiate and extend the
framework. OOHDM-Frame makes those design
decisions explicit to the framework designer by
providing a rich set of constructs to express them.

Reuse also involves complex economical and
managerial aspects. The development life cycle
must change with reuse-centric approaches. We

must identify core abstractions and existing
reusable components. New activities and roles
must be defined, managed, and coordinated in
the software team. Finally, it’s usually difficult to
estimate development costs (both for the frame-
work developer and user), which adds risk to the
development enterprise. These issues are
addressed in detail elsewhere.5

Web frameworks and architectures
The design frameworks we’ve discussed are

largely independent of Web architecture in terms
of implementation. For a complete solution,
there’s another level at which frameworks are also
relevant, namely the implementation level. Since
most Web-based applications exhibit common
functionalities, it makes sense to speak of Web
application frameworks. Such frameworks consti-
tute predefined architectures that are reused in
many actual implementations.

Web architectures define application frame-
work components, their responsibilities, and the
component relationships in a Web application
environment. Typical components are the Web
server, application server, the client, and a persis-
tence server. From these, we can identify many
architectural patterns.10

Finally, a Web application framework defines
the architecture of a set of applications in a par-
ticular domain or conceptual model. This archi-
tecture is defined in terms of the relationships
among domain components. While Web applica-
tion frameworks deal with understanding the
architecture of applications in the domain (and

29

Jan
uary–M

arch
 2001

Persistence
layer

Navigation server

IIS

 User

ASP

ContextIndex

Link

Apache

Node

User session

Web servers

 ISAPI

Third
party

COM

COM

Corba

Application
model

 Conference
 Journal

PersonPaper

Node
Node

Hypermedia

ASP
COM

Corba
IIS

ISAPI

Active server pages
Component Object Model
Common Object Request Broker Architecture
Internet information server
Internet Server Application Programming Interface

Figure 7. Architecture

for building Web

application

frameworks.

part of this concern might not involve the Web at
all), Web architectures address hardware and soft-
ware implementation problems as well as com-
munication components for building different
Web applications (in different domains).

From a more conceptual point of view, the
OOHDM approach also defines relationships among
components (application objects, navigation nodes,
and interfaces). The OOHDM design model induces
an application architecture that may be itself imple-
mented on top of different Web architectures. For
example, it separates navigation information from
content and from interface information.

From this point of view, since Web application
frameworks are defined using the OOHDM
approach, they can be implemented using differ-
ent Web implementation architectures. (Fontoura
describes an interesting approach for documenting
traditional, non-Web-application, frameworks.11)

Discussion and future work
Reuse of Web application design is already being

employed in practice by the larger development
organizations, albeit in a limited form. For exam-
ple, it is beginning to appear in the form of “wiz-
ards” that are distributed together with many Web
application servers or environments, such as ASP,
Enterprise JavaBeans, Cold Fusion, StoryServer,
Broadvision, WebSphere. Many are specific to e-
commerce applications, but the principles behind
them are the same: They provide an off-the-shelf
solution that can be reused, with some adaptations.

We have observed that both within our own
group, and within other design teams, designs
rarely start from scratch, but rather from pre-
existing structures that are somewhat similar to
what is needed in each particular case. The work
presented here allows this practice to become a
systematic, documented activity, which is inde-
pendent of the implementation environment.

A distinguishing feature of a Web application is
its navigation topology, which in great measure
determines the application’s success. Therefore, Web
application frameworks must capture such aspects
for families of applications in each domain. This is
achieved through generic navigational contexts.

Generic navigational contexts are one of the
most important architectural components in Web
design frameworks. Contexts are recurrent pat-
terns in Web applications since they usually deal
with sets of similar objects. We’re now incorpo-
rating other navigation patterns into OOHDM-
Frame to enhance its expressive power; among
these, we highlight personalization features. We

are also developing XML specifications of frame-
works, consistent with OOHDM XML specifica-
tions that already have been defined. Finally, we
are investigating methods for framework design
based on requirements that are common to appli-
cations in a particular domain.

Development, delivery, and maintenance times
in the Web domain require reuse-centric approach-
es. The systematic reuse of semicomplete design
structures, as described by Web design frameworks,
is a key approach for maximizing reuse in Web
application development. MM

References
1. D. Schwabe and G. Rossi, “An Object-Oriented

Approach to Web-Based Application Design,” Theory

and Practice of Object Systems (TAPOS), special issue

on the Internet, vol. 4, no. 4, 1998, pp. 207-225.

2. S. Ceri, P. Fraternali, and A. Bongio, “Web Modeling

Language (WebML): A Modeling Language for

Designing Web Sites,” Proc. 9th Int’l Conf. the WWW

(WWW9), Foretec Seminars, Reston, Va., 2000.

3. F. Garzotto et al., “Modeling-by-Patterns of Web

Applications,” Proc. Int’l Workshop on the World Wide

Web and Conceptual Modeling, Lecture Notes in

Computer Science 1727, Springer Verlag, Berlin,

1999, pp. 293-306.

4. E. Gamma et al., Design Patterns: Elements of

Reusable Object-Oriented Software, Addison Wesley,

Reading, Mass., 1995.

5. M. Fayad, D. Schmidt, and R. Johnson, eds., Building

Application Frameworks, Wiley & Sons, New York,

1999.

6. G. Rossi, F. Lyardet, and D. Schwabe: “Patterns for

Designing Navigable Spaces,” Pattern Languages of

Programs 4, Addison Wesley Longman, Reading,

Mass., 1999.

7. W. Pree, Design Patterns for Object-Oriented Software,

Addison Wesley, Reading, Mass., 1994.

8. D. Schwabe et al., “Web Design Frameworks: An

Approach to Improve Reuse in Web Applications,”

Proc. WWW9 Web Eng. Workshop, (Lecture Notes in

Computer Science), Springer Verlag, Berlin, to be

published in 2001.

9. D. Schwabe, R. Pontes, and I. Moura, “OOHDM-

Web: An Environment for Implementation of

Hypermedia Applications in the WWW,” ACM

SigWEB Newsletter, vol. 8, no. 2, 1999.

10. J. Conallen, Building Web Applications with UML,

Addison Wesley Longman, Reading, Mass., 2000.

11. M. Fontoura, W. Pree, and B. Rumpe, “UML-F: A

Modeling Language for Object-Oriented

Frameworks,” Proc. ECOOP 2000 (LNCS 1850),

Springer Verlag, Berlin, pp. 63-82.

30

IE
EE

 M
ul

ti
M

ed
ia

Daniel Schwabe is an associate

professor in the Department of

Informatics at Catholic University

in Rio de Janeiro (PUC), Brazil. He

has been working on hypermedia

design methods for the past 10

years. He is one of the authors of HDM, the first authoring

method for hypermedia, and of OOHDM, one of the

mature methods in use by academia and industry for Web

applications design. He earned a PhD in computer science

in 1981 at the University of California, Los Angeles.

Gustavo Rossi is a full professor at

La Plata University in Argentina

and is the head of LIFIA

(Laboratory for Education and

Research in Advanced Informatics),

a computer science research lab in

Argentina. His research interests include Web design pat-

terns and frameworks. He is one of the OOHDM method-

ology authors and is working on the application of design

patterns in the Web field. He earned a PhD in Informatics

in 1995 at the Catholic University of Rio de Janeiro

(PUC), Brazil.

Fernando Lyardet is a research

and teaching assistant at LIFIA,

and an advanced undergraduate

student at La Plata University, in

Argentina. He works with patterns

and pattern languages for hyper-

media and Web applications, and with CASE tools for

Web information systems.

Luiselena Luna Esmeraldo is an

independent consultant working

at Bayweb Consulting in Brazil.

She has worked on hypermedia

and Web frameworks for two

years. She obtained a master of sci-

ence in informatics in 1998, from the Catholic

University in Rio de Janeiro (PUC), Brazil.

Readers may contact Schwabe at the Dept.

Informática, PUC-Rio, Brazil, email schwabe@inf.

puc-rio.br.

31

Jan
uary–M

arch
 2001

2001 Editorial
Calendar

January-March
Web Engineering: Part 1

Leaders in the field discuss new approaches and

tools for developing, deploying, and evaluating

Web-based applications and systems.

April-June
Web Engineering: Part 2

Part 2 further explores Web-based systems and

picks up where Part 1 leaves off. Read about lessons

learned and the latest advances in creating appli-

cations and systems for the Web.

July-September
Intelligent Multimedia and
Distance Education

Top researchers discuss next-generation appli-

cations in fields such as artificial intelligence, vir-

tual environments, interactive multimedia,

e-commerce, and distance education.

October-December
Multimedia and Security

Join the experts as they discuss the goals and

problems in designing secure multimedia envi-

ronments in the 21st century. Learn about the lat-

est advances in proposed solutions such as digital

watermarking and cryptographic protocols.

http://computer.org/multimedia

