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Abstract

This paper gives two simple efficient distributed algorithms: one for keeping clocks
in a network synchronized and one for allowing new processors to join the network
with their clocks synchronized. Assuming a fault tolerant authentication protocol, the
algorithms tolerate both link and processor failures of any type. The algorithm for
maintaining synchronization works for arbitrary networks (rather than just completely
connected networks) and tolerates any number of processor or communication link faults
as long as the correct processors remain connected by fault-free paths. It thus repre-
sents an improvement over other clock synchronization algorithms such as [LM,WL],
although, unlike them, it does require an authentication protocol to handle Byzantine
faults. Our algorithm for allowing new processors to join requires that more than half

the processors be correct, a requirement that is provably necessary.

1 Introduction

In a distributed system it is often necessary for processors to perform certain actions at
roughly the same time. In such a system each processor usually possesses its own indepen-

dent physical clock or duration timer, which is assumed to have a bounded rate of drift from
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real time. However, over time these duration timers tend to drift apart. Thus, the clocks
must be “resynchronized” periodically.

More precisely, we assume that each processor has an adjustment register. Its logical
clock time is the sum of the reading of its duration timer (over which it has no control) and
its adjustment register. It is these logical clock times that are to be kept close together,
even in the presence of processor and link failures. Let the logical clock time of processor @
at real time ¢ be represented by C;(t). We require that there be some constant DMAX (for
mazimum deviation) such that |C;(t) — C;(t)] < DMAX. As is mentioned in [DHS], there
are trivial algorithms for keeping logical clocks close together. For example, the logical clock
time can always be a constant, say 0. Of course, this is not terribly useful in practice. A
useful clock synchronization algorithm must also guarantee that logical clocks stay within
some linear envelope of the duration timers (i.e., the time on the logical clock must be
bounded above and below by a linear function of the time on the duration timer), so that
logical clock time is indeed a reasonable approximation to real time. An algorithm that
keeps logical clocks of correct processors close together and within a linear envelope of the
duration timers is said to maintain linear envelope synchronization.

A number of recent papers have presented algorithms that maintain linear envelope
synchronization in the presence of faults [KSB,LM,Ma,ST,WL]. The algorithms presented
in [LM,Ma,WL] are all based on an averaging process that involves reading the clocks of
all the other processors. Because of averaging, these algorithms require that there be more
nonfaulty than faulty processors. Two of the algorithms presented in [LM] and the algo-
rithms of [WL] and [KSB] require 3f + 1 processors to handle f faults; a third algorithm of
[LM], which assumes the existence of an authentication protocol, requires 2f 4+ 1 processors.
The algorithm of [ST] also requires 3f 4+ 1 processors to handle f faults without an authen-
tication protocol, and 2f 4+ 1 processors with an authentication protocol, but it maintains
synchronization within an optimal linear envelope in a precise sense explained later. The
algorithms of [Ma], for which no worst case analysis is provided, deal with ranges of times
rather than a single logical clock time and, therefore, are not directly comparable. The
algorithm of [KSB], called phase-locking, is very close in spirit to the algorithm presented
here, in that both algorithms have processors sending out synchronization messages at pre-
determined times. However, the algorithm described in [KSB] requires that the number of
faulty clocks be less than one-third of the number of participants, and also requires certain
assumptions about the nature of the communication medium. For the most recent work
on phase-locking and comparison studies for hardware versus software implementations of
clock synchronization algorithms, see [RSB].

In this paper a synchronization algorithm is presented that does not require any min-
imum number of processors to handle f processor faults, so long as the sub-network con-

taining the nonfaulty processors remains connected. (Notice that this does not contradict



the lower bound of [DHS], which says that only n/3 faults can be tolerated, since we are
assuming an authentication protocol here.) The crucial point is that since we do not use
averaging, it is not necessary that the majority of processors be correct. Moreover, our
algorithm requires the transmission of at most n? messages per synchronization (where n is
the total number of processors in the system). The algorithms of [ST,WL] and one of the
algorithms of [LM] also require only n? messages; the other two algorithms of [LM] might
need as many as nf ! messages to tolerate f faults. A final advantage of our algorithm is
that it can deal with either processor or link faults in any network, provided the nonfaulty
processors remain connected. The algorithms of [LM,WL] deal with only processor faults
in a completely connected network.

The synchronization algorithm is based on the following simple observation. If there
are no faulty processors, one processor can act as a synchronizer and can broadcast a
message with its current time once an hour (or day, or week, depending on the frequency of
synchronization required). Each processor would then adjust its clock function accordingly,
making minor allowances if necessary for the transmission time of the message.

If there are faults, however, then there are obvious problems with the above approach.
A faulty synchronizer might broadcast different messages (i.e. different times) to different
processors, or it might broadcast the same message but at different times, or it might
“forget” to broadcast the message to some processors. Note that it is not necessary to
assume “malevolence” on the part of the synchronizer for such behavior to occur. For
example, a synchronizer might fail (halt) in the middle of broadcasting the message “The
time is 9 A.M.”, spontaneously recover five minutes later, and continue broadcasting the
same message. Thus, some of the processors would receive the message “The time is 9
A.M.” at 9 A M., while the remainder would receive it at 9:05.

Nevertheless, the idea of using a synchronizer can be modified to obtain an efficient
synchronization algorithm which is correct even in the presence of faults. The role of
the synchronizer is distributed: every (correct) processor tries to act as a synchronizer at
roughly the same time, and at least one succeeds. To ensure that this happens at “roughly
the same time,” we use a protocol that guarantees that all the correct processors agree on
the expected time for the next synchronization.

In practice such a periodic resynchronization algorithm must be supplemented by a
method for initializing the clocks of the original participants so that they are close together.
It must also be possible for new processors to join the system or for previously faulty
processors to rejoin the system with their clocks synchronized to those of already existing
processors. Initializing the clocks of the original processors turns out to be an easy task.
Moreover, our synchronization algorithms can be extended to allow new processors to join
(or previously faulty processors to rejoin) the network. The join algorithm allows joining

processors to join a short time after they request to do so. Qur join algorithm requires that



fewer than half the processors be faulty during the join process. Again, we can tolerate
any number of link failures provided that the nonfaulty processors remain connected. This
requirement is provably necessary.

The remainder of the paper is organized as follows. In the next section the problem
is formalized, a formal definition of linear envelope synchronization is given, and the pre-
cise assumptions underlying the algorithm are described. These assumptions include the
existence of a bounded rate of drift between the duration timers of correct processors, a
known upper bound on the transmission time of messages between correct processors, and
the ability to authenticate signatures. The resynchronization algorithm is described in Sec-
tion 3 and analyzed in Section 4. The worst case difference between logical clocks that is
guaranteed by our algorithm is almost as small as possible, but a careful discussion of this
property is beyond the scope of this paper (v. [DHS,HMM,LL]). We discuss issues related
to initialization and joining in Section 5. In Section 6, we present a synchronous update
service, which enables all correct processes to agree on which processes are currently joined;
this service plays a key role in our join algorithm. The join algorithm is presented in Section
7 and analyzed in Section 8. In Section 9 we show how to modify the algorithms presented
in Sections 3 and 7 so that the logical clock is a continuous function of real time, rather
than a piecewise continuous function. We conclude with some discussion of our results in
Section 10. We recommend that the casual reader skip sections 4, 5, and 8. Section 2
contains assumptions and specifications that are important, but not necessary for a basic
understanding of the algorithm. The reader who is interested only in the algorithms might

wish to read only sections 3, 7, and 9.

2 ASSUMPTIONS AND SPECIFICATION

In this section we discuss the five basic assumptions made in our model, denoted A1-A5 and
the specifications that are met by our synchronization algorithms. We break these specifi-
cations into two parts: P1-P4 are properties that follow immediately from the structure of
the algorithm, while CS1-CS4 are deeper properties that require some effort to prove.

Let us first consider the basic assumptions of the model. We assume the existence of
an external source of “real time”, not necessarily measurable by the processors. As in
[LM,ST,WL], we distinguish between real time, as measured on this external clock, and
duration time, the time measured on some processor’s duration timer DT. We also adopt
the convention that variables and constants that range over real time are written in lower
case and variables and constants that range over the processors’ clock time are written in
upper case. We define a correct duration timer to be one that drifts from real time by no

more than a bounded amount. More formally,



A1: Each correct duration timer DT is a monotone increasing function of real time, and

there is a known constant p > 0 such that for all real times v, u, with » > u:
(14 p) (v —u) < DT(v) — DT(u) < (14 p)(v — u).

For technical reasons the leftmost term has a factor of (1 4 p)~! rather than 1 — p, which
is also used in some models; for small p both expressions are essentially the same. An

advantage of Al is that it implies the symmetric condition:
(14 p) Y (DT(v) — DT(u)) < v—u < (14 p)(DT(v) — DT(u)).

The drift between two correct duration timers is strictly less than A = (1+p)—(14+p)~ 1 =
p(2+ p)/(1+ p); i.e. over a time interval [u,v], the increase in deviation between correct

duration timers is bounded above by A(v — u). Note that A < 2p.

Remarks:

e Our use of p is consistent with that of [WL] but differs from that of [LM]. The p of
[LM] essentially corresponds to our A. The notation of [ST] is based on ours, and thus

their p is the same as ours.

o Although we have viewed DT as a function of real time ¢, strictly speaking it should
have two arguments, the real time ¢ and the run or execution r of the algorithm, since
a processor’s duration timer could read different times at the same real time in two
different runs of an algorithm. Similarly, the run r should be a parameter of all the
other functions we introduce below. We omit the r to avoid cluttering the notation,

since in our proofs we always restrict attention to a fixed run r.

An algorithm for clock synchronization is assumed to begin with an initialization, that is
a processor is first initialized and then runs the algorithm. A processor is said to be correct
at real time ¢ if it is initialized at or before ¢, if it follows its algorithmic specification, and
if it possesses a correct duration timer from the time it is initialized through time #. (This
definition of correctness will be modified slightly when we deal with processes joining the
system.) A processor that is not correct is called faulty.

Messages from one processor to another are transmitted over a logical communication
network G. G may be a network of physical links between processors, for example, or it
may be the route graph of [DHSS], where two nodes are joined by an edge if there is a route
between them, according to some predetermined routing. We assume that processors know
their neighbors in this logical communication network, but processors need not know the
entire topology of the network. Processors must communicate to be synchronized. However,

it is not necessary to assume that the network is completely connected as do [LM,WL], i.e. it



is not necessary that there be a link between every pair of processors. We assume that no
message is transmitted instantaneously and that there is a known strict upper bound tdel
(for transmission delay) on the real time ¢ required for a “short” message (typically of the
form “The time is 77”) to be prepared by a given correct processor, sent to all the other
processors to which it currently has a direct (logical) link, and processed by all the correct
processors that receive it.

Our clock synchronization algorithms are based on a communication protocol called
diffusion [CASD]. In this protocol information is sent or forwarded from one node in the
communication network to its neighbors. The neighbors in turn forward the information
to their neighbors, until the information has reached every node in the network. Our
algorithms cannot synchronize the clocks of processors that cannot communicate. Therefore,
we assume that the sub-network of correct processors remains sufficiently connected that
each execution of a diffusion protocol in which a correct processor participates as a sender
successfully reaches all correct processors. Note that this assumption is slightly weaker than
assuming that the network of correct processors remains connected by fault free paths at all
times. Instead, we assume that enough processors and links work correctly enough of the
time to allow any diffusion sent by correct processors to reach all correct processors within
a bounded time. This can happen even if there is no time at which all correct processors
are connected by fault-free paths.

In our model, we assume message transmission time is strictly positive. However, for
simplicity, we idealize the execution, and assume that no time is required for processing. We
also assume that no two events such as task executions of our algorithm can take place at the
same real time at the same processor. Thus, if one task of our algorithm executes because a
duration timer has reached a certain value, then another task cannot simultaneously receive
a message. Formally, we need only the weaker assumption that no register can be updated
twice at a processor at the same real time.

We formalize these assumptions in A2 below:

A2: There is a constant d such that for all times ¢, and all processors p and ¢, there is a

sequence p = pg,...,Ppr = q of processors such that

a) there is a link from p; to p;yq, fore=0,...,k -1,

(
(b) k- tdel < d,

c¢) p; is correct throughout the interval [t,t + d], fori=1,...,k— 1,

)
)
(c)
(d) any message sent by p; to piy1, i =0,...,k — 1, at time u € [t,t + d — tdel], is

received by p;+1 at some time in the interval (u, u + tdel).

Moreover, we assume that no register at a processor is changed more than once at

any real time.



When we use A2 in our later algorithm, where new processors can join the network, we
require that the intermediate processors pi,...,pr_1 are not only correct, but are already
joined.

Some authors [LM,WL] have investigated a refined version of our model in which the
time ¢ required to transmit a message from one node to its neighbors, including processing
time at each neighbor, is bounded as follows: 6§ — ¢ < t < é + ¢. Along the same lines,
Schneider [S] considers a model in which there exists a minimal bound on the time it takes
a message to travel along a link. We have restricted our analysis to the simpler model based
on A2. We leave it to the reader to verify that our results could also be obtained using the
refined versions. As is shown in [HMM,LL], the tightness or precision of the synchronization
need depend only on the uncertainty of message transmission and processing time, not on
its upper bound. However, our experience suggests that for many practical environments,
the uncertainty is essentially the upper bound, justifying this simplification in our model.

The next major assumption is that we have an authentication protocol. More precisely:
A3: Each processor p possesses a signature function 5, such that

(a) given a message M, only p can compute the string 5,(M ), and

(b) given M and S,(N), all processors can check if M = N and can extract p.

Sp(M) is called a signature of processor p. A message of the form M, 5, (M),..., 5, (M)
is sald to be an authentic message signed by py,...,pr. The nonsignature part of the
message M is called the body of the message. We use assumption A3 when we specify in our
algorithms that a processor must check the number of distinct signatures of processors on
messages it receives. If there are no more than f faulty processors, then the receipt of an
authentic message signed by f + 1 distinct processors implies that some correct processor
actually signed and sent the message.

One of our algorithms is designed to be run indefinitely, in spite of occasional failures of
processors that are subsequently repaired and reinitialized. Thus, we do not place an upper
bound on the total number of processors that can be faulty throughout the lifetime of the
system. Instead, we assume that correct processors do not keep messages and signatures
stored very long and that faulty processors cannot build up large sets of signatures of
processors that are no longer correct. In other words we assume that the faulty behavior of
accumulating old signatures is so rare that large sets of such signatures never exist. This
assumption may appear powerful, but it is in fact much weaker than the assumption that
has typically been made, that there are at most f faulty processors throughout the life of
the system. For example, our assumption holds if there is an arbitrary number of omission

failures. We formalize our assumption in A4 below:



A4: If a processor p has a set of authentic messages at time ¢ with body M, such that
the union of the sets of signatures on the messages contains the signatures of more
than f processors, then at least one of the signing processors was correct at the time

it signed.

In our algorithms, processors resynchronize their clocks periodically. Our next assumption,
which relates the p of A1 with the f of A4, is required to guarantee that the window during
which processors are resynchronizing is small enough so that successive synchronizations do
not overlap. This fact is crucial to the correctness of our algorithm. (In our second algorithm

the window is somewhat larger, so we later strengthen this assumption appropriately.)
A5 2p(f+1) < 1.

This completes the description of the assumptions in our model. Qur assumptions apply to
many computing environments. Some physical clocks are sufficiently precise to guarantee
p = 1075sec./sec. for Al. In a local area network, we can typically take the value of tdel
to be 0.1 seconds. This value can be reduced further by giving the clock synchronization
process high priority in the scheduling of the operating system of the processor. The weak
implication of connectedness in A2 can be viewed as stating that our results do not hold
for processors that miss some diffusion of information because of faults that isolate them.
Likewise assumptions A3 and A4 can be viewed as limiting the scope of our results to
executions in which the assumptions are not violated. Authentication algorithms satisfying
A3 with high probability are well known (see, for example, [RSA]) and have been used in
distributed agreement protocols (for example, in [DS]). Taking p = 107, A5 is satisfied for
f < 499, 999.

Assumption Al is standard, and similar assumptions have been made in all the other
clock synchronization papers. Assumption A2 is weaker than what has been assumed in
other clock synchronization papers. (Typically, complete connectivity of the network is
assumed.) Assumption A3 is used in one of the algorithms of [LM] and [ST], but not in the
other algorithms discussed above. It can be eliminated, provided the number of faults we
wish to tolerate is not too large relative to the number of participants, using techniques of
[ST], for example. Assumption A4 is weaker than any used in the relevant literature. If we
limit the kind of failures we would like to tolerate to omission failures, so that processors
always follow their algorithm correctly but may occasionally omit to send a message, then
we can eliminate both A3 and A4.

We now define the goal of our clock synchronization algorithms. As we said in the
introduction, each processor p has an adjustment register A,. Let (1) Cp(t) = DT,(t)+A,(1).
We remark that in our first algorithm, A,(¢) (and hence C,(t)) is defined from the time

that processor p is initialized. In the later join algoriithm, it is possible for p to be correct



without A,(t) being defined. In particular, this is the case before p is joined. Although we
do not say this explicitly, all the conditions stated below are required to hold only when all
the variables mentioned in them are defined.

An algorithm A is said to maintain Linear Envelope Synchronization (LES) in a network
G if there exist parameters A, a(a > 0), 3, v, and §, such that for all runs r of A, all intervals

of real time [u, v], and for all processors p and ¢ in GG that are correct in [u, v], we have:
(1) |Cp(v) — Cy(v)| < A (logical clocks of correct processors stay close together);

(2) a(DTy(v) = DTp(u)) + 5 < Cp(v) = Cp(u) < Y(DTy(v) = DTy(u)) + 6

(logical clocks stay within a linear envelope of the duration timers).

Condition (2) of LES differs slightly from that given in [DHS]. In [DHS], only the case that
u = 0 is considered, and it is assumed that C,(0) = DT,(0) = 0. In this case, condition (2)
becomes aDT,(t) + 8 < Cp(t) < yDT,(t) + 6, which is precisely the condition of [DHS].

Our first algorithm (presented in the next section) is a periodic resynchronization algo-
rithm. Roughly, we choose a constant PFE R such that synchronization messages are sent by
all the correct processors every PE R clock time units. As a result of this synchronization
process, some clocks may be adjusted ahead by a small amount. Thus, the adjustment
register A, of processor p is a monotonic nondecreasing step function of real time. When
it is necessary to refer to the value of such a function ¢ at a time ¢ where it changes value,
we use ¢(t) to represent the value before the change and g(¢*) to represent the value after
the change. Our assumption A2 implies that the value of a register can be changed at most
once at a given real time ¢, so that g(¢%) is always uniquely defined. If A,(t) # A,(tT),
then p is said to make an adjustment at ¢t and ¢ is said to be an adjustment time for p.
In Section 9 we present a resynchronization algorithm where the adjustment register, and
hence the clock time, are continuous.

The periodic synchronization protocol involves the sending of messages consisting of a
time value and a sequence of signatures. As with the algorithm presented in [WL], the
time values are all chosen from the positive integer multiples of PER. Moreover, when
the protocol is invoked, all correct processors will already have agreed in advance on the
particular time value to be sent. This is a major distinguishing feature between clock
synchronization and the related problem of Byzantine agreement [PSIL,DS]. Whereas in
Byzantine agreement the problem is to agree on a value, in clock synchronization, it is
possible to agree on the values beforehand. The problem is to agree on when the values are
sent. In fact, the timing of the message that contains the synchronization value will provide
the means of synchronization.

In each of our algorithms, this expected synchronization value is stored in a register
called ET. We take ET,(t) to be the value of processor p’s register KT at time ¢. In the



sequel, we omit the subscript p from functions like DT, C', and ET when it is clear from
context.

We summarize here a set of properties maintained by both algorithms in this paper. As
mentioned above, these properties are split into two sets, P1-P4 and CS1-CS4. As we shall
see, P1, P2, CS1, CS2, and CS3 together imply LES. The remaining properties are needed
in our proofs. The first set of properties, P1-P4, presented below, are immediate from the
description of our algorithms. The properties hold only for correct processors (since these
are the only processors that are guaranteed to follow the algorithm), and are required to

hold in all runs of the algorithm.

P1: Registers ET, and A, are monotone nondecreasing functions of real time in the inter-
vals where they are defined. ET,(t) is defined iff A,(¢) is defined, and A,(t1) # A,(¢)
only if ET,(tT) # ET,(t). If ET,(t) is defined, then there are only finitely many
adjustments made by p to ET), and A, in any interval ending with ¢; in particular,
if there are any adjustments, there is a first and last adjustment. Finally, there is a
first time v < ¢ such that ET,(vt) = ET,(¢) and A,(vT) = A,(¢), and at this time v
we have C,(vt) = ET,(vt) — PER.

Since Al guarantees that D7), is a monotone increasing function, and since C,(t) =
DT,(t) + A,(t), it follows that C), is a monotone increasing function of real time. We
frequently make use of this observation below. We remind the reader that all the conditions
below are required to hold only if C)(¢) and FE,(t) are defined.

P2: ET,(t) the time values sent in synchronization messages, and the time to which a clock

is set after an adjustment, are all positive integer multiples of the constant PF R.
P3: Cp(t) is in the interval (ET,(t) — PER, ET,(1)].

We say that t is a critical time for processor p if C), is adjusted at ¢, C), is first defined
at ¢, or a synchronization value is sent out at ¢ by p. Let V(r) be the set of time values sent
by correct processors in run r of one of our algorithms. (Again, in the sequel we omit the

parameter r since it will be clear from context or not relevant to the discussion.)

P4: If ¢ is a critical time for p, then Cp(t1) = ET,(tT) — PER,C,(t*) € V, and C,(t1) =
ET,(t).

Properties CS1-CS4, presented below, are broken down to CS1(¢)-CS4(7), where i =
0,1,2,.... The key property, CS3, is in fact proved by induction on i. To state these
properties, we need to refine the definition of V.

Let YV = {V; : i > 1} be ordered by time value. For each such value V;, there must be

a processor p and a real time ¢ such that p is correct at ¢t and p sends a synchronization

10



message at ¢ with the time value V;. By P2, the set {V;} is a subset of the set of positive
integer multiples of PF R. In fact, in our first algorithm, V; is ¢ - PE R, so that the set {V;}
consists of all positive multiples of PFE R. In our later join algorithm, we may, however, end
up with a strict subset of the multiples of PF R. For notational convenience we write V
for 0 although 0 is not a time value sent by correct processors. Also, if in some run there
are only finitely many synchronization values and V; is the last, then we let V; be positive
infinity for j > 7. We take #; to be the first real time ¢ such that C,(¢T) = V; for some
correct processor p. Note that if V; represents positive infinity, then so does ;.

We will show that there exist constants PER (for period), DMAX (for maximum de-
viation), ADJ (for adjustment), F, and e, with PER > ADJ and E > DMAX, such that
our algorithms maintain the following properties CS1(7)-CS4(7) for all ¢ > 0. (Compare our
CS1 and CS2 to S1 and S2 of [LM].) As we mentioned above, the constant PER is an esti-
mate on the time between successive synchronizations. AD.J is a bound on the maximum
adjustment that a processor makes to its clock. The constant e defines the real time inter-
val within which all correct clocks are synchronized; in fact, the ith synchronization occurs
during the interval [t;,t; + €]. DMAX is the bound on how tightly processors synchronize.
We do not assume that processors can actually compute DMAX, since it depends on tdel,
which they may not know. We do assume that they can compute some upper bound F for
DMAX (using an upper bound on tdel), which they can use in other computations.

Again, all the conditions below are required to hold only for correct processors that have

FET and C defined.
CS1(7): If V; < ET,(t) < ET,(t) < Viyq, then |Cp(t) — Cy(t)| < DMAX.

That is, when processors have F'T between the same pair of synchronization values, their

clocks are close together.

CS2(i): If processor p makes an adjustment at time ¢ and V; < ET,(t) < Viiq, then
0 < Cp(tt) — Cp(t) < ADJ.
That is, clocks are set forward by less than AD.J.
CS3(7): (a) if t < t;, then ET,(t) <V,
(b) if t = ¢;, then ET,(t) = V; and Cp(t) > V; — ADJ,
(c) if tisin [t;,t;+ €], then ET,(1) is either V; or V;+ PER, and V; — ADJ < C,(1) <
Vit (14 p)e,
(d) if t =t; + e, then ET,(t) =V, + PER,
(e) if t > t; + e, then ET,(t) > V; + PER.

CS4(1): If processor p is correct at time ¢, V; < ET,(t) < Vi41, and t > t; + e, then ET) is

defined throughout the interval [¢; + €,%) and p has no critical times in that interval.

11



We now show that conditions P1, P2, and CS1-CS3 are enough to guarantee LES.

Theorem 2.1: If an algorithm A satisfies P1, P2, and CS1(7)-CS3(%) for all 7 > 0 in a run
7, then then A maintains LES with parameters A = max{DMAX, ADJ + (1 + p)e}, a = 1,
B=0,v=PER/(PER— ADJ), and § = ADJ.
Proof: Assume p and ¢ are correct, and E7T, and ET, are both defined in interval [, v] in
a run r of A. To prove that condition (1) of LES holds, observe that if |Cp(v) — Cy(v)| <
DMAX, then (1) holds trivially. Suppose |Cp(v) — Cy(v)| > DMAX. By CS1, this can
happen only if there is some j such that ET,(v) < V; < ET,(v) or ET,(v) < V; < ET,(v).
Assume, without loss of generality, that ET,(v) < V; < ET,(v). Since ¢ is correct and
ET,(v) >V, by part (a) of CS3(j) we must have v > t;. Since p is correct and ET,(v) <
V;, by part (e) of CS3(j) we must have v < ¢; + e. Thus, t; < v < t; + e. By part
(c) of CS3(j), it now follows that |Cp(v) — Cy(v)| < ADJ + (1 + p)e. Thus, in general,
|Cp(v) — Cy(v)] < max{DMAX, ADJ + (1+ p)e}.

For part (2), observe that P1 and the definition of C' immediately give us that D7,(v)—
DT,(u) < Cp(v) — Cp(u). We next show that if y = PER/(PER — ADJ), then

Cy(v) = Cylw) < A(DTy(v) — DTy(w)) + ADJ.

If p makes no adjustments in [u, v], then C,(v)—Cp(u) = DT,(v)—DT,(u), by the definition
of C'. Suppose p makes at least one adjustment in [u,v]. By P1, there is a first and last
adjustment in the interval. Let w be the time of the first adjustment and let z be the time
of the last. By P1 and P2, since E'T), is always a multiple of PER, and at adjustments C), is
equal to some KT, we have Cp,(27)—C,(wt) = (k—1)PER, where k is at least the number
of adjustments made in the interval [u, v]. Moreover, by CS2, each adjustment changes the
clock by at most ADJ. Therefore, Cp(z7) — Cp(w™) < DTy(2) — DTy(w) + (k — 1)ADJ.
Thus, DT,(z) — DT,(w) > (k—1)(PER — ADJ). By substituting for £ — 1 we obtain

Cp(z+) - Cp(w+) <y(DTy(z) — DTy(w)).

Now

Cp(v) — Cp(z+) = DTy(v) — DT,(2) < y(DTy(v) — DT(2)),

because there is no adjustment in (z,v]. Since the only adjustment in [u, w] is at w, we also
have, by CS52, that

Cp(wT) = Cp(u) < DTy(w) — DTy(u) + ADJ < v(DTy(w) — DT,(u)) + ADJ.
Summing these inequalities, we conclude,
Cylv) = Cylu) < 4(DT,(v) = DT,(u)) + ADJ.

Thus we get the second condition of LES, with a =1, 3 =0,y = PER/(PER— ADJ),
and 6 = ADJ, as desired. O
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3 THE BASIC RESYNCHRONIZATION ALGORITHM

The basic algorithm uses two parameters: PER and E. Roughly speaking, PER (for
“period”) is the time between synchronizations (and thus corresponds to the R of [LM]
and the P of [WL]), while £ (for estimated maximum deviation) is an upper bound on
the difference between correct clocks. In the next section, we discuss how these parameters
should be chosen.

For processor p let ET, (the expected time of the next synchronization), A, (the ad-
justment register), and C), (logical clock time) be local variables. D7), is a continuously
updated variable representing the duration timer (hardware clock) of processor p. When
processor p starts running the algorithm, £, = PER and A, = —DT,. Recall that C,
is defined (in equation (7)) to be the sum of DT, and A,. Thus, initially, C}, is 0. (More
precisely, if p is initialized at time u, then we take Cp(u) to be undefined and Cp(u™) = 0.)
In this section we assume that all processors in the network start running the algorithm
during a real time interval of length less than d. In Section 5 we show how to accomplish
this synchronous start for processors initially in the network.

We use the following abbreviations in the description of the two tasks which comprise

the algorithm:
SIGN means “compute a signature and append it to the message.”
SEND means “send out to all neighbors.”

The algorithm consists of two tasks that run continuously on each correct processor.
The first task, TM (for Time Monitor), deals with the case in which a processor’s clock
reads E'T before that processor has received any authentic synchronization messages (as in
assumption A3) from the other processors. If C,(t) = ET,(t), then processor p signs and

sends a message to all processors saying “The time is ET” and ET is incremented by PER.

Task TM

If C = ET then begin
SIGN AND SEND “The time is ET7;
ET — FT + PER;

end

The second task, MSG (for Message Manager), deals with the case in which a processor
receives a message before its clock reads FT. Suppose processor p receives an authentic
message with s distinct signatures saying “The time is T”. If this message is timely, that
is, if it comes at a time when T'= FT and ET — s- F < C, then processor p updates both

T and A and signs and sends out the message. Otherwise the message is ignored.
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Task MSG
If {(an authentic message M with s distinct signatures saying “The time is 77 is received)
AN(T =ET)N(ET —s-FE < C)} then begin

SIGN AND SEND “M?7;

A~ ET - DT,
ET — ET + PER;
end

This completes the description of the algorithm.

Intuitively, the effect of these two tasks is to have correct processors running at the
rate of the fastest “reasonable” processor, that is, one whose messages pass the timeliness
tests. As an example of how the algorithm operates, suppose PF R = 1 hour, and the next
synchronization is expected at 11:00 (i.e. £7" = 11). If processor p has not received a timely
message (one that passes the tests of MSG) by 11:00 o’clock on its clock, then it executes
task TM. If processor p does receive a timely message before 11:00, then it executes the
body of Task MSG. Once one of these tasks is executed, p updates its local variable FT to
read 12:00. Note that this means that p will then ignore any further messages it receives
saying “The time is 11:00”, since they will not pass the tests of Task MSG. In general,
exactly one of the tasks TM and MSG will run to completion in a synchronization interval,
and it will be run to completion only once. (In particular, many messages saying “The time
is T” may be received by task MSG, but only one of them will be considered timely in each
synchronization period.)

A message with s signatures saying “The time is T” might arrive as much as s- £ “early”
(before T') and still be considered timely according to the test in Task MSG. Nonetheless,
as we show in the next section, at the completion of a synchronization the correct processors
are synchronized to within (1 + p)d, which is less than F.

The following example illustrates why the test in Task MSG must allow the interval
during which a message is considered acceptable to have size s - E. Suppose DMAX (the
actual maximum deviation between correct clocks) is 0.1 second and in the algorithm we
take ¥ = DMAX = 0.1. If processor 7 receives a message with 3 signatures saying “The
time is 11:00 o’clock,” and the message arrives .29 seconds before processor ¢’s clock reads
11:00 o’clock, processor ¢ will think that message is timely according to Task MSG. Suppose,
however, that processor j is also correct and is running .099 seconds slower than processor #
(which is possible since DMAX = 0.1). If processor j receives processor ¢’s message almost
instantaneously, then j will receive the message roughly .39 seconds before 11 o’clock on its
clock. Since the message now has four signatures, processor j will also consider it timely.
However, if the test in Task MSG did not allow the interval of “timeliness” to grow as a

function of the number of signatures, the message might not have been considered timely.
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Indeed, it is straightforward to convert this example to a scenario in which any bound on
the size of the interval in which a message is considered timely that is independent of the
number of signatures on the message results in an incorrect algorithm.

In the next section we prove that, if assumptions A1-AbH are satisfied, then every run of
the algorithm given above satisfies P1-P4 and CS1(z)-CS4(z) for all ¢ > 0. As a consequence,

our algorithm maintains LES.

4 ANALYSIS OF THE ALGORITHM

Initialization Assumptions: Let A be the algorithm described in Section 3, with pa-
rameters 2 and PFE R chosen to satisfy the conditions presented below. Assume that there
are n processors and that they are all initialized with C' = 0 and ET = PF R during a real
time interval of duration less than d. Since we take g to be the first time some correct
processor’s clock reads Vp = 0, it follows that all correct processors are initialized in the
interval [to,to + d). If a processor p is initialized at time u, we take ET,(u) and A,(u) to
be undefined, while ET,(u*) = PER and A,(u") = —DT,(u), so that Cp,(u™) = 0.

Parameter definitions for Algorithm A
We choose the parameters of conditions CS1-CS54 so that they satisfy the following

conditions:
o > d;

o DMAX=(1+ple+2p- PER;

ADJ = (f + 1)E;

FE > DMAX (Drift Inequality);

PER > ADJ (Separation Inequality).

A5 guarantees that PF R and F can indeed be chosen to satisfy the latter two inequalities.

Theorem 4.1: Under assumptions A1-A5, every run of algorithm A satisfies P1-P4 and
CS1(z)-CS4(7)for all : > 0. Moreover, the correct processors send fewer than n? synchronization
messages for each synchronization value.

From Theorem 4.1 and Theorem 2.1 we get the following corollary:
Corollary 4.2: Under assumptions A1-Ab, algorithm .4 maintains LES.

The intuition behind the correctness of algorithm A is quite straightforward. The al-
gorithm guarantees that all correct clocks are synchronized within a real time interval of
length e. At the end of the ith interval, at time ¢; + e, all logical clocks of correct processors

are within (1 + p)e of each other and all correct processors have the same value of KT,
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namely V; + PER (which in this algorithm is V;11). The next synchronization occurs in
the interval [t;11,%;41 + €]. We show that ¢;41 — #; is roughly PER. We also show that
during the interval PER clocks drift apart by at most an extra 2p - PER. This gives us
the expression for DMA X, which is the right-hand side of the Drift Inequality. In practice,
the interval during which clocks are resynchronized, which has duration at most e, is quite
short, while the interval between resynchronizations, which has duration roughly PFER, is
quite long. After the proof we consider some typical values for the parameters.

Although the intuition behind the correctness of the algorithm is quite straightforward,
a formal proof requires some care. We prove the result by induction, which is why CS1-C54
are parameterized by 7. The proof of Theorem 4.1 proceeds through a sequence of lemmas,
where we prove the relevant properties one by one (and some added necessary properties).

In the proof of these lemmas, we assume that properties A1-A4 hold.
Lemma 4.3: Every run of A satisfies P1, P2, P3, and P4.

Proof: We first prove most of P1. It is easy to see by inspection of tasks TM and MSG
that A, and ET), are both defined for the same values of ¢ if p is a correct processor and
that A, changes value only when ET), changes value. ET), is first defined as PF R and when
it is changed, it increases by PF R, so that it is a monotone nondecreasing step function.
A, is also a step function, since it changes only when ET), changes. We prove at the end
of the lemma that A, is nondecreasing. Suppose ET,(t) is defined. Since it must be a
multiple of PER, suppose ET, = k- PER. Since ET), increases by PER each time it
is changed and starts out at PER, it follows that FET), can have been adjusted no more
than & — 1 times in any interval ending with ¢. Moreover, since ET), is a step function
which assumes only finitely many values in any interval ending with ¢, there must be an
interval of the form (v,t] such that ET), is constant in this interval, and either ET,(v) is
undefined or ET,(v") # ET,(v). We clearly must have v < t. If ET), is first defined at v,
our initialization assumption guarantees that Cy(vt) = ET,(v") — PER. Otherwise, this
fact is guaranteed by the code of tasks MSG and TM. A similar argument works in the case
of A,.

For P2 observe that processors are initialized with A = —DT and ET = PFER. Since
FET is changed only by adding PF R, E'T can take on only values that are positive integer
multiples of PFR. An inspection of tasks TM and MSG also shows that the synchronization
values sent are always equal to the current value of KT, and after an adjustment, a logical
clock is set to the current value of FT.

P4 follows from inspection of tasks TM and MSG and our assumption that if p is
initialized at time u, then ET,(u%) = PER and Cp(ut) = 0.

For P3, suppose that a processor p is correct and C), is defined at some time ¢, which is
not a critical time. We first prove that C,(t) < ET,(t). As has been shown, there is a first
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time v < ¢ such that A,(v*) = A,(¢). Since v must be a critical time for p, we have by P4
that Cp(vt) = ET,(vT)— PER. Since A, is constant in the interval (v, ], C}, is a continuous
and increasing function in this interval. Suppose that C,(u) > ET,(u) for some u € (v,1].
Let w = inf{u € (v,t] : Cp(u) > ET,(u)}. By continuity, w > v and Cp(w) = ET,(w).
Thus, by inspection of Tasks TM and MSG, we have ET,(wt) = ET,(w)+ PER. The
continuity of €', then guarantees that there is some > w such that C), is strictly less that
ET, throughout the interval (w,z). But this contradicts the definition of w because each
neighborhood of w must contain some u with Cp(u) > ET,(u). It follows that C), < ET,
throughout the interval (v,?] and, in particular, that C,(¢) < ET,(t).

We now prove that C,(t) > ET,(t) — PER. Let v and ¢ be defined as in the previous
paragraph. Since C,(vt) = ET,(vT) — PER, and C, is increasing while ET, is a step
function, there must be some v’ > v such that C}, > ET, — PER throughout the interval
(v,?']. Let w = sup{u € (v,t] : C, > ET,— PE R throughout (v, u]}. We claim that C),(w) >
ET,(w)—PER. To see this, observe that since only finitely many changes to £ take place
in (v,t], there must be an z7 € (v, w) such that E7), is constant throughout (zq,w). In
addition, if w < t, there must be an zy € (w,t) such that E7), is constant throughout
(w,z3). By construction, Cp(z1) > ET,(z1) — PER. Since C) is increasing and continuous
from the left at w, while ET), is constant in (z1,w), we have Cp(w) > ET,(w)— PER, as
desired. If w = ¢, we are now done. If w < ¢, then we clearly must have ET,(wt) > ET,(w).
By inspection of tasks TM and MSG, we have Cp,(wt) = ET,(wt) — PER. Since ET, is
constant in (w, z7), it follows that C, > ET,— PER throughout [w, z3). But this contradicts
the definition of w. Thus Cy(t) > ET,(t) — PER, and this completes the proof of P3.

All that remains is to complete the proof of P1 by showing that A, is nondecreasing.
Observe that the only task that changes A, is task MSG. If task MSG changes A, at time
t, then it follows from P3 that A,(t*) > ET,(t) — DT,(t) > C,(t) — DT,(t) = Ap(t). Thus
A, is also a monotone nondecreasing step function of real time. This completes the proof
of P1. O

Lemma 4.4: Let ¢ be a critical time for p. Then either (a) C,(¢) is undefined and C,(t*) = 0,
(b) C,(t) is defined and C,(t) > C,(tt) — f - E, or (c) p receives a synchronization message

with synchronization value C,(¢*) at time ¢ signed by some other correct processor.

Proof: The only way that ¢ can be a critical time for p is if (1) p is initialized at ¢, (2)
Cy(t) = ET,(t) (according to Task TM), or (3) Cp(¢) is defined and p receives a timely
message in task MSG. If (1) holds, then C,(t) is undefined and C,(t*) = 0, while if (2)
holds, then C,(t) = C,(tT). Thus, suppose (3) holds, and p receives a timely message with
synchronization value 7" and s signatures. The timeliness test guarantees that C,(t) =7 >
Cp(tt) —s- E. If s < f, then we are done. Otherwise, by A4, one of the signatures on the

message must be that of a correct processor, so again we are done. O
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Lemma 4.5: If i > 0 and ¢; is finite, then (1) #; < ¢;11 and (2) there is a processor p that is
correct at ¢; such that C(t;) > V; — f- E and ET,(t;) = V.

Proof: Let z; = min{u : exists a processor p that is correct at time u and Cp(u™) =
j - PER}. If for no time u is it the case that there is a processor correct at u with
Cp(ut) = j- PER, then we take z; = co. By P2 and the fact that V4 > 0, {t; : ¢ > 0, ¢;
finite} is a subset of {2; : j > 0, 2; finite}. Let p be a processor correct at time z; such
that C'p(z;') = j- PER. We want to show that Cp(z;) = j- PER. Cy(z;) and ET,(z;)
are defined because Cp(z;) > 0. If z; is a critical time for p, then ET,(z;) = Cp(zj) by
P4. If z; is not a critical time for p, then C,(z;) = Cp(zf). In this case, Cy(z;) = ET,(2;)
since they are both integer multiples of PER and ET,(z;) — PER < Cy(z;) < ET,(z;)
by P3. Thus, in either case, £T,(z;) = j- PER as desired. Since ET,(z;) = j- PER, it
follows from P1 that for j > 1 there exists a y < z; such that ET,(y*) = j- PER and
Cp(y*) = ET,(y*) — PER = (j — 1) - PER. Therefore, z;_1 < z;. Since the t;’s are a
subset of the z;’s, and since the finite z;’s are totally ordered, it follows that the finite ¢;’s
are also totally ordered. This proves part (1) of the lemma.

For part (2), by definition of ¢; there is a processor p correct at t; with C,(t}) = V;. We
have V; = j - PER for some j with ¢; = z;. We argued above that in this case, both C,(t;)
and ET,(t;) were defined and ET,(t;) = j- PER = V;. If t; is not a critical time for p, then
Cy(ti) = Cp(tT) = Vi, so (2) holds. If #; is a critical time for p, then by Lemma 4.4, one of

the following three cases holds:
(a) Cy(tf) =0,
(b) Cp(t;) is defined, and C,(t;) > Cp(tF) — f- E,

(c) asynchronization message with synchronization value C,(¢]") is received from another

correct processor.

Since ¢ > 0 by assumption, case (a) does not hold. Case (c) also does not hold for otherwise
(by A2) there would be a correct processor whose clock read V; at a time prior to ¢;. Thus,
case (b) must hold and C,(t;) > C,(tF) — f- E = V; — f- E. Hence, whether or not ¢; is a
critical time for p, we have Cy(t;) > V; — f- E and ET,(t;) = V;. O

The next lemma shows that the (i + 1) synchronization message sent out in a run is

sent out more than e time units later that the ** synchronization message.

Lemma 4.6: In every run of A and for all 7 > 0, if part (a) of CS3(7) holds and ¢; is finite,
then t,49 > t; + e.

Proof: Suppose that ¢; is finite. If #;,4; is infinite, then the lemma clearly holds. Otherwise,
by the previous lemma, there is some processor, say p, that is correct at time #;4.1 such that
Cp(tit1) > Vigr — [+ E and ET,(t;y1) = Vig1. By P1, there is a u < t;41 that is the
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earliest time such that ET,(ut) = ET,(t;4+1). From part (a) of CS3(7) and P1, it follows
that w > ¢;. By P1, we have that Cy(ut) = ET,(ut) — PER = V,41 — PER. Moreover,
C, is continuous in the interval (u,?;11), since, by P1, A, changes only when ET), changes.
Thus, by Al, we have that Cy(ti41) < Vign — PER+ (1 + p)(tig1 —u) < Vigy — PER +
(1 + p)(tiy1 — t;). Combining this with the earlier inequality Cy(t;41) > Viy1 — f - E, we
get that (14 p)(t;y1 —t;) > PER — f- E. The Drift and Separation Inequalities together
imply that PER — f- E > (14 p)e, so we get that ¢;11 > ?; + e, as desired. O

Lemma 4.7: If CS3(7) and CS4(7) hold in a run of A, then so does CS1(7).

Proof: Suppose ris a run where CS3(7) and CS4(¢) hold, and let p and ¢ be two processors
that are correct at time ¢ in run r such that V; < ET,(t) < Viy1 and V; < ET,(t) < V4.
By part (a) of CS3(¢), we must have that ¢ > ¢;. Since both ET,(t) and ET,(t) are
greater than V;, and these values must all be multiples of PER by P2, we must have that
ET,(t) > V; + PER and ET,(t) > V; + PER. By P3, it follows that Cp(¢) > V; and
Cy(t) > V;. By part (c) of CS3(¢),if ¢ is in the interval [¢;,¢; 4 €], then C,(t) < Vi+ (14 p)e,
and Cy(t) < Vi + (14 p)e. Thus, both Cp(t) and Cy(t) are in the interval (V;, Vi+ (1 +p)e),
so that |Cp(t) — Cy(t)] < (14 p)e, which is less than DMAX.

Now suppose ¢t > t; + e. By CS4(i), we have that A, and A, are constant in the
interval [t; + e,t). Thus, C, and C, are continuous functions in this interval. Suppose
without loss of generality that C,(t) > C,(t). We claim that there can be no point ¢’ in
the interval such that C,(t') is of the form k- PER. For if there were, then by P3 we
would have Cy(t") = ET,(t'). Then by task TM a synchronization value would be sent at
t', contradicting CS4(i). By parts (c) and (d) of CS3(7) together with P3, we know that
Cy(ti+e) > Viand Cp(t;+€) < Vi4+(1+4p)e. Since V; is a multiple of PER, and C,(t) cannot
be a multiple of PER in the interval [t; +e,1), we know that C),(t) < V;+ PER. It is easy to
see that we overestimate the maximum separation between C), and C, at time ¢ by assuming
(1) Cp(ti+e) = Vi+ (1 +ple, (2) Cy(ti + €) = Vi, (3) C, runs at the maximum possible
rate (14 p) in the interval [t; + €,t], (4) C, runs at the minimum possible rate (1+ p)~! in
this interval, and (5) Cp(t) = Vi + PER (so that the interval is as long as possible). Making
these assumptions, we see that ¢t = t; + e + (1 + p)"'(PER — ¢), C,(t) = V; + PER, and
Cy(t) =Vi+ (14 p) %(PER —¢€). Thus, Cp(t) — Cy(t) < (1 = (1+ p)"2)PER + (1 + p)~2e.
Since straightforward algebra shows that (1+p)~2 > 1 — 2p, this expression too is bounded

by DMAX. O
Lemma 4.8: If CS3(7 + 1) holds in a run of A, then so does CS2(3).

Proof: Suppose p is correct and makes an adjustment at a time ¢ such that V; < ET,(¢) <
Vig1. By P4 (which holds by Lemma 4.3), ET,(t) = Viy1, ET,(tY) = Viy1 + PER, and
Cp(tt) = Vig1, s0 t > t;41. By parts (d) and (e) of CS3(i + 1), ¢t must be in the interval
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[tit1,tit1 + €). Since Cp(tT) = Vigq, it follows from part (¢) of CS3(i + 1) that C,(tT) —
Cy(t) < ADJ. O

Lemma 4.9: If CS3(7) holds in a run of A, then so does CS4(3).

Proof: Suppose p is correct at time ¢, V; < ET,(t) < Vi1, and ¢ > ¢; + e. Since by
assumption all correct processors are initialized in the interval [tg,%o + d), and since once
ET, is defined it stays defined until processor p becomes faulty, it follows that T}, is defined
in the interval [to + d, ], and hence (since d < e and #; > tg) in [t; + e,%]. Suppose there
were a critical time u for p in the interval [¢; + €,%). Since u > ¢; + e, by CS3(¢) and P1, it
follows that ET,(u) > V;. By P4, ET,(u) = V; for some j > ¢. Thus, ET,(u) > Viyq1. By
P4, we have ET,(u%) = V;+ PER. Thus, by P1, we have ET,(t) > Vi;1, contradicting our

assumption. Hence, there is no critical time for p in the interval. CS4(7) now follows. O

Lemma 4.10: CS3(¢) holds for all 7 > 0 in every run of A.

Proof: We proceed by induction on i. For the case ¢ = 0, recall that to = 0 and Vp = 0 by
definition, and we assumed that all processors are initialized at some time in the interval
[0,€). Since we have also assumed that if a processor p is initialized at time u we have
ET,(u) undefined, it is easy to see that parts (a) and (b) of CS3(0) hold vacuously. Clearly
if a correct processor’s logical clock is not adjusted before time g + e, then by Al it reads
a value in the range [0, (14 p)e) wherever it is defined in the interval [ty, %o + €], while its
value of ET is PER. On the other hand, if some correct processor’s clock is adjusted in
this interval, then t; < 15+ e. By Lemma 4.5 and the fact that V; > PFE R, for some correct
processor p we have Cy(t;) > Vi — f- £ > PER — f- E. Since p cannot have adjusted
its clock prior to t1, we must have (1 + p)e > C,(t1) > PER — f - E, contradicting the
Separation Inequality. Thus no correct processor adjusts its clock before tg+ e. This proves
part (c) as well as part (d). Part (e) follows from P1 and P2.

Now assume CS3(7) holds; we show that CS3(7 4 1) holds. If ¢;4; is infinite, then so is
Vit1, by definition, so CS3(i 4+ 1) is vacuous. So suppose that #;41 is finite. For part (a)
observe that by P2, it follows that V41 > V; + PEFR. Lemma 4.6 implies that ¢;41 > ¢; + €.
Suppose p is correct and for some ¢t < t;4q, we have ET,(t) > Viyq. By P2, it follows
that ET,(t) > Viy1 + PER. By parts (a)~(d) of CS3(i), it is easy to see that we must
have ¢ > t; + e. We next show that (', must be continuous in [t; + e,t). If not, then
there is some adjustment in [t; + e,t). Let u be the time of the first adjustment (such a u
exists by P1). By P4, Cp,(ut) = ET,(u) = V; for some j. By parts (d) and (e) of CS3(z),
ETy(u) > Vi, s0 7 > i+ 1. If ET,(u) = V41, then the fact that v < #;4; contradicts the
definition of ¢;11. If ET,(u) > Vi4q, then by P3, Cp(u) > ET)(u) — PER > V;4;. Since C,
is continuous in the interval in the interval [t; + e, u), it follows that C,(v) = V41 for some
v in the interval and hence, again by continuity, that C,(vt) = V;41. But this contradicts

the definition of ¢;4;. Thus, C, is continuous in [{; + e,?), as claimed. By P3, we have
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Cy(t) > ET,(t) — PER > Viyq. Since Cp(t;+e) < Vi+ (1 +ple < Vi+ PER < Viyq, it
follows from the continuity of C), that for some point u in the interval (¢; + e,t), we have
Cp(u) = Vi1 and hence Cp(u™) = V;41. But this again contradicts the definition of #;41.
Thus, we must have ET),(t) < V;41, as desired. This proves part (a) of CS3(7 + 1).

For part (b), first observe that by Lemma 4.5 for some processor p that is correct at
tit1 we have Cp(ti41) > Vi1 — f - E. By CS1(¢) (which holds by the induction assumption
together with Lemmas 4.7 and 4.9), for every processor ¢ that is correct at #;41; we have
Cp(tit1) — Cyltisr)| < DMAX, so Cy(tip1) > Visr — f - E — DMAX > Vi — ADJ.
Since AD.J < PFER by the Separation Inequality, it follows from P3 that we must have
ET,(t;41) > Vigy1. In combination with the previous paragraph, this gives us part (b) of
CS3(7 + 1). (Since ET, does not change in the interval [¢; + e,%;41), we can in fact show
that £T,(ti41) = Vi+ PER, and hence that V;y; = V; + PER. Thus, we could carry along
as an inductive hypothesis that V; = ¢- PER if ¢; is finite, but we do not need this fact
here, nor will it hold for our join algorithm.)

For part (c) of CS3(i + 1), suppose that p is correct at time ¢ € [t;41,%+1 + €]. There
are four cases to consider: (1) ET,(t) < Viy1; (2) ET,(t) = Viyq; (3) ET,(t) = Viy1 + PER,
and (4) ET,(t) > Viy1 + PER. We show that only case (2) or case (3) can hold, and that,
in these cases, Viz1 — ADJ < Cp(t) < Vi1 + (14 p)e. By Lemma 4.6 and the induction
assumption applied to part (a) of CS3(7), we can assume ¢;11 > t; + €; by Lemma 4.9 and
the induction assumption applied to CS3(¢), we can assume CS4(7).

Suppose case (1) holds, so ET,(t) < Vit1. By assumption and Lemma 4.6, we have
t > tiy1 > t; + e. By part (e) of CS3(¢) and the assumption, we know that V; < ET,(t) <
Vig1. By CS4(i), ET), is defined throughout the interval [¢; + e,t); ET}, is defined at ¢ by
assumption. It follows that ET), is defined at ¢;11. By part (b) of CS3(i+ 1), ET,(t;41) =
Vig1. Since ¢ > ¢;41, this contradicts P1.

Suppose case (2) holds, so ET,(t) = Viyq1. By CS4(7), ET), is defined and A, is constant
throughout the interval [t;41,7). By part (b) of CS3(i + 1), Cp(tit1) > Vig1 — ADJ. By
P3, Cp(t) < ET,(t) = Vig1. By P1 and Al, since t € [t;41,t41 + €], we have Vi1 — ADJ <
Cp(t) < Vigr + (1 + p)e.

Suppose case (3) holds, so ET,(t) = Viy1 + PER. By P1, there is a first time u < ¢
such that ET,(ut) = Vi31 + PER. By part (a) of CS3(¢ + 1), u > t;11. Moreover, by P1,
we have C,(u™) = Vi41. Finally, by P1 and the fact that there are no changes to ET, in
the interval (u,t), there are no changes to A, and C), is continuous in this interval. Since
tiy1 <u <t <t +e, using Al and P1, we get Vipq < Cp(t) < Vigr + (14 p)e.

Suppose case (4) holds, so ET,(t) > Vi1 + PER. Let T' = ET,(t). By P2, we must
have " > V11 + 2PER. By P1 there is a first time u < ¢ such that some correct processor
q has ET,(ut) = T. There are two subcases: (4a) u is a critical time for ¢, and (4b) u is

not a critical time for gq.
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Suppose (4a) holds. Then, by P4, Cy(ut) = ET,(ut) — PER = V; for some j. Thus
t; <u. But ET,(ut) =T > Vi1 + 2PER, so Cy(ut) > Vi1 + PER, and j > ¢+ 1. By
Lemma 4.6 and part (a) of CS3(¢ 4 1), we have t; < u <t < t;41 + e < tj12, contradicting
Lemma 4.5.

Suppose case (4b) holds, so that u is not a critical time for g. Then ET,(u)is defined and
ET,(u) > Viy1+ PER. By P1, there is a first time v < u such that ET,(v") = ET,(u) and
Cy(vt) = ET,(vt) = PER =T — 2PER > Vi41. Since ET,(v*") > V41 + PER, it follows
from part (a) of CS3(7 4+ 1) that if w is any time in (v, u), then w > t;41. Thus t;41 < v <
u <t <ti41+e. Now C,is continuous on (v, u],so Cy(u®) < Cy(vT)+(14p)e < T— PER,
by Al and the fact that (1 4+ p)e < PER. But, for any w in (u,t), Cy(w) > T — PER, by
P3. Thus Cy(ut) > T — PER, contradicting Cy(u*) < T — PER. This completes the proof
of part (c) of CS3(z+ 1).

For part (d), suppose that ¢ is correct at ¢;11 + e and ET,(t;41 +€) # Viz1 + PER. By
part (c) of CS3(i+ 1), we must have ET,(t;41 + €) = Viy1. Let p be a processor correct at
t;+1 such that C’p(t;:l) = V;411. We have assumed that all processors are initialized before
to + e. By Lemma 4.6, t;11 > tog + e. Thus, it follows from the definition of correct that
¢ must be correct throughout the interval [t;41,%,41 + €) and that C,(t;+1) and E,(ti4+1)
are both defined. By part (b) of CS3(¢ 4+ 1), E,(tit1) = Vig1. We claim that p sends
synchronization value Vi at time t;4q. If Cp(t;41) = V41, this follows by inspection of
Task TM. Otherwise Cp(ti11) # Cp(tf,;), so that p must invoke Task MSG at time #;41,
and at that time p sends synchronization value V;4.

We now apply A2 with ¢ = ¢;41. Let po, ..., px be the sequence of processors guaranteed
to exist by A2, with p = po, ¢ = pg, and k-tdel < d. Note that for all times u € [t;41,t;41+d],
each correct processor p; has ETy, (u) € {Viy1, Viga + PER} by part (c) of CS3(i+1) and, if
ET,, = ET,, = Viy1, then |C} (u)—Cp ,(v)| < DMAX by CS1(7). We show by induction on
J that p; sends the synchronization value V;4; at some time in the interval [t;41, t;41+7-tdel].
The base case holds by assumption. Suppose p; sends the synchronization value V;i; in
the interval [t;41,%;41 + J - tdel], and 7 < k. By A2, p;4q receives this message before
tit1+ (j+ 1) -tdel. If p;; already sent a synchronization message with value V44 before
this time, then by tasks TM and MSG at the time that p;;; sent the message it set its
clock to Vi11. This time must have been in the interval [t;11,%,41 + (7 + 1)tdel], as desired.
If p;41 did not already send such a message, then it suffices to show that the message it
receives from p; is timely, i.e., it passes all the tests of Task MSG. Suppose p; sent its
message at time u and the message is received by p;+1 at time ¢. Since the interval [u, ]
is contained in the interval [t;41,%,41 + €) and since we have assumed that p;4; has not
sent V;4q by time ¢, part (c) of CS3(7 + 1) implies that the value of ET for p;41 must be
Vit1 (the only other choice is Viy1 + PER, but by inspection of tasks TM and MSG, a

message with synchronization value V;41 is sent out when ET is set to V;41 + PER). Thus,
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|Cp,(u) = Cyppy (u)] < DMAX; since t > u, it follows that C), () > Cp (u) = DMAX. There
are now two cases. If p; used task TM to send out its message, then C) (u) = Viy1. Thus,
Cpisa(t) > Vigr — DMAX, so in this case the message (which arrives with one signature)
passes the timeliness test. If p; used task MSG, p; was responding to a message with s
signatures and sending a message with s+ 1 signatures. Since p; found the message timely,
Cp;(u) > Viyr — s+ E,and so ),

with s + 1 signatures, again it passes the timeliness test. By Task MSG, it now follows

(t) > Vigr — (s + 1)E. Since p;4q receives the message

that p;;1 sends out a message with synchronization value V;y; sometime in the interval
[tiv1,tig1 + (7 + 1)tdel). Since k -tdel < d < e, it follows that ¢ sends out such a message
before time #;41 + e. By P4 when ¢ sends out this message, it sets ET, to V;31 + PER. By
P1 this contradicts the original conclusion that E7T,(t41 + €) = Vit1. The contradiction
completes the proof of (d).

Part (e) is immediate from part (d) and P1. O

Proof of Theorem 4.1: By Lemma 4.3, A satisfies P1-P4 in every run. By Lemma 4.10
it satisfies CS3(¢) for all ¢ > 0 in every run. It now follows by Lemmas 4.7, 4.8, and 4.9
that it also satisfies CS1(%), CS2(7), and CS4(%).

For each synchronization value, each correct processor sends at most n — 1 messages:
one synchronization message to each of its neighbors. Thus, fewer than n? messages are

sent for each synchronization value. This completes the proof of Theorem 4.1. O

Performance issues: We now consider some typical values for the parameters of the
algorithm. Suppose p = 107¢, tdel = .1 sec., and the network is completely connected with
n processors. Then, so long as there are no more than 2 processor failures and the network
remains connected with diameter at most 2, we can take PER = 1 hour, d = ¢ = .2 sec.,
E = DMAX = .21 sec., and ADJ = .63 sec. If we allow only processor failures (as is the
case in [LM,WL]), then we can do even better, since we are assured that the diameter of
the network is still 1. We can take PEFR = 1 hour, ¥ = DMAX = .11 sec., d = e = .1 sec.,
and ADJ = .33 sec. Note that DMAX is roughly equal to d. As stated in Section 2, we
can make d, and hence DMAX, smaller by giving the synchronization process high priority
in the scheduling of the operating system of the processor.

Since our algorithm never sets clocks back, if duration timers have fixed rates of drift
from real time (as is often the case) and there are no faults, then clocks will run at the rate
of the fastest correct duration timer. This means that logical clocks of correct processors
will tend to run faster than real time. In the worst case, we have from Theorem 2.1 that
processors run at a rate of PER/(PER — ADJ). Since ADJ = (f+ 1)E,if PER >> ADJ
and ¥ =~ DMAX = (1 + p)e+2p- PER (these assumptions will all be typically true in
practice), this worst-case rate is approximately equal to 1 + (ADJ/PER) =~ 14 (f + 1)2p.

In [ST] an algorithm is given that attains optimal synchronization in the sense that logical
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clocks are within the same envelope of real time as duration timers (i.e., (14 p) (v —u) <
C(v)—C(u) < (14 p)(v—u) for v > u). However, to maintain this optimal synchronization,
Srikanth and Toueg require that the number of faulty processors f be less than half the
total number of processors, a requirement they prove necessary, even with authentication.
Moreover, the value of DMAX they can achieve is essentially twice ours in completely
connected networks. One way to still use our algorithm but perhaps decrease the rate
of speedup is to measure the rate at which logical clocks gain time in practice using our
algorithm, and then to set duration timers to run slower by that rate.

In our algorithm, DMAX gives an upper bound on the difference between clocks of
correct processors that have the same value of FT. There may be a short interval of time
(a subinterval of [¢;,t; 4 €]) during which correct processors have different values of ET. By
part (c) of CS3(¢), it follows that even in this short interval their clocks differ by at most
ADJ 4 (1 + p)e. If we assume that p ~ 0 and '~ DM AX, then (since ADJ = (f+1)F),
then this difference is bounded by approximately (f+2)e+2p- PER. Using the estimates for
p and PER given above, we see that the dominant term here is (f + 2)e. This amount may
be unacceptable in large systems, where f may grow linearly with n. One way around this
problem is to simply prevent events that require timing from taking place in this interval,
as suggested in [LM]. However, there is another approach. We can simply continue using
the “old” logical clock (without making any adjustments) to time events that begin before
time ¢; and continue running after a clock adjustment is made. If dur is the maximum
real time duration during which a clock might be used to time some distributed process, a
virtual clock coinciding with logical time until the process starts and then undergoing no
adjustments will suffice. Unadjusted logical clocks will differ by at most DMAX 4+ A - dur
during this interval, which may be significantly less than ADJ + (1 + p)e.

Another approach to dealing with this problem is to make logical clocks continuous
functions of real time, rather than just being piecewise continuous. We can do this by
amortizing the adjustment we make to clocks over some time interval, rather than doing it
all at once. This idea was suggested in [LM]. We present an algorithm for continuous clocks
in Section 9.

Since we can take e = d in this algorithm, the bound on synchronization that we
maintain—DMAX = (14 p)e+2p PER—is essentially within a factor of two of the optimal
bound of d/2 attainable in systems with no clock drift at all (see [DHS,HMM] for further
details). However, the bounds in question are guaranteed, worst case bounds, and it may

be possible to synchronize with much tighter precision with high probability (see e.g. [C]).
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5 INITIALIZATION AND JOINING

There are two issues that remain. The first is initializing the system so that logical clocks
are started within less than d time units. The second is integrating (joining) new or repaired
processors so that their logical clocks are synchronized with those of all the other processors.

The first task can be accomplished quite easily by a simple message diffusion (cf. [CASD,
DHS]). We assume that each of the processors initially in the network starts either spon-
taneously or upon receipt of a message from another processor. As soon as a processor
starts, it sets A = — DT (thus setting its logical clock to 0) and sends a message to all of
its neighbors. By assumption A2 this diffusion requires less than d units of real time.

We now turn our attention to the problem of joining, to which most of the remainder
of the paper is devoted. We start with some notation: A previously synchronized group of
processors is called a cluster, and a new processor that wants to join the cluster is called a
joiner. We want an algorithm that allows a processor to join a cluster within a bounded
time of requesting to do so. Such an algorithm is crucial in a dynamic network in which
new processors are being added to the system. If we have a method of fault detection, such
a join algorithm also allows faulty processors that have been repaired to rejoin a cluster.

An algorithm achieves bounded joining if for some bound b > 0 a correct processor that
requests to join a cluster is guaranteed to join within real time b. Unlike the basic clock
synchronization algorithm, which does not require that some minimum number of processors
be correct, a necessary condition for a bounded joining algorithm to be guaranteed to

succeed is that a majority of the processors in the cluster be correct.

Theorem 5.1: No algorithm can maintain LES and guarantee a bounded join if a processor

tries to join a cluster where one half or more of the processors are faulty.

Proof: Assume algorithm B maintains LES with parameters A, a, 3, v, and § and bounded
joining with bound b. Consider a run r where all n processors are correct throughout the
run and in the same cluster. Choose a real time ¢ and choose T such that the time on the
logical clocks of the processors in the cluster at real time ¢ is at most 7. Now choose T’
such that 7" —T > b(y(1+4 p) — (14 p)~1) 4+ (6 — B) + 2A. The LES condition guarantees
that at some time ¢’ in Tun r, the logical clocks of all correct processors show a time greater
than 7. (This would not necessarily be true if B were not required to maintain LES; for
example, r might be a run where all logical clocks always read 0.)

We use r to construct two further runs of B. Divide the n processors into groups X
and Y, each of size n/2 (we assume for simplicity that n is even). In the first run, rx, the
processors in X are correct and processor p (a new processor, not in either X or Y') tries to
join at time ¢. All the processors proceed through run rx until time ¢ just as in run r. At

time ¢, processors in Y move into the state they had at time ¢’ in 7. In the second run, ry,
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the processors in Y are correct and p tries to join at time ¢’ with the same local state it has
when it tries to join in rx at time ¢. All processors proceed through run ry until time ¢’
just as in run r. Then just as p tries to join, processors in X move into the state they had
at time ¢ in r. Note that at and after the time p tries to join, no processor can distinguish
the two scenarios. Moreover, at the time p tries to join, the clock of each processor in X
differs from the clock of each processor in Y by more than 7" — 1".

By assumption, p joins the network at some point in an interval of length b. The clock
of each processor in X differs from the clock of each processor in Y by at least 7/ — T when
p joins. Condition A1, part (2) of the LES condition, and the choice of T’ guarantee that
they differ by at least 2A throughout the interval of length b after p joins. Thus, p will not
be within A of the correct processors in at least one of the two scenarios. O

Theorem 5.1 does not preclude the possibility of eventual joining (that is, the existence
of an algorithm guaranteeing that a processor that requests to join will in fact eventually
join the network, with no guaranteed upper bound on the time required). For example, in
the situation sketched in the proof, if there were no bound on the time required to join, the
joining processor could tell the “fast” processors to run slower and the “slow” processors
to run faster, each group still staying within some linear envelope. We conjecture that
an algorithm that achieves LES and eventual joining may exist without the assumption
that less than half the processors are faulty. (The following is an idea for such a possible
protocol: A joiner can obtain synchronization values from all participants (this can be done,
for example, using the join protocol we describe in Section 7). If a processor sees that the
synchronization value it sent is above the average value of the set, then it slows down by an
agreed-upon rate; otherwise, it speeds up by this rate. If this rate is sufficiently large, then
joiners and all other processors can detect and ignore uncooperative processors. The process
is repeated periodically until all synchronization values in the set are the same or ignorable.
Then joiners can join the unanimous set.) However, since our interest in this paper is in
bounded joining, we assume for our join algorithm that less than half the processors are

faulty.

6 A SYNCHRONOUS UPDATE SERVICE

In this section we present an algorithm that enables a processor to keep track of the current
list of processors in the cluster, and enables all the processors in the cluster to essentially
agree on which processors are in the cluster. This algorithm solves the atomic broadcast
problem as presented in [CASD], but only for our special purpose. It is not suggested
as a general purpose atomic broadcast algorithm. We use it to update the list of joining
processors as of the same clock time on all correct, joined processors in the system.

Again, we start with some definitions. We assume that each processor maintains a data
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structure suggestively called a (synchronous) replicated memory. We say that replicated
memory is consistent in a set of processors at clock time T if the replicated memories on
all correct processors in the set are identical as of clock time T'. We provide a synchronous
update algorithm that guarantees that all updates to this structure are made at the same
clock time by each processor in a cluster. (Note the similarity of these informal specifications
to those of Byzantine agreement [PSL,DS].) Thus, by using the algorithm, we can maintain
the consistency of replicated memory. We use the algorithm to ensure that all correct
processors agree on who is currently in the cluster.

The update algorithm is assumed to run concurrently with a clock synchronization
algorithm that satisfies P1-P4 and CS1-CS4. We now define the specifications of the
update algorithm formally. Again, it is useful to parameterize the specification by 2. We

require that the following two properties are satisfied for all ¢+ > 0, and all correct processors

p:

SU1(i): If p initiates an update UPD to replicated memory at time ¢ such that V; <
ETy(t) < Vi, then by time t;44, the replicated memory for all processors that are
correct with E'T defined at ;41 is updated with UPD.

SU2(4): If p updates its replicated memory with UPD at time ¢ with V; < ET,(t) < Vi
and Cp(t) = T, then for all processor ¢ correct at time #;1; with ET,(#;4+1) defined,
there exists a time ¢, < ¢;1; such that Cy(t,) = 7 and ¢ updates replicated memory
with UPD at t,.

Intuitively, SU1 guarantees that if a correct processor initiates an update UPD to replicated
memory, all memories are updated with UPD within a bounded real time. SU2 guarantees
that if any correct processor updates its replicated memory with UPD, then all correct
processors do so, and they do so at the same time U on their local clocks.

We now provide an update algorithm. The algorithm has a similar flavor to the clock
synchronization algorithm. Just as all the updates to clock values occur at prearranged
times KT (which are all multiples of PER), updates to replicated memory occur in the
update algorithm at prearranged times which, for technical reasons explained later, we take
to be times of the form KT — AD.J. We show that in order to ensure that processors hear
about this message in time to do the update, the message must start diffusing through the
system at time KT —3- ADJ. We will have to strengthen the separation inequality—which
in earlier sections had the form PFR > ADJ—to guarantee that such times appear on the
clocks of all correct processors.

Asin the clock synchronization algorithm, information about the update diffuses through-
out the network, and processors apply tests to determine if the information has arrived at
an acceptable time. Processors now maintain two sets UPDMSG and PENDING, both
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containing pairs of the form (7, UPD), where T is a clock time and UPD is an update value
to be applied to replicated memory. UPDMSG consists of messages to be sent out and the
times they are to be sent out, while PENDING consists of values with which replicated
memory is to be updated, and the times that the update is to take place. Finally, M F M
is a variable denoting the current replicated memory. We define APPLY (M EM, UPD) to
be an action that updates the replicated memory with the value UPD.

The update algorithm consists of three tasks, UPDINIT, DIFFUSE, and UPDATE. The
first task, UPDINIT, is the analogue of task TM in the clock synchronization algorithm.
If C, = ET —3- ADJ and processor p has a pair of the form (7, UPD) € UPDMSG,
with (T'4+ 2 - ADJ, UPD) not already in PENDING and T = ET — 3 - ADJ, then, using
task UPDINIT, processor p signs and sends a message SYNC(T',UPD) to all its neighbors.
We can think of this message as saying “schedule an update UPD to replicated memory
at clock time 7'+ 2 - ADJ (= ET — ADJ).” This means (T + 2 - ADJ, UPD) must be
added to the PENDING list. On the other hand, (7, UPD) can be removed from the
UPDMSG list once the message is sent. (In our applications, we guarantee that for all
pairs (1, UPD) € UPDMSG, T indeed has the form k- PER —3- ADJ, so there will be no
“useless” pairs in UPDMSG.) If (T'+2- ADJ,UPD) € PENDING, then the update has

already been scheduled, so there is no need to schedule it again.

Task UPDINIT
If{((T, UPD) € UPDMSG )AN((T+2-ADJ,UPD) ¢ PENDING)AN(C =T)N(T=ET -3-ADJ)}
then begin

SIGN AND SEND SYNC(T,UPD);

PENDING — PENDINGU{(T +2-ADJ,UPD)};

UPDMSG — UPDMSG —{(T, UPD)};

end

The next task, DIFFUSE, is the analogue of task MSG in our clock synchronization
algorithm. It guarantees that a SYNC(T, UPD) message will be passed along, provided
the message is “convincing”. In order for the message SYNC(T', UPD) to reach processor ¢
convincingly, it must pass two tests. The first just checks that T"= ET —3- ADJ. To show
that a message is convincing, we will need to show that when a message sent by a correct
processor p reaches ¢, the value of ET), when the message was sent is the same as the value
of E'T, when the message is received. This is done in Lemma 6.1 below. The second test
checks that if s is the number of signatures on the message, then T'—s- £ < €, < T4 2s- F.
Unlike the test in task MSG, this test is a two-sided test, and is asymmetric. Again, the size
of the acceptable interval depends on the number of messages, so that a message considered
convincing by p and then forwarded to ¢ will still be considered convincing by ¢. The reason

for the factor of 2 in the right-hand side of the inequality is that one multiple of F is needed
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to allow for the difference between the clocks of p and ¢, and another to allow for the time

taken by the message to diffuse from p to ¢.

Task DIFFUSE
If {(an authentic message M of the form SYNC(T', UPD) is received with s distinct signatures
of other processors) A ((T'+2- ADJ, UPD) ¢ PENDING) AN (T —s-E<C <T+2s-E)A
(T'= ET —3-ADJ)}
then begin

SIGN AND SEND M;

PENDING — PENDINGU{(T +2-ADJ,UPD)};

UPDMSG — UPDMSG — {(T, UPD)};

end

Finally, task UPDATE updates synchronous memory.

Task UPDATE

If {((T, UPD) € PENDING) A (C =T)} then
APPLY (M EM,UPD);
PENDING — PENDING —{(T, UPD)};

end

We now prove that this algorithm provides an update service. The proof, not surpris-
ingly, has much the same flavor as the proof of correctness for protocol .A. We assume that
all the constants satisfy the same inequalities as before, except that, as hinted above, we

need to strengthen the separation inequality (PER > ADJ) to
o PER > 4-ADJ (Strong Separation Inequality)

To guarantee that this inequality together with the drift inequality (£ > DMAX) can be

satisfied, we need to strengthen assumption A5 by adding the extra factor of 4:
A5 8p(f+1) < 1.

We henceforth assume that we are working in systems that satisfy A1-A4 and A5’ and
that our parameters have been chosen to satisfy all the properties described in Section 4,
together with the strong separation inequality.

We first prove a lemma which guarantees that the values of KT do not change while
update messages are diffusing through the system, provided that certain conditions are
fulfilled. These conditions are all fulfilled by our clock synchronization algorithm A. In
addition, we show that they are also fulfilled by the join algorithm that we provide in the

next section. Thus, this lemma applies in both contexts.
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Lemma 6.1: In every run satisfying P1-P4, CS1(z), CS3(7), CS4(7), tix1 > t; + e, and parts
(a) and (b) of CS3(i+1), if p is correct at time t, V; < ET,(t) < Viyq, and ET,(t)—4-ADJ+
DMAX < Cp(t) < ET,(t) — ADJ —2- DMAX, then t; + e < t < t;11 — d. If in addition ¢ is
correct with ET,, defined at time u € [t,t 4 d], then ET,(u') is defined and ET,(u') = ET,(t)
for all v’ € [t, u].

Proof: Suppose r is a run where the hypotheses of the lemma hold. Since ET,(t) > Vi,
by part (a) of CS3(7), we must have ¢ > ¢;. In addition, since ET,(¢) and V; must both be
multiples of PER, it follows that ET,(t) > V; + PER. Since Cy(t) > ET,(t) —4- ADJ +
DMAX and, by our constraints PER > 4 - ADJ and DMAX > (1 + p)e, it follows that
Cy(t) > Vi+ (1 + p)e. So, by part (c) of CS3(¢), we must have t > ¢; + e. We want to show
that in fact t+d < t;41. If £;41 is infinite, this is immediate. If not, there is some processor,
say ¢, which is correct at #;41. By part (b) of CS3(i 4 1), we must have ETy(t;41) = Viya.
Let v = min{t;41,t}. Because ;41 > t; + e, CS4(7) implies that both C)(v) and Cy(v) are
defined. Using parts (a) and (b) of CS3(7 4 1), we have that ET,(v) and ET,(v) are both
< Vit1. Using part (e) of CS3(i), we have ET,(v) and ET(v) are both > V;. CS1(7) now
implies that |Cp(v) — Cy(v)] < DMAX. Thus, Cy(v) < Cp(v)+ DMAX < Cp(t)+ DMAX <
Vig1 — ADJ — DMAX. Moreover, Cyi(ti41) > Vigr — ADJ by part (b) of CS3(7 + 1). It
follows that

Cy(tiz1) — Cy(v) > DMAX > (14 ple > (14 p)d.

Thus, t;41 > v. Since v = min{t,#,41}, it follows that » = ¢ and ¢ < #;41. CS4(¢) implies
that A, is constant in the interval [¢,%;41), so, since Cy(ti41) — Cyr(v) > (1 4 p)d, by Al
we must have ;41 >t + d.

Suppose that u € [t,t + d], processor ¢ is correct at time u, and E7T,(u) is defined. By
CS3(7) and part (a) of CS3(i+ 1), we have V; + PER < ET,(u) < Vi41. By CS4(1), ¢ is
correct and C, is continuous in the interval [¢, u]. In particular, this means that ¢ does not
adjust its clock in this interval. From CS1(¢), it follows that |C)(t) — Cy(t)] < DMAX. We
have assumed that ET,(t) —4-ADJ + DMAX < Cy(t) < ET,(t) — ADJ —2- DM AX.
Since PER > 4 - ADJ by the strong separation inequality, we have that

ET,(t)— PER < C,(t) < ET,(t) — ADJ — DM AX.
Since ¢ does not adjust its clock in the interval [¢, u|, we have, for any «’ € [, u],
ET,(t) — PER < C,(v) < ET,(1).

By P3, we know that

ET,(u') — PER < Cy(u') < ET,(u).
Since ET,(t) and ET,(u') are both multiples of PER by P2, it follows that ET,(t) =
ET,(v). O
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We now prove the correctness of the algorithm.

Theorem 6.2: If a run of the algorithm above satisfies P2, then all updates to synchronous
memory are carried out at a time of the form k- PER — ADJ, where k is a positive integer. For
each 7 > 0, if a run satisfies P1-P4, CS1(¢), CS3(z), CS4(z), parts (a) and (b) of CS3(7 + 1),
and if ¢; is finite then ¢;1; > ¢; + e, then it also satisfies SU1(¢) and SU2(7). Moreover, each
update to synchronous memory requires at most n? messages.

Proof: By Task UPDATE, an update to synchronous memory is carried out by a correct
processor p only if Cp(t) = T and (17, UPD) € PENDING,,. By task UPDINIT and DIF-
FUSE, if (T, UPD) is inserted into PENDING,, at time t, then T = T'" + 2 - ADJ, where
T'" = ET,(t)—3- ADJ. By P2, ET,(t) = k- PER for some positive integer k, so that
T=Fk-PER— ADJ. Note that P2 is the only property used here.

To prove the remainder of the theorem, assume we have a run of the algorithm that
satisfies P1-P4, CS1(z7), CS3(7), CS4(i), parts (a) and (b) of CS3(i + 1), and if ¢; is finite
then ¢;41 > t; + e. First note that if ¢; is infinite then SU1(¢) and SU2(%) hold vacuously;
so we may assume that ¢; is finite and that ;41 > 7; + e.

Claim: (a) If p is the first correct processor to add (7' + 2 - ADJ, UPD) to PENDING,
and it does so at a time ¢ with V; < ET,(t) < Viyq, then T" = ET,(t) — 3 - ADJ and
every correct processor with ET defined throughout the interval [t,7 + d) will have added
(T'+2-ADJ,UPD) to PENDING at some time in this interval.

(b) If ¢ is a correct processor with ET" defined at #;11, then there will be some time ¢, < ;41
such that Cy(t,) = T +2- ADJ and ¢ will update its replicated memory with UPD at time
ty.

For part (a) of the claim, there are two cases to consider: (1) Processor p initiated
the update using task UPDINIT by signing and sending the message SYNC(T, UPD) at
time ¢ and (2) p received a convincing message SYNC(T', UPD) at time ¢, and thus added
(T'+2-ADJ,UPD) to PENDING using task DIFFUSE.

In case (1), task UPDINIT guarantees that C,(¢t) =T = ET,(t)—3-AD.J. We now show
that the message SYNC(T', UPD) diffuses through the network of processors that are correct
and have ET defined in the interval [t,¢ + d] within real time d. It suffices to show that
when a correct processor ¢’ sends a message SYNC(T, UPD) to its neighbor ¢, the message
reaches ¢ convincingly if ¢ is correct and has ET defined. Suppose the message reaches ¢ at
time ¢’ with s signatures. By A2, it follows that ¢’ < t+d, so it follows from Lemma 6.1 that
T = ET,(t)—3-ADJ = ET,(t')—3-ADJ. Thus, the message passes the first test. Moreover,
Lemma 6.1 guarantees that ¢ < ¢t + d < t;41, so no synchronizations occur in the interval
[t,t']. Thus, Cp(t') < Cp(t)+ (1 +p)d. Since, by CS1(7), we have |Cy(t') — Cp(t')| < DMAX
and C,(t) = T, it follows that T— DMAX < Cy(t') < T4+ DMAX +(1+p)d. Our constraints
now guarantee that 7' — E < C,(t') < T 4 2E, so the message passes the second test.
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In case (2), p must receive a SYNC(T, UPD) which was convincing at time ¢. Suppose
the message has s signatures. These must be the signatures of faulty processors (otherwise
p would not be the first correct processor to add (7'+2-ADJ, UPD) to PENDING), so we
must have s < f by A4. We must have T'—s-F2 < C,(t) < T4+2s-Fand T = ET,(t)-3-ADJ.
Since s < f and ADJ = (f + 1)E, it follows that ET,(t) —4- ADJ + DMAX < Cp(t) <
ET,(t)— ADJ —2- DMAX. Thus, the hypotheses of Lemma 6.1 are satisfied. Taking ¢
and ¢’ as in the previous paragraph and using the same reasoning as above, we can again
show that 7" = ET,(t) —3- ADJ = ET,(t') — 3 - ADJ, so the first constraint is satisfied.
Also, T —(s4+1)- E < Cy(t') < T +2(s+ 1)E, so the second constraint is satisfied as well.
Since s < f, we have T — ADJ < Cy(t') < T + 2 - ADJ; we use this fact below. Again, the
message successfully diffuses throughout the network, and part (a) is proven.

For part (b) of the claim, suppose ¢ is correct and has ET defined at #;41. By Lemma 6.1,
we have t; 4+ e < t. Therefore, by CS4(i¢) and CS3(i+1)(b), ¢ is correct and has ET, defined
in the interval [t,%;41]. It follows from our arguments above that ¢ adds (T'+2-AD.J, UPD)
to PENDING at some time t' in the interval [t,t 4+ d). Thus, it suffices to show that there
is a time ¢, € [t,t;41) such that Cy(t,) = T+ 2 - ADJ, since it is clear that using task
UPDATE, replicated memory will be updated at such a time ¢,. Suppose that C,(t') = 1".
We have shown that T — ADJ < Cy(t') < T 4+ 2- ADJ. In particular, this means that the
update is scheduled for a time in the future. From CS4(:) and CS3(: + 1)(b), it follows
that A, is constant in the interval [t,%,41), and hence, C, is continuous in this interval.
By CS3(i 4+ 1)(b), we have Cy(tiy1) > Vign — ADJ > ET,(t') — ADJ = ET,(t) — ADJ =
T+2-ADJ. By continuity, there must be a time ¢, in the interval when Cy(t,) = T+2-ADJ,
proving part (b) and hence the entire claim.

It is easy to see that SU1(z) follows immediately from the part (a) of the claim. For
SU2(i), suppose that p updates its replicated memory with UPD at time ¢ with V; <
ET,(t) < Viyq. Suppose that C,(t) =T +2-ADJ. Then, by task UPDATE, it must be the
case that (T'+2-ADJ, UPD) € PENDING ,(t). By P3, it follows T'+ 2- ADJ < ET,(t) <
T+2-ADJ+ PER. Suppose that ¢ is the first processor to add (7'+ 2 - ADJ, UPD) to
PENDING, and suppose it does so at time t’. We now prove that ET,(t') = ET,(t). As
our earlier arguments showed, we have T'— ADJ < Cy(t') < T +2- ADJ. In addition,
tasks UPDINIT and DIFFUSE guarantee that 7 = ET,(t') — 3 - ADJ. Tt follows that
|ET,(t")— ET,(t)| < PER and hence (since E7T is always a multiple of PER), that ET,(t') =
ET,(t). Thus, V; < ET,(t") < Vi41. By the claim, it follows that for all processors ¢’ with
ET defined at t;44, there is some time ¢, < t;41 such that Cy(ty) =T+ 2- ADJ and that
they update replicated memory with UPD at this time.

The n? message bound is straightforward, since it is clear that for each update message
each processor sends at most one message to each of its neighbors. O

We can improve the performance of the update algorithm somewhat if we can get a better
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estimate on d than F. Recall that ¥ was meant to be an estimate on DMAX. If we can get
an improved estimate D on d, then we can replace the two-sided test T—s-F < C' < T+2s-F
by T —s-E<C<T+s-(D+ FE). It is easy to see that our proofs go through without

change in this case. We leave details to the reader.

7 ASYNCHRONIZATION ALGORITHM FOR BOUNDED
JOIN

We now modify algorithm A to produce algorithm B that maintains LES and allows bounded
joining. Like the basic synchronization algorithm A of Section 3, algorithm B consists of a
number of tasks that run continuously and independently on each processor. We describe
the algorithm and the assumptions needed to guarantee its correctness in this section, and
analyze it in the next section.

For the correctness of the join algorithm, we need assumptions A1-A4 and A5, the
stronger version of A5 introduced in the previous section. In addition, we need two more
assumptions. The first assumption (A6) says the signatures of correct processors always
form a majority of the signatures available during a join process. (This is sufficient to over-
come the impossibility result of Theorem 5.1. For simplicity, we require that the assumption

holds at all times ¢ > #o + d; however, it is only required to hold during a join process.)

A6: For all t > 1y + d, there are more than f processors that are correct and joined
throughout the interval [¢,7 + d].

The next assumption (A7) says that at all times ¢ a correct processor is connected to
another processor that is joined and correct throughout the interval [t,7 4+ d+ (1 + p) PER).
This assumption will be used to guarantee that a joining processor has a neighbor that it

can rely on to notify the other processors that it wants to join.

AT: For all processors p and all times ¢t > 1, there is a correct joined processor ¢ that is

a neighbor of p such that ¢ is correct throughout the interval [t,¢ + d + (1 4 p) PER].

A7 can be eliminated, although the result would be a more complicated algorithm.
Instead, we assume that PER is small, thus mitigating the strength of A7. The role of the
parameter PER in algorithm A is now shared by two parameters, LPER and PER, where
LPFER should be thought of as a large multiple of PER. As before, resynchronization values
are multiples of PFR. Roughly speaking, if there are no processors trying to join, then a
resynchronization will take place once every LPFER. If processors are trying to join, then a
resynchronization will take place within PER, thus minimizing the amount of time joining

processors have to wait to join the cluster.
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In addition to PER and LPFER, the algorithm uses the parameters E, ADJ, and f (so
that, informally, processors know an upper bound on the number of failures). Again, each
processor has local variables ET', A, and C, as well as local variables CLUSTFER (describing
which processors are currently in the cluster), JOINERS (describing which processors want
to join), and a number of other variables we shall describe shortly. Formally, we say that
a processor p is joined at time ¢ if E7T,(t) is defined. We extend the definition of correct
processor to cover processors that join after initialization as follows: a processor pis correct
at time ¢ if it follows its algorithmic specification, and, if it is joined, its duration timer has
been correct (i.e., has satisfied A1) from the time it joined through time ¢.

We assume that a joiner knows who its neighbors are. We also assume that all the
processors in the network (including the joiners) know their own signature functions (the
S, of assumption A3) and how to check the signatures of all processors in the network,
as well as the values of the parameters D, f, £, PER, and LPFR. For simplicity, we
assume that the signature function of a joining processor is distinct from all other signature
functions that were ever used in the network. (In particular, this means that if a processor

is rejoining after being repaired, it must use a new name and signature.)

AS8: If at time ¢ some correct processor possesses a signature of processor p and if p is

correct at time ¢, then p has been correct since it issued the signature.

At the end of Section 8, we indicate how to remove this assumption, at the cost of a slight
increase in the complexity of the algorithm and an increase to a worst case time requirement
for all joins. For simplicity, we also assume that the string representing the name of any
processor p is unforgeable. (For example we could identify p with S, applied to the empty
body.)

We assume that a correct processor that wants to join has a correct duration timer, but
its variables KT, A, C', and CLUSTFER are all undefined. We show how they become defined
during the execution of the algorithm. We also assume an initial cluster Ry containing more
than f correct joined processors, all initialized (using the initialization algorithm discussed
in Section 5) during the interval [tg, o 4+ d). The correct members of the initial cluster are
initialized with A = —DT, ET = PER, JOINERS = (), and CLUSTER = Ry.

The first task of the algorithm is called RTJ (for request to join). When a processor
wants to join a cluster, it sends out a special message “request-to-join” message of the form
RTJ(p) to its neighbors. (We assume some mechanism for p to decide when it wants to

join.)

Task RTJ (Request to Join; for joiner)
If processor p wants to join then begin

SIGN AND SEND RTJ(p);
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end

All correct processors must agree on which processors want to join. Thus, when a
processor p in the cluster receives a request-to-join message from ¢, processor p schedules an
update to replicated memory at the first possible clock time after it receives the message (by
appropriately updating UPDMSG). Thus, if p receives a message before time KT —3-ADJ,
it schedules the sending of a SYNC message for time ET"— 3 - ADJ. If not, then it is too
late to send the message in this synchronization period, and the message is scheduled to
be sent at time KT + PER — 3 - ADJ. 1t is possible for one correct processor to receive a
request-to-join message from ¢ before time KT —3- ADJ, while another does not. Our later
tasks will ensure that replicated memory is updated only once.

The result of the update adds ¢ to JOINERS. Since our update algorithm ensures that
all processors in the cluster perform the update at the same clock time, this guarantees
that all processors in the cluster will agree on JOINFERS. By including ¢’s signature on the
request-to-join message, p is “proving” to all the other processors that the update message
was sent in response to a request-to-join message. Without this requirement, it would be

possible for a faulty processor to arrange for “phantom” processors to join the network.

Task ADD

If {(joined) A (an authentic message M with body R7TJ(q) is received)} then begin
ifC < ET —3-ADJ thenT — ET —3-ADJ else T — ET + PER—3-ADJ;
UPDMSG — UPDMSGU{(T, M)};

end

The next task TM’ is the analogue of task TM. Just like TM, the task TM’ is invoked
when a processor’s clock reads ET before the processor has received any authentic synchro-
nization messages. However, there are some differences between TM and TM’. The most
important is that TM’ must also add new processors to CLUSTFER. Thus, when a processor
p invokes TM’, it sends out a message “J(ET, JOINERSU CLUSTER)” which says (essen-
tially) “The time is ET; set CLUSTER to JOINERS U CLUSTER.” The message is sent
to all of p’s neighbors in JOINERSU CLUSTFER. (This is how we interpret the primitive
SEND below.) The second half of the message does not convey any useful information to
the processors currently in the cluster, since, as we shall see, they all agree on JOINERS
and CLUSTFER. However, it does convey useful information to the joiners. By getting
copies of this message from a number of processors, they will learn which processors ought
to be in the current cluster. (In general, we would need to include the complete contents
of replicated memory in this message, so that a joining processor would be able to set its
replicated memory appropriately. For simplicity, we assume there is no other replicated

memory here.)
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Another difference between TM and TM’ is the result of optimization. We would like to
take PER to be relatively small in this algorithm, to allow a processor to join CLUSTFER
soon after requesting to do so. However, we do not want to resynchronize every PER
time units if there are no requests to join, since this would result in excessive amounts of
message traffic due to unnecessary synchronizations. Thus, a processor invokes TM’ only
it JOINERS — CLUSTER # () (which means it knows of some new processors that want
to join) or if LPER divides ET (where LPFER is an appropriately chosen multiple of PER).
Therefore, during intervals in which there are no joins, synchronizations will occur roughly
every LPER.

There is one last minor subtlety in TM’. We mentioned above that it is possible that a
joined processor p receives a request-to-join from g before time KT — 3 - ADJ on p’s clock,
while another joined processor p’ receives ¢’s request-to-join after ET —3- AD.J. Assuming
that p remains correct long enough to initiate an update to replicated memory, ¢ will be in
the set JOINERS for all processors, although p’ will also have scheduled sending a message
telling everyone to add ¢ to the list of JOINFRS during the next synchronization period.
Since this would be an unnecessary update, for all processors ¢ € JOINFRS, we remove
from the UPDMSG list all pairs of the form (7', M), where the body of M is RT'J(q). Let
REMOVE(UPDMSG, JOINERS) be the task which does this.

TM'is run only by processors in the cluster (since they are the only ones with C' defined).
After the message is sent out, a number of variables are updated appropriately. Besides
the variables mentioned already, algorithm B uses new variables LASTV and LAST.J that
record the last synchronization value sent out and the last value for JOINERS. (Initially,
LASTYV is undefined and LASTJ is ().) After the message is sent, LASTV is set to ET
and LASTJ is set to JOINERS. In addition, ET is updated (by adding PER), CLUSTER
is redefined to JOINERSU CLUSTER, and JOINERS is set to (.

Task TM'
If C = ET then begin
if {(JOINERS — CLUSTER # () or (LPER divides ET)} then begin
SIGN AND SEND J(ET,JOINERSU CLUSTER);
LASTV — ET;
CLUSTER — JOINERSU CLUSTER,
LASTJ — JOINERS,
REMOVE(UPDMSG, JOINERS);
JOINERS — ();
end;
ET — FET + PER;

end
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We next describe Task MSG’, which is the analogue of Task MSG. In more detail,
task MSG’ works as follows. If processor p receives a message of the form J(T, R) signed
by the processors in SIG that is timely, i.e. T = ET, ET — |SIG|-E < C, and R =
JOINFERSU CLUSTER, then, as before, p passes on the message, adjusts its clock to ET,
and increases KT by PE R. In addition, p keeps track of the last values of E'T"and JOINERS,
adds the processors in JOINERS to CLUSTER, sets JOINERS to (). One new feature here
(whose importance will become more apparent when we consider the next task) is that p
records which processors signed the message, using a variable M SIG. MSIG consists of
tuples of the form (7', R, SIG), where SIG is the set of processors (other than p itself) that
are known to have signed a message of the form J(7, R). Initially MSIG is empty. For
each T and R, we ensure that p always has at most one tuple of the form (7', R, SIG). We
define MSIG(T,R) = SIGif (T, R,SIG) e MSIG; otherwise we take MSIG(T, R) = 0.

Task MSG’
If {(an authentic message M of the form J(T', R) with signature set SIG is received) A
(JOINERS — CLUSTER # § or LPER divides ET) A (T = ET)
AN R =JOINERSU CLUSTER) A (S1G C CLUSTER) N (ET —|SIG|- E < C)} then begin
SIGN AND SEND M;
A — ET — DT:
LASTV — ET;
CLUSTER — JOINERSU CLUSTER;
LASTJ — JOINERS;
REMOVE(UPDMSG, JOINERS);
JOINERS — ;
ET — ET 4+ PER;
MSIG(T,R) — S1G,

end

A joiner g is able to join the cluster when ¢ gets the support of at least f + 1 processors
in the cluster. A joiner g gets support from a processor p in the cluster by getting a message
of the form J(T, R) with ¢ € R signed by p. Task MSG’ alone is not sufficient to guarantee
that a joining processor will get sufficient support to join. The problem is that a processor
p in the cluster will not forward more than one message of the form J(7T', R), since after p
has forwarded the first one, p will set ET to ET + PER, so the second such message can
no longer satisfy the requirement 7" = ET. By using the following task FORWARD, p may
still pass on a message of the form J(T, R) even if T'# ET. In fact, p will do so if all the

following conditions are met:

o LASTJ # 0 (so that there are some processors waiting to join),
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o I'= LASTV and R = CLUSTER (so that the message is one that p sent before it
adjusted its clock),

o [MSIG(T,R)| < f (so that p does not know of f processors besides itself who have

previously signed this message)

o SIG— MSIG(T,R)+# 0 (so that there are some new signatures on this message).

Task FORWARD
If {(an authentic message M of the form J(T', R) with signature set SIG is received) A
(LASTJ # Q)N (T = LASTV)A (R = CLUSTER )A (|MSIG(T,R)| < f)AN(SIG - MSIG(T,R)# 0)}
then begin
SIGN AND SEND M;
MSIG(T,R) — MSIG(T, R)U S1G;

end

The task JOIN describes the steps taken by a joining processor in deciding to join. A
joining processor ¢ collects messages of the form J(7, R). If, for a fixed 7" and R, ¢ collects
f+ 1 signatures on a message of the form J(7T, R) (i.e., [MSIG(T,R)| > f+1))and g€ R
(so that ¢ is one of the JOINFRS), then ¢ sets C to T, sets ET to T+ PER, sets CLUSTER
to R, and sets JOINERS and LAST.J to (). At that point ¢ has joined the cluster. Recall
that if ¢ is correct, then ¢ is joined if and only if ¢ has ET defined. As we prove formally in
the next section, our assumptions guarantee that ¢ collects f 4+ 1 signatures on a message
of the form J(T, R) within a short time after the first correct processor sets its clock to 7’;

thus, ¢’s clock is indeed close to that of all the other correct processors at this point.

Task JOIN
If {a processor in R with ET undefined receives an authentic message M of the form J(T', R)
with signature set SIG} then begin
if {|IMSIG(T,R)| < f+ 1} then MSIG(T,R) — MSIG(T,R)U SIG
if {IMSIG(T, R)| > f 4 1} then begin
AT —-DT;
ET — T+ PER;
JOINERS — ();
LASTJ — 0;
CLUSTER — R;
end

end

This completes the description of the algorithm.
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8 ANALYSIS OF THE JOIN ALGORITHM

In this section we choose the parameters used in the algorithm of the previous section and of
conditions CS1-CS4 so that they satisfy the following conditions. Our parameter definitions
are similar to those used in algorithm A, but there are some differences: we use the strong
separation inequality, we use LPFR rather than PFR in defining DMAX, and we assume
e > 2d rather than e > d. This latter choice allows a bigger window to give the joiners time

to join the cluster.

Parameters definitions for Algorithm 5
o > 2d,
e LPFERis an integer multiple of PER,

e DMAX=(1+p)e+2p- LPER,

ADJ = (f+1)E,

FE > DMAX, and
e PER>4-ADJ.

Let B be the join synchronization algorithm described in Section 7, with parameters

chosen to satisfy the conditions above.

Theorem 8.1: Under assumptions A1-A4, A5, A6, A7, and A8, every run of algorithm B
satisfies P1-P4 and CS1(7)-CS4(7) for all i > 0. Moreover, a correct processor p that requests
to join will do so within (1 + p)(PEFR+ 3 - ADJ + DMAX) + 3d of the time the request is

sent. In addition, fewer than n?

messages are sent for each synchronization value for which
there are no joiners and n joined processors, and fewer than (k + f + 1)n? messages for each
synchronization value for which there are k£ > 1 joiners and n joined processors.

From Theorem 2.1 we immediately get the following corollary to Theorem 8.1.

Corollary 8.2: Algorithm B maintains LES and achieves a bounded join under assumptions
Al1-A4, A5, A6, A7, and A8.

The proof of Theorem 8.1 is similar to that of Theorem 4.1. We have the following
sequence of lemmas, with proofs that are almost identical to those of the corresponding
lemmas in Section 4 (modulo considering the tasks of B rather than the tasks of A and
occasionally considering L PE R instead of PE R). Thus, we leave the proofs of these lemmas

to the reader, indicating only the major changes required.

Lemma 8.3: Every run of B satisfies P1, P2, P3, and P4.
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Changes from the Proof of Lemma 4.3: We must check that these properties hold
for joining processors, as well as for processors already in the cluster. The only difficulty is
showing that P2 holds for the joining processors. If not, consider the first joining processor,
say p, for which P2 fails. By inspection of task JOIN, assumption A4, and our assumptions
about initialization, we can show that p sets KT to T'+ PF R, where T is a synchronization
value that must have been sent by at least one correct joined processor. Since by hypothesis

T must be a multiple of PF R, we are done. O

Lemma 8.4: Let ¢ be a critical time for p. Then either (a) C,,(¢) is undefined and C,(t*) = 0,
(b) Cp(t) is defined and C,(t) > C,(tT) — f - E, or (c) p receives a synchronization message

with synchronization value C,(¢%) by time ¢ signed by some other correct processor.

Changes to the proof of Lemma 4.4: It is now possible that ¢ could be a critical
value for p because p joined at t. But in this case p must have received messages with
synchronization value C,(t1) signed by f + 1 processors, one of which must be correct by

A4. Thus (c) holds. O

Lemma 8.5: If i > 0 and ¢; is finite, then (1) #; < ¢;11 and (2) there is a processor p that is
correct at ¢; such that C(t;) > V; — f- E and ET,(t;) = V.

Lemma 8.6: In every run of B and for all i > 0, if part (a) of CS3(:) holds and ¢; is finite,
then t,44 > t; + e.

Lemma 8.7: If CS3(7) and CS4(7) hold in a run of B, then so does CS1(z).

Changes to the proof of Lemma 4.7: Whereas before we could show that there could
be no point ¢’ in the interval such that Cy(t') = PER, we can now show that there is no
point ¢’ in the interval such that C(¢') = LPER. Thus, we need to replace PER by LPER
in the expression for DMAX. O

Lemma 8.8: If CS3(7 + 1) holds in a run of B, then so does CS2(3).

Lemma 8.9: If CS3(¢) holds in a run of B and if V; < ET,(t) < Vi1 implies that E7T), is
defined throughout the interval [t; + e, ], then CS4(%) also holds.

Note that the hypotheses of Lemma 8.9 are stronger than those of the corresponding
Lemma 4.9, since we now have the clause “if V; < ET,(t) < V41 implies that £7), is defined
throughout the interval [t; + e,t]”. This clause is necessary; since we now allow joining, it
is not necessarily the case that a processor with V; < ET,(t) < V;1; has been joined since
time ¢; + e.

We now prove an analogue of Lemma 4.10. In order to do this, we will need some

additional hypotheses. Define:

NEWO(7): if ¢ > 1, then no processors can join in the interval [t;_1 + e,1;]; moreover, if
processor p joins after time ¢;_1 + e, then it must be as a result of receiving a message
of the form J(V;, R) with j > i and p € R.
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NEW1(i): if a correct processor signs a message of the form J(V;, R), then it does so first
during the interval [¢;,%; 4+ d] and all the processors in R still correct at t; + 2d have

joined prior to that time.

NEW2(:): if i > 1 and V;_y < ET,(t) <V, then ET, is defined throughout the interval
[ti—l +e, t]

NEWS3(¢): if p and ¢ are joined correct processors at time t;, then JOINERS,(t;) =
JOINERS,(t;) and CLUSTER,(;) = CLUSTER,(1;).

NEW4(i): if p and ¢ are joined correct processors at time ¢; +e, then JOINERS,(t;+¢€) = 0
and CLUSTER,(1; + ¢) = CLUSTER,(t; + €.

NEWS5(¢): if pis correct at time ¢ < ¢;41 and LASTV ,(t) is defined, then LASTV ,(t) = V;

for some j < 1.

Lemma 8.10: CS3(7), NEWO0(7), NEW1(7), NEW2(7), NEW3(¢), NEW4(7), and NEW5(3)
hold for all 2 > 0 in every run of B.

Proof: We proceed by induction on 7. For the case i = 0, the proof of CS3(0) proceeds
just as in Lemma 4.10, so we omit it. NEWO0(0) and NEW2(0) are vacuously true since
0 2 1. NEWI1(0) holds because V5 = 0 by definition, and, by P2, no correct processor
signs a message of the form J(0, R). For NEW3(0), note that there are no joined correct
processors at time #g. For NEW4(0), suppose that p and ¢ are joined correct processors
at time tg + e. Notice that p and ¢ must have been part of the initial cluster, since no
processor can join until after a synchronization value has been sent out. This cannot
happen before some initially correct processor has executed task TM’ or MSG’, and, by
Lemma 8.6, that cannot happen before time #y + e. When p and ¢ are initialized (which,
by assumption, happens at some time in the interval [tg,%o + €)), then JOINERS'is set to
() and CLUSTER is set to Rg. JOINERS is changed from this initial setting only by using
the synchronous update service. By P2 and Theorem 6.2, an update by the synchronous
update service is performed only at a clock time of the form ET — ADJ, which is at least
PER — ADJ. By Al and P1, no correct processor’s clock reads PER — ADJ until after
time ¢ty + e. Thus, we must have JOINERS,(to + ¢) = JOINERS,(to + ¢) = (. Since
CLUSTER is updated only when a new synchronization value is sent out, it follows that
CLUSTER,(to + €) = CLUSTER,(to + €) = Ry. For NEW5(0), observe that LASTV is
defined only by execution of either task TM’ or task MSG’, so no correct processor has
LASTYV defined until #; 7.

For the inductive step, assume that all our hypotheses hold for 7 < 7; we show they hold

for i + 1. We first prove NEWO0(7 4+ 1). Suppose correct processor p joins at time ¢ > t; + e.
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It must be as a result of receiving messages of the form J(7, R) with a total of at least f41
signatures and p € R. By A4, one of these signatures must be that of a correct processor,
say q. Tasks TM', MSG’, and FORWARD guarantee that 7" must be a synchronization
value V; with j > 1. By definition of ¢; we must have ¢ > t;. To prove NEWO0(7 + 1), it
suffices to show that 7 > ¢4+ 1. Suppose 7 < ¢ + 1 so that we can apply our induction
hypotheses. Thus, by NEW1(j), ¢ must have sent the message J(V;, R) before ¢; + d and
p must have joined or failed before ¢; + 2d. By A8, p cannot correctly request to join twice
with the same name. Thus, p cannot have joined at or after ¢; 4 2d < ?; + e, contradicting
the original assumption ¢ > #; + e. This proves NEWO0(z + 1).

NEW2(7 4 1) is immediate from NEWO0(¢ 4 1).

Next we show that the hypotheses of Theorem 6.2 hold: we prove CS1(1), CS4(%), parts
(a) and (b) of CS3(¢ 4+ 1), and if ¢; is finite then ¢;4; > ¢; + e. From Lemma 8.9 and
NEW2(:+ 1) we have CS54(t), and by Lemma 8.7, we have CS1(7). Moreover, the proof that
parts (a) and (b) of CS3(74 1) hold is now identical to that of Lemma 4.10, and is omitted.
(Note that this part of the proof of Lemma 4.10 uses the fact that no processor can join in
the interval [¢; + e,?;+1]. We can use this assumption, since it follows from NEWO0(i 4 1).)
Now, by Lemma 8.6, if ¢; is finite, then ¢;41 > ?; + e. This completes the hypotheses for
Theorem 6.2.

By Theorem 6.2, we know that properties SU1(¢) and SU2(%) of the synchronous update
algorithm hold.

To prove NEW3(i + 1) we suppose that p and ¢ are joined correct processors at #;41.
Since no processor joins in the interval [t; + e,;11], it must be the case that p and ¢
were joined correct processors at ¢; + e. By NEW4(7), we know that JOINERS,(t; + €) =
JOINERS,(t;+e¢) = (. All the updates to JOINERS'in the interval [t;+e,t;41] must happen
as a result of using the synchronous update algorithm. By SU2(7), the updates have all
occurred by time t;41, so JOINERS,(t;+1) = JOINERS,(t;+1). There are no updates to
CLUSTER, and CLUSTER, in the interval [t; + e, t;11), since updates occur only when a
synchronization value is sent. Thus, the fact that CLUSTER,(t;41) = CLUSTER,(ti1+1)
follows from NEW4(z). (If there is an update to CLUSTER, or CLUSTER, at t;41, then
we may have CLUSTER,(tf,) # CLUSTER,(tf,,).) This proves NEW3(i + 1).

The proof of part (c) of CS3(i 4 1) is the same as that of 4.10.

We next prove NEW1(i+41). Suppose some p is a correct processor that signs a message
of the form J(Vi41, R). The first time p signs such a message, it must be the result of
executing either task TM’ or task MSG’. By inspection of the algorithm, only a joined
processor with E7T set to Vi11 can correctly sign a message of the form J(V41, R) using
task TM’ or MSG’. By NEWO(: + 1), if a processor ¢ joins after time ¢; + e, then ¢ must
set its initial value of E'T" to at least V;y1 + PR so g cannot sign such a message. Thus, p

must have been joined at time ¢; + e. An additional inspection of the algorithm shows that
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we must have R = CLUSTER,(t;41) U JOINERS,(t;+1). By NEW3(i 4 1), for any other
processor ¢ that is joined at time ¢;41, we must have CLUSTER,(ti11) = CLUSTER,(t;+1)
and JOINERS (ti+1) = JOINERS,(t;1+1). Using this observation, as in the proof of 4.10,
we can show that if ¢ is correct and joined at ¢;41 and ¢ is still correct at time #;41 + d,
then ¢ sets ET to Viyq1 + PER at some time ¢, € [t;41,t,41 + d). At time ¢,, ¢ signs and
sends out a message of the form J(V;41, R) and sets JOINERS, = 0, CLUSTER, = R, and
ET, = Vi41 + PER. This proves the first half of NEW1(7 4+ 1).

We still must prove that any processor in ¢ € R that is correct at ¢;11 + 2d has joined
before that time. Without loss of generality, assume that ¢ has not joined by time #;41. We
now show ¢ has joined before t,; 4+ 2d, and in addition that when ¢ joins, it sets ET}, to
Vi1 + PER. This will prove part (d) of CS3(74 1) in addition to proving NEW1(i+1). It
suffices to show that ¢ receives a total of f+1 signatures on messages of the form J(Vj;1, R)
by time ?;41 + 2d. By assumption A6, there are at least f + 1 processors that are correct
and joined in the interval [t;11,%;+1 + d). Let p be a processor that is correct and joined
in this interval. By previous arguments, p sends out a message .J(V;41, R) at some time u
in the interval [¢;41,%;+1 + d). Consider the sequence of processors py,...,pr with p = p;
and ¢ = pi guaranteed to exist by A2, with ¢t = u. If p’s message does not diffuse to ¢, this
must be because there is some p; that earlier sent out messages of this form with a total of
f + 1 signatures. Thus, either ¢ receives p’s message by time u + 2d < ¢;41 + 2d, or ¢ has
already already received messages of the required form with a total of f + 1 signatures by
time u + 2d. Since there are f + 1 correct joined processors, g will receive messages of this
form with a total of f+ 1 signatures by time ;41 + 2d. When ¢ gets these messages, it sets
ET, appropriately. Hence ¢ joins at some time ¢, € [t;41,%i+1 + 2d], and at time ¢,, ¢ sets
Cy=Vig1, ET, =Viy1 + PER, JOINERS = (), and CLUSTER, = R.

Part (e) of CS3(¢ 4 1) follows from part (d) for processors that were already joined
at ti+1 + €, as in Lemma 4.10. For a processor p that joins after #;41 + e, NEWO0(i 4 1)
shows that p must have joined as a result of receiving a message of the form J(V;, R), with
j 2 ©+4 1. Thus, at this point p sets £T), to V; + PER > V;y1 + PER. The result now
follows from P1.

For NEW5(i4-1), observe that for any correct processor p, LASTV , is initially undefined;
by inspection of the tasks of B, it is clear that LASTV, is reset only at a critical time for
p. Moreover, if LASTV , is reset at time wu, then LASTV ,(ut) = ET,(u), ET,(ut) =
ET)(u)+ PER, and ET,(u) = V; for some j. If LASTV (1) is defined, then LASTV () <
ET,(t)— PER. If t < t;1q, then ET,(t) < V11 by parts (a) and (b) of CS3(¢+ 1). Thus,
LASTV ,(t) < Vigq, and LASTV ,(t) = V; for some j < 7. This proves NEW5(7 + 1).

It remains to prove NEW4(i 4 1). Suppose that ¢ is a joined correct processor at time
ti+1+e. We want to show that JOINERS(tiy1+¢€) = 0 and CLUSTER,(tiy1+€) = Riy1.

If ¢ is already joined at time t;,41, then our previous arguments show that at some time
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ty € [tit1,tiy1+d), g sets CLUSTER, = R;41 and JOINERS, = 0. JOINERS, can become
nonempty after ¢, only if there is an update to synchronous memory. By Theorem 6.2, there
can be such an update only at time ¢ such that Cy(t) = k- PER — ADJ for some k. By
part (c) of CS3(¢+ 1), there cannot be such a time in the interval [t;41,%,41 + €]. Thus,
JOINERS(t;+1 +€) = 0. Similarly, an inspection of the tasks of B shows that CLUSTER,
can change values only at a critical time for ¢. Since ET,(t,) = Viy1 + PER, the next
critical time for ¢ after ¢, must come at or after #;;,. By Lemma 8.6, ;12 > ;11 + €. Thus,
we can conclude that CLUSTER,(tiy1 +€) = Riyq.

Now, suppose that ¢ joins at some time ¢, € [t;41,%;41+€]. By NEWO0(i41), this must be
as a result of receiving a message of the form J(V;, R) with ¢ € R and j > i41. By the same
arguments as used in the proof of NEWO0(7 + 1), ¢ must receive such a message signed by a
correct processor, say ¢'. By inspection of the tasks of B, it is immediate that ¢’ signs such
a message at time ¢ only if 7" = ET,/(t) or T = LASTV ,(t). We have already observed that
if LASTV y(t) is defined, then LASTV (t) < ETy(t)— PER. Since ETy(t) < Vig1+ PER
if t <t;41 by CS3(i + 1), it follows that 7' = V;41. By NEW1(¢ 4 1), it follows that ¢ must
have joined by time ¢, € [t;41,%;4+1 + 2d]. As we observed above when proving NEW1(i+1),
at time t,, processor ¢ sets CLUSTER, = R;11 and JOINERS, = (). Identical arguments to
those used above show that JOINERS, and CLUSTFER, do not change value in the interval
[ty,tit1 + €], so that JOINERS(ti11 +€) = 0 and CLUSTER,(t;11 + €) = Ri41.

Thus, we have shown that if ¢ is a correct joined processor at time ¢;41 + e, then
JOINERS(tiv1 + €) = 0 and CLUSTER,(t;4+1 + €¢) = Riy1. NEW4(i + 1) immediately
follows. O

Proof of Theorem 8.1: By Lemma 8.3, B satisfies P1-P4 in every run. By Lemma
8.10, B satisfies CS3(7), NEW1(7), and NEW2(3) for all 7 > 0 in every run. It now follows
by Lemmas 8.7, 8.8, and 8.9 that B also satisfies CS1(7), CS2(¢), and CS4(%). (We need
NEW2(?) to satisfy the hypotheses of Lemma 8.9.)

Suppose a correct processor p requests to join at time w, and it is connected to a joined
processor ¢ that remains correct for at least (1 + p) - PER after receiving p’s request-to-
join message. (Such a processor is guaranteed to exist by A7.) We now show that p joins
within time (1 4+ p)(PER 4+ 3 - ADJ + DMAX) 4 3d of u. The basic idea of the proof is
straightforward: ¢ remains correct sufficiently long to invoke the update algorithm, after
which time p is added to JOINERS. Then NEW2 is invoked to guarantee that p joins the
cluster soon thereafter.

In more detail, suppose that g receives p’s request-to-join message M at time ¢, and
Vi < ETy(t) < Vip1. By A2, we have t — u < d. There are two cases to consider: (1)
Cy(t) < ETy(t) —3-ADJ and (2) Cy(t) > ET,(t) —3 - ADJ. For case (1), since Cy(t) >
ET,(t) — PER by P3 and ¢ remains correct for at least (14 p) - PER after ¢ receives p’s
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message, it follows that the message SYNC(ET,(t) — 3 - ADJ, M) is signed and sent by ¢
at or before its clock reads ET,(t) —3 - ADJ. (The message may be sent earlier if another
processor also received p’s request-to-join message and started an update.) By Theorem 6.1,
all processors still correct at time ¢;11 will have added ¢ to JOINERS at time ET,(t)—ADJ
on their local clocks. It follows that JOINFRS — CLUSTFER will be nonempty at local clock
time ET,(t) — ADJ, from which we get that a synchronization attempt will take place with
value ET,(t). Thus, Vi41 = ET,(t), and ;41 is the first time a correct processor sends a
message with synchronization value E7T,(t). Since we have assumed that ¢ remains correct
for at least time (1 + p)PER, it is easy to show that ¢ is still correct at time ¢;41, and this
time is no more than (14 p) PER after ¢ receives p’s message. From NEW1(:+ 1), it follows
that if p is still correct at time #;41 4+ 2d, p will have joined by then. Thus, p joins within
(14 p)- PER 4+ 3d of when p sends its request-to-join message.

For case (2), since by assumption ¢ remains correct for at least time (1 4+ p) - PER
after ¢ receives p’s message, ¢ is correct when its clock reads ET,(t) + PER — 3 - ADJ, by
which time ¢ sends the message SYNC(ET,(t) — 3 - ADJ, M) unless p has already joined
the cluster. (This may happen if some joined processor received p’s message no later than
ET —3-ADJ on its clock. If this happens, we are back in case (1).) As in case (1),
it now follows that a synchronization attempt will take place with value ET,(t) + PER,
so that ET,(t) + PER is V;, with j = i+ 1 or j = i + 2. If ¢ is still correct at time
t;, then ¢; occurs at most (1 4+ p)(PER + 3 - ADJ) after ¢ receives p’s request-to-join
message. If ¢ is not correct at time ¢;, suppose ¢’ is a correct joined processor at time
t;. We must have Cy(t;) < ET,(t) + PER by CS3(j)(b) and P3. We know that ¢ is
correct at the time ¢’ such that C(¢') = ET,(¢t) + PER — 3 - ADJ, and this time is at most
(14p)PER after t (since Cy(t) > ET,(t)—3-ADJ by assumption). By the Strong Separation
Inequality (PER > 4 - ADJ), we know that Cy(t') > ET,(t)+ ADJ. Since ET,(t) > V;_q,
we have Cy(t') > V;_1 + ADJ. By P2 and P3 it follows that ET,(t) > V,_1 + PER.
Thus, from part (a) CS3(j — 1), we have t’ > ¢;_;. From part (c) of CS3(j — 1) and
the fact that Cy(t') > V,_1 + ADJ, it follows that t' > t;_1 + e. By NEW2(j) we get
that ¢’ must be correct and joined at #', and from CS1(j — 1), it follows that C,(#') >
ET,(t)—3-ADJ — DMAX. From this it follows that ¢; <’ + (1 + p)(3- ADJ + DMAX),
so that t; <t+ (14 p)(PER+3-ADJ + DMAX). Since by NEW1(j) we have that p joins
by time ¢; + 2d (if it is still correct then), and p sends its request-to-join message at most
d before t, we get the desired bounds.

At most n? messages are sent if no processor requests to join, just as in the case of
Algorithm A. If k processors request to join, each request-to-join causes one update to
replicated memory, resulting in % - n? messages. In addition, if there are joining processors,
each joined processor may send up to f 4+ 1 messages (using task FORWARD), giving a
further (f + 1)n? messages, or (k+ f + 1)n? in all. O
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In general, the (14 p)e term is the dominant term in DMAX. In this algorithm, e = 2d,
whereas in the basic resynchronization algorithm, we have e = d. This factor of two
is introduced by the late signature gathering process. It can be eliminated by having yet
another synchronization after all the processors have joined. This is essentially the technique
used in an earlier version of this paper [HSSD].

We now discuss how to relax assumption A8, which states that rejoining processors
must use new signatures. If the JOIN task is modified so that a processor will continue
to advance its clock according to JOIN (i.e. continue to execute JOIN) until an interval
of length (14 p)(PER 4+ 3- ADJ + DMAX) + 3d has elapsed from the time it requested
to join, then we no longer need the assumption that a rejoining processor must use a new
signature. A processor may be convinced to set its clock using messages left over from a
previous attempt to join; but provided our other assumptions hold, it will have advanced
to the correct time within the prescribed time bound. Of course, it may not actually send
any synchronization messages or be considered to have a defined FT until the time bound
has elapsed on its duration timer. The details are left to the reader.

We have assumed that a cluster grows forever and that no name is ever removed from
CLUSTER. Since CLUSTER is included in some of the messages sent in the algorithm,
this means that we may require messages of unbounded length. To deal with this, it will
be important in practice to remove from CLUSTFER the names of processors that no longer
participate. The method of detecting such processors or deciding that they should be
removed is outside the scope of this paper. One mechanism for accomplishing the removal
is by an update of synchronous replicated memory using a task analogous to ADD. Again,

details are left to the reader.

9 A CONTINUOUS CLOCK SOLUTION

The logical clock defined by processor p’s current clock in the previous algorithm is not
continuous, since it may be set forward by any amount smaller than ADJ. It is clearly
piecewise continuous. There are some applications for which it may be advantageous to
have a continuous clock. As already noted by Lamport and Melliar-Smith [LM], we can
eliminate these discontinuities by amortizing clock adjustments over time. We briefly sketch
how the algorithm presented in the Section 3 can be modified in order to do this. A similar
construction also works for the join algorithm of Section 7.

The modifications required are minimal. To simplify matters, we first add a continuous
clock C’, while keeping the piecewise continuous clock C'. We introduce two new variables,
OLDA and SAVE. We set OLDA = A and SAVFE = DT at initialization, and add the
following lines to the pseudocode of Task MSG, before the line A — ET — DT
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o SAVE — DT;
o OLDA — A;

Let INT be a constant chosen such that 0 < INT < PER — AD.J. (By the Separation
Inequality, such a choice is possible.) We introduce A’, a continuous approximation to A.
Suppose that A(t) # A(tT). We set OLDA(tT) — A(t), thereby saving the old value of
A before updating it. Then, instead of increasing the value of A’ immediately to A(¢%),

we amortize this increase over an interval of length INT. Thus, we have the following
definition of A’

[f DT < SAVE+ INT then A' — OLDA + (A — OLDA)(DT — SAVE)/INT
else A" — A.

Define C'(t) = DT(t) + A'(t). It is easy to check that A’ is a continuous function of
time, and hence so is C’. Moreover, at any time ¢ we have A’(t) < A(t), and if either
OLDA(t) = A(t) or DT(t) > SAVE(t) + INT, then A(t) = A'(t). Our revised algorithm
guarantees that if DT(¢) = SAVE(t1), then C(tT) = ET — PER, since SAVE is set to
DT at exactly the time ¢ that A is adjusted. It follows that if C(¢) > ET — AD.J, then
DT(t) > SAVE(t) + PER — ADJ, and hence that C(t) = C’(t). With this observation,
it is easy to check that we could have replaced C' by C’ in algorithm A and obtained the

same result for every test where ' was used. We leave details to the reader.

10 CONCLUSION

We have described an algorithm that periodically resynchronizes clocks. The algorithm
can tolerate arbitrary link and processor failures, as long as messages can diffuse through
the network within some preassigned time bound. We also have provided a technique for
initializing clocks, and have shown how our algorithm could be extended to allow new
processors to join the network.

The constants in our algorithm are reasonable for many practical applications. We
have suggested a number of ways throughout the paper that performance of the algorithm
could be improved. We suspect that further improvements are possible. A variant of this
algorithm, for which the join is not so fault tolerant, has been implemented for a prototype
highly available system at the IBM Almaden Research Center [GS].

The join algorithm provided in this paper represents a compromise between the sim-
plicity of allowing joining only when resynchronization is scheduled and the complexity of
providing join on demand. The algorithm depends on logically synchronous updates to a

data structure we call synchronous replicated memory. We have chosen to simplify the
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process of joining and maintaining synchronous replicated memory by allowing these pro-

cesses to run only at periodic scheduled times. We provide fast response time by making

this period very small. Then we provide minimal overhead by resynchronizing only with

a much larger period, unless there is a processor waiting to join. Our use of synchronous

replicated memory is in the spirit of the state-machine approach, pioneered by Lamport

[L78a,1.78b,1.84]. Moreover, our basic resynchronization algorithm without its timeliness

tests is a minor variant of a scheme proposed by Lamport in [1.78a]. The advantage and

main contribution of our approach lies in the simplicity of our algorithms together with

their fault tolerance properties (not shared by the original Lamport scheme).
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