
Artificial
Intelligence
and Language
Processing

]acques Cohen
Editor

A SIMPLE APPROACH TO
SPECIFYING CONCURRENT
SYSTEMS

LESLIE LAMPORT

Over the past few years, I have developed an approach
to the formal specification of concurrent systems that I
now call the transition axiom method. The basic formal-
ism has already been described in [12] and [l], but the
formal details tend to obscure the important concepts.
Here, I attempt to explain these concepts without dis-
cussing the details of the underlying formalism.

Conc:urrent systems are not easy to specify. Even a
simple system can be subtle, and it is often hard to
find thee appropriate abstractions that make it under-
standable. Specifying a complex system is a formidable
engineering task. We can understand complex struc-
tures only if they are composed of simple parts, so a
method for specifying complex systems must have a
simple conceptual basis. I will try to demonstrate that
the tra:nsition axiom method provides such a basis.
However, I will not address the engineering problems
associated with specifying real systems. Instead, the
concepts will be illustrated with a series of toy exam-
ples th,at are not meant to be taken seriously as real
specifications.

Are you proposing a specification language?
No. The transition axiom method provides a conceptual
and logical foundation for writing formal specifications;
it is not a specification language. The method deter-
mines ,what a specification must say; a language deter-
mines in detail how it is said.

What do you mean by a formal specification?
I find it helpful to view a specification as a contract
between the user of a system and its implementer. The
contract should tell the user everything he must know
to use the system, and it should tell the implementer
everything he must know about the system to imple-
ment it. In principle, once this contract has been agreed
upon, t.he user and the implementer have no need for
further communication. (This view describes the func-
tion of the specification; it is not meant as a paradigm
for how systems should be built.)

0 1989 ACM 0001.0782/89/0100-0032 $1.50

For a specification to be formal, the questio:n of
whether an implementation satisfies the specification
must be reducible to the question of whether an asser-
tion is provable in some mathematical system. To dem-
onstrate that he has met the terms of the contract, the
implementer should resort to logic rather than contract
law. This does not mean that an implementation must
be accompanied by a mathematical proof. It does mean
that it should be possible, in principle though not nec-
essarily in practice, to provide such a proof for a correct
implementation. The existence of a formal basis for the
specification method is the only way I know to guaran-
tee that specifications are unambiguous.

Ultimately, the systems we specify are physical ob-
jects, and mathematics cannot prove physical proper-
ties. We can prove properties only of a mathe:matical
model of the system; whether or not the system cor-
rectly implements the model must remain a question of
law and not of mathematics.

Just what is a system?
By “system,” I mean anything that interacts with its
environment in a discrete (digital) fashion across a
well-defined boundary. An airline reservation system is
such a system, where the boundary might be drawn
between the agents using the system, who are part of
the environment, and the terminals, which are part of
the system. A Pascal procedure is a system w:hose envi-
ronment is the rest of the program, with which it inter-
acts by responding to procedure calls and accmessing
global variables. Thus, the system being specified may
be just one component of a larger system.

The solar system is not a system in this sense, both
because it is not discrete and because there is no well-
defined notion of an environment with which it interacts.

A real system has many properties, ranging from its re-
sponse time to the color of the cabinet. No formal method
can specify all of these properties. Which ones call be speci-
fied with the transition axiom method?

32 Communications of the ACM January 1989 Volume 32 Number I

Articles

The transition axiom method specifies the behavior of a
system-that is, the sequence of observable actions it
performs when interacting with the environment. More
precisely, it specifies two classes of behavioral proper-
ties: safety and liveness properties. Safety properties as-
sert what the system is allowed to do, or equivalently,
what it may not do. Partial correctness is an example of
a safety property, asserting that a program may not
generate an incorrect answer. Liveness properties assert
what the system must do. Termination is an example of
a liveness property, asserting that a program must even-
tually generate an answer. (Alpern and Schneider [2]
have formally defined these two classes of properties.)
In the transition axiom method, safety and liveness
properties are specified separately.

There are important behavioral properties that can-
not be specified by the transition axiom method; these
include average response time and probability of fail-
ure. A transition axiom specification can provide a for-
mal model with which to analyze such properties,’ but
it cannot formally specify them.

There are also important nonbehavioral properties of
systems that one might want to specify, such as storage
requirements and the color of the cabinet. These lie
completely outside the realm of the method.

Why specify safety and liveness properties separately?
There is a single formalism that underlies a transition
axiom specification, so there is no formal separation
between the specification of safety and liveness proper-
ties. However, experience indicates that different meth-
ods are used to reason about the two kinds of properties
and it is convenient in practice to separate them. I
consider the ability to decompose a specification into
liveness and safety properties to be one of the advan-
tages of the method. (One must prove safety properties
in order to verify liveness properties, but this is a pro-
cess of decomposing the proof into smaller lemmas.)

Can the method specify real-time behavior?
Worst-case behavior can be specified, since the require-
ment that the system must respond within a certain
length of time can be expressed as a safety property-
namely, that the clock is not allowed to reach a certain
value without the system having responded. Average
response time cannot be expressed as a safety or live-
ness property.

The transition axiom method can assert that some action
either must occur (liveness) or must not occur (safety). Can
it also assert that it is possible for the action to occur?
No. A specification serves as a contractual constraint on
the behavior of the system. An assertion that the sys-
tem may or may not do something provides no con-
straint and therefore serves no function as part of the
formal specification. Specification methods that include
such assertions generally use them as poor substitutes
for liveness properties. Some methods cannot specify
that a certain input must result in a certain response,

specifying instead that it is possible for the input to be
followed by the response. Every specification I have
encountered that used such assertions was improved by
replacing the possibility assertions with liveness prop-
erties that more accurately expressed the system’s in-
formal requirements.

Imprecise wording can make it appear that a specifi-
cation contains a possibility assertion when it really
doesn’t. For example, one sometimes states that it must
be possible for a transmission line to lose messages.
However, the specification does not require that the
loss of messages be possible, since this would prohibit
an implementation that guaranteed no messages were
lost. The specification might require that something
happens (a liveness property) or doesn’t happen (a
safety property) despite the loss of messages. Or, the
statement that messages may be lost might simply be a
comment about the specification, observing that it does
not require that all messages be delivered, and not part
of the actual specification.

lf a safety property asserts that some action cannot happen,
doesn’t its negation assert that the action is possible?
In a formal system, one must distinguish the logical
formula A from the assertion l- A, which means that A
is provable in the logic; l- A is not a formula of the logic
itself. In the logic underlying the transition axiom
method, if A represents a safety property asserting that
some action is impossible, then the negation of A,
which is the formula 7A, asserts that the action must
occur. The action’s possibility is expressed by the nega-
tion of l- A, which is a metaformula and not a formula
within the logic. See [lo] for more details.

SAFETY PROPERTIES

A Soda Machine
We begin with a system consisting of a soda machine,
in which the user deposits either a half dollar or two
quarters and the machine in return dispenses a can of
soda.’ Figure 1, together with the initial condition that
the machine starts in state I, provides a simple specifi-
cation of the safety properties of this machine.

Figure 1 specifies that, when the machine is in state I,
either a deposit quarter action can occur that takes the
machine to state II or a deposit half dollar action can
occur that takes it to state III. From state II, only a
deposit quarter action taking the machine to state III can
occur. From state III, only a dispense soda action taking
the machine to state I can occur. This is a safety specifi-
cation, so it asserts that these are the only actions that
are allowed to occur; it does not assert that any actions
must occur.

What happens if the user deposits first a quarter then a half
dollar?
The specification disallows this behavior. (Remember
that the examples are not supposed to be realistic speci-

’ For the reader unfamiliar with colloquial American English and United
States currency: soda is a carbonated soft drink, a quarter is a coin worth $0.25.
and a hnlfdollar coin is worth $0.50. ‘See [ZO] for an example of failure analysis applied to a specification.

January 1989 Volume 32 Number 1 Communications of the ACM 33

Articles

dispense
soda

quarter quarter
I -II-III

deposit
half dollar

FIGURE 1. Specification of a Soda Machine

fications.) There are two ways to view this aspect of the
specification:

l The specification constrains the behavior of the
u:ser, forbidding him to deposit a half dollar after he
h(as deposited a quarter.

l The specification does not state what the soda
machine is supposed to do if the user deposits a
quarter then a half dollar; the implementer is free
to build the machine so it does anything he wants
if the user exhibits this kind of “incorrect” be-
havior.

Which view we take makes no difference to how we
write and reason about specifications.

Figure 1 is supposed to specify the soda machine’s behavior;
why does it also specify the user’s behavior?
It is impossible to implement a system that functions
properly in the presence of arbitrary behavior by the
environment. A more realistic specification would al-
low the user to deposit an arbitrary sequence of coins,
perhaps returning them if an inappropriate sequence
had been deposited; it would not allow the user to
attack the machine with a sledgehammer. (We shall
see later how the sledgehammer is disallowed.) The
specification of a program procedure usually includes a
precondition that constrains the environment by forbid-
ding calls whose arguments do not satisfy the precondi-
tion; the specification of a circuit includes timing con-
straints that restrict when the environment can change
the input levels [16].

Figure 1 is a simple state-transition diagram. Such diagrams
work well for vey simple examples, but don’t they become
too complicated when specifying real systems?
Yes; these diagrams do not scale well to larger prob-

lems. State-transition diagrams represent just one par-
ticular language that can be used with the transition
axiom method. The shortcomings of these diagrams are
limitations of the language, not of the transition axiom
method. Other languages are needed for writing transi-
tion axiom specifications of larger systems; I: will have
more to say about languages later.

What is the fundamental, language-independent concept
that is expressed by the state-transition diagram of Figure I?
Allowed state transitions. In the transition axiom
method, one specifies safety properties by describing a
set of states and all transitions between states that are
allowed to occur. There are many different languages
with which one can describe states and transitions.

The concept of state transitions, as illustrated b,y the dia-
gram of Figure 1, has been used for years. Is there anything
different about the transition axiom method?
What is new in the transition axiom method is not the
diagram, but its interpretation as a formal specification.
This new interpretation is needed because conven-
tional state-transition methods do not adequately ad-
dress the fundamental question of what it means for an
implementation to meet such a specification One of
the advantages of the transition axiom method is that
specifications of safety properties can be written in
friendly, familiar notations such as state-transition dia-
grams. The specifications look old; the meaning we as-
sign to them is new.3

What is different about the interpretation of Figure 1 in the
transition axiom method?
The naive interpretation of Figure 1 is that it specifies a

‘More precisely. I believe that this meaning was new when it was proposed
in [12] and [13]: it has since appeared in [9] and elsewhere.

34 Communications of the ACM January 1989 Volume 32 Number 1

Articles

three-state machine. In more sophisticated approaches,
such as the one described by Jones [a], the diagram is
interpreted to mean that there exists some state func-
tion, let’s call it f, that assumes the values I, II, and III;
the diagram specifies how f can change. More precisely,
the soda machine is assumed to have some unspecified
set of states, let’s call it S; the machine’s behavior is
described by the sequence of states so, sl, sZ, . . . it
passes through. The state function f is a mapping from S
to the set of values {I, II, III). The diagram of Figure 1
specifies that for each state transition si + s;+~ in this
sequence, the change of value from f(si) to f(si+l) is one
of the following:

l f(si) = I, f(si+l) = II, and the change is caused by a
deposit quarter action.

l f(si) = I, f(si+l) = III, and the change is caused
by a deposit half dollar action.

l f(s;) = II, f(si+I) = III, and the change is caused
by a deposit quarter action.

l f(Si) = III, f(si+l) = I, and the change is caused by a
dispense soda action.

With this interpretation, the entire interaction of the
user depositing a half dollar and the machine dispen-
sing a soda is performed as two actions. In the transi-
tion axiom method’s interpretation, we allow the addi-
tional possibility that f (si) = f (si+l) (even if si # si+l).
The interaction of buying a soda with a half-dollar coin
could involve dozens or hundreds of state transitions,
only two of which change the value off.

What is gained by this new interpretation?
In a real soda machine, dispensing a soda could involve
hundreds of separate state transitions. If a’ specification
asserts that this is just a single action, then one has to
say what it means for a machine operation with
hundreds of state transitions to satisfy a specification
asserting that it is a single action. In the transition
axiom method’s interpretation, this is not a problem
because the specification asserts that there is a state
function that changes only once during the dispensing
of the soda; it says nothing about how many separate
state transitions occur. The advantages of this interpre-
tation are discussed later.

A formal specification should provide all the necessa y in-
formation to determine if an implementation is correct.
However, from Figure 1, there is no way to determine if the
implementation is supposed to consist of: (1) the entire soda
machine, including the coin box and the soda rack, (2) a
control circuit inside the machine, or (3) a program for the
soda machine‘s microprocessor. The choice of labels on the
arcs may provide some clue, but surely this choice can have
no formal significance. Can a soda machine, a circuit, and a
computer program all be correct implementations of the
same formal specification?
A specification must be incomplete if it does not distin-
guish between a mechanical device, a circuit, and a
program. What is missing from Figure 1 is a specifica-
tion of the interface--the mechanism by which the
system communicates with the environment. The spec-

ification must state whether communication is by de-
positing coins and dispensing cans, by raising and low-
ering voltages on wires, or by calling and returning
from program procedures. The interface specification
stipulates that the deposit quarter action may not be
performed with a sledgehammer. The difference be-
tween depositing a quarter and wielding a sledgeham-
mer, or between raising a 5 volt signal and raising a
5000 volt signal, can be described only in terms of im-
plementation details. The interface must therefore be
specified at the implementation level.

How is the interface specified?
The environment and the system communicate by
changing the values of state functions. For example, if
we are specifying a circuit, then communication be-
tween the circuit and its environment is achieved by
changing the values of state functions that represent
the voltages on wires4 To each wire w there might
correspond a state function fw that represents the volt-
age on the wire. The specification might permit the
environment to communicate with the circuit by
changing the value of jw to 4.5 + 1.2 (the voltage on
the wire having some fixed value between 3.3 and
5.7 volts) when the value of fwg for some other wire w’
equals 0 f 1.2. (Despite the continuous range of volt-
ages, this can still be considered a discrete system be-
cause the voltage changes are assumed to be instanta-
neous.)

To specify the interface, we must Specify how such
interface state functions change. This can be done by
the same method used to specify changes to internal
state functions, such as the function f of the soda ma-
chine specification. Thus, no extra machinery need be
added to the transition axiom method to specify the
interface.

In practice, we usually don’t bother specifying the
interface in this way. Instead, we specify the interface
in the implementation language, making it trivial to
check that the interface is implemented correctly. For
example, the wires connecting a circuit with its envi-
ronment would be specified directly in the hardware
design language used to implement the circuit. Instead
of specifying how the actual voltages on a wire w
change, we would describe those changes with the
hardware design language’s primitives, such as a
w := true. The actual voltages would not be described.

How are program interfaces specified?
The exact nature of the interface specification depends
upon the programming language. For a Pascal proce-
dure, the interface is specified by giving the name of
the procedure, the types of its arguments, and the
names and types of any global variables accessed by the
procedure. For a Modula-2 package, the interface is
specified by the definition module [21].

4 What we are really specifying is not a circuit but a mathematical model of
the circuit. The state functions are the mathematical objects within the model
that represent the voltages on the wires of the real circuit.

lanuary 1989 Volume 32 Number 1 Communications of the ACM 35

Articles

This implies that we cannot specify a procedure indepen-
dentl;y of the language in which it is implemented. Shouldn’t
we be able to write a single specification of, say, a square
root function that is independent of the language in which it
is implemented?
We are not specifying the language in which the proce-
dure is implemented; we are just specifying the imple-
mentation of the interface. A system whose interface is
specified as a Pascal procedure could be implemented
in assembly language; it need only obey the same call-
ing conventions as a Pascal procedure.

While the specifications of a square root function for
different programming languages may be similar, they
will not be identical. For example, how errors are han-
dled will depend upon whether or not the language
provides an exception-handling mechanism. Separa-
ting the specification of a square root function into a
common part and an interface-dependent part is a
specification-language design issue that is addressed by
Guttag, Horning, and Wing in Larch [6].

The influence of the interface on the rest of the spec-
ification is especially important in concurrent systems.
It is shown in [14] that the specification of even so basic
a property as first-come-first-served priority cannot be
independent of the interface’s implementation details.

You are saying that, even for the highest-level specification,
the interface must be specified at the implementation level.
Can‘t one hide these low-level implementation details in the
high-level specification?
The interface is specified by describing how interface
state functions can change. We shall see below how
the changes to internal state functions can be specified
hierarchically; the same approach can be applied to the
interface state functions. However, the high level speci-
fication is not complete until the interface is completely
specified down to the implementation level. A com-
plete specification should eliminate the need for any
communication between the user of the system and its
implementor. For example, the specification of a con-
trol circuit for a soda machine should contain all the
information about that circuit’s behavior needed by the
person. designing the rest of the machine, which means
that it must specify the actual voltages on the wires.

While a hierarchical decomposition of the interface
may be quite useful, it is logically just a method of
organizing the high level specification. I will therefore
not consider such a decomposition of the interface.

Can interfaces be specified solely in terms of state functions?
In addi.tion to interface state functions, we need to in-
troduce the notion of who is responsible for changing
the values of these state functions. A specification of
the sod,a machine interface must state that the environ-
ment (the user) performs the deposit quarter and deposit
half dollar actions and the system (the machine) per-
forms the dispense soda action. The specification of a
procedure interface must state that the environment
(the rest of the program) performs the procedure call
and the system (the procedure) performs the return.

Usually, actions are performed either by the environ-
ment or by the system. However, it is somet.imes useful
to assert which part of the environment performs an
action. For example, to specify a process that interacts
with its environment through both shared v.ariables
and CSP-style operations [7], it may be useful to distin-
guish actions performed by a communication channel
(‘I!” and ‘I?” operations) from ones performed by other
processes (setting shared variables.)5

Why is it necessary to state who performs an interface
action?
Consider a Modula-2 package that implements a queue
by providing put and get procedures. If we failed to
specify that only the environment can call these proce-
dures, then the specification would be satisfied by an
implementation that calls the put procedure itself to
cause random elements to appear in the queue.

What is the general form of a safety specification in the
transition axiom method?
A safety specification consists OE

l A set of state functions, partitioned into interface and
internal state functions.

l A specification of the initial value of every state func-
tion.

l A set of actions, partitioned into interface and inter-
nal actions.

l For each interface action, a specification of who per-
forms the action. (Internal actions are always per-
formed by the system.)

l A set of rules, called transition axioms, that describe
how each action changes the state functions. An in-
terface state function may be changed only by an
interface action.

In the soda machine example, there is a single internal
state function f whose initial value is I; the interface
state functions have been left unspecified. There are
three actions, all of which are interface actio:ns: deposit
quarter and deposit half dollar, performed by the envi-
ronment, and dispense soda, performed by the system.
The effect of the deposit quarter action is desc:ribed by a
transition axiom asserting that the action can occur
only when f equals I, in which case it changes the value
off to II, or when f equals II, in which case it changes
the value off to III. The rules for the deposit half dollar
and dispense soda actions are similar, but a bit simpler.
A complete soda machine specification would also have
to describe how these three actions change the inter-
face state functions.

Precisely what is the meaning of such a specification?
The formal meaning of a transition axiom specification
is a formula of temporal logic. To give a rigorous defini-
tion of that meaning, one must define the formal se-
mantics of temporal logic and provide an algorithm for

36 Communications of the ACM]anua y 1989 Volume 32 Number 1

A

translating a specification into a temporal logic formula.
This is done in [12]. Instead of taking such a formal
approach here, I will try to provide an intuitive under-
standing of what a transition axiom specification means
through careful consideration of what it means to im-
plement the specification.

In developing an intuitive understanding of transition
axiom specifications, it is useful to know the general
shape of the formula underlying a specification. I will
ignore the part of the specification having to do with
who performs the actions. Let fit , . . , fn be the internal
state functions and g,, . . . , gm be the interface state
functions of the specification. The formal meaning of
the specification is a temporal logic formula of the
form6

3fi , . . . , fn s.t. x

where X is a formula describing how the fi and gi are
allowed to change. More precisely, X is a formula that
constrains the sequence of states the system assumes by
constraining the values of the state functions f< and gi on
this sequence of states.

Why is there quantification only over internal state func-
tions and not over interface state functions?
The absence of quantification over the interface state
functions is the formal expression of the observation
that the interface must be specified at the implementa-
tion level. The existential quantification over the inter-
nal state functions allows complete freedom in how
these state functions are implemented. Because the in-
terface state functions are free (not quantified over) in
the specification, those same state functions must ap-
pear in the implementation. All this shouId become
clearer with the next example, which will serve to ad-
dress the question of what it means for an implementa-
tion to be correct.

Another Specification of a Soda Machine
Figure 2 is a soda machine specification written in an
ad hoc language that resembles an ordinary declarative
programming language. The interface procedures dec-
larations provide the interface specification, which is
omitted; the var declarations determine the range of
values that can be assumed by x and y. Angle brackets
denote that the operation they surround is a single
(atomic) action. Statement y performs an action consist-
ing of a deposit-coin interface action plus the action of
setting the value of y to the value of the deposited coin,
the only if clause (a notation invented just for this
statement) meaning that the action can take place only
if the value of x + y after the assignment is at most 50.
Thus, the only if clause disallows the possibility of de-
positing a half dollar after a quarter is deposited.

Figure 2 looks like a program. How is it interpreted as a
transition axiom specification?
To interpret Figure 2 as a transition axiom specifica-

tion, we must describe the state functions, actions, etc.
that it defines. The internal state functions are the vari-
ables x and y and an additional state function, let us
call it pc, that describes the program control state; the
interface state functions are presumably specified (per-
haps implicitly) in the omitted part of the interface
procedures. The state function x can assume the values
0, 25, and 50; the state function y can assume the val-
ues 25 and 50; and the state function pc can assume the
values (Y, /3, y, 6, and 6. The initial values of x and y are
unspecified; the initial value of pc is LY, indicating that
control is initially at statement LY. There are five ac-
tions, one for each pair of angle brackets, that are la-
beled (Y . . . t. Actions y and t are interface actions, the
former performed by the environment and the latter by
the system; the rest are internal actions. The transition
axioms for these actions specify the following allowed
changes to the state functions.

(Y: This action can occur only when pc has the value
(Y. It changes the value of x to 0, it changes the
value of pc to & and it leaves the value of y un-
changed.

fi: Can occur only when pc = /3. If x < 50 then it
changes the value of pc to y, otherwise it changes
the value of pc to c. It leaves the values of x and y
unchanged.

y: Represents the user action of depositing a coin. It
sets the value of y equal to the value of the coin
deposited, which must be either a quarter or a
half dollar (because y can equal only 25 or 50); it
leaves the value of x unchanged. This action can
occur only when pc = y and the new value of y
will satisfy x + y 5 50.

6: Can occur only when pc = 6. It sets the value of x
equal to its old value plus the old value of y, it
leaves the value of y unchanged, and it sets the
value of pc to p.

c: Can occur only when pc = t. It sets pc to LY and
leaves the values of x and y unchanged. This ac-
tion represents the dispensing of a can of soda.

In this specification, x and y look like ordina y program
variables, but pc seems strange. Isn’t there a fundamental
difference between the state function pc and the state func-
tions x and y?

interface procedures deposit-coin ;
dispensesda . . ;

var z: {0,25,50};
y: {25,50};

begin loop a: (I := 0);
fl: while (z < 50)

do 7: (y := deposit-coin only if z + ynnew < 50);
6: (z:=z+y)

od;
c: (dispensemfa)

end loop

‘Note that the interface state functions gj are free variables in the formula;
the significance of this is discussed below. FIGURE 2. Another Specification of a Soda Machine

January 1989 Volume 32 Number 1 Communications of the ACM 37

Articles

No. To describe the execution of a program written in a
declarative programming language, we must describe
how the program control position changes as well as
how the values of variables change. The programmer
cannot explicitly refer to the “program counter,” but its
value is just as much part of the program state as is the
value of an ordinary variable. A programmer often has
the choice of whether to use an extra variable or a
more complicated control structure to represent the
state of a computation.

Is eve y program a specification?
Yes. A program written in any programming language
can be interpreted as a transition axiom specification. A
major task in writing a compiler from a source language
to a target language is to represent, in the target lan-
guage, the state functions specified by the program,
including ones like pc and the procedure-calling stack
that a.re not explicitly declared. A program written in
a higher level language is a specification of the object
code produced by the compiler. The only difference
between a program and a higher-level specification is
that the program is implemented by the compiler with-
out human intervention.

lf any program is a specification, why not write specifica-
tions iin an ordina y programming language instead of devis-
ing specification languages?
This can be done. However, programming languages are
const.rained by the requirement that programs must be
compiled into reasonably efficient code. Because speci-
fications do not have to be compiled, specification lan-
guages can permit simpler specifications than can be
written in programming languages. Also, programming
languages tend to encourage overly restrictive specifica-
tions. For example, in most programming languages it is
easy 1.0 state that one action must follow another but
hard to state that two actions can be performed in
either order. Such languages encourage specifications
that unnecessarily constrain the order in which actions
must be performed.

What kind of constructs can specification languages use that
programming languages cannot?
The primary programming language construct for indi-
cating explicit state changes is the assignment state-
ment. In a specification language, the assignment state-
ment can be extended to allow an arbitrary relation
between the old and new values of state functions. For
example, statement y of Figure z can be described as
the following relation between the old and new values
of the variables:

(Y”L?W = deposit-coin) A (x,,, = x,ld)
(11

A (Y”,W + x,1,, 5 50)

where deposit-coin is some expression involving old
and new values of interface state functions that is pre-
sumably defined by the omitted interface specification.

An ordinary assignment statement is a specific form
of relation in which the new value of a variable equals

an expression involving only the old values of vari-
ables. However, one can have more general relations,
such as

add = sin2b,ew + 3 cos b,,,

which expresses a relation between the new value of
the variable b and the old value of the variable a. Such
a relation cannot be expressed in a programming lan-
guage because it cannot be compiled into efficient code,
but there is no reason not to allow it in a specification
language.

A transition axiom for an action, which determines
the changes to state functions allowed by the action, is
just such a relation between old and new values of
state functions. For example, the transition .axiom for
statement y is obtained by conjoining relation (l),
which asserts how x and y may change, with

@cold = ‘Y) A (p&xv = 6)

The latter relation asserts how pc may change and in-
cludes the requirement that the action can be per-
formed only when the initial value of pc equals y. The
program of Figure 2 can be replaced by a set of five
transition axioms of this form. However, the specifica-
tion is easier to follow if we use ordinary programming
language constructs like “;” and while to describe im-
plicitly how the value of pc may change instead of
explicitly writing the relations between its old and new
values.

Figures 1 and 2 are two different specifications of the soda
machine. How are they related?
They are equivalent-assuming that they are com-
pleted with the proper interface specifications. In other
words, each one is a correct implementation. of the
other. I will show that Figure 2 correctly implements
Figure 1. Demonstrating the converse requires some
concepts that will be introduced with another example.

The interpretation of Figure 1 as a transition axiom
specification asserts the existence of a state Eunction f
with certain properties. To prove that Figure 2 satisfies
this specification, we must demonstrate the existence
off. This is done by defining f in terms of the state
functions x, y, and pc, whose existence is asserted by
the interpretation of Figure 2 as a transition axiom
specification. We first observe that x < 50 w:hen pc = y
and x + y 5 50 when pc = 6. (This is proved by showing
that these two assertions are true initially and are left
true by every action.) The value off is defined by the
expression in Figure 3, written using Dijkstra’s if con-
struct.7 Finally, we show that, with this definition off,
every action allowed by the specification of Figure 2
either leaves f unchanged or corresponds to an action (a
change off) allowed by the specification of Figure 1.
The reader can check that actions (Y, p, and (I do not
change f. For example, cy can be executed only when pc
= CY, in which case f = I, and its execution sets pc = /3

‘Note that Figure 3 is not a program: it is just an ordinary mathematical
definition off as a function of x. y, and pc written with Dijkstra’s notation.

38 Communications of the ACM Januay 1989 Volume 2.2 Number 1

Articles

and x = 0, which leaves f equal to I. The reader can also
check that execution of y corresponds either to a de-
posit quarter or a deposit half dollar action allowed by
Figure 1. For example, suppose y is executed starting in
a state with x = 25. Since it can only be executed when
pc = y, this implies that initially f = II. The specifica-
tion of the y action implies that, starting with x = 25, it
can change the values of x, y, and pc only by setting y to
25 and pc to 6, which makes f = III. This change of the
value off from II to III is permitted by the deposit quarter
action of Figure 1. The reader can check that executing
y starting with x = 0, the only other possibility, also
yields a change off allowed by the deposit quarter or
deposit half dollar action of Figure 1, and that executing
t changes f as allowed by the dispense soda action of
Figure 1.

Is this all there is to the proof?
We have not proved that Figure 2 correctly implements
the interface of Figure 1. This requires showing that
deposit-coin and dispense-soda are correct implementa-
tions of the corresponding actions of Figure 1, which
we cannot do because neither they nor the interface of
Figure 1 have been specified.

How can we formalize the informal reasoning used in the
proof?
Let a state vector for the specification of Figure 2 be a
triple of possible values of x, y, and pc, and let a state
vector for the specification of Figure 1 be a possible
value off (either I, II, or III). To define fin terms of x,
y, and pc, we defined a mapping F from state vectors
of Figure 2 to state vectors of Figure 1. For example,
F(0, 25, 6) = II means that f = II when x = 0, y = 25,
and pc = 6.

For any action E, let A, denote the transition axiom
for 5. This is a relation between old and new values-in
other words, a set of pairs of state vectors. For example,
the pair ((0, 50, r), (0, 25, 6)) is in A, because it is
possible to execute y starting with x = 0, y = 50, and
pc = y and ending with x = 0, y = 25, and pc = 6.

Let A, and Az denote the set of actions of Figures 1
and 2, respectively. Formally, we proved the theorem

v.$ E Az V(v, w) E At 37 E A1 s.t. (F(v), F(w)) E A,

ifpc= a -+f=I !Ll
pc=porpc=.y-+ifz=O -+f=I Cl

r=25-+f=II 0
z = 50 + f = III (impossible if pc = y)

ALI
pc = 6 -+ifs$y=25-rf=II Cl

z+y=50-+f=III 0
z + y = 75 - impossible

fill
pc = E - f = III

fi

FIGURE 3. Definition off in terms of x, y, and pc

This formula has the following English translation,
where bracketed expressions indicate the correspon-
dence with the formula: for every action [t] of Figure 2
[in AZ] and every change to the values of x, y, and pc
[from D to w] allowed by this action [(v, w) in A,], there
exists an action [q] of Figure 1 [in A,] such that the
corresponding change to the value off [from F(v) to
F(w)] is allowed by that action [(F(v), F(w)) is in A,].

Exactly what does this prove?
The formal meaning of the specification of Figure 1 is
a formula 3f s.t. X1, where X1 is a formula describing
how the value off is allowed to change; the meaning
of Figure 2 is a formula 3x, y, pc s.t. X2, where XZ
describes how the values of x, y, and pc are allowed to
change. We proved the formula

(3x, y, pc s.t. X,) > (3f s.t. X,)

Thus, correctness of an implementation means simple
logical implication: the specification is implied by the
(specification of the) implementation. This implication
was proved by proving Xz 3 ir,, where ir, is the for-
mula obtained by substituting for f in X1 its expression
in terms of x, y, and pc defined in Figure 3. In other
words, assuming the existence of the state functions x,
y, and pc satisfying Xz, we proved the existence of a
state function f satisfying X1 by explicitly constructing
the required f in terms of x, y, and pc.

In a complete specification, X1 and Xa would also
describe the allowed changes to the interface state
functions. However, because there is no quantification
over interface state functions, this type of argument can
work only if X1 and X, contain the same interface state
functions, and the behavior of those interface state
functions asserted by X1 is implied by the assertions
about their behavior made by X2, This is the formal
statement of the observation that the interface must be
specified (in X,) at the implementation level (using the
same state functions and interface actions as in X,).

The proof that Figure 2 correctly implements Fig-
ure 1 can be reduced to logical implication because
both specifications are expressed by formulas in the
same logical system. This in turn is possible only be-
cause we interpret the state-transition diagram of Fig-
ure 1 in terms of the state function f. If Figure 1 were
interpreted as specifying the behavior of a three-state
machine while Figure 2 specified the behavior of a SO-
state machine, then they would express formulas in
different logical systems and it would not be clear what
correctness of an implementation meant. Traditional
definitions of correctness of an implementation, involv-
ing mappings on behaviors, have ignored problems that
arise in specifying the interface. See [13] for further
discussion of this issue.

A Database
Let us now consider a toy specification of a database
concurrency control mechanism. Clients of the data-
base issue operations by calling an exec procedure with

]anuay 1989 Volume 32 Number 1 Communications of the ACM 39

Articles

arguments indicating the operation to be performed.
There are two arguments: op, indicating the change to
the database and res, indicating the value to be re-
turned. (I assume that, as in Modula-2, procedures may
return values.) These arguments are described formally
as functions. Although the exec procedure may be
called concurrently by multiple clients, the operations
are to be performed as if they occur in a serial order.
In other words, the database operations are to be per-
formed as if they were atomic.8

The specification is given in Figure 4, using program-
ming language notation. The internal state function
data represents the state of the database. The interface
is specified as a procedure call. There is a single inter-
nal action CL In this action, op and res denote the argu-
ments of the procedure call, and exec is the value that
is returned by the procedure. The procedure call and
return are interface actions that are not explicitly
specified.

How is Figure 4 interpreted as a transition axiom specifica-
tion?
The interface specification must contain state functions
whose values indicate the set of processes currently
executing the exec procedure-that is, the set of pro-
cesses that executed a call that has not yet returned.
There must also be state functions that indicate the
following information for each such process:

l The values of op and res.
l The program control location, indicating whether

the process is executing the call, is at control point
LY, or is executing the return.

l The value of exec (the value to be returned), if the
process has executed action CL

Figure 4 seems to specify that the entire database operation
must be done as a single atomic action; doesn’t this rule out
concurrency?
The specification asserts the existence of a state func-
tion data that changes atomically; it does not assert that
changes to the database must actually be performed
atomic,ally. Figure 2 implements Figure 1 even though
the operations of depositing a half dollar and dispensing
a can of soda consist of two atomic actions in Figure 1
and six atomic actions in Figure 2. The implementation
was proved correct by defining fin such a way that

‘In databnse circles, atomicity often means that a failure cannot result in a
partially completed operation. The possibility of failure is not considered in
this example.

type dbase : . ;
value : .,. ;
opfcn : dbase -+ dbase;
resfcn : dbase -) value;

internal state function data : dbase;

proceldure ezec(op: opfcn; res: tesfcn) : value
begin a: (data,,, = op(data,ld) A eIec,ew = res(data&)
end

only two of those six actions change f, doing 130 as
allowed by Figure 1; the other four actions leave f
unchanged.

In the same way, the change to the database, which
is represented by executing the single atomic action a!
in Figure 4, can be implemented as a sequence of thou-
sands of atomic actions. Correctness of the implementa-
tion means that the state function data can be defined
as a function of the implementation state fun’ctions in
such a way that only one of those thousands (of atomic
actions changes its value, doing so as indicated by
Figure 4.

The state function must be defined so that a single atomic
action causes the entire database operation, which could be
arbitrarily complex, suddenly to be performed-even though
each atomic action makes only a small change to the actual
database. How is this possible?
The only way to understand how it is done is by work-
ing out an example. One such example is the specifica-
tion and implementation of a FIFO queue in 11121,
where the specification asserts that the operations of
adding and removing an element from the queue are
atomic, but an implementation that adds and removes
elements one bit at a time is proved correct.

The proof method is a generalization of assertional
methods for proving safety properties of concurrent
programs [18]. In these assertional methods, one con-
structs an invariant, which is a boolean state function
whose value never changes; in the transition axiom
method, one constructs state functions whose values
change only in the manner prescribed by the transition
axioms.

Another Database Specification
The concurrency control mechanism specified by Fig-
ure 4 is called serialization [5] because database opera-
tions are executed as if they occurred in some serial
order. However, Figure 4 is not the most general spe-
cification of serialization because it requires that the
actual reading and writing of the database occurs
between the call of exec and the subsequent return,
which implies that if one call to exec returns before
another call is initiated, then the operation performed
by the first call precedes the operation performed by
the second in the serialization order. Some concurrency
control algorithms that are considered to be serializable
do not have this property. So, let us now consider the
more general specification of a serializable database
given in Figure 5.

The interface of the new specification is the same as
that of Figure 4: a procedure named exec with two argu-
ments that specify the operation. However, instead of
performing the operation immediately, action /3 chooses
a completely arbitrary value to return (the value V) and
saves that value together with the arguments of the
procedure call in saved-ops, a bag of operations to be
performed later.g A separate, asynchronous a&on y at

FIGURE 4. A Database Specification
‘A bag, also called a multiset, is a set in which the same elemem can appear
more than once.

40 Communications of the ACM January 1989 Volume 32 Number 1

Articles

some later time will perform the operation. The inter-
nal process keyword denotes that its actions are per-
formed by the system independently of actions per-
formed through calls to the exec procedure. The clause
v = r(gdata,ld) in the specification of action y means
that the action is performed only if the database state is
such that the result that was already chosen (by the /3
execution that put the triple (o, r, v) in the bag saved-
ops) was the correct one.

Since this is a safety specification, it does not assert
that y will ever do anything; it simply asserts that y
cannot perform a database operation unless the result
agrees with the one that the ,f3 action had already de-
cided to return. We must also require the liveness prop-
erty that every operation saved in saved-ops is eventu-
ally performed. Section 3 indicates how this property is
specified.

This specification is completely bizarre; it requires that the
exec procedure guess what the correct result of the database
operation will be before actually executing it. How can one
possibly implement such a specification?
Figure 5 is bizarre only if viewed as a description of
how the exec procedure is to be implemented. A pro-
gram describes how something is to be done, while a
specification describes only what is to be done. Figure 5
describes the observable behavior of the database sys-
tem; it makes no formal assertion about how that be-
havior is to be implemented.

It is important to realize that even though a transition

implementation executes fewer actions than the specifica-
tion, a single a! action performing the database operation
that the specification asserts is done by a /3 action (to put
the operation in saved-ops) and a 7 action (to change the
database). How do we prove that this is a correct implemen-
tation?
As in the proof for the soda machine example, we must
define the specification state functions gdata and saved-
ops in terms of the implementation state function data.
We let gdata equal data and define saved-ops always to
equal the empty bag. Again we must show that every
action of the implementation changes the values of the
specification state functions as allowed by the specifica-
tion actions. However, we drop the requirement that
each implementation action corresponds to at most a
single specification action and allow it to correspond to
a sequence of specification actions. There is only one
internal action in Figure 4: the action CY. Executing ac-
tion (Y produces the same changes to gdata and saved-
ops as an execution of a /3 action followed by an execu-
tion of a y action. The y action immediately executes
the operation that the fi action puts in saved-ops, the
total effect being to leave saved-ops empty and to pro-
duce the required change to gdata.

Is one always allowed to implement a sequence of specifica-
tion actions with a single implementation action?
Two conditions must be satisfied for a sequence of
specification actions to be implementable by a single
implementation action:

axiom specification may look superficially like a pro-
gram, apparently describing how the system is to be
implemented, it really specifies only the externally vis-
ible behavior-that is, how the interface state functions
may change. Internal state functions such as saved-ops
need not appear in any obvious form in the implemen-

l At most one of the specification actions can be an
interface action.

l All the actions (the specification actions and the
implementation action) must be performed by the
same agent-either the system or the environment,

tation’s data structures. Indeed, as I will explain below, These two conditions rule out pathological implementa-
they need not appear at all. tions.

If Figure 5 is a more general specification than Figure 4,
then Figure 4 should implement Figure 5. However, the

type dbase : . . ;
value : . . . ;
opfcn : dbase - dbase;
resfcn : dbase -t value;

The case of several specification actions implemented
with a single action arises only when demonstrating
that one specification is at least as general as another.
(I just demonstrated that Figure 5 is at least as general
as Figure 4.) In real implementations, a single specifica-
tion action is usually implemented with dozens or even
thousands of separate actions.

internal state function
gdata : dbase;
saved-ops : bag of (opfcn, resfcn, value);

procedure ezec(op: opfcn; res: resfcn) : value

begin P: (31 s.t. ezecnerr = VI A
saved-ops,, = saved-ops,,d u {(op, ws, v)})

end

internal process
begin loop y: (3(0, r,zr) E saved-ops,,ld s.t.

gdata,,, = o(gdataOld) A
v = r(gdUta,,ld) A
saved-ops,,, = saved-ops,,d - {(O,T,B)})

endloop
end

FIGURE 5. A More General Database Specification

What is the formal justification for the correctness of imple-
menting several specification actions with a single action?
Recall that the formula represented by a transition ax-
iom specification is of the form 3fi, . . . , f,, s.t. X, where
the fi are the internal state functions. The reason we
are allowed to implement several actions with a single
one lies in the formal meaning, given in [4], of existen-
tial quantification of a state function. In proving that
the formula represented by the implementation implies
the formula represented by the specification, the exis-
tential quantification over the internal state functions
allows one to consider the execution obtained by split-
ting one action into several successive actions to be
equivalent to the original execution if the extra actions
change only the internal state functions. However, an

Ianuary 1989 Volume 32 Number 1 Communications of the ACM 41

Articles

explanation of why this is so involves subtle points of
temporal logic that are beyond the scope of this paper.

Is this all there is to the proof that Figure 4 correctly imple-
ments Figure 5?

plicit in the language. However, the liveness conditions
that appear in specifications are too varied to be ex-
pressed only implicitly by any reasonable collection of
language constructs.

Yes. The two systems have identical interfaces, so it is The informal liveness requirement for the database specifi-
obvious that the interface actions of Figure J-the ones cation of Figure 5 is that any operation saved in saved-ops
that perform the procedure call and the return-cor- is eventually executed. How is this expressed formally?
rectly implement the interface actions of Figure 4; they Our first attempt at specifying this might be the axiom
are the same actions. Therefore, we just have to show
that the internal state functions of Figure 5 are cor-
rectly implemented by Figure 4, which we did.

V(o, r, v): (0, r, v) E saved-ops w (0, r, v) <E saved-ops

which asserts that if a triple (0, r, v) is in the bag saved-
ops, then eventually it will not be in that bag. The rest
of the specification implies that the only way a triple
can be removed from the bag is by performi:ng the ap-
propriate database operation with a y action.

LIVENESS PROPERTIES
Livertess properties assert that something must happen.
In a transition axiom specification, the things that hap-
pen are changes to values of state functions; what must
happen is expressed by explicit axioms about how
these values must eventually change.

Ax:ioms to specify liveness are written in temporal
logic, obtained by extending ordinary logic with the
temporal operators 0 (read henceforth) and 0 (read even-
tually). The formula UP asserts that P is true now and
at all future times, and the formula OP asserts that P is
true now or at some future time. Since P is eventually
true if and only if it is not always false, OP is equiva-
lent to XI~P. (See [lo] for a discussion of this equiva-
lence.) It is convenient to define the operator * (read
leads lo) by letting P * Q equal q (P 3 OQ), which
asserts that whenever P becomes true, Q will be true
then or at some later time. A more detailed exposition
of our temporal logic can be found in [19].

In the soda machine specification of Figure 1, we
might require that, after the user has deposited enough
money, the machine must eventually dispense the
soda. This is expressed by the formula (f = III) * (f = I),
which asserts that if f = III then f must eventually
equal I.

The soda machine specification should probably have
no other liveness axioms, since we don’t require that
the user must deposit money. However, we might re-
quire that if he deposits one quarter then he must de-
posit ,another, which is asserted by the axiom (f = II) +-.
(f = III).

In the soda machine specification of Figure 2, we
require that the next action must eventually be per-
formed, except if it is a y action, which the user need
never perform. If the next action is an a! action, this is
asserted by the axiom (pc = cy) * (pc = p). However,
we could instead make only the weaker assertion that
(pc = a) e (pc # cu), since Figure 2 implies that if pc =
LY, then the only way the value of pc can change is for it
to bec;ome equal to p. The complete liveness specifica-
tion for this example is

vt + 7: (PC = 8 - (PC # El (2)

These liveness axioms are obvious from looking at Figures 1
and 2. Can’t we just make the liveness axioms implicit in
the language instead of having to write them separately?
One might want to make certain liveness axioms im-

This axiom would express the desired requirement if
saved-ops could never contain two copies of one triple.
However, if the same triple (0, r, v) were continually
inserted by different calls to the exec procedure, then
saved-ops might always contain a copy of (0, r, v), so the
axiom would not be satisfied. All we can assert is that,
if some triple (0, r, v) is in saved-ops, then eventually at
least one copy of it is removed-that is, eventually
there is a y action that removes (0, r, v).” Our formulas
mention states, not actions; we assert that a y action
occurs by a temporal formula asserting that, at some
time, the bag contains k copies of the triple and, at a
later time, it contains fewer copies. The desired live-
ness condition is expressed by the following axiom,
where e#B denotes the number of copies of element e
in bag B:

V(o, r, v): [(o, r, v) E saved-ops]

19 [3k s.t. ((0, r, v)#saved-ops = k)

A O((o, r, v)#saved-ops < k)]

One can introduce notations that make it easier to as-
sert that a certain action eventually occurs, allowing
this axiom to be written more or less as

[(o, r, v) E saved-ops] m ~(0, r, v)

However, explaining these notations would lead us into
language design issues that I do not wish to discuss
here.

Are 0 and 0 (and operators like +-, defined in terms of
them) all one needs for specifying liveness properties?
Yes.

How does one verify that an implementation satisfies the
liveness properties of a specification?
One must verify each liveness axiom. Consider the
liveness axiom

(f = III) 19 (f = I)

for the specification of Figure 1. To prove that Figure 2
implements this specification, we defined fin terms of

lo Note that identical triples are indistinguishable, so it makes no sense to ask
which copy of a triple is removed.

42 Communications of the ACM Januay 1989 Volume 32 Number 1

Articles

the implementation state functions x, y, and pc, the
definition appearing in Figure 3. Substituting this
expression for fin (3) yields

[(PC = p A x = 50)

v (pc = 6 A x + y = 50) v (pc = e)]

- [(PC = a) v . . .] (4)

To verify that the implementation satisfies axiom (3),
we must prove that the liveness axioms and the safety
properties of the specification of Figure z imply (4).
(This makes sense because (4) is an expression about
the implementation state functions.)

From the liveness axiom (2) and the safety properties,
we can establish the following chain of -. relations:”

(pc = 6 A x + y = 50) * (pc = p A x = 50)

- (pc = e) * (pc = LX)

For example, to verify (pc = p A x = 50) - (pc = E),
observe that (2) implies that eventually pc # p, and the
transition axioms imply that if pc = /3 and x = 50, then
the value of pc can change only to 6. (Note that the
proof uses both safety and liveness properties of the
implementation.)

We leave it to the reader to check that this chain of
w relations intuitively implies (4). The formal method
underlying all of this informal reasoning is described
in [19].

What is the general method behind this example?
Recall that formally, a specification is a formula 3f, . , ,
fn s.t. X, where the fi are the internal state functions and
X is a formula specifying how the values of the internal
and interface state functions change. Similarly, the im-
plementation is represented by a formula 3hl . . . h, s.t.
Y, where the hi are the implementation’s internal state
functions and Y is a formula involving the hi and the
interface state functions. Correctness of the implemen-
tation is expressed by the formula

(3h, . . . h, s.t. Y) 3 (3f, . . . f,, s.t. X)

This formula is proved by expressing the specification
state functions f, in terms of the implementation state
functions hi and proving Y 3 jr, where x is the formula
obtained from X by substituting for the fi their expres-
sions in terms of the hi.

Splitting the specification into its safety and liveness
requirements means writing X = X, A XI, where X, are
the safety axioms and XI are the liveness axioms, and
similarly writing Y = Y, A YI. When we prove that the
safety properties of the specification are satisfied,
which we do by showing that every implementation
action that changes the specification state functions
does so as allowed by some specification action, we are
proving Y, 3 X,. To prove that the liveness properties of
the specification are satisfied, we prove (Ys A Yl) > XI;
in other words, we use both safety and liveness pro-

” The formula A - B - C is an abbreviation for (A - B) A (B - C)

perties of the implementation to prove the liveness
properties of the specification.

FURTHER QUESTIONS

A specification should specify only the externally observable
behavior of a system, yet the transition axiom method intro-
duces internal state functions and internal transitions.
Doesn’t this produce overly restrictive specifications?
To specify externally observable behavior, one must
describe all permitted sequences of interface actions.
Most conventional methods for specifying sequences
of actions use implicit internal states. For example,
a context-free grammar is equivalent to an automaton,
whose states are implicit in the grammar. Milner’s CCS
[Ii’] can be viewed as a single automaton whose states
are the set of CCS formulas. It would be easy to use
context-free grammars or CCS as the language in which
to express transition axioms. Using explicit rather than
implicit internal state functions does not make the
specifications any more restrictive.

Temporal logic and other axiomatic methods have been used
to write specifications that do not mention internal states.
Aren’t these specifications more general than transition
axiom specifications?
Let us call a specification purely temporal if it does not
mention internal states. The work of Alpern and
Schneider [3] shows that purely temporal specifications
are no more general than transition axiom specifica-
tions. They defined a logic that is at least as powerful as
most of the logics used for purely temporal specifica-
tions and showed that any formula in their logic is
equivalent to an assertion about an automaton con-
structed from the formula. This automaton can be in-
terpreted as a transition axiom specification that is
equivalent to the purely temporal specification repre-
sented by the original formula.

Even if purely temporal specifications are logically no more
general than transition axiom specifications, doesn‘t their
avoidance of explicit internal state functions mean that, in
practice, they are less likely to overly constrain the imple-
mentation?
The transition axiom method does make it easier than
purely temporal methods to describe a particular imple-
mentation instead of specifying only the desired inter-
face behavior. However, eliminating internal state
functions requires the use of complicated temporal for-
mulas. The reader can appreciate the extra complexity
needed to specify behavior with purely temporal meth-
ods by writing two informal prose specifications of a
memory register: one that uses the value of the register
(which is an internal state function) and a purely tem-
poral one that talks only about read and write opera-
tions without mentioning the register’s value.

I have found that purely temporal specifications are
hard to understand. While they are less likely to over-
specify the system, they are much more likely to un-
derspecify it by omitting important constraints. In prac-
tice, purely temporal methods are hard to use because

January 1989 Volume 32 Number 1 Communications of the ACM 43

Articles

they don’t tell one where to start (what properties
should be specified explicitly and what properties
should be consequences of other properties?) or when
to stop (do all desired properties follow from the specifi-
cation?). In contrast, the transition axiom method pro-
vides a well structured approach to writing specifica-
tions: first choose the state functions, then specify how
they are allowed to change (the transition axioms), and
finally specify when they must change (the liveness
axioms).

Proving the correctness of an implementation requires defin-
ing the specification state functions in terms of the imple-
mentation state functions. Aren’t there cases when this is
impossible because some specification state functions are
unnecessa y and are not actually implemented?
Yes. (One example is a program, viewed as a specifica-
tion of its compiled version, in which an optimizing
compiler eliminates a local variable that it discovers is
set but never read. Moreover, the unimplemented state
function need not be unnecessary. Imagine a specifica-
tion that begins by letting the system decide if it is to
act as a soda machine or a database, and thereafter acts
exactly like the single system chosen. This absurd spec-
ification describes the state functions for both the soda
machine and the database. However, the specification
can be met by implementing either a soda machine or a
database, without implementing the state functions of
the other.

How is the correctness of an implementation proved if it
does not implement the specified state functions?
In proving the correctness of the implementation, one is
allowed to add auxilia y state functions to the implemen-
tation. An auxiliary state function is similar to an aux-
iliary variable added to prove the correctness of a con-
current program [18]. It is an internal state function
that is added in such a way that it does not alter the
specification of how the “real” state functions are al-
lowed to change. The existing transition axioms are
modified to indicate how they change the auxiliary
state functions.

By adding auxilia y state functions, isn’t one proving the
correctness of a new implementation-one with extra state
funct,ions-rather than the original implementation?
No. To understand why not, one must again examine
the formal meaning of existential quantification over
state functions. Intuitively, the formula 3h s.t. A asserts
the existence of h not in the “real world”, in which the
only state functions that exist are the ones described
by the implementation, but in a “mythical world” in
which every possible state function is assumed to exist.
The auxiliary state functions do not change the imple-
mentation; they serve as constructive proofs of the ex-
istence of certain possible state functions. One could
rewrite the correctness proof to eliminate the auxiliary
state functions, but the resulting proof would be harder
to understand.

Th’e situation in which a specification state function
is not expressible in terms of implementation state

functions is atypical. Just as a good program does not
compute values that are never used, a good specifica-
tion does not include state functions that are not
needed. Specifications that give the implementer the
choice of which state functions to implement are rare;
in practice, one does not specify a system that can
choose to act as either a soda machine or a database
system. Auxiliary state functions are therefore seldom
needed. I advise against introducing them just to make
it easier to express the specification state functions,
since one learns a great deal about an implementation
by expressing the specification state functio:ns in terms
of the “real” implementation state functions.

The transition axiom method is supposed to spe#cify concur-
rent systems, yet the system’s behavior is described as a
sequence of actions. Where’s the concurrency?
Underlying almost all formal methods in computer sci-
ence is the assumption that the behavior of a system
can be described as a collection of discrete atomic ac-
tions. The most general approach is to assume that the
temporal ordering among these atomic actions is a par-
tial order. However, a partial order is equivalent to the
set of all total orders that are consistent with it. It turns
out that as long as one is concerned only with safety
and liveness properties, no information is lost by re-
placing a partially ordered set of events by the set of all
sequences obtained by extending the partial order to a
total order. Thus, we can consider a behavior to be a
sequence of actions. Concurrency appears as nondeter-
minism-if two actions are concurrent, then the set of
possible behaviors contains sequences in which they
are performed in either order.

A formalism based upon sequences may be inade-
quate for discussing other properties of the system’s
behavior, such as whether two actions occur concur-
rently. While such properties may be of interest when
analyzing a given system, I have not found them to be
relevant to the system’s specification.

The transition axiom method specifies the atomic actions
comprising each operation. Can one specify an operation
without stating what the atomic actions are?
The transition axiom method can be extended to allow
the specification of nonatomic operations-that is, op-
erations composed of an unspecified number of atomic
actions. Writing such a specification is easy; for exam-
ple, we can just remove the angle brackets from Figure
2. However, it is not so easy to say precisely what such
a specification means and how one verifies ,the correct-
ness of an implementation. The transition axiom
method can be extended to handle nonatomic opera-
tions by introducing the formal concepts described in
[ll] and [15].

Can one hierarchically decompose transition axiom specifi-
cations?
There are two kinds of hierarchical decomposition:
(1) decomposition within a single level of abstraction,
and (2) representation of a higher-level system as a
composition of lower-level ones. The second kind of

44 Communications of the ACM January 1989 Volume 32 Number 1

Articles

decomposition involves a change in the grain of atomic-
ity-usually a single atomic action is decomposed as a
set of lower-level actions; the first does not.

Decomposition within a single level involves organiz-
ing the information contained in a single specification
to make it easier to understand. For example, one can
decompose a transition axiom by writing it as a con-
junction of several relations, where each conjunct is de-
scribed separately. This type of decomposition is a lan-
guage design issue that raises no basic logical questions.

Representing a higher-level system as the composi-
tion of lower-level systems means implementing the
higher-level system with the lower-level composite sys-
tem. The implementation of one system with a lower-
level one has already been discussed here at consider-
able length.

How are specifications of individual components combined
to specify a single system?
Formally, to say that a system M is the composition of
two systems MI and MZ means that the specification of
M, which is a temporal logic formula, is the conjunc-
tion of the specifications of M, and MZ. In the transition
axiom method, the specification of M is obtained by
simply combining the specifications of MI and Mz, The
state functions in the specification of M consist of the
state functions from the specifications of both M, and
Mz, and the set of actions of M is the union of the sets
of actions of MI and MZ.

Combining specifications may necessitate some
renaming. Internal state functions and actions may
have to be renamed to avoid conflicts, since an internal
state function of MI represents a different state function
from any internal state function of Mz. Also, the act of
combining M, and M2 may imply a renaming or identi-
fication of interface state functions. Suppose MI is a
circuit with an interface state function named output
that represents the voltage on its output wire and Ma is
a circuit with an interface state function named input
that represents the voltage on its input wire. Connect-
ing the output wire of MI to the input wire of Ma im-
plies that input and output become two names for the
same state function.

Acknowledgments. I wish to thank Amir Pnueli for
teaching me what existential quantification over state
functions means, Jim Horning and John Guttag.

REFERENCES
1. Alford, M.W. et al. Distributed systems: methods and tools for specifica-

tion. In Lecture Notes in Computer Science, 190, Springer-Verlag, New
York, 1985. 270-285.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

Alpern, B., and Schneider, F.B. Defining liveness. In/, Process. Left.
21, 4 (Oct. 1985), 181-185.
Alpern, B., and Schneider, F.B. Verifying temporal properties without
using temporal logic. Tech. Rep. TR85-723, Dept. of Computer Sci-
ence, Cornell Univ., 1985.
Barringer, H., Kuiper, R., and Pnueli. A. A really abstract concurrent
model and its temporal logic. In 13th Annual ACM Symposium on
Principles of Programming Languages [St. Petersburg Beach, Fla., Jan.
13-15). ACM, New York, 1986, pp. 173-183.
Bernstein, P.A., and Goodman, N. Concurrency control in distrib-
uted database systems. Compuf. Surv. 13, 2 (June 1981), pp. 185-222.
Guttag, J.V., Horning, J.J., and Wing, J.M. Larch in five easy pieces.
Tech. Rep. 5, Digital Equipment Corporation, Systems Research
Center, 1985.
Hoare, C.A.R. Communicating sequential processes. Commun. ACM
21,8 (Aug. 1978), pp. 666-677.
Jones, C.B. Systematic Software Development Using VDM. Prentice-
Hall, Englewood Cliffs, N.J., 1986.
Lam, S.S., and Shankar, A.U. Protocol verification via projections.
IEEE Trans. Softw. Eng. SE-IO, 4 (July 1984). pp. 325-342.
Lamport. L. “Sometime” is sometimes “not never”: a tutorial on the
temporal logic of programs. In Proceedings of the 7th Annual Sympo-
sium on Principles of Programming Languages (Las Vegas, Nev.. Jan.
28-30). ACM, New York, 1980, pp. 174-185.
Lamport, L. Reasoning about nonatomic operations. In Proceedings of
the 10th Annual Symposium on Principles of Programming Languages
(Austin, Texas, Jan. 24-26). ACM, New York, 1983, pp. 28-37.
Lamport, L. Specifying concurrent program modules. ACM Trans.
Program. Lang. Syst. 5, 2 (Apr. 1983), pp. 190-222.
Lamport, L. What good is temporal logic? In Information Processing
83: Proceedings of the IFIP 9th World Congress, R.E.A. Mason, Ed. IFIP,
North Holland, Paris, September 1983, 657-668.
Lamport, L. What it means for a concurrent program to satisfy a
specification: why no one has specified priority. In Proceedings of the
12th ACM Symposium on Principles of Programming Languages (New
Orleans, La., Jan. 14-16). ACM, New York, 1985, pp. 78-83.

15. Lamport, L. Win and sin: predicate transformers for concurrency. Res.
Rep. 17, Digital Equipment Corporation, Systems Research Center,
1987.

16. Mead, C., and Conway, L. In Introduction to VLSI Systems, Addison-
Wesley, Reading, Mass., 1980, 218-262.

17. Milner, R. A Calculus of Communicating Systems. Springer-Verlag.
Berlin, 1980.

18. Owicki. S., and Gries, D. An axiomatic proof technique for parallel
programs. Acta Informutica 6, 4, 1976, 319-340.

19. Owicki, S., and Lamport, L. Proving liveness properties of concur-
rent programs. ACM Trans. Program. Lang. Syst. 4, 3 (July 1982).
455-495.

20. Wensley, J. et al. SIFT: design and analysis of a fault-tolerant corn-
puter for aircraft control. Pm. IEEE 66, 10 (Oct. 1978), 1240-1254.

21. Wirth, N. Programming in Mod&-S. 3d ed. Springer-Verlag. Berlin,
1985.

ABOUT THE AUTHOR:

LESLIE LAMPORT received a doctorate in mathematics from
Brand& University in 1972. He is currently working at DEC’s
Systems Research Center in Palo Alto. Author’s present
address: Digital Equipment Corporation, Systems Research
Center, 130 Lytton Ave., Palo Alto, California 94301.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

Ianuay 1989 Volume 32 Number 1 Communications of the ACM 45

