
Chapter 4: Designing and Developing Decision Support

Systems

Contents

I. Introduction ... 2

II. Overview of Design and Development Issues... 2

III. Decision-Oriented Diagnosis .. 4

IV. Prepare a Feasibility Study ... 5

V. Choose a Development Approach ... 6

VI. Systems Development Life Cycle Approach ... 6

VII. Rapid Prototyping .. 8

VIII. End-User DSS Development ... 9

IX. DSS Project Management ... 10

X. Outsourcing ... 11

XI. DSS Project Participants ... 11

XII. DSS Design and Development Conclusions ... 13

XIII. Audit Questions.. 14

Questions for Review ... 14

Questions for Discussion... 15

Internet Exercise.. 15

XIV. Case Study: MIDS at Lockheed-Georgia.. 15

XV. DSS Feasibility Study Outline... 17

XVI. References.. 19

I. Introduction

In the DSS literature, experts prescribe a variety of approaches or methodologies for

designing and developing Decision Support Systems. Everyone does not however agree on

what methodology works best for building different types of DSS. If managers and DSS

analysts understand the various methods, they can make more informed and better choices

when building or buying a specific DSS.

In general, what is called a "decision-oriented approach" seems best for Decision Support

Systems projects. After reviewing design and development issues, decision-oriented

diagnosis, and feasibility studies, this chapter reviews three alternative approaches for

developing a DSS. Because the scope of Decision Support Systems is expanding and

because development tools are changing rapidly, the perceived advantages of the three

alternative development approaches have become somewhat controversial. For example, a

highly structured, life-cycle development approach has recently become popular with some

consultants for developing Enterprise-Wide DSS. The advantages and disadvantages of

each development approach are discussed. The final sections of this chapter discuss

outsourcing DSS, project management, and the various participants on a DSS design and

development team.

II. Overview of Design and Development Issues

How do we plan and implement new Decision Support System projects? What does it mean

to design a DSS? How do we develop DSS? Who develops a new DSS? When do we build

DSS and when do we buy DSS packages? Both managers and MIS professionals need to

explore these questions. We all know that a company does not receive any advantage from

a great idea for a Decision Support System until the new system is built and successfully

implemented.

Many Information Systems professionals develop, modify and customize software to

support decision-making. They work in diverse business and organization settings and in

specialized DSS software companies. DSS software vendors sell a wide array of products

and provide DSS development services. For example, Comshare (www.comshare.com) and

Cognos (www.cognos.com) both market business intelligence and management planning

and control products. Design and development is an important topic because Decision

Support Systems serve many different functions and are quite diverse in terms of the

software used for their development. Choosing an appropriate approach or methodology for

building DSS has been a popular and controversial topic in the Information Systems (IS)

literature. Many consulting firms focus on using what they claim is the most effective

development methodology. We can define a methodology as an organized set of practices

and procedures used by developers. Despite many differences in methodologies and

terminology, the prescriptions in the Information Systems literature have generally

followed three different conceptual paths.

One group of DSS experts develop their recommendations for building Decision Support

Systems in the traditional systems analysis and design literature (cf., Thierauff, 1982). A

second group has prescribed and explained an iterative, prototyping, or "quick-hit"

approach for designing and developing DSS (cf., Sprague and Carlson, 1982). Some

authors refer to both types of approaches without explaining clearly the advantages and

disadvantages or contingencies favoring a specific approach or some combination of

approaches. A third approach to building DSS is to let managers develop their own

personal DSS; this is called end-user development. In general the DSS prescriptive

literature on design and development is based on personal experiences, case studies, the

general IS development literature, and a wide variety of DSS "war stories" from

developers. Very little empirical research has been conducted on design and development

methodology.

Because of design and development problems some highly innovative and potentially

useful Decision Support Systems have been failures. The problem, often, is that the DSS is

designed and developed from the perspective of the programmer and developer rather than

from that of the manager and user. Sequences of commands or icons may be obvious to the

programmer, but may be totally unknown and puzzling to the DSS user. From a

prescriptive standpoint, effective DSS need to be user oriented. The key issue is what

design and development process and procedures can increase the likelihood that a usable

and effective DSS will be created and built.

Building DSS is often very expensive. So, it is important to investigate alternative design

and development approaches. We want to choose an approach that increases the chances

the DSS will be used and will accomplish its purpose. We need to remember DSS are

designed and developed to help people make better and more effective decisions than they

could without computerized assistance. Building any type of DSS is difficult because

people vary so much in terms of their personalities, knowledge and ability, preferences, the

jobs they hold, and the decisions they need to make. Also, DSS must often meet a diverse

set of requirements. This wide variety of differing requirements has led to the design and

development of a wide variety of DSS capabilities and systems.

The following discussion separates out the diagnostic design and feasibility portion of an

overall systems development process. The phrase systems development life cycle (SDLC)

is the most commonly encountered term used to describe the steps in a traditional systems

development methodology. SDLC is also sometimes known as the applications

development life cycle approach and involves (1) initiation and diagnosis, (2) acquisition

(build or buy), and (3) introduction of the new system.

As mentioned above, the two commonly prescribed alternatives to the SDLC development

approach are a prototyping approach and end-user development of DSS. In both of these

approaches a portion of the DSS is quickly constructed, then tested, improved, and

expanded. Prototyping is similar to a related approach called rapid application development

(RAD).

III. Decision-Oriented Diagnosis

Increasing decision-making effectiveness through changes in how decisions are made

should be the major objective for any DSS project (cf., Stabell in Bennett 1983, p. 225).

Stabell proposes a decision-oriented design approach for DSS. He argues the pre-design

description and diagnosis of decision-making is the key to securing a decision-oriented

approach to DSS development.

The diagnosis of current decision-making and the specification of changes in decision

processes are the activities that provide the key input to the design of the DSS. Diagnosis is

the identification of problems or opportunities for improvement in current decision

behavior. Diagnosis involves determining how decisions are currently made, specifying

how decisions should be made, and understanding why decisions are not made as they

should be. A specification of changes in decision processes involves choosing what specific

improvements in decision behavior are to be achieved. These statements of improvements

provide the objectives for the DSS development.

Diagnosis of a decision process involves completing the following three activities:

1. Collecting data on current decision-making using techniques such as

interviews, observations, questionnaires and historical records;

2. Establishing a coherent description of the current decision process;

3. Specifying a norm for how decisions should be made.

These activities are interdependent and provide feedback for the analyst. In many DSS

development projects it is not feasible to perform a full-scale diagnosis of decision-making.

A shortened study is often necessary due to cost considerations, limited access to managers,

or other organizational constraints. As a consequence, DSS analysts should develop the

ability to produce diagnosis after only limited exposure to a decision situation.

 DSS Audit Plan

Step 1. Define the decisions, decision processes and related business processes that will be audited. Define the authority of the

auditor, purpose of the audit, scope of the audit, timing of the audit, and resources required to perform the audit. Identify

a primary contact.

Step 2. Examine the formal design of the process. Diagram the process and specify criteria, etc. Is the design effective and

efficient?

Step 3. Examine the actual use of the decision process. Observe the process. Interview decision makers and collect data. Is the

process implemented and used as intended?

Step 4. Assess performance of the actual decision process. What works? Can cycle time be reduced? Are decisions appropriate?

Timely? Cost effective? Is the process producing value in meeting business objectives? If not, why?

Step 5. Reporting and recommendations. Summarize steps 1-4 in a written report. Discuss what is working well and what needs

to be improved. Develop recommendations for improving the process. Hold an exit meeting with decision makers.

Table 4.1. A DSS Audit Plan.

A related diagnostic activity is conducting a DSS Audit. In general, it can be very useful to

audit operational and managerial decision processes. An audit can be a first step in

identifying opportunities to redesign business processes and include new Decision Aids and

Decision Support Systems in business processes. In some situations, an audit can suggest

changes in decision technologies that can improve performance and reduce costs. When an

audit is complete the central questions should be how can we do better and what changes

should have the highest priority. Table 4.1 identifies the 5 steps in a DSS Audit.

Diagnosis for some projects focuses on identifying what is assumed by decision-makers in

the decision situation and on what is defined by decision-makers as the range of available

remedial actions. Focusing on assumptions and actions is appropriate if building a Model-

Driven DSS is a possibility, but not when the focus is on a Data-Driven DSS.

Rockart (1979) identified an approach for defining decision-making data needs that is

appropriate for Data-Driven DSS and especially Executive Information Systems. Rockart’s

Critical Success Factors (CSF) Design Method focuses on individual managers and on each

manager's current hard and soft information needs. A CSF analysis can be beneficial in

identifying "the limited number of areas in which results, if they are satisfactory, will insure

successful competitive performance for the organization". If organizational goals were to

be attained, then these key areas of activity - usually three to six factors - would need

careful and consistent attention from management.

Good diagnosis is difficult, but DSS diagnosis involves skills that can be developed and

sharpened. Both managers and MIS staff need to work on completing the diagnosis task.

Does diagnosis always provide sufficient information for specifying a DSS? In most cases

the diagnosis does provide sufficient information for specifying several alternative designs.

DSS design usually involves a number of difficult tradeoffs. The first tradeoff is whether

the DSS should support both the existing process and a prescribed new process. There is

also a trade-off in the extent of the capabilities of the DSS and the scope of the process the

DSS is designed to support. In most cases the initial version of a DSS focuses on either

extensive capabilities for a narrow scope process or few capabilities for a broad scope

process.

IV. Prepare a Feasibility Study

Diagnosis of decision-making should be followed by additional initiation and diagnostic

activities and preparation of a feasibility study of the technical and economic prospects

related to developing a DSS. This study should occur prior to actually committing

resources to developing a proposed DSS. What should be included in a DSS Feasibility

Study? This is a common question. An outline for an extensive feasibility study report is

included at the end of this chapter. The outline has 15 sections on topics like DSS Scope

and Target Users, Anticipated DSS Impacts, Benefits, Risks and Mitigating Factors.

Shorter, less comprehensive studies and reports are usually prepared for small scope DSS

projects.

At this point a decision is made between purchasing an application package and in-house

development. Packaged DSS applications are often quite versatile and are usually less

expensive to implement than in-house development. Packaged solutions are also often

faster to implement.

V. Choose a Development Approach

As noted in the overview, three approaches to DSS development are discussed in the

literature and used by practitioners. The approaches or methodologies have been called a

variety of names. Essentially we begin by focusing on decisions and decision processes in

the decision-oriented design steps, then a project manager or an end-user implement a more

or less structured development methodology.

Figure 4.1 shows a recommended process hierarchy for DSS design and development. The

process begins with decision-oriented diagnosis and feasibility analysis and then moves to

in-house or outsourced development of the proposed Decision Support System using one of

three development approaches. We will examine these alternative approaches.

Figure 4.1. A DSS Systems Design and Development hierarchy.

VI. Systems Development Life Cycle Approach

The systems development life cycle (SDLC) approach is based on a series of formal steps,

including the following seven steps: 1) Confirm user requirements; 2) Systems analysis; 3)

System design; 4) Programming; 5) Testing; 6) Implementation; and 7) Use and

Evaluation. Although different versions of SDLC vary in the precise number of steps and in

the detailed definitions of those steps the above steps illustrate the approach. Decision-

oriented design begins to address user requirements, but in SDLC user requirements need to

be defined in great detail.

This formal SDLC approach is sometimes called the Waterfall model because of the

sequential flow from one step to another. Each formal step concludes with preparation of a

written progress report that must be reviewed and approved. Reviewers include both

prospective users of the system and developers. For example, in Step 5, prospective users

verify that the documented functions and capabilities and the user interface meet their

needs. Developers verify that the system's internal interfaces are consistently defined and

meet all technical requirements.

When the SDLC approach was first formalized in the mid-1970s, it provided structure and

discipline to system developers. It was soon adopted widely for developing large-scale

transaction-processing systems. SDLC is especially common when a formal contractual

relationship exists between the developers of an application system and its eventual users

because it provides written evidence that can be used to arbitrate any disputes.

The development of large, shared Enterprise-Wide Decision Support System is often an

undertaking of great complexity. Organizational decision processes are complex and

computerizing these systems so many people can share them increases that complexity.

Using a methodology like SDLC provides one way in which business organizations can

systematically approach the development of an Enterprise-Wide DSS.

When the systems development life cycle approach is used, then project plans must be

carefully prepared. When developing requirements, it is best to start by determining the

needs of all potential users, then analysts should identify the outputs that would fulfill those

needs. Technical requirements should follow logical requirements, and constraints must be

identified for all of the DSS system components. These requirements must be documented

carefully and reviewed by the targeted users.

Several alternatives may exist for meeting the needs identified during the requirements and

design steps. Each of these should be carefully reviewed and the best one chosen. Another

choice to be made concerns the make or buy decision. If in-house development is not

chosen, a request-for-proposal [RFP] may be required. During the design stage, technical

processes must be managed, people and procedures prepared, and an installation plan

developed.

In many situations a full-scale SDLC approach is too rigid for building Decision Support

Systems, especially those DSS whose requirements are changing rapidly. User

requirements, agreed upon at the first stage of the process, are rigidly specified with SDLC.

Any significant change restarts the entire development cycle, as subsequent requirements

documents are based on the agreed upon user needs. Changes are therefore often expensive;

in fact, SDLC limits change rather than accommodating it.

VII. Rapid Prototyping

All of the different versions of rapid prototyping accommodate and even encourage

changes in the requirements of a proposed Decision Support System. A typical prototyping

methodology usually includes five steps:

1. Identify user requirements.

2. Develop a first iteration DSS prototype.

3. Evolve and modify the next iteration DSS prototype.

4. Test DSS and return to step 3 if needed.

5. Full-scale implementation.

Prototyping evolved in response to perceived deficiencies and limitations of the SDLC

approach. In a prototyping development approach, DSS analysts sit down with potential

users and develop requirements. These requirements are specified in general terms and

should evolve from the decision-oriented diagnosis and design. The analyst then develops a

prototype of a system that appears to work. DSS analysts use tools such as Database

Management Systems and DSS application generators that support rapid development.

Analysts focus on capabilities rather than resolving problems. A prototype may not resolve

how to access a real database, or what "help" screens are needed, and other capabilities that

require extensive development time. The prototype is something that users can try out, react

to, comment on, and eventually approve with a high confidence level that it meets their

needs. Missing features are added later, once users are satisfied with the way the prototype

works. Rapid Application Development (RAD) specifies incremental development with

constant feedback from potential users. The objective of RAD is to keep projects focused

on delivering value and to keep clear and open lines of communication. In most situations,

oral and written communication is not adequate for specification of computer systems.

RAD overcomes the limitations of language by minimizing the time between concept and

actual prototype implementation.

Once approved, a prototype can be expanded in the development environment or the

prototype can be used as a specification for a DSS developed in a language like Java, C or

C++. When a prototype is reprogrammed, the prototype serves as a detailed specification

that is turned into an operational system. The best prototype development approach is to

have the actual prototype evolve directly into the finished product. In this approach the

prototype is attached to a database and features are added to it, but it remains written in the

high-level tools originally used for prototype development.

Compared with the SDLC approach, prototyping seems to improve user-developer

communication. It introduces deliberate flexibility and responsiveness into the development

process. Change is no longer something to be avoided; it is built into the process and

encouraged. The system that is developed is more likely to meet user needs than is a system

developed through SDLC.

Prototyping can extend the development schedule if it is improperly used. Managers and

developers are often tempted to "tinker" with a DSS and make changes that do not really

improve the usability of the finished product. If managers and developers want to build a

useful system and meet project deadlines, then they must manage and control systems

development efforts.

VIII. End-User DSS Development

End-user development of DSS puts the responsibility for building and maintaining a DSS

on the manager who builds it. Powerful end-user software is available to managers and

many managers have the ability and feel the need to develop their own desktop DSS.

Managers frequently use spreadsheets, like Microsoft Excel and Lotus 1-2-3, as DSS

development tools. Using a spreadsheet package, managers can analyze an issue like the

impact of different budget options. Following the analysis, managers select the alternative

that best meets their department's needs. Also, managers can develop tools to help them

conduct market analyses and make projections and forecasts at their desktop.

The major advantage of encouraging end-user DSS development is that the person who

wants computer support will be involved in creating it. The manager/builder controls the

situation and the solution that is developed. End-user DSS development can also sometimes

result in faster development and cost savings.

End-user DSS development of complex DSS is much less desirable. Managers are paid to

manage, not to develop Decision Support Systems. At some point DSS specialists can do

the work much better and much faster. Also, managers are not trained to test systems,

create documentation, provide for back-up and data security and design sophisticated user

interfaces. DSS analysts should help managers develop more complex end-user Decision

Support projects. DSS analysts can help the manager build, document and test the

application. Managers need to emphasize the content of the DSS and not become overly

involved with extensive DSS development projects.

End-user DSS development is a controversial topic. Information systems staffs have many

concerns including:

1. End-users may select an inappropriate software product as a development

environment.

2. The end-user may have limited expertise in the use of the product and the IT

group may have limited resources to support end-user development.

3. Errors during end-user DSS development are frequent. Even experienced

developers can make errors and end-users are likely to overlook the need for

checking formulas and auditing the DSS they have developed.

4. Unnecessary databases are sometimes developed by end-users for their DSS.

Redundant databases can contain out-dated and inaccurate data.

5. A major quality issue involves testing and limited documentation. End-users

often perform only limited testing of DSS they develop; and they have

limited experience-documenting applications.

6. End-user databases may be poorly constructed and difficult to maintain.

7. End-users rarely follow a systematic development process.

If an organization's MIS group gets actively involved in supporting end-user DSS

development, many of the above problems can be minimized, reduced or eliminated.

Packages used for end-user development can be standardized; end-users can be trained in

the use of selected packages; support staff can act as consultants and reviewers; a central

databases can be maintained for use with end-user applications; and documentation can be

encouraged by MIS staff.

An Information Center can provide support for end-users and the Director of the

Information Center may be able to manage end-user computing. Services that an

Information Center might provide include: software training, user support including

answering specific development questions, installation assistance and advice about new

systems, and standard setting. SDLC and prototyping approaches require designation of a

project manager. So let’s now examine DSS project management issues.

IX. DSS Project Management

Moving from an informal exploration of a suggestion or desire for a DSS to a formal

project is an important step. An executive sponsor should push to have a project manager

assigned to the project. The initial tasks of the project manager include diagnosis, a

feasibility study, and a definition of the objectives and scope of the proposed project. Once

these steps are done then the executive sponsor needs to choose to push the project or

postpone any further work on the project. Depending upon the scope of the DSS project an

executive sponsor may be able to directly fund the project or funding may be budgeted as

part of business and information systems planning. The larger the scope of the proposed

project the more important it is to receive widespread agreement and sponsorship of the

project. The objectives of a large-scope DSS project must be strategically motivated, should

have strong executive support and must meet a business need. Large scope projects may

benefit from having co-project managers: a business and a technical manager. If co-

managers are designated clear authority and responsibility guidelines should be established.

Once a project is approved then a methodology and project plan needs to be developed and

a project team needs to be assembled. If the project will be outsourced, then a process needs

to be developed for creating a request-for-proposals and then evaluating proposals. If the

development will occur in-house development tools and technical issues need to be

resolved. The feasibility analysis should have determined if the project could be completed

in-house.

User requirements need to be specified in some detail. For large projects the DSS

architecture must be specified and any changes or additions to the Information Systems and

Information Technology (IS/IT) infrastructure must be planned. Once these crucial

preliminaries are completed then systems design or prototyping can occur. The project

tasks will not be completed in a simple, linear sequence and the project manager must

actively manage the project. Whenever possible, the project manager and in some cases a

co-project manager from the business area most affected should consult and work with

other potential users. The project manager must keep the executive sponsor informed. If

problems are occurring or might occur the sponsor needs to be alerted.

The project manager should identify tasks that must be completed, resources that are

needed and project deliverables. Deliverables are especially important for monitoring the

progress of the project. Milestones or important project events are also often identified to

help non-technical managers monitor a project. The Chief Information Officer (CIO) of a

firm and one or more business managers will be monitoring the progress of a large scope or

high visibility DSS project. Managers expect results from DSS projects. Understanding and

meeting the expectations of managers who will use a DSS is the most important and most

difficult part of a DSS project managers job.

The project manager defines project plans and manages the daily activities associated with

the project. The project manager coordinates project resources, the project budget, status

reporting, changes in requirements and tasks, relations with vendors, and relations with

sponsors, skeptics, and MIS staff. A DSS project manager may come from information

systems or from a functional department. A DSS project manager needs strong technical

skills, outstanding people skills and knowledge of the business.

X. Outsourcing

Outsourcing involves contracting with outside consultants, software houses or service

bureaus to perform systems analysis, programming or other DSS development activities.

The outsourcer should be evaluated as a long-term asset and as a source of ongoing value to

the company. Time and resources need to be dedicated to managing the relationship and

maximizing its value. The customer needs a project manager to manage the outsourcing

relationship. The intent should be to keep the relationship for as long as it brings value to

the customer. Over time new technology alliances may need to be formed as technology

and organizations change. Therefore, a customer should strive for long-term relationships

and should try to align the outsourcer's motivation with its goals by developing appropriate

incentives and penalties.

Outsourcing DSS projects has a number of risks. First, a company relinquishes control of

an important capability to an outside organization. Second, contracts for DSS services may

be long term and may lock a company into a particular service provider. Finally, a reliance

on external sources for new systems development can lead to low technical knowledge

among the in-house MIS staff.

Some of the benefits of outsourcing include potentially lower cost development; access to

expertise about new technologies; and outsourcing can free up resources within the firm for

other projects. The risks often lead to in-house DSS development rather than to

outsourcing. When does outsourcing seem to work? Outsourcing can be successful when

we need to turnaround DSS activities quickly and our MIS staff seems unable to build

innovative DSS in-house. In some companies this situation exists for Web-Based DSS.

XI. DSS Project Participants

A complex DSS built using either an SDLC or a prototyping approach requires a team

development approach. Once the system is developed a group may also be needed to

maintain the system. Some large-scale DSS are built with teams of 2-3 people or with a

larger group of 10 or more. Members of DSS teams are drawn from many areas in an

organization, including the Information Systems group.

Any DSS development project requires a mix of complementary skills. Usually one does

not find all of the needed skills in one person. So in most situations it is necessary to

assemble the right mix of contributors for a DSS project team.

Figure 4.2. Participants on a DSS development team.

The key DSS development roles identified by Sprague (1980), O’Neil et al. (1997) and

others are listed below in order of increasing technical expertise. Figure 4.2 summarizes the

various roles. A given individual may be assigned more than one role.

Executive sponsor. This is a senior manager who has access to other senior executives and

has the influence to help resolve major resource and political problems. The sponsor is

occasionally actively involved in the development tasks.

Potential DSS users. This is the person or group responsible for solving the problem and

making the decisions that the DSS will support. Users are often non-technical people in

functional areas of a business like marketing and finance.

DSS builder or analyst. This is the expert who makes the technical decisions about the

software tools(s) to use, the hardware platform(s) to use, the models and/or databases to

incorporate into the DSS, and how they will be integrated with each other. This is generally

a person with a great deal of experience who understands both the business problem and the

available technologies. We also use the term project manager for this development role.

Technical support person. This is the person who integrates existing packages into one

overall system and carries out custom programming that contributes directly to DSS

functionality. His or her responsibility begins with the packages that will comprise part of

the DSS and ends with a functional DSS for the user. A number of MIS professionals are

involved as technical support staff including data warehouse architects, application

architects and developers. A data quality analyst is often involved in building data-driven

DSS. The data quality analyst is concerned with data integration, metadata and data

scrubbing.

Toolsmith or technical specialist. This role focuses on the tools and technologies that will

be used in the construction of the DSS and the packages that will be combined to create the

DSS. He or she is an expert on these tools and packages and their effective use. This is the

person who creates underlying capabilities, often not visible to the user, but required for the

technical support personnel to carry out their more user-oriented jobs effectively. Data

administrators, systems administrators, networking specialists and database administrators

are often consulted on DSS projects.

The composition of the DSS team will change over the development cycle so the project

manager needs to provide direction and motivation for the DSS team. Also, the executive

sponsor needs to maintain an active commitment to the project. Losing a project sponsor

can harm and even "doom" a DSS project.

XII. DSS Design and Development Conclusions

In 1985 Jack Hogue and Hugh Watson surveyed managers in organizations with DSS. Each

participant was an active DSS user. Two-thirds of the organizations had built their DSS

using an evolutionary, prototyping approach and the remaining organizations had used

more of an SDLC approach. It appeared that if the DSS supported managers throughout the

company or that it required company-wide data, then the SDLC approach was used. The

evolutionary approach was used for smaller-scale systems where a DSS development tool

was available. Nine of the eighteen companies used DSS generators to develop their

systems. This finding is probably descriptive of current practice.

When managers could specify information requirements in advance, then the systems

development life cycle approach was more likely to be used. Hogue and Watson also found

that when IS Specialists developed the DSS then SDLC steps were more likely to be

followed. Senior managers reported they were most involved in the idea, information

requirements and acceptance steps associated with building a DSS. Middle managers

reported they were somewhat involved in all of the steps involved in building the DSS that

they were using. When prototyping and evolutionary design was used, managers reported

more involvement in the design and development process. The IS group was usually

involved in building the DSS, but staff from an Information Systems department were

rarely in a leadership role. Potential users of the DSS usually assumed the leadership role.

The DSS design and development approach that is used for a new DSS project should

depend on the amount of data needed and its sources, the number of planned users, any

models and analytical tools used, and the amount of anticipated use. Many small,

specialized DSS are built quickly using end-user development or rapid prototyping. Large,

Enterprise-Wide DSS are built using sophisticated tools and systematic and structured

systems analysis and development approaches. Creating Enterprise-Wide DSS

environments remains a complex and evolutionary task. An Enterprise-Wide DSS

inevitably becomes a major part of a company's overall information systems infrastructure.

Despite the significant development differences created by the scope of a DSS, all DSS

have similar technical components and share a common purpose, supporting decision-

making.

A number of authors suggest the perceived usefulness and the perceived ease of use of an

Information System or Decision Support System is a major determinant of its use. MIS

managers can influence both the perceived usefulness and the perceived ease of use of a

new system by using a participative development process. MIS staff need to establish a

meaningful "social exchange" with potential users and DSS developers must be responsive

to user requests, questions and needs.

More research is needed on the effectiveness of approaches for designing and developing

DSS. But, in general, MIS professionals should use a decision-oriented design process and

then either a rapid prototyping or SDLC development process. End-user DSS can be

satisfactory and inexpensive and MIS staff should support such development rather than

discourage it. Rapid prototyping will be useful in building many types of DSS, but SDLC

has a role in developing complex, networked, Enterprise-Wide, Data-Driven DSS. DSS

analysts and managers need to be familiar with all of the approaches for building DSS.

One can state some generalizations about Design and Development of Decision Support

Systems. Fist, when a project idea is proposed, focus on description and diagnosis of

decision-making and an analysis of the decision and processes involved. We call this

Decision-Oriented Diagnosis.

Second, following diagnosis, one should conduct a feasibility study and in many situations

prepare a feasibility report. Third, if the project seems feasible, then managers and IS staff

need to decide to build or buy the proposed DSS. In many situations, a solution will be

customized for the DSS.

Fourth, in general, Model-Driven and Knowledge-Driven DSS are built using rapid

prototyping. Data-Driven DSS are built using rapid prototyping or a Systems Development

Life Cycle approach. Communications-Driven and Group DSS are usually purchased and

installed on company computers.

XIII. Audit Questions

1. Does your company have any current DSS projects? If so, what tools and

software are being used?

2. Is your company using rapid prototyping to develop DSS?

3. Is there appropriate user involvement in DSS projects?

4. Does your company use a structured systems development process that

includes (1) initiation and diagnosis, (2) acquisition (build or buy), and (3)

introduction of the new system?

Questions for Review

1. What is rapid prototyping? What is SDLC? What is end-user DSS

development?

2. What are alternative design and development steps? Does one process seem

to work better for Enterprise-Wide DSS and another for one-time or ad hoc

DSS?

3. Who participates in a DSS project?

4. What is involved in managing a DSS project?

Questions for Discussion

1. Should DSS be built in-house or purchased off-the-shelf?

2. Who should design and develop DSS? Is this an IS department task? Do we

need a design team?

3. How much data should be collected during the diagnosis step? Who should

collect it? Is a consultant needed?

Internet Exercise

Conduct a search for the terms SDLC, systems development, prototyping,

RAD, JAD, end-user development. Prepare a list of Web links for one of

these topics.

XIV. Case Study: MIDS at Lockheed-Georgia

In 1975, Robert B. Ormsby, President of Lockheed-Georgia, a subsidiary of cargo aircraft

producer Lockheed Corporation, was interested in the development of an online reporting

system that would provide top executives with concise, timely, relevant information that

could be shared within the organization to aid with decision-making. Ormsby felt that the

existing system was difficult to use, took considerable time to locate specific information,

and did not provide timely, consistent information on which organizational units could base

decisions. The goals of the new system would be correcting the inadequacies of the existing

system and most importantly satisfying managers' information needs.

In the fall of 1978, development of the Management Information and Decision Support

(MIDS) system began. By all accounts, MIDS was designed as an Executive Information

System (EIS). The system was tailored to the preferences of individual executive users. The

key objective of MIDS was to provide managers with crucial data and valuable information

to support them in the executive decision making process.

A key decision made early on was to use an evolutionary or prototyping design approach

that enabled information screens to be easily added or deleted depending on information

demand from the user community. After interviewing executive staff, their secretaries, and

evaluating use of existing reports, the MIDS design team determined what information the

MIDS system must provide, in what form, at what level of detail, and how often it needed

to be updated. These variables were defined as management's critical success factors. In

spring 1979, after six months of development the first version of MIDS was released.

Ormsby, the only user, was able to call up 31 screens of information. Over the next eight

years MIDS evolved to 710 displays for 70 users. The initial version used a microcomputer

from Intelligent Systems Corporation.

Displays were stored daily on floppy disks by MIDS staff. As more screens evolved,

storage moved to a central DEC 11/34 so that all users could gain access. In the late 1980's,

the system migrated to an IBM 3081 enabling Lockheed to standardize on IBM equipment.

By the mid-80s, MIDS allowed access through an IBM PC/XT via a password. Security

was maintained on two levels. First, users were only authorized to access certain screens.

Second, screens could only be accessed from certain computer locations. For example, a

top executive may not be able to access certain screens from PCs in conference rooms.

Functions of MIDS included the ability to retrieve data from any screen the user had

authorization to use by inputting the screen number. Also users could obtain a listing of all

screens updated; navigate using the main menu; use an online keyword search index; or

obtain a listing of all persons given access to the system. If an individual consistently

viewed the same information screens in the same sequence, then the system could be set up

to display that sequence.

MIDS developers felt a graphics interface was the most important design consideration for

an EIS. Developers kept this in mind for the in-house MIDS system. MIDS made it easy for

managers to extract, compress, filter, and track critical data without the use of

administrative assistants. Screen displays were designed to be easy to read. In a series of

displays the first screen would be a summary graph, followed by supporting graphs, tables,

and texts. Every screen contained a screen number for future reference, title, date of last

update, source of information, and the MIDS staff member responsible for the screen. To

further simplify matters, MIDS developed standard definitions and offered an online

glossary for reference. Standard colors used were green for good; yellow for marginal or

caution; and red was unfavorable or danger. Some additional flexibility was provided for

the system by allowing comments on screens. Without these comments, managerial

attention would be required when actually a problem had been noted and resolved.

With the standardization of screens and the ease of navigation throughout the system,

executives were taught to use MIDS in a quick 15-minute tutorial. From an administrative

perspective, MIDS was easy to edit since Lockheed MIS staff designed an editor to quickly

update screens. The editor also indicated other screens that would be affected by the

revision. Additionally, the editing feature was able to identify errors. At Lockheed-Georgia,

the MIDS system generated reports on a daily and a weekly basis concerning the use of the

system as well as display status and problems.

In 1990, after 12 years of successful operation, MIDS required a hardware update. The

Intelligent Systems Company computers, used by MIDS support staff, were obsolete. At

this time, MIS staff reviewed both hardware and software and decided to purchase a

commercial Executive Information System called Commander EIS from Comshare

(www.comshare.com) instead of developing another in-house system. MIDS II, as it

became known, resembled the look and feel of the previous system. Lockheed requested

that Comshare offer the ability to operate their system through a keyboard in addition to

mouse and touch screen, and they wanted the ability of the old MIDS system to monitor the

use of the system. Lockheed requested that these adaptations be executed not only on their

version, but also on all Commander EIS packages. This requirement enabled easier

upgrades to new versions of the software. MIDS II rolled out in 1992 with the intended

improvements of faster response times, easier navigation, better links to outside resources,

and lower maintenance costs.

Study Questions:

1. What was the initial MIDS design and development process?

2. How was MIDS II developed?

Nikole Hackett and D. J. Power prepared the above case example. The case example is based on a number of

published sources including Sprague R. and Watson H., Decision Support Systems, 3rd Edition, PART 5:

Executive Information Systems, 1993; Houdeshel G. and Watson H. "The Management Information and

Decision Support (MIDS) System at Lockheed-Georgia", MIS Quarterly, Vol. 11, No. 1, March 1987, (REV

1992); and materials from Comshare.

XV. DSS Feasibility Study Outline

A DSS Feasibility Study examines a proposed project's consequences and impacts. A feasibility study is

summarized in a formal report or document. The study addresses issues including the project's benefits, costs,

effectiveness, alternatives considered, analysis of alternatives, opinions of potential users, and other factors.

This feasibility analysis is a way of exploring the factors and risks affecting the potential for successful

development and implementation of a Decision Support System. Large-scale information systems

development efforts typically include a feasibility study as a major checkpoint providing critical information

about whether it is possible to develop a system, given the project’s goals and constraints. This report should

be framed to offer important information about the range of issues likely to affect success and, therefore, that

should be considered in decisions about whether and how to move forward with a Decision Support Systems

development effort.

I. EXECUTIVE SUMMARY

A. Key Business Needs

B. Issues

C. Solutions

D. Benefits and Costs

E. Critical Success Factors

F. Project Management

II. INTRODUCTION

A. Background and Definitions

B. Key Questions

1. Site Readiness: To what extent is the company ready for and

interested in implementing a new Decision Support System? What

needs to change to facilitate successful implementation?

2. Technical Feasibility: Is it possible to develop or adapt software to

perform the proposed types of analyses. If so, can the technical

solution be implemented efficiently and effectively with present

technical resources?

3. Financial Feasibility: What are the projected costs of

implementing the DSS, and do potential benefits justify these costs?

C. Feasibility Study Approach

III. BACKGROUND NEEDS AND ASSESSMENT

A. Goals

B. Constraints

C. Related Projects

D. Business Decision Support Needs

E. Decision Support Diagnosis

IV. OBJECTIVES

V. DSS SCOPE AND TARGET USERS

A. Scope and Decision Process Definition

B. Scope Recommendation

C. Scope Issues

VI. ANTICIPATED DSS IMPACTS

VII. PROPOSED SOLUTION

A. System Integration Issues

B. Major Functions Provided

C. Technology Tools/Infrastructure Used

D. New Organizational Structure and Processes

VIII. MAJOR ALTERNATIVES

IX. CONFORMITY WITH CURRENT IS/IT PLAN

X. PROJECT MANAGEMENT AND ORGANIZATION

XI. ESTIMATED TIME FRAME AND WORKPLAN

XII. INCREMENTAL COSTS

XIII. BENEFITS

XIV. RISKS AND MITIGATING FACTORS

XV. DRAFT CONCEPTUAL DESIGN

XVI. References

Arinza, B. "A Contingency Model of DSS Development Methodology." Journal of MIS,

Summer, 1991.

Carlson, E. "An Approach for Designing Decision Support Systems." Data Base, Winter,

1979.

Hogue, J.T. and H.J. Watson. "Current practices in the Development of Decision Support

Systems." Information and Management, April 1985, pp. 205-212.

Keen, Peter G. W. and Michael S. Scott Morton. Decision Support Systems: An

Organizational Perspective. Reading, MA: Addison-Wesley, Inc., 1978 ISBN 0-201-03667-

3.

Mallach, E. Understanding Decision Support Systems and Expert Systems. Burr Ridge, IL:

Irwin, 1994.

Meador, C.L. and R.A. Mezger. "Selecting an End-user Programming Language for DSS

Development." MIS Quarterly, December 1984.

O’Neil, B., M. Schrader, J. Dakin and others. Oracle Data Warehousing. Indianapolis, IN:

SAMS Publishing, 1997.

Rockart, John F. "Chief Executives Define Their Own Data Needs." Harvard Business

Review, March/April, 1979.

Sprague, R.H., Jr. and E.D. Carlson. Building Effective Decision Support Systems.

Englewood Cliffs, NJ: Prentice-Hall, Inc., 1982.

Turban, E. Decision Support and Expert Systems: Management Support Systems (4th

edition). Englewood Cliffs, NJ: Prentice-Hall, Inc., 1995.

Wu, M.S. and S. Wu. Systems Analysis and Design. Minneapolis/St. Paul, MN: West

Publishing Co., 1994.

An initial working draft was completed January 31, 1997. A major update was completed

November 8, 1999. Last updated August 26, 2000. Please request permission prior to

quoting from this chapter.

