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Abstract

In distributed systems subject to random communication delays and component
failures, atomic broadcast can be used to implement the abstraction of synchronous
replicated storage, a distributed storage that displays the same contents at every correct
processor as of any clock time. This paper presents a systematic derivation of a family
of atomic broadcast protocols that are tolerant of increasingly general failure classes:
omission failures, timing failures, and authentication-detectable Byzantine failures. The
protocols work for arbitrary point-to-point network topologies, and can tolerate any
number of link and process failures up to network partitioning. After proving their
correctness, we also prove two lower bounds that show that the protocols provide in
many cases the best possible termination times.
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1 Introduction

Random communication delays and failures prevent distributed processes from having the
knowledge of global system states that shared storage provides to the processes of a cen-
tralized system. The absence of such knwledge is one of the main reasons why distributed
programming is so difficult. The objective of this paper is to discuss broadcast protocols
that enable the correct processes of a distributed system to attain consistent (albeit slightly
delayed) knowledge of the system state, despite failures and random communication delays.
Programming distributed processes that share such consistent views of the system state
then becomes similar to programming the processes of a centralized system.

The idea is to synchronize processor clocks, replicate global system state information at
several physical processors, and use atomic broadcast for disseminating global state updates
to these processors, so that all correct processors have identical views of the global state
at identical clock times. An atomic broadcast protocol is a protocol which, for some time
constant A called the broadcast termination time, possesses the following properties: (1)
atomicity: if any correct processor delivers an update at time U on its clock, then that
update was initiated by some processor and is delivered by each correct processor at time
U on its clock, (2) order: all updates delivered by correct processors are delivered in the
same order by each correct processor, and (3) termination: every update whose broadcast
is initiated by a correct processor at time T on its clock is delivered at all correct processors
at time T 4+ A on their clocks.

Because of its properties, atomic broadcast can be used to implement the abstraction of
synchronous replicated storage: a distributed, resilient storage that displays, at any clock
time, the same contents at every correct physical processor and that requires A time units
to complete replicated updates. Indeed, if all updates to synchronous replicated storage are
broadcast atomically, the atomicity property ensures that every update is either applied at
all correct processors or by none of them and the order property ensures that all updates
are applied in the same order at all correct processors. Therefore, if the replicas are initially
consistent, they will stay consistent. The termination property ensures that every update
broadcast by a correctly functioning processor is applied to all correct replicas A clock time
units later. If the synchronous replicated storage is used to record global state information,
this means that processes running at each correct physical processor can perceive, at any
time, the global system state that existed A clock time units earlier. Such a storage is
therefore very similar to a shared storage, except that it does not represent a single point
of failure.

The use of synchronous replicated storage can simplify the programming of distributed
processes since it relieves a programmer from the burden of coping with the inconsistency
among local knowledge states that can result from random communication delays or faulty
processors and links. It is relatively straightforward to adapt known concurrent program-
ming paradigms for shared storage environments to distributed environments that provide



the abstraction of a synchronous replicated storage. Several examples of such adaptations
are given in [L]. Within the Highly Available System project! at the Almaden Research Cen-
ter, atomic broadcast was designed for updating replicated system directories and reaching
agreement on the failure and recovery of system components [Cr], [GS]. In the HAS system
prototype, membership information and service directories are maintained as synchronous
replicated storage.

Much of the previous work on atomic broadcast has been performed within the Byzantine
Generals framework [LSP] (see [F],[SD] for surveys of this work). Typical models within
this framework have assumed guaranteed communication in a completely connected net-
work of perfectly synchronized processors. They assume that communication takes place
in synchronous rounds of information exchange, where a round was defined as the time
interval needed by an arbitrary processor to receive and process all messages sent by all
processors in a previous round. In contrast to these perfectly synchronized rounds models,
this paper considers networks of arbitrary topology subject to link as well as processor fail-
ures. Immediate response to a message is allowed rather than forcing a processor to wait
for the end of a round. Clocks are assumed to be only approximately synchronized and we
consider a variety of component failure behaviors that are likely to occur in practice and
can be tolerated at a cost less than that required to tolerate the worst case (Byzantine)
failures.

We classify failures observable in distributed systems into several nested classes, so that
the complexity of a fault-tolerant protocol increases with the size of the class of failures it
tolerates. We derive a new family of atomic broadcast protocols ranging from a fairly simple
protocol that tolerates omission failures to a rather sophisticated protocol that tolerates
authentication-detectable Byzantine failures, we prove the correctness of each protocol in
the family, and we discuss their performance. We also prove two lower bounds on the
termination times of atomic broadcast protocols tolerant of omission and authentication-
detectable Byzantine failures. One objective in writing the paper was to structure it so as
to allow a reader who is not interested in the technicalities inherent in correctness and lower
bound proofs to achieve a reasonable understanding of our protocols without reading the
proofs in Sections 5.1, 6.1, 7.1, and 9.

2 Failure Classification

We classify failures with respect to a decomposition of a distributed system into processors
and communications links. These components are specified to produce output in response
to the occurrence of certain specified input events, such as service request arrivals or the
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passage of time. For example, a link connecting processor s to processor 1 is specified to
deliver a message to r within a certain number of time units whenever s so requests, and a
processor p equipped with a timer can be specified to output messages on all its adjacent
links every n time units. A component specification prescribes what output should be
produced in response to any sequence of input events as well as the real-time interval
within which this output should occur (for a more formal definition, see Section 9).

A system component is correct if, its response to inputs is consistent with its specification.
A component failure occurs when a component does not behave in the manner specified.
An omission failure occurs when, in response to a sequence of inputs, a component never
gives the specified output. A timing failure occurs when the component gives the specified
output too early, too late, or never. A Byzantine failure [LSP] occurs when the component
does not behave in the manner specified: either no output occurs, or the output is outside
the real-time interval specified, or some output different from the one specified occurs.
An important subclass of Byzantine failures are those for which any resulting corruption
of messages relayed by components such as processors and links is detectable by using a
message authentication protocol. We call failures in this class authentication-detectable
Byzantine failures (cf. [LSP]). Error detecting codes [PW] and public-key cryptosystems
based on digital signatures [RSA] are two examples of authentication techniques which
can ensure that both unintentional and intentional message corruptions are detected with
very high probability. For the rest of the paper we will assume the existence of a fixed
authentication protocol (it will be further described below). The class of authentication-
detectable failures is defined with respect to this protocol.

A processor crash, a link breakdown, a processor that occasionally does not forward a
message that it should, and a link that occasionally loses messages, are examples of omis-
sion failures. An excessive message transmission or processing delay due to a processor
or network overload is an example of a late (or performance) timing failure. When some
coordinated action is taken by a processor too soon (perhaps because of a timer that runs
too fast), we talk of an early timing failure. A message alteration by a processor or a
link (because of a random fault) is an example of a Byzantine failure. If the authenti-
cation protocol employed enables the receiver of the message to detect the alteration we
have an authentication-detectable Byzantine failure. If the message alteration is so inge-
nious that the authentication protocol fails to detect the forgery, we have an example of a
non-authentication-detectable Byzantine failure.

Crash failures are a proper subclass of omission failures (a crash failure occurs when after
a first omission to give output a component systematically omits to respond to all subse-
quent input events), omission failures are a proper subclass of timing failures (a component
which suffers an omission failure can be understood as having an infinite response time),
timing failures are a proper subclass of authentication-detectable Byzantine failures (no
messages that are output are corrupted), and authentication-detectable Byzantine failures
are a proper subclass of the class of all possible failures, the Byzantine failures. The nested



nature of the failure classes defined above makes it easy to compare “the power” of fault-
tolerant protocols. If A and B are two protocols that implement the same service (e.g.
atomic broadcast or clock synchronization) and A tolerates only a proper subclass A’ of the
class of failures B’ that B tolerates, A is less fault-tolerant than B. OQur failure classification
was chosen so that the complexity of B is greater than that of A whenever the class of fail-
ures A’ tolerated by A is a proper subclass of the class of failures B’ tolerated by B. Thus,
the larger the class of failures that a protocol tolerates, the more expensive the protocol is.

Observe that a failure cannot be classified without reference to a component specification.
In particular, if one component is made up of others, then a failure of one type in one of its
constituent components can lead to a failure of another type in the containing component.
For example, a clock that displays the same “time” is an example of a crash failure. If that
clock is part of a processor that is specified to associate different timestamps with different
synchronous replicated storage updates, then the processor may be classed as experiencing
a Byzantine failure. In our decomposition of a distributed system into processors and
links, neither type of component is considered part of the other. Also, when considering
output behavior, we do not decompose messages, so a message is either correct or incorrect,
as a whole. With these conventions we can classify failures unambiguously. We are not
concerned with tolerating or handling the failures experienced by such sub-components as
clocks directly. We discuss fault tolerance in terms of the survival and correct functioning of
processors that meet their specifications in an environment in which some other processors
and some links may not meet theirs (usually because they contain faulty sub-components).
Thus when we speak of tolerating omission failures, we mean tolerating omission failures
on the part of other processors or links, not tolerating omission failures on the part of sub-
components like timers or clocks that might cause much worse behavior on the part of their
containing processors.

3 Assumptions

We consider a system of processes that maintain synchronous replicated storage. Processes
disseminate updates to storage replicas by using the atomic broadcast service implemented
by n distributed processors. Some pairs of processors can communicate through point-
to-point links. We do not assume that links exist between all pairs of processors. We
use the symbol G to represent the communications network of processors and links. We
let n be the number of processors and m be the number of links in G. We call neighbors
those processors that share a link. A synchronous replicated storage manager can ask a
processor to atomically broadcast an update o by invoking a broadcast(o) command. To
send a message m containing the update on an adjacent link 1, a processor p invokes a
send(m) on ] command. The link is assumed to contain any buffers and queueing involved
in message transmission and receipt. To receive a message containing some update from a
link, a processor must invoke a receive(m) from i command. The output parameters of this



command are the message m received as well as the identity i of the link on which m was
received. Updates received in such messages are delivered to the higher level synchronous
storage managers.

We make the following assumptions.

1.

All processor names in G are distinct and there is a total order on processor
names.

. Let F be a set of processors and links that experience failures during an execution

of an atomic broadcast protocol, and let G-F be the surviving network consisting
of the remaining correct processors from G and the remaining correct links that
connect them to each other. We assume that G-F is connected. (When the
surviving network is partitioned into disconnected subnetworks, our protocols
can no longer guarantee atomicity. An alternative view is that our protocols
work on the connected components of the network.)

. Each processor has access to a clock. We denote by C), the clock of processor

p and use Cp(t) to denote p’s local clock time at real time t. In writing time
values, we adopt the convention of using capital letters for writing clock times and
lower case letters for real times. We assume that the clocks of correct processors
are monotone increasing functions of real time and the resolution of processor
clocks is fine enough, so that separate clock readings yield different values (this
will ensure that no correct processor issues the same timestamp twice). For
simplicity, we assume that the lifetime of the system is bounded so that clocks
don’t wrap around; however, this assumption is not necessary. As an alternative
we could have defined an ordering on the timestamps issued by cyclic clocks
that would be sufficient to prove the correctness of our algorithms under the
assumption that faulty processors do not live longer than half the wrap around
time (this is the way the order relation on timestamps is implemented in the
system prototype described in [GS]). We also assume that the clocks of correct
processors are approximately synchronized: for any correct processors p and q,
and for any real time t, clocks are within a maximum deviation €

[Cp(t) = Colt)| <€

and are within a linear enveloppe of real time. (Diffusion based clock synchroniza-
tion protocols tolerant of omission, performance, and authentication-detectable
Byzantine failures that satisfy these requirements are presented in [CAS,DHSS];
for a survey see [Sc].)

. Processors run under the control of a real time operating system which provides

multi-tasking. To schedule a task A with input parameters B at local time T, the
operating system provides a “schedule A(B) at T” command. An invocation of



schedule A(B) at T at alocal time U > T has no effect, and multiple invocations
of schedule A(B) at T have the same effect as a single invocation.

5. For the message types used in our protocols, transmission and processing delays
(as measured on any correct processor’s clock) are bounded by a constant §.
This assumption can be stated formally as follows. Let p and q be two correct
processors linked by a correct link 1 and let r be any correct processor. If u is
the real time at which p invokes a send(m) command on 1 and v is the real time
at which q finishes receiving and processing m, then

0<Cp(v)—Cru) <.

The é upper bound includes the time spent by m in the message queues or
buffers of 1, the time needed to transmit the message on the link 1, and the time
needed by ¢ to receive and process m. Since in practice the CPU time required for
processing a message m by a processor task is negligible compared to the queueing
delays that affect m while in transit between different processors, we make the
simplifying assumption that message processing time is zero. The § upper bound
also accounts for imprecisions in measuring real time delays which result from
clock drift or the need to periodically adjust clocks to keep them synchronized.
The magnitude of this constant reflects the worst case load (maximum number of
events per time unit) a system is specified to handle. Note that in order to satisfy
this assumption, a correct processor must fairly allocate processing time to each
link so that it is not possible for faulty processors to swamp the network with so
many messages that messages from correct processors never get through to other
correct processors. Moreover, neither correct nor faulty processors can generate
so many updates so rapidly that any processor or link becomes overloaded and
cannot meet its specifications.

6. At any component of the system the number of send, receive, update, and deliver
events that take place during any finite amount of time is finite. (This assumption
is needed so that we can argue by induction on sequences of events.) Moreover,
we assume a fixed upper bound on the number of updates generated at any
processor per unit time. (This assumption corresponds to a maximum specified
load that our system must handle.)

4 Information Diffusion

We consider three properly nested failure classes: (1) omission failures, (2) timing failures,
and (3) authentication-detectable Byzantine failures. For each one of these classes, we
present an atomic broadcast protocol that tolerates up to 7 faulty processors and up to A
faulty links, where 7 and A are arbitrary nonnegative integers. Note that 7 is the assumed



maximum number of processors that may suffer failures in any run of our protocol. The
number of events that could be considered failures at a faulty processor is not bounded.
Likewise, A is the assumed maximum number of links that may fail in any run of the
protocol. The number of events (e.g. lost messages) that could be considered failures at
a faulty link is not bounded. The termination time A of each protocol is computed as a
function of the failure class tolerated, of the # and A\ parameters, of the known constants
6 and ¢, and of the largest diameter d of a surviving communication network G-F, for all
possible subnetworks F' containing up to 7 processors and A links (the diameter of G-F is
the longest distance between any two processors in G-F).

All protocols are based on a common communication technique called information diffusion:
(1) when a correct processor learns new information, it propagates the information to its
neighbors by sending messages to them, and (2) if a correct neighbor does not already know
that piece of information, it in turn propagates the information to its neighbors by sending
them messages. This ensures that, in the absence of network partitions, information diffuses
throughout the network to all correct processors. This technique is called propagation of
information and characterized relatively abstractly in a 1983 paper by Segall [SE]. However,
the concept of diffusion or “flooding” has been used in distributed systems work at least
since the early seventies, usually without reference to a particular source.

Information diffusion is a communication technique, that is, a method for conveying infor-
mation among processors. What is conveyed is not a message (i.e. a sequence of bits),
but rather a proposition. For now, we only give motivating examples of terms such as
“proposition” and “learn.” These terms are defined precisely in the formal sections dealing
with correctness proofs. A processor p can convey to a neighbor q a proposition such as
“processor s has initiated the atomic broadcast of an update o at time T on its clock” by
sending q a message (T,s,0) containing the arguments of the proposition. Processors learn
the truth of the propositions conveyed by a distributed protocol by receiving messages or by
observing the passage of time on their local clocks. For example, to learn the proposition
“s has initiated the broadcast of ¢ at time T on its clock” a processor q has to receive
a new message (1,s,0). As another example, consider a processor p specified to initiate
atomic broadcasts at times T3, T3, ... known to another processor q. If q receives broadcast
T; by T; + A, but does not receive broadcast 1341 by 1341 + A, q learns the proposition
“p is not correct at time 7;41 on its clock” [Cr]. For each correctness proof, we will use
the term “learn” for an action that can only happen once at a processor for any particular
proposition. When we speak of a “known constant”, like known broadcast termination time
A, we mean a constant that is recorded in the main storage of each processor.

The specific meanings of “proposition” and “learn” will vary with protocols and failure
models. However, the correctness proofs of all the protocols presented in this paper are
based on a theorem we call the diffusion induction principle, that treats these terms as
primitives. For purposes of this principle, “propositions” are primitive objects from some
fixed set Prop and “learn” is a primitive relation on the set Processor X Prop x Real-Time,



expressed informally by saying, “processor p learns proposition ¢ at real time t.” We say
a message m conveys proposition ¢ to processor p if, whenever m is received by p at time
t, there is a time w < ¢t such that p learns ¢ at u. We say that a proposition ¥ propagates
(among neighbors) if, for every correct pair of neighbors p and q linked by a correct link,
and for every real time u, if p learns @ at u, then there is a real time v such that q learns
¥ at v and, C,(v) — Cp(u) < §, where r is any correct processor. Note that, to ensure
that a proposition 7 propagates it is sufficient (but not necessary) for p to send a message
conveying ¢ to q at u. This ensures that q learns % within delta clock time units from the
moment p learned v, unless q learned 1 earlier, for example by receiving another message
conveying v from another processor. A proposition ¢ diffuses (in G) if for any correct
processors p, q, and r, and for any real time u, if p learns ¥ at u, then there is a real time
w such that q learns ¢ at w and C,(w) — C.(u) < db, where d is the largest diameter of
a surviving communication network G-F, for all possible subnetworks F containing up to
7 faulty processors and A faulty links. From our assumptions we can now easily prove the
Diffusion Induction Principle.

Theorem: If proposition 1 propagates among neighbors, then 1 diffuses in G.

Proof: Assume 1 propagates to neighbors. Let r be any correct processor in G. Let d be
the maximum possible diameter of a surviving subnetwork of G. We say 9 diffuses from
p to q in subnetwork G’ if, when p learns % at u, then there is a real time w such that g
learns ¢ at w and C,.(w) — C,(u) < d(p, q)8, where d(p,q) is the distance from p to q in G’.
It suffices to prove that, for any surviving network G’ of correct components, and for any
processors p and q of G’, ¢ diffuses from p to q. We prove this by induction on the distance
d(p,q) in G’. For d(p,q)=1, diffusion is immediate from our hypothesis that ¢ propagates.
We now suppose that ¢ diffuses from p to q for all processors p and q in G’ with d(p,q)
< k, where k > 1. Let p and q be correct processors in G’ such that the distance d(p,q)
between p and q is k. The hypothesis k>1 implies the existence of an intermediate correct
processor s in G’ such that d(p,q)=d(p,s)+d(s,q), where the distances d(p,s) and d(s,q) are
both smaller than k. If p learns % at u, then, by the induction hypothesis, there is a time v
such that s learns ¢ at v and C\(v) — C,(u) < d(p, s)d. Again, by the induction hypothesis,
there is a time w such that q learns ¢ at w and C,(w) — C(v) < d(s, ¢)8. It follows that
Cr(w) = Cr(u) < d(p,q)6. O

We call the time dé the diffusion time of the surviving network G-F in the presence of
at most m processor failures and A link failures. We use the Diffusion Induction Principle
to infer diffusion from propagation in our proofs of protocol correctness. The principle is
independent of the choice of the failure class to be tolerated; however, the definitions of
“propagates” and “diffuses” depend on the definition of “learn,” which will vary depending
on the failure class considered. While this principle captures informal reasoning that has
been used for years, we believe our formulation of the principle is novel. Note that the
correctness of the principle depends on bounds on the clock time measured at any correct
processor, not simply at one of the participants in a message transmission or receipt.



5 First Protocol: Tolerance of Omission Failures

Each message sent according to our first protocol carries its initiation time (or timestamp) T,
the name of the source processor s, and a replicated storage update o. Each atomic broad-
cast is uniquely identified by its timestamp T and its initiator’s name s (by Assumptions
1 and 3). As messages are received by a processor, they are stored in a history log H local
to the processor until delivery to the local synchronous replicated storage manager. The
order property required of atomic broadcasts is achieved by letting each processor deliver
the updates it receives in the order of their timestamp, by ordering the delivery of updates
with identical timestamps in increasing order of their initiator’s name, and by ensuring that
no correct processor begins the delivery of updates with timestamp T before it is certain
that it has received all updates with timestamp at most T that it may ever have to deliver
(to satisfy the atomicity requirement).

Note that any message that is received in the omission failure only context must have been
sent correctly and must be deliverable. For omission failures, the local time by which a
processor is certain it has received copies of each message timestamped T that could have
been received (and hence, delivered) by some correct processor is T4+ 76 + dé + €. We call
this clock time the delivery deadline for updates with timestamp T. The intuition behind
this deadline is as follows. The term 76 is the worst case delay between the initiation of a
broadcast (T,s,0) and the moment a first correct processor r learns of that broadcast. It
corresponds to the case when the broadcast source s is a faulty processor and between s and
r there is a path of 7 faulty processors, each of which forwards just one message (T,s,0) on
one outgoing link where each of these messages experiences a delay of § clock time units.
The term dé is the time sufficient for r to diffuse information about the broadcast (T,s,o)
to any correct processor p in the surviving network. The last term ensures that any update
accepted for delivery by a correct processor q whose clock is in advance of the sender’s
clock is also accepted by a correct processor p whose clock is behind the sender’s clock. We
assume all processors know the protocol termination time A, = 76 + dé + e.

To keep the number of messages needed for diffusing an update finite, each processor p that
receives a message (T,s,0) relays the message (to all its neighbors except the one that sent
the message) only if it receives (T,s,0) for the first time. If p inserts all received messages
in its local history H (and never removes them), p can easily test whether a newly arrived
message m was or was not seen before by evaluating the test m € H. We call this test the
“deja vu” acceptance test for the message m. The main drawback of the “deja vu” solution
described above is that it causes local histories to grow arbitrarily. To keep the length of
H bounded, a history garbage collection rule is needed. A possible solution would be to
remove from H a message (T,s,0) as soon as the deadline 7'+ A, for delivering o passes on
the local clock. However, a simple-minded application of the above garbage-collection rule
would not be sufficient for ensuring that local histories remain bounded, since it is possible
that copies of a message (T,s,0) continue to be received by a correct processor p after the
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delivery deadline T+ A, has passed on p’s clock. Such duplicates would then pass the “deja
vu” acceptance test and would be inserted again in the history of p. Since such “residual”
duplicates will never be delivered (see Assumption 4), they can cause p’s history to grow
without bound.

The reader might at this point wonder how is it possible that, a message timestamped T
could arrive at a correct processor p after its delivery deadline T'+ A, has passed, when
this deadline was precisely computed to ensure that p receives before T'+ A, a copy of each
message timestamped T that it will ever have to deliver? The following scenario shows that
this is possible. Consider a fully connected network of three processors p, q, r and a protocol
tolerant of one omission failure, with termination time 26 + €. Consider that p initiates the
broadcast of an update o at local time T, the message (T,p,0) from p to r is lost (due to an
omission failure), and the (T,p,0) messages from p to q, from q to r, and from r to p relayed
according to the above “deja vu” rule all take ¢ clock time units. If € < ¢ (this is possible
for probabilistic clock synchronization algorithms [Cri]) then p receives a message (T,p,0)
from r at local time 1"+ 36 after the delivery deadline 1"+ 26 + ¢ has passed. To prevent
such residual messages from accumulating in local histories, we introduce a “late message”
acceptance test. This test discards a message (T,s,0) if it arrives at a local time U past the
delivery deadline T+ A,,i.e. if U > T+ A,. The “deja vu” and “late message” acceptance
tests ensure together that updates are broadcast by using a finite number of messages and
that local histories stay bounded (by Assumption 6, processors broadcast only a bounded
number of updates per time unit).

A detailed description of our first atomic broadcast protocol is given in Figures 1, 2, and 3.
Each processor runs three concurrent tasks: a Start broadcast task (Figure 1) that initiates
an atomic broadcast, a Relay task (Figure 2) that forwards atomic broadcast messages to
neighbors, and a Delivery task (Figure 3) that delivers broadcast updates to the synchronous
replicated storage layer. All tasks of a processor have access to a constant L of type Set-of-
Link containing the identity of all links adjacent to the processor. All tasks of all processors
have access to the termination time constant A, defined earlier. In what follows we refer
to line j of Figure i as (i.j).

task Start;
var T: Time; o: Update; s: Processor; 1: Link;
cycle wait-for-broadcast(o); T — clock;
for alll € L do send(T,myid,o) on 1 od,
add (T,s,0) to H;
schedule Delivery(T) at T 4+ A;

endcycle;

-1 O U= W N =

Figure 1. Start Task of the first protocol

A process triggers the broadcast of an update o by invoking a broadcast(c) command on its
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underlying processor. This will activate the Start task at the matching wait-for-broadcast
entry point with o as input (1.3). The broadcast of ¢ is identified by the local time T at
which o is received (1.3) and the identity of the sending processor, obtained by invoking the
function “myid” (1.4). This function returns different processor identifiers when invoked
by distinct processors (Assumption 1). The broadcast of o is initiated by invoking send
commands on all outgoing links L (1.4). We do not assume that the execution of the
command in line (1.4) is atomic with respect to failures: a processor failure can prevent
messages from being sent on some links. The fact that the broadcast of ¢ has been initiated
is then recorded in a history variable H, a set of triples shared by all broadcast layer tasks:

var H: Time X Processor X Update.

We assume that H is initialized to the empty set {} at processor start. Once the history H
is updated (1.5), the Delivery task is scheduled to execute with input parameter T at local
clock time 7'+ A, to deliver the update (1.6).

task Relay;
var U,T: Time; o: Update; s: Processor; i,l: Link;
cycle receive('T,s,0) from i; U — clock;
if U>T+ A, then “late message” iterate [i;
if (T,s,0)is in H then “deja vu” iterate fi;
for alll € L-{i} do send(T,s,0) onl od;
add (T,s,0) to H;
schedule Delivery(T) at T 4+ A;

endcycle;

O 00 ~1 O U = W N =

Figure 2. Relay Task of the first protocol

The Relay task uses the command receive to receive messages formatted as (T,s,o) from
neighbors (2.3). After a message is received, the output parameter i contains the identity
of the incoming link over which the message arrived. If the message is a duplicate of a
message that was already received (2.5) or delivered (2.4) then it is discarded (the meaning
of the iterate command is to skip the execution of the rest of the loop body and begin a
new iteration). A message is accepled if it passes the late message (2.4) and deja vu (2.5)
tests of the Relay task. If (T,s,0) is accepted, then it is relayed on all outgoing links except
i (2.6), it is inserted in the history variable (2.7), and the Delivery task is scheduled to
execute with input parameter T at local time 7'+ A, to deliver the received update (2.8).

task Delivery(T:Time);
var val: Processor x Update;
val — {(s,0) | (T,s,0) €H};

sort val by processor name lexicographically;

=W N
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5 for all (s,0) € val in order do deliver(o) od;
6 delete all triples with first element T from H;

Figure 3. Delivery Task

The Delivery task (Figure 3) starts at clock time 7' 4+ A, to deliver updates timestamped
T in increasing order of their sender’s identifier ((3.3)-(3.5)) and to delete all information
about these broadcasts from the local history H (3.6).

5.1 Proof of Correctness for the First Protocol

We use the diffusion induction principle to prove the correctness of our first protocol (de-
noted O in this proof) under the assumption that during any protocol execution there can
be at most m processors that suffer omission failures and at most A links that suffer omission
failures. The propositions diffused by O are of the form 1 = “processor s broadcasts o at
local time T.” We say correct processor p learns ¢ at a real time t if either (a) p=s, p
initiates the diffusion of messages (T,s,0) at t, and Cs(t) =T, or (b) p # s and p receives
at t a message (1,s,0) for the first time. We denote by (O’ the protocol with infinite local
history obtained by removing from O the “late message” acceptance test (2.4) and the local
history garbage collection (3.6).

Lemma 1: If all processors follow protocol (°, then v propagates among neighbors.

Proof: Assume that correct processor p learns @ at real time t and let q be a correct
neighbor of p linked by a correct link to p. If p=s, then p sends (1.4) a message (T,s,0) to
q at t. By Assumption 5, there is a real time u at which the message is received by ¢, such
that for any correct processor r: C,(u) — C,(t) < 6. If (T,s,0) is not in the history of q, q
learns ¢ at u and inserts the message in its history. If (T,s,o) is in q’s history at u, then q
must have learned ¥ at an earlier real time v < u. By the monotonicity of the C'. clock, q
learned ¢ at a clock time C,(v) < Cy(u), so the inequality C,(v) — C,(¢) < 6 holds in this
case too. If p # s, let t be the real time at which p learns ¢ by receiving a message (T,s,0)
for the first time from some neighbor q’. If q=q’, there is a time u<t such that q learned %
at wand Cp(u) — C,(1) < 0, s0 Cp(u) — Cp(t) < 6. If ¢ # ¢, by an argument analogous to
that for the case p=s before, we can show that q learns ¥ within é clock time units either
because q receives the message (T,s,0) sent by p at t for the first time or because q learned
¥ earlier. O

Lemma 2: If all processors follow protocol (O’ and a correct processor inserts a message
(T,s,0) in its history, then each correct processor inserts (T',s,0) in its history before
local time T + A,.
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Proof: Let u be the earliest real time at which a correct processor p inserts (T,s,0) in its
history. If p=s, then by diffusion induction, each correct processor q inserts (T,s,0) in its
history by a real time v such that Cy(v) < Cy(u)+dé. Since Cy(u) < Cs(u)+e, it follows that
the local time by which q inserts (T,s,0) in its history is Cy(v) < Cs(u) +dé + e < T+ A,.
Consider now the other case p # s. In this case p receives a message (T,s,0) for the
first time at real time u. Since only omission processor and link failures are possible, the
messages supposed to be sent by a processor are either received on time (as if the processor
were correct) or are never received (for example, because the processor has crashed before
sending them or a link suffers an omission failure). Let t be the real-time at which processor
s initiates the broadcast of update o, Cs(t) = T'. If correct processor p learns 9 at real time
u by processing a message that traversed a path of h hops (i.e. h links) after it was sent
by s, then it is easy to prove by induction on h (in a manner similar to that illustrated for
the proof of the diffusion induction principle) that, for any processor r: C,.(u)— C,(t) < hé.
By hypothesis, there can be at most m faulty processors, so the longest possible acyclic
path (i.e. sequence of processors and links without repetition) that a message originating
at processor s can traverse before being accepted by a first correct processor contains 7
hops. Since u is the earliest real time at which some correct processor p learns 1, it follows
that C\(u) — C,(t) < 7d, for any processor r. By diffusion induction every correct processor
q will insert (T,s,0) in its history at a real time v such that, C\.(v) — C,(u) < dé, for any
processor r. From the above, it follows in particular that Cy(v) < Cy(t) + mé + dé. Since
Cy(t) < Cs(t) + €, we finally have Cy(v) < Cs(t)+mé+dé+e=T + A,. O

Lemma 3: If all processors follow protocol O and a correct processor inserts a message
(T,s,0) in its history, then each correct processor inserts (T,s,0) in its history before
local time 7"+ A,. The history H of any processor remains bounded.

Proof: We first prove that the protocols O and O’ are equivalent, in the sense that a message
(T,s,0) is accepted by a correct processor p which follows O if and only if the same message
is accepted by p following O’. Clearly, each message inserted in the history by a processor
following O will also be inserted if p were following O, since the set of messages that pass
the two acceptance tests “late message” and “deja vu” is included in the set of messages
that pass the “deja vu” test. Assume that a correct processor p follows (O’ and inserts a
message (T,s,0) in its history. If p=s, then p also inserts the message in its history following
O, since the O and O’ Start tasks are identical. Consider now that p # s. By Lemma 2,
the “late message” test (2.4) at p will evaluate to false, so (T,s,0) will pass the test and
will be inserted in the history if p followed . The first part of Lemma 3 now follows from
Lemma 2.

Because of the “late message” acceptance test, and the assumption that only omission
failures can occur, the history of each correct processor contains at any local time T only
messages with timestamps in the range [T — A,, T + €). Since the number of processors
is bounded, and each processor can broadcast only a bounded number of messages in any
bounded time interval, it follows that the total number of messages which can exist at any
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point in time in H is bounded. O
Theorem 1: The first protocol possesses the termination, atomicity, and order properties.

Proof: If an update o is received by the Start task of correct processor s at local time T,
then by Lemma 3, every correct processor adds (T,s,0) to its (bounded) history H before
local time T+ A,. Moreover, examination of the Start and Relay tasks shows that a
correct processor cannot add (T,s,0) to H without scheduling its Delivery task for local
time T 4+ A, with input T. Lemma 3 also implies that, whether the initiator is correct or
not, if any correct processor adds (T,s,0) to its history, then all do. Thus Lemma 3 implies
both termination and atomicity for the protocol. Since (by Assumption 4) the Delivery task
delivers updates with different timestamps in timestamp order, and orders the delivery of
updates with same timestamp in increasing order of their originator’s name, our protocol
also satisfies the order property. O

5.2 The First Protocol is Not Tolerant of Timing Failures

We construct a counter-example showing that the occurrence of a timing failure can lead
to a violation of the atomicity property. Consider a totally connected network of four
processors s (sender), f (faulty), e (early, correct), and 1 (late, correct), such that e’s clock
is z, 0<z< ¢, time units in advance of I’'s clock, i.e. when I’s clock indicates U, e’s clock
indicates U+z. Suppose that the Start task of s is interrupted by a crash so that a message
(T,s,0) is sent only to f. Suppose that the faulty processor f, delays forwarding messages
(T,s,0) to the correct processors e and | in such a way that the messages sent by f arrive
when e’s clock shows T+ A, + z/2 and I’s clock shows T'4+ A, — z/2. Clearly, o cannot
be delivered at e (2.4), but since the message arrives at | before I’s clock shows 7'+ A,,
the message is accepted at 1, where the update o is delivered at local time T'+ A,. The
atomicity requirement is therefore violated.

6 Second Protocol: Tolerance of Timing Failures

The first protocol is not tolerant of timing failures because there is a fixed clock time interval,
independent of the number of faulty processors, during which a message is unconditionally
accepted by a correct processor. As illustrated in the counter-example above, this creates
a real time “window” during which a message might be “too late” for some (early) correct
processors and “in time” for other (late) correct processors. To achieve atomicity in the
presence of timing failures, we must ensure that if a first correct processor p accepts a
message m, then all other correct neighbors q to which p relays m also accept m. A
neighbor q does not know whether the message source p is correct or not. However, if p
is correct, q must accept m if the information stored in it tells q that the clock time delay
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between p and q is at least -€ (case when p’s clock is very close to being € time units behind
q’s and the message propagation delay between p and q is very close to being 0) or at most
0 + € (case when p’s clock is very close to being € time units in advance of q’s and the
message from p to q takes § time units). To be able to evaluate the time a message spends
between two neighbors, we store in the message the number h of hops traversed by it.

A processor will reject messages that have taken longer than é 4+ € clock time units per hop
or are more than ¢ clock time units per hop early. The need for a lateness test is motivated
by the example in Section 5.1. We need an earliness test because we wish to maintain the
property that the history log at any correct processor remains bounded. Otherwise, some
faulty processor with a very fast clock might send the updates it has to send much earlier
in real-time than it is supposed to, forcing other correct processors to keep them in their
history logs for an unbounded amount of time. This type of faulty behavior may not be
very common in practice, but it does fit the definition of early timing failure.

Formally, we use the following timeliness acceptance test: a correct processor q accepts a
message timestamped T with hop count h if it receives it at a local time U such that:

T-he<U<T+ h(é+e).

Since, by hypothesis, there can be at most a path of 7 faulty processors from a (faulty)
sender s to a first correct processor p, and the message accepted must pass the above test
at p, it follows that a message can spend at most 7(é 4 €) clock time units in the network
before being accepted by a first correct processor. From that moment, it needs at most
dé clock time units to reach all other correct processors. Given the € uncertainty on clock
synchrony the termination time of the second protocol is therefore: Ay = w(6 4 €) + dé + €.

The Start task of the second protocol (Figure 4) is identical to that of the first except for
the addition of a hop count to all messages. At origin, this hopcount is initialized to 1 (4.4).

task Start;
var T: Time; o: Update; s: Processor; 1: Link;
cycle wait-for-broadcast(o); T — clock;
for alll € L do send(T,myid,1,0) onl od,
add (T,s,0) to H;
schedule Delivery(T) at T + Ay;

endcycle;

~1 O UL = W N =

Figure 4. Start Task of the second protocol

In addition to the tests used for providing tolerance of omission failures (5.6, 5.7) the Relay
task of the second protocol (Figure 5) also contains the timeliness tests discussed above
(5.4, 5.5). The hop count h carried by messages is incremented (5.8) every time a message
is relayed. The Delivery task of the second protocol is identical to that of the first protocol.
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task Relay;

var U,T: Time; o: Update; s: Processor; h: Integer; i,l: Link;

cycle receive('T,s,h,0) from i; U «— clock;
if U > T-he then “too ealry” iterate fi;
if U < T4+h(6 + €) then “too late” iterate fi;
if U >T+ A; then “late message” iterate [
if (T,s,0)is in H then “deja vu” iterate fi;
for alll € L-i do send(T,s,h+1,0) onl od;
add (T,s,0) to H;

10 schedule Delivery(T) at T + Ay;

11 endcycle;

O 0 ~1 O T = W N~

Figure 5: Relay Task of the second protocol

6.1 Correctness of the Second Protocol

The propositions ¢ diffused by our second protocol (which we denote 7 in this proof) have
the same form as those diffused by the first protocol: “processor s broadcasts update o
at time T on its clock.” We say that correct processor p learns ¢ at real time t if either
(a) s=p, s initiates the broadcast of o at t, and C4(t) = 7', or (b) p # s and p receives
for the first time at t a message (T,s,h,o) that passes both the “too early” T-he < C)(1)
and the “too late” Cp(t) < T 4 h(d + €) timeliness acceptance tests. We denote by 7 the
protocol with infinite local histories that is obtained by removing from 7 the “late message”
acceptance test (5.6) and the local history garbage collection (4.6).

Lemma 4: If all correct processors follow protocol 7’ then ¢ propagates among neighbors.

Proof: Assume correct processor p learns v at real time t and let q be a correct neighbor
linked by a correct link to p. We analyze two cases: p=s and p # s If p=s then p sends a
message (T,s,1,0) to q at t (line 4.4 of 77). We want to show that the message q receives
will pass the timeliness acceptance tests of q. By Assumption 5, the (T,s,1,0) message
is received by q at a real time u such that Cy(u) < Cy(t) + 6. Since, by Assumption 3,
Cy(t) < Cs(t) + ¢, it follows that Cy(u) < Cs(t) + 6 + ¢, i.e. the “too late” acceptance
test is passed at q. The “too early” acceptance test at q is passed because, by Assumption
5 and the monotonicity of Cs (Assumption 3), we have Cs(1) — ¢ < Cs(u) — ¢ and by
Assumption 3 we have Cs(u) — ¢ < Cy(u). Consider now the case p # s. Assume p learns
¥ by receiving from some processor q’ a message (T,s,h,0) which passes the “too early”
and “too late” acceptance tests, i.e. T-h € < Cp(t) and Cp(t) < T+ h(é6 + €¢). Let q be
a correct neighbor linked to p by a correct link. If q=q’, q already learned % by t, so let
us only investigate the more interesting case ¢ # ¢’. By line (5.8) p sends at t a message
(T,s,h+ 1,0) to q, and by Assumption 5 the message is received at q at a real time u such
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that Cy(u) < Cy(t)+ 6. We have to show that this message passes the timeliness acceptance
tests at q. Since, by Assumption 3, Cy(t) < Cp(1) + ¢, it follows that Cy(u) < Cp(t) 4+ 6 + €.
From the above inequality and our hypothesis C,(t) < T + h(6 + ¢€), it now follows that
Cy(u) < T+ (h+1)(6+¢), ie., the “too late” acceptance test is passed at q. The “too
early” acceptance test is passed because, by Assumptions 3 and 5, C,(¢) —e < Cy(u), which,
together with our hypothesis T-h € < Cp,(1), implies T-(h41) € < Cy(u). O

Lemma 5: If all correct processors follow protocol 7/ and a correct processor inserts (T,s,0)
in its history, then each correct processor inserts (T,s,0) in its history before local time

T+ Aq.

Proof: Let t be the earliest real time at which some correct processor p inserts (T,s,0) in its
history. If p=s, then by a reasoning similar to that for the case p=s in the proof of Lemma
2, we conclude that each correct processor q inserts (T,s,0) in its history before local time
T+do+e< T+ A, If p#s,let (T,s,h,0) be the message by which p learns . Since
in the worst case there can be a path of at most 7 faulty processors between s and p (i.e.
h< 7) and the message passes p’s “too late” acceptance test, we have Cp(t) < T+ (6 + €).
By diffusion induction there exists a real time u such that each correct processor q learns
¢ at wand Cp(u) < Cy(t) + dé. Since, by Assumption 3, Cy(u) < Cp(u) + ¢, it follows that
Colu) <T +7m(0+€)+db+e O

Lemma 6: If all processors follow protocol 7 and a correct processor inserts a message
(T,s,0) in its history, then each correct processor inserts (T,s,0) in its history before
local time T"+ A;. If the maximum number of updates broadcast by a processor per
time unit is bounded, the history H of any processor stays bounded.

Proof: The proof is similar to that of Lemma 3, the main difference being that, in the case
of timing failures, for any local time T, histories can contain messages with timestamps in

the range [T-Ay, T 4+ (7 + 1)e). O
Theorem 2: The second protocol possesses the termination, atomicity, and order properties.

The proof is similar to that of Theorem 1. O

6.2 The Second Protocol is Not Tolerant of Byzantine Failures

We construct a counter-example showing that a Byzantine failure occurrence can lead to a
violation of the atomicity property. Consider a totally connected system of four processors
s (sender), f (faulty), e (early, correct), and 1 (late, correct), such that e’s clock is z time
units in advance of I's clock, 0 < z < ¢, i.e. when I’s clock indicates U, e’s clock indicates
U+z. Assume 7=2, and A=0; so A, is 3(§ +¢€). Suppose that the broadcast of (T,s,1,0) by s
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is interrupted by a crash so that the message is sent only to f. Suppose that { “by mistake”
increments the hop count by two instead of one, and forwards the message (T,s,3,0) to the
correct processors e and 1 in such a way that these messages arrive when e’s clock shows
T4+A¢ 4+ z/2 and I’s clock shows T+A; — z/2. The update o will be delivered at 1 but not
at e. The atomicity requirement is thus violated.

7 Tolerance of Authentication-Detectable Byzantine Fail-
ures

As illustrated by the previous counter-example, a “Byzantine” processor can confuse a net-
work of correct processors by forwarding appropriately altered messages on behalf of correct
processors at appropriately chosen moments. One way of preventing this phenomenon is
to authenticate the messages exchanged by processors during a broadcast [DS], [LSP], so
that messages corrupted by “Byzantine” processors can be recognized and discarded by
correct processors. In this way, we are able to handle authentication-detectable Byzantine
failures in a manner similar to the way we handle timing failures. Ignoring (for simplic-
ity) the increase in message processing time due to authentication, we set the termination
time of the third protocol to be the same as the termination time of the second protocol:
Ap = 7m(6+ €) + dé + €. The reader should be warned that the ¢ in this formula is likely to
be significantly larger than the corresponding term for the previous protocol because of the
cost of authentication processing.

The detailed implementation of our third protocol is given in Figures 6-12. We assume that
each processor p possesses a signalure function ®,, which, for any string of characters x,
generates a string of characters y=®,(z) (called the signature of p on x). Every processor
q knows the names of all other processors in the communication network, and for each
pPEG, q has access to an authentication predicate O(z,p,y) which yields true if and only
if y= ®,(z). We assume that if processor q receives a string (x,p,y) as part of a message
m from any processor, and O(z,p,y) is true, then p actually sent the string (x,p,y) in m.
(If the authentication predicate fails to detect message forgery, then our last protocol can
no longer guarantee atomicity in the presence of Byzantine failures.) The proper selection
of the ®, and O functions for a given environment depends on the likely cause of message
corruption. If the source of message corruption is unintentional (e.g., transmission errors
due to random noise on a link or hardware malfunction) then simple signature and authen-
tication functions like the error detecting/correcting codes studied in [PW] are appropriate.
If the source of message corruption is intentional, e.g., an act of sabotage, then more elabo-
rate authentication schemes like those discussed in [RSA] should be used. In any case there
is always a small but non-zero probability that a corrupted message will be accepted as
authentic.

We implement message authentication by using three procedures “sign”, “cosign”, and
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“authenticate”, and a new signed message data type “Smsg” (Figure 6). These are all
described in a Pascal-like language supporting recursive type declaration.

1 type Smsg =

2 record case : tag: (first,relayed) of

3 first: (timestamp: Time; update: Update);
4 relayed: (incoming: Smsg);

5 procid: Processor;

6 signature: string;

7 end;

Figure 6: The Signed-Message data type

A signed message (of type Smsg) that has been signed by k processors py, ..., pr has the
structure

('relayed, te (Telayedv (fiTStv T7 g,P1, 31)7])27 52)7 <Pk Sk)

where T and o are the timestamp and update inserted by the message source p; and s; are
signatures.

procedure sign(in T:Time; o:Update; out x: Smsg);
begin x.tag «‘first’; x.timestamp« T}

x.update«— o; x.procid«<myid;

x.signature«— ®,,,.q4(x.tag,T,0);
end;

U W N~

Figure 7: The sign procedure

The sign procedure (Figure 7) is invoked by the originator of a broadcast (T,s,0) to produce a
message x containing the originator’s signature. The co-sign procedure (Figure 8) is invoked
by a processor r which forwards an incoming message x already signed by other processors;
it yields a new message y with 1’s signature appended to the list of signatures on x.

1 procedure co-sign(in x:Smsg; out y: Smsg);

2 begin y.tag «—‘relayed’; y.incoming «— x;

3 y.procid «— myid; y.signature— ®,,,;4(y.tag,x);
4 end,

Figure 8: The co-sign procedure
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The authenticate procedure (Figure 9) verifies the authenticity of an incoming message. It
assigns the Boolean output parameter a the value false if an alteration of the original message
is detected. If no alteration of the original message content is detected, the final value of a
is true and the remaining output parameters T, o and S are assigned the timestamp, the
original update included in the message and the sequence S of processor names that have
signed the message, respectively. The identity of the initiator is the first element of the
sequence, denoted first(S), and the number of hops (i.e., the number of intermediate links)
traversed by the message is the length of the sequence, denoted |S|.

1 procedure authenticate(in x:Smsg; out a: Boolean; T:Time;

2 o:Update, S:Sequence-of-Processor);

2 begin if x.tag="first’ and ~O((x.tag,x.timestamp,x.update),x.procid,x.signature)
3 or x.tag="‘relayed’ and —O((x.tag,x.incoming),x.procid,x.signature)
4 then a+—false

5 else of x.tag="‘first’

6 then T+—x.timestamp; o «—x.update; S« <>; a<true;

7 else authenticate(x.incoming,a,T,0,5)

8 ViR

9 S

10 append(S,x.procid);

11 end;

Figure 9: The authenticate procedure

Except for the change concerning the authentication of messages, the structure of the Start
task of the third protocol (Figure 10) is the same as that of the second protocol. In order
to handle the case in which a faulty processor broadcasts several updates with the same
timestamp, the type of the history variable H is changed to

var H: Time X (Processor x (Update U { L })),

where the symbol L denotes a “null” update (L¢ Update). Specifically, if a processor
receives several distinct updates with the same broadcast identifier, it associates the null
update with that broadcast. Thus, a null update in the history is an indication of a faulty
sender.

task Start;
var T: Time; o: Update; x: Smsg; 1: Link;
cycle wait-for-broadcast(o); T — clock;
sign(T,0,x);
for alll € L do send(x) onl od,

QU = W N
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6 add (T,s,0) to H;
7 schedule Delivery(T) at T 4 Ay;
8 endcycle;
Figure 10: Start Task of the third protocol
1 task Relay;
2 war U,T: Time; o: Update; s: Processor;i,l: Link;
3 x,y: Smsg; a: Boolean; S: Sequence-of-Processor;
4 cycle receive(x) from i; U — clock;
5 authenticate(x,a,T,0,5);
6 tf a=false then “forged message” tlerate ft;
7 if duplicates(S) then “duplicate signatures” iterate fi;
8 if U > T-|S| € then “too ealry” iterate fi;
9 if U < T4[S| (8§ 4 €) then “too late” iterate fi;
10 if U>T+ Ay then “late message” iterate fi;
11 s—first(S);
12 if there is o’ such that (T,s,0’) is in H
13 then i1f o’=1 then “faulty sender” iterate ft;
14 iof o’'=0
15 then “deja vue” iterate
16 else replace (T,s,0”) by (T,s,L) in H
17 fi
18 else add (T,s,0) to H;
19 schedule Delivery(T) at T+ Ay
20 ViR

21 co-sign(x,y);
22 for alll € L-{i} do send(y) onl od;
23 endcycle;

Figure 11. Relay Task of the third protocol

The Relay task of the third protocol (Figure 11) works as follows. Upon receipt of a
message (11.4), the message is checked for authenticity (11.5) and if corrupted, the message
is discarded (11.6) Then, the sequence of signatures of the processors that have accepted
the message is examined to ensure that there are no duplicates; if there are any duplicate
signatures, the message is discarded (11.7). Since processor signatures are authenticated,
the number of signatures |S| on a message can be trusted and can be used as a hop count
in determining the timeliness of the message (11.8, 11.9). No confusions such as those
illustrated in the previous counter-example can occur unless the authentication scheme is
compromised. If the incoming message is authentic, has no duplicate signatures, and is
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timely, then the history variable H is examined to determine whether the message is the
first of a new broadcast (11.18). If this is the case, the history variable H is updated with
the information that the sender s=first(S) has sent update o at time T, the Delivery task
is scheduled to start processing and possibly delivering the received update at (local clock)
time T+A; (11.19), and the received message is cosigned and forwarded (11.21, 11.22).
If the received update o has already been recorded in H (because it was received via an
alternate path), it is discarded (11.15). If ¢ is a second update for a broadcast identified
(T,s), then the sender must be faulty. This fact is recorded by setting H(T)(s) to the null
update (11.16). The message is then cosigned and forwarded so that other correct processors
also learn the sender’s failure (11.21, 11.22). Finally, if ¢ is associated with a broadcast
identifier to which H has already associated the null update (i.e., it is already known that
the originator of the broadcast (t,s) is faulty), then the received update is simply discarded
(11.13).

task Delivery(T:Time);

var val: Processor X (UpdateU{L});

val — {(s,0) | (T,s,0) €H and 0 #1};

sort val by processor name lexicographically;

for all (s,0) € val in order do deliver(o) od;

delete all triples with first element T from H;

O T W N =

Figure 12: Delivery Task of the third protocol

The Delivery task (Figure 12) delivers at local time T4+A; all updates broadcast correctly
at time T. If exactly one update has been accepted for a broadcast initiated at clock time
T, then that update is delivered (12.3, 12.5), otherwise no update is delivered (12.3). In
either case, the updates associated with broadcasts initiated at clock time T are deleted
from H (12.6) to ensure H stays bounded.

7.1 Correctness of the Third Protocol

Our third protocol (denoted B in this proof) diffuses two kinds of propositions: a proposition
P(T,s,0) of the (by now familiar) form “processor s broadcast update o at local time T”
and a proposition ¢(7T,s,0) of the form “either ¢)(T,s,o) or there exist two distinct updates
01 and o4, such that processor s has initiated the broadcast of these updates with the same
timestamp T.” A correct processor learns (T s,0) at real time t if either (a) p=s and p
inserts (T,s,0) in its history at t, or (b) p # s and p receives a message x such that the
authenticate procedure terminates successfully by returning (true,T',0,S), s=first(S), and
the processing of x results in an update of the local history (either by adding (T,s,o) or
(T,s,1) to H). For any update o, a correct processor p learns ¢(T,s,0) at real time t if it
learns ¥(T,s,0) at t or if there exist distinct updates o7 and o3, such that p learns ¥(7T,s,01)
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at u < t and p learns ¢(T,s,02) at t. Since, if p=s and p is correct, it is not possible for p to
learn that it broadcast two different updates with identical timestamps, correct processor
p learns ¢(T,s,0) at t if, and only if, (a) p adds (T,s,0) to H at t or (b) p receives at
t a message x such that the authenticate procedure terminates successfully by returning
(true,T,0,S), s=first(S), and the processing of x results in the action H(T)(s)«—L (11.16).
We denote by B’ the protocol with infinite local history obtained from B by removing from
B the “late message” acceptance test (11.10) and the local history garbage collection (12.6).

Lemma 7: If all correct processors follow protocol B’ and processor s is correct, then
¥('T,s,0) propagates among neighbors.

The proof is analogous to that of Lemma 4. It relies on the observation that if the sender
s is correct, and a correct processor p learns ¥(T,s,0), then no correct neighbor q of p can
ever learn ¥(T,s,01) with o1 # 0. Thus, the message p sends to q either causes q to insert
(T,s,0) in its history or is simply discarded if q has already inserted (T,s,o) in its history.

Lemma 8: If all correct processors follow protocol B’ then ¢(T,s,0) propagates among
neighbors.

Proof: Assume correct processor p learns ¢(T,s,0) at real time t, and let q be a correct
neighbor linked by a correct link to p. If p=s, then p actually learns ¢(T,s,0) (recall a
correct processor uses different timestamps for different updates), and, by Lemma 7, 1,
and hence ¢, propagate to q within ¢ clock time units. Consider now the other (more
interesting) case p # s and let x be the message received by p at t from some neighbor
q’. We have to analyze two cases: a) p learns ¢(T,s,0) by learning ¥(7T,s,0) and b) p
learns ¢(T,s,0) by learning ¢(T,s,01) after earlier it learned ¥ (7T ,s,02), where o1 # 03. If p
learns ¢(T,s,0) from q’ by learning ¥(T,s,0), then p forwards a message y with its signature
appended to those on x to all neighbors except q’ (lines (11.18)-(11.22)). If q=q’, then q
already learned ¢(7T,s,0), and hence ¢(T,s,0), earlier. If q # q’, q receives at some real
time u a message y conveying ¥(T,s,0). Our assumption that the link between p and q is
correct implies that the message y passes the acceptance tests (11.8)-(11.10) at q. If, when
y is received, H(T)(s)=.L, then q has already learned ¢(T,s,0) by u, else if the history of
q contains (T,s,01) for some o7 #1, then q learns ¥(7T,s,0), and hence ¢(T,s,0), by time
u, else, q learns ¥(T,s,0), and hence ¢(T,s,0), at time u. Consider now the case b) when
p learns ¢(T,s,0) by learning ¥(7T,s,01) after it learned (T,s,03) earlier, o1 # 02, and let
q”#q’ be the neighbor which sent the message conveying ¢(T,s,02) to p. If ¢ € q’,q”, then
p has by t forwarded to q a message y” conveying ¢ (T,s,02) and at t p forwards another
message y’ conveying ¥(7T,s,01), so q learns ¢(T,s,0). If q=q’, then q learned ¥(T,s,oq)
before t, and since p forwarded a message conveying ¥(1,s,02) to q’ before receiving from
q’ the message x, it follows that q learns ¢(T,s,0) by the time it receives that message.
If q=q”, then q learned ¥(T,s,02) before t, and since p forwarded a message y’ conveying
¥(T,s,01) to all neighbors except q’, q learned ¢(T,s,0) by the later of the time of receipt of
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y’ or the time q learned ¥(T,s,02). The last case that remains to be analyzed is q’=q”, i.e.
the same neighbor q’ sent to p the two messages conveying p ¥(T,s,01) and (T,s,02). If
q=q’, then q learned (T,s,01) and ¥(7T,s,02), and hence ¢(T,s,0) by t, else, if q#q’, then
p forwards to q two messages conveying ¥(1,s,01) and ¥(T,s,03), so q learned ¢(T,s,0) by
the time it received the later of the two messages. O

Lemma 9: If all correct processors follow protocol B’ and the initiator s of a broadcast
(T,s,0) is correct, then each correct processor p inserts (T,s,0) in its local history
before local time T+Ay.

The proof, which relies on Lemma 7, is analogous to the proof of Lemma 5 and is omitted.

Lemma 10: If all correct processors follow protocol B’ and, for any o, there is a correct
processor p such that its history contains (T,s,o) or (T,s,L), then, for each correct
processor ¢, q’s history contains (T,s,0) or (T,s,L) before time T4+A; on q’s clock.

Proof: If p=s, then p necessarily has (T,s,0) in its history and by diffusion induction
and Assumption 3, each correct q inserts (T,s,0) in its history before T+dd 4+ ¢ < T+A,.
Consider now p # s. Recall that “p learns ¢(T,s,0) at t” is equivalent to “p inserts in its
history either (T,s,0) or (T,s,L) at t.” Let t be the earliest real time at which a correct
processor p learns ¢(T,s,0). By a reasoning analogous to that in the proof of Lemma 5
we have C)(t) < T + m(6 4 ¢), and by, Lemma 8, diffusion induction and Assumption 3 it
follows that every correct processor q learns ¢(T,s,0) before time T4+7(é + €) + d6 4 € on
its clock. It thus follows that, when q’s clock displays time T+Ayp, q’s history is such that
it contains (T,s,0) or (T,s,1). O

Lemma 11: If all correct processors follow protocol B’ and, for some T and s, there exists
a correct processor p that inserts (T,s,L) in its history, then each correct processor q
has (T,s,L) in its history before local time T+ A.

Proof: Suppose processor p inserts (T,s, 1) in its history. Then there exist two updates oy,
02, 01 # 03, such that p learns (T,s,03) after learning at an earlier time 9(T,s,01). Note
that, by definition, for any o, if some correct processor learns ¢(T,s,0), then it has (T,s,0)
or (T,s,L)in its history. Thus, by Lemma 10, each correct processor has (T,s,o1) or (T,s, 1)
in its history and each correct processor has (T,s,02) or (T,s,L) before local time T+A;.
Since 01 # 03, each correct processor must have (T,s, 1) in its local history before local
time T+A, O

Lemma 12: If all processors follow protocol B and a correct processor s initiates at local
time T the broadcast of some update o, then all correct processors insert (T,s,0) in
their history before time T4A; on their clock. If a correct processor inserts (T,s,.L) in
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its history, then each correct processor inserts (T,s,L) in its history before local time
T+Ay. If the maximum number of updates broadcast by a processor per time unit is
bounded, the history H of any processor stays bounded.

Proof: The proof, similar to that of Lemma 6, is omitted.
Theorem 3: The third protocol possesses the termination, atomicity, and order properties.

The proof, which relies on Lemma 12, is similar to that of Theorem 2 and is therefore
omitted.

8 Performance

8.1 Messages

In the absence of failures, the initiator s of an atomic broadcast sends d; messages to its
neighbors, where d; denotes the degree of s (i.e. the number of its adjacent links). Each
processor ¢ # s that receives a message from a processor p sends d,-1 messages to all its
neighbors (except p). Since the sum of all node degrees of a network is twice the number
of network links, it follows that each atomic broadcast costs 2m-(n-1) messages, where m is
the number of links and n is the number of nodes of the network. For example, an atomic
broadcast among 8 processors arranged in a 3-dimensional cube requires 17 messages in the
absence of failures.

While we cannot compare the message cost of our algorithms directly with those of a round
based model, we can compare them with the results of a straightforward conversion. There
are two issues in such a conversion. The first is the issue of complete connectivity. For
algorithms that are only designed for completely connected networks, some routing scheme
must be used to simulate the complete connectivity. In general messages must be sent
along many disjoint routes to overcome the failure of intermediate processors. Otherwise,
the number of component failures tolerated by the converted protocol may be dramatically
reduced from that of the original. However, there are round based protocols that do not
depend on complete connectivity (e.g. the fourth protocol of [LSP] based on authentication).
In this case our message costs are as good but may not be better, since these protocols
usually use some variant of diffusion.

For illustrative purposes, we consider the round based protocol in [DS] that was designed
for complete connectivity. Moreover, we consider a straightforward conversion of this pro-
tocol to our model, using an arbitrary minimal length routing scheme to simulate complete
“logical” connectivity between processors. Since “logical” messages sent by processors are
implemented as sequences of (one-hop) messages sent among neighbors, some of the mes-
sages sent in each round will be redundant. Indeed, if a “logical” message has to be sent
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from a processor s to a non-neighbor processor r, and p is the neighbor of s on the path
to r selected by the message routing algorithm used, then the message s sends to p to be
forwarded to q is redundant with the message that s sends to p for direct consumption. For
the example of 8 processors arranged in a 3-dimensional cube, a round of logical messages
sent by one processor to the 7 others costs 12 (one-hop) messages. Thus, for 7 > 1, our
converted round based agreement protocol tolerant of timing or authentication-detectable
Byzantine failures sends in the absence of failures at least 12 + 7 X 12 = 216 messages,
compared to the 17 messages needed by a diffusion based protocol for any 7 > 1.

8.2 Termination Time

The termination time for an atomic broadcast depends on the network topology and on
the class of failures to be tolerated. In the absence of information about the network
topology except that the number of processors is bounded above by n, n-1 can be taken
to be an upper bound on ™ + d. Clock synchronization algorithms which can provide
an € close to dé are investigated in [CAS,DHSS]. For simplicity, we assume here an € of
(m 4+ d)é. Thus, for omission failures, the termination time of an atomic broadcast is linear
in n: A, = 2(7 4+ d)é is bounded above by 2(n — 1)§. For timing and Byzantine failures,
the termination time is proportional to the product of the number of processors and the
number of processor failures to be tolerated: A; = (7 + 2)(7 + d)é is bounded above
by (7 4+ 2)(n — 1)6. As a numerical example, consider the case of 8 processors arranged
in some arbitrary way to form a network. Assume that the link delay bound ¢ is 0.01
seconds and that we want to tolerate up to two processor failures. The termination time for
omission failures is 0.14 seconds, and for timing failures is 0.28 seconds. (For authentication-
detectable Byzantine failures, we might scale these numbers up by a factor of 10, reflecting
the increase in 6 due to authentication processing.) If more information about network
topology is available, then a better expression can be computed for the network diffusion
time d 6 . Note that the expression m+d corresponds to a worst case path consisting of = hops
between faulty processors followed by d hops along a shortest path in the surviving network
of correct processors and links. For example, if the eight processors above are arranged in
a 3-dimensional cube and we need tolerate no link failures, the approximate termination
times for omission and timing failures are cut to 0.10 and 0.20 seconds respectively. This
is because m 4 d is bounded above by 5: if the two faulty processors are adjacent then the
diameter of the surviving network is at most 3, and if they are not adjacent the diameter
can be 4 but 2 faulty processors cannot be encountered on a path before a correct processor
is encountered.

Straightforward conversions of rounds based protocols into our system model would require
that each round include not only the worst case time for sending a message between proces-
sors but also an extra delay corresponding to the worst case duration between the end of a
round on one processor clock and the end of the same round on another processor clock. For
example the fourth algorithm of [LSP] which terminates in 7 + d rounds by using diffusion
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requires a termination time of (7 +d)(6+ ¢) clock time units [LSP]. A round based protocol
such as [DS] which assumes full network connectivity would require that each round lasts
for at least dé + € clock time units. To tolerate 7 failures, the [DS] protocol needs at least
7+ 1 rounds, that is, a conversion to our model would require at least (74 1)(dé + €) clock
time units. The above termination times are always equal or greater than the termination
time 7(6 + €) 4+ dé + € of our third protocol with equality for a fully connected surviving
network with d = 1. When only omission failures can occur, our first protocol has a better
termination than any straightforward conversion of the above rounds based protocols, even
in a fully connected network, since 76 4 dé + € is smaller than the minimum of (7 +d)(6 +¢€)
and (7 4 1)(dé 4 ¢) whenever ¢ > 0. When ¢ is large compared to §, the difference can be
dramatic and is one of the justifications for studying tolerance to omission failures in our
model.

We had long conjectured that the termination times provided by our algorithms would turn
out to be optimal. However, we were only able to prove the lower bounds of the next section.
Recent results have shown that our second and third algorithms do not in fact provide
optimal termination times [SDC]. Our termination times hold for each execution uniformly
and are not simply worst case. Recent work has shown that it is often possible to terminate
earlier than the worst case time using acknowledgement in addition to diffusion [PG, GSTC].
Thus our algorithms neither achieve the best worst case time nor the best expected or
average time. However, they still remain competitive from the point of view of simplicity.
Work on very closely related problems suggests that the time complexity attributed to
algorithms operating in our model is very sensitive to the definition of termination time.
Recent results [ADLS, Po| on the real time required for the consensus problem are not readily
comparable with our termination time results even though our models describe exactly the
same phenomena. A better understanding of the relationship between our results and these
real time results is the subject of current research. While our upper and lower bounds
coincide for omission failures, a gap remains between the corresponding upper and lower
bounds for the real time required for consensus.

9 Lower Bounds

9.1 Runs and Specifications

In this section we present a slightly more formal model for the execution of a distributed
system. We have postponed the following formalities in the interest of readability for the
rest of the paper.

Formally we view a distributed system as being composed of processors and links. The
processors and links of our system could be described by using the language of IO automata
[LT]; however, we are only interested in the input/output behavior of these components so
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our model can be somewhat simplified. An ezecution of the distributed system consists
of a sequence of events for each component of the system. An event is a pair consisting
of an action, and a real-time indicating when the action completes. An action is either a
state transition specific to a component, such as the receipt or the sending of a message,
or is a duration action corresponding to the passage of a unit of real-time. The events at a
component are divided into two sets: input and output. For processors the input events are
the receipt of a message from a link, the receipt of an update and the passage of a unit of
real time. For links the input events are the receipt of a message from a sending processor
and the passage of a unit of real time. The output events for processors are the sending of
a message on a link and the delivery of an update (to a process outside the system). The
output events for links are the sending of messages to processors. If an output event from
a processor to a link (or vice versa) occurs in an execution then the corresponding input
event at the link (processor) also occurs in the execution.

Executions are deemed to provide semantics for our pseudocode algorithms in the obvious
way: correct processors execute the pseudocode and experience output events within the
timing constraints specified by our assumptions. Correct links correlate their input events
at one end with output events at the other, again within the timing constraints specified.
The behavior of faulty components is only governed by the failure class under consideration.
For brevity, we will use the term run as interchangeable with the term execution.

We assume some starting time called real time 0 for any run. Note that, even if there
are no messages or updates, a run is necessarily infinite because it includes the events
corresponding to the passage of units of real time.

We use the term local history to denote any finite prefix of a sequence of events that take
place at one component during a run. A specification is a relation between local histories
and output events (the actions specified to occur as a result of these histories) that satisfies
the following property: let s be a specification, let h be a local history in the domain of
s, let u be the latest time associated with an event in h, and let e be the set of real times
associated by the relation with events in s(h), then e is bounded above by some real time
(a deadline by which the output events are supposed to occur) and bounded below by u. A
component satisfiesits specification s in a run R if the following two properties hold: (1) for
every local history h that is a prefix of R in the domain of s, there is an output event e € R
such that e is in s(h); and (2) for every output event e € R, there is a local history h such
that h is a prefix of R in the domain of s and e is in s(h). Recall that when a component
satisfies its specification in a run it is called correct in that run.

Note that Assumptions 3 and 5 from Section 3 constrain the possible specifications for
links and for sub-component clocks. Our results will hold for any specifications that satisfy
our assumptions. For example, it would be sufficient to specify that (a) each correct clock
maintain linear envelope synchronization (v. [DHSS], [CAS]) so that a(u — v) < Cp(u) —
Cp(v) < B(u —v) 4+ 7, for all real times u > v, and that (b) each message be delivered by a
link within (6§ — )/ time units of the real time at which it was sent on the link. However,
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such a specification is not necessary.

9.2 A time lower bound for crash failures

Here we generalize the last example of the previous Section and provide a lower bound on the
termination time required by any atomic broadcast algorithm in the presence of omission
failures. We then prove a second lower bound for the termination time of any atomic
broadcast in the presence of authentication-detectable Byzantine failures. Our first lower
bound proof is based on a proof in [DS] for a much simpler model; but the conversion from
the simple model to our system model, especially from completely connected to arbitrary
networks, was not at all trivial. In fact we leave open a characterization of the networks
for which our algorithms provide optimal termination time, though we conjecture that they
include at least the symmetric networks in which, for any pair of nodes p and q, there is an
automorphism mapping p to q.

For our first result we now fix 7 and), the numbers of processors and links that suffer
omission failures. We say that P-{p} is an h-path with source s that leads to p if, and only
if, P is an acyclic path of h >0 hops (i.e. h links) between two processors s and p. An at
most h-path is any k-path with 0 < k& < h. For any communication network G, we define an
adverse case to be a selection of a set E C G of processors and links, a processor s in G-E,
and positive integers h and k, such that (1) the number of links in E is at most A, (2) the
sum of h and the number of processors in E is at most 7, (3) there exists an h-path from
s in G-E, and (4) for any at most h-path P in G-E originating in s and leading to some
processor p € G-E, the network X = G-(E U P) is connected and contains a processor q
# p at least k hops away from p. A weakly adverse case for G is a selection <FE,s;h,k> as
above such that (1) the number of links in E is at most A, (2) the sum of h and the number
of processors in E is at most 7, (3) there exists an h-path P in G-E originating in s and
leading to some processor p € G-E, such that the network X = G-(E U P) is connected and
contains a processor q # p at least k hops away from p. The intuition behind the use of an
adverse case <E,s,h.k> in our lower bounds proof is as follows: E contains all processors
and links of G that crash before the initiation of an atomic broadcast by processor s, no
links in G-E crash during the broadcast, the at most h-path P from s to some processor p
contains all processors that suffer failures during the broadcast, p is the “closest” correct
processor to s on the path, and q is used as a witness for equivalent protocol runs.

We say that a network G requires x steps if there is an adverse case <E,s,h,k> for G with
h+k=x. We say that network G allows = steps if there is a weakly adverse case <E,s,h k>
for G with h4+k=x. If 2,4, is the largest number of steps allowed by a network, then we
can set the termination time A of an omission failure tolerant protocol specifically tailored
for that network to z,,,:0 + € and prove its correctness in a manner analogous to the way
we proved the correctness of our first protocol, which uses the general upper bound 7+d
for z,,4z-
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Theorem j: If the communication network G requires x steps, then any atomic broadcast
protocol tolerant of up to © processor and A link omission failures has a termination time
of at least zd + e.

Proof: Suppose that, for given 7 and A, G requires x steps, that is, G has an adverse
case <E,s;h,x-h>, but there exists some protocol A that achieves atomic broadcast in the
presence of up to m processor and A link omission failures for some termination time D <
x 6 + €. Let y and z be times such that 0 <y < 4,0 <z < ¢, and D < xy + z. Without
loss of generality, we will assume that A is a deterministic protocol. If A were randomized
we would restrict our attention to constructing a universe of runs (or executions) for A in
which all random choices are made in the same way at all processors (e.g. all coins tossed
by all processors are “heads”).

We assume, without loss of generality, that the real times at which messages may be sent
form a discrete countable subset of the set of all real times so that we can use induction on
this set. Suppose otherwise that the set of real times at which A requires messages in all
runs is dense. We can perturb A slightly to wait for the next instant in our discrete set and
speed up the delivery so that the message is received at the same time. This transformation
will produce runs that are indistinguishable by message receipt history, provided no runs
are considered in which messages are delivered faster than the time between closest points
in the discrete set. By Assumption 6, the number of messages A may require at any instant
in the discrete set is finite.

Let S be the set of atomic broadcast runs (or executions) for protocol A, with initiator s
starting the broadcast of some update ¢ € Update, | Update | > 2, at real time 0, that
satisfy the following properties: (1) all processor clocks run at the rate of real time, (2) for
any t >0, C4(t) = t, (3) for any r # s, and for any t > 0: C,.(¢) = t4z, (4) all messages
exchanged between processors take exactly y (real or clock) time units for transmission and
processing, (5) each component of E fails before real time 0 and the only faulty links are in
E, (6) all failures are crash failures (recall that after a crash failure a component ceases to
send or relay any messages prescribed by A) (7) there is an at most h path a originating
in s such that if H is the set of processors in G-E that fail, then (7.1) the processors in H
are among the nodes of a, (7.2) any failure of a node f € H situated k >0 hops from s on
a occurs at a real time t > ky, (7.3) if processor f situated k hops from s on « crashes at
time t (possibly after sending some messages required by A at that time), then no processor
situated fewer than k hops from s on a sends any messages after t, and (7.4) if H is not
empty, then the last processor on « is in H.

Note that since <E,s,h,x-h> is an adverse case, conditions (1) through (7) imply that there
are no more than m processor failures and A link failures during the broadcast of ¢ and that
these failures do not disconnect the surviving network (see part 4 of the definition of adverse
case). Note also that the empty path is assumed to be an at most h-path originating in s.

For each run @, processor q, and real time t, let Msgs(Q,q,t) denote the sequence of pairs
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< my,1; >, 1 € {1,...k}, such that protocol A requires q to send message m;. to processor
r; at t in Q, the order of the sequence being the order in which A requires the messages to
be sent. Given a run Q € S, we denote by Q(< t) the partial run through time t in which
all processors and links behave as in Q. We also denote by Q(<t) the corresponding partial
run up to time t. Since we have assumed A is deterministic, we assume that for any runs

Q and Q’ with Q(<t) = Q’(<t), we have Msgs(Q,q,t) = Msgs(Q’,q,t).

For any partial run Q(< t) that satisfies conditions (1) through (7), we define the conser-
vative extension of Q(<t) to be the unique run in § in which each component (processor or
link) continues to behave correctly according to A unless it has already crashed by time t.
If some processor q crashes in Q(<t) by time t that is, for some time t’<t q omits to send
at least one message in Msgs(Q,q,t’), then q remains crashed in the conservative extension
of Q(<t) to the end of time. We say that two runs are oulput equivalent if any updates
delivered by correct processors are the same in both runs. We define the relation witness
equivalence to be the transitive closure in § of the relation that holds between two runs
when there is a processor q correct in both that cannot distinguish between them on the
basis of its message history through time D on q’s clock. Under the assumption that A is
correct, if two runs are witness equivalent, then they are output equivalent.

To prove Theorem 4, it is sufficient to show the output equivalence of two runs S. and Sy
in § such that in S. processor s initiates the atomic broadcast correctly at time 0 and each
processor in G-E is correct to time D on its clock, and in Sy processor s crashes without
initiating atomic broadcast and does not send any messages at or after time 0 while each
other processor is correct to time D on its clock. (Note that the real time of a crash of
processor q in run Q is defined as the first time t such that Msgs(Q,q,t) is nonempty and q
does not send some message from Msgs(Q,q,t) in Q. Since we assume processor s must send
its update if it is correct, there is such a time that processor s crashes in S¢; but the time
of crash may be after 0.) The output equivalence of these two runs of A contradicts the
hypothetical correctness of protocol A, since if A were correct, in 5. all correct processors
would deliver the update o at time D on their clocks and in S¢. no processor would deliver
the update at time D on its clock.

In order to prove that the runs S, and S are witness (and hence output) equivalent, we
define by mutual recursion a crash correction operator, 7., and a crash insertion operator,
7f, each of type

Sx Path x Processor x Time — S.

When applied to a quadruple (Q,a,q,t) in its domain, each of these operators yields a
run R that is witness equivalent to Q. Moreover, the operators are defined in such a way
that there exist paths o and § and a real time t > 0 such that 5. = 7.(5¢,a,s,t) and
S¢=14(5c, 3,5,0). In particular, a is any path consisting of s and a link from s to another
processor not in E, t is the first time > 0 such that Msgs(Sy,s,t) is not empty (so t is the
time s crashes in Sy), and 3 is the empty path (viewed as leading to s).
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Definition of the crash correction operator: The domain of 7, is the set of all quadruples <
Q,a,q,t>, where Q € S,  is an at most h-path from s that satisfies condition (7) in Q, q
is the last processor on a, and t is a real time > 0 such that q crashes at real time t in Q.
Let < my,7; > 1 € {1,....k} be the subsequence of Msgs(Q,q,t) that q did not send in Q at
t. The run R = 7.(Q,a,q,t) is defined as follows. Let Qg = Q.

e Case a: t >(h-1)y.
— Step 1: For j=1tok,add m; to Q;_1(<t) and let Q; be the conservative extension
of the resulting partial run.
o Case b: t < (h-1)y.
— For j=1 to k,
* Case c: 1; is on a or in E or the link from q to r; is in E.
- Step 2: Add m; to Q;_; to obtain Q;.
* Case d: r; is neither on a nor in E and the link from q to r; is not in E.
- Step 3: Let 8 be the result of changing a to lead to r; (with no other
changes) and let Q;_1.1 = 77(Q;j—1,8,1;,t+y).
- Step 4: Add m; to Q;_1.1 to obtain Q;_;.2.
- Step 5: If ; does not crash in Q;_1.2, then let Q; = Q;_1.2; otherwise, let t’

be the time that r; crashes in Q;_;.2, let 3’ be an extension by r; and one
link of 3 to produce an at most h-path that satisfies (7) in Q;_1.2, and let

Q; = 7e(Qj-1.2,8,1j,t").
e Step 6: If q crashes in Qg, then let t’ be the time q crashes in Qi and let R =
7.(Qr,,q,t7); otherwise, let R = Q.

Definition of the crash insertion operator: The domain of 7; is the set of all quadruples
<Q,a,q,t> such that a is an at most (h-1)-path that leads to processor q, a satisfies
condition (7) in run Q € § and, if t” is the smallest real time > t such that Msgs(Q,q,t")
is nonempty, then the conservative extension of the result of removing Msgs(Q,q,t”) from
Q(<t’) is in S with an extension of a satisfying condition (7). The run R = 74(Q,a,q,t) is
defined as follows. If there is no t” >t such that Msgs(Q,q,t’) is nonempty, then R = Q;
otherwise, let t’ be the smallest such time and let < m;,r; > i € {1,....k} be the sequence

Msgs(Q,q,t7).

o Case a: t’ >(h-1)y.
— Step 1: Let Qo = Q. For j = k to 1, let Q(k-j+1) be the conservative extension of
the result of removing m; from Q_;(<t’). Let R = Q.
o Case b: t’<(h-1)y.
— Step 2: If t” is the latest time such that Msgs(Q,q,t”) is nonempty, then let Q¢ =
Q; otherwise, let t” be the next time after t” with Msgs(Q,q,t”) nonempty and let

QO = Tf(Qvaqut”)'
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x For j = k to 1,

- Case c: r; is on a or in E or the link from q to r; is in E.

- Step 3:Let Qp—_;4+1 be the result of removing m; from Qj_;.

- Case d: 1; is neither on a nor in E and the link from q to r; is not in E.

- Step 4:Let 3 be the extension of a by q and one link from q to r; and let
Qr—j1 = T5(Qr—j,01j,t+y).

- Step 5:Remove m; from Qi—;1 to obtain Qx_;.».

- Step 6:If r; does not crash in Qi_;.2, then let Qi_;41 = Qi—;.2; otherwise,
let t” be the real time that r; crashes in Qi_;2, let 3’ be an extension of 3
by r; and one link that leads to another processor not in the extension, and
let Qr—j1 = Te(Qr—j.2,8"1;,1).

— Finally, let R = Q.

For runs Q and R, processor p, and time t, we define the relation Q ~,; R to hold exactly
when Q(<t) = R(<t) and, except for messages sent by p at time t, Q(<t) = R(<t). This
shorthand will be useful in describing the results of applying our operators.

Lemma 13 : The two operators are well defined. If <Q,a,q,t> is in the domain of 7. and
R = 7.(Q,a,q,t), then Q and R are witness equivalent, Q ~,; R and some prefix of
without q satisfies condition (7) in R. If <Q,a,q,t> is in the domain of 74 and R =
74(Q,a,q,t), then Q and R are witness equivalent, Q ~,; R, q sends no messages in R
at or after time t, and, either q does not crash in R and a satisfies condition (7) in R,
or an extension of a by q and a link from q satisfies (7) in R.

Proof: We prove Lemma 13 by induction on the number of links in a between s and q or
on the time t. Note that no step in the definition of either operator changes conditions (1)
through (5). Thus we need check only conditions (6) and (7) to make sure that the run
produced by each step is a member of §

As a base case for the induction, assume that t > (h-1)y. Note that by condition (7), if the
number of links between s and q on a is h-1, then t must be > (h-1)y.

Consider the crash correction operator applied to <Q,a,q,t> in its domain. Here we have
case a and R is determined by step 1 and step 6. Also a satisfies (7) in Qu=Q € S and
Msgs(Q,q,t) = Msgs(Qo,q,t). Assume o satisfies (7) in Q;_1 € S and Q ~,; Q;_1 so
that Msgs(Q,q,t) = Msgs(Q;-1,9,t). Adding m; to Q;_1(<t) does not change the fact that
the partial run satisfies conditions (1) through (7), so taking the conservative extension
produces a run Q; in §. Note that Q ~,; Q;. Hence, Msgs(Q,q,t) = Msgs(Q;,q,t); so q
crashes in Q; if, and only if, j # k. Since < E,s,h,x-h > is an adverse case, there must be
a processor p correct in both Q;_; and Q; that is at least x-h hops away from r;. This p
cannot distinguish between Q;_; and Q; until real time xy, which is after clock time D for
p. Thus Q;_; and Q; are witness equivalent. Moreover, if q crashes in Q;, then o satisfies
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(7)in Q;; otherwise j=k and the prefix of a that leads to q satisfies (7) in Q. By induction
on j, Q is witness equivalent to Qg, Q ~,+ Qg, and either a satisfies (7) in Qx or q does
not crash in Q and the prefix of a that leads to q satisfies (7) in Qg. Note that Qy is the
conservative extension of a partial run in which q does not fail. Thus q does not fail in Qg
and R = Qj according to step 6.

Second, consider the crash insertion operator applied to <Q,a,q,t> in its domain. If there is
no time t’>t with Msgs(Q,q,t’) nonempty, then R = Q, processor q sends no messages in R
at or after t, and a satisfies (7) in R. Assume, without loss of generality, that R # Q. Thus
there is a smallest t’>t with Msgs(Q,q,t’) nonempty. Again we have case a, since t’ > t >
(h-1)y, so R is determined by step 1 alone and Qo = Q. Thus « satisfies (7) in Qg, Q ~g ¢
Qo, and Msgs(Q,q,t’) = Msgs(Qo,q,t’). Let 3 be any extension of a by q and a link from
q to another processor correct in Q. Since <Q,a,q,t> is in the domain of ¢, § satisfies (7)
in Qq, which is the conservative extension of the result of removing my, from Qo(<t’). Also
Q ~y¢ Q1,50 Msgs(Q,q,t”) = Msgs(Qq,q,t”). Since <E,s,h,x-h> is an adverse case, Q=Qq
is witness equivalent to Qy by the argument for the crash correction operator. Assume
satisfies (7) in Qr—;, Q ~4¢ Qr—;, and Q is witness equivalent to Qz_;. Since Qp_;41 is
the conservative extension of the result of removing m; from Qx_;(<t’) and Msgs(Q,q,t’)
= Msgs(Qr—;,q,t"), B satisfies (7) in Qg_j+1 and Q ~; ¢ Qr—j+1. Again, since <E,s,h,x-h>
is an adverse case, ) is witness equivalent to Qx_;+1. Thus by induction on j (from k to
1), B satisfies (7) in Qr = R, Q ~, ¢ R, and Q is witness equivalent to R. Since R is the
conservative extension of a partial run in which q crashes at t’, q crashes at t” in R.

Now assume that <Q,a,q,t> is in the domain of 7. and we have as induction hypothesis that
the lemma holds for both operators when the number of links between s and the processor
argument on the path argument is greater than the number of links between s and q on «
or when the time argument is greater than t. We assume that the number of links between
s and q on o is less than h-1 and that t < (h-1)y. Thus we have case b and R is determined
by steps 2 through 6. Since Qo = Q, a satisfies condition (7) in Qg, Q ~4: Qo, and Q is
witness equivalent to Qg. Assume that a satisfies condition (7) in Q;_1, Q ~4: Q;_1, and
Q is witness equivalent to Q;_;. If case c holds, then either no message from q reaches r; or
r; sends no messages after t (by condition (7)) in Q;_1. According to step 2, Q; is the result
of adding m; to Q;_y. Thus Q ~,; Q; so Msgs(Q,q,t)=Msgs(Q;,q,t). If j<k then q crashes
at t in Q; and a satisfies condition (7)in Q;. If j=k then either q crashes at a later time in
Q;, in which case a satisfies condition (7) in Q;, or q does not crash in Q;, in which case the
prefix of o that leads to q satisfies (7) in Q;. Since either no message reaches r; from q or r;
sends no messages after t, no processor correct in both (excluding r;) can distinguish Q;_4
from Q;. Since <E,s,h,x-h> is an adverse case, there is a processor other than r; correct in
both. Thus they are witness equivalent. Assume case d holds. Q; is determined by steps 3
through 5. Since q is the last node on o and there is a message from q to r; in Msgs(Q,q,t),
B is well defined. Since t<(h-1)y, there are at most h-1 processors on g and J satisfies (7)
in Q and hence in Q;_;. Let 3’ be the extension of 3 by the addition of r; and a link from
r; to some processor that does not crash in Q;_;. If t” is the first time > t4y such that
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Msgs(Q;—1.rj,t") is nonempty, then 3’ satisfies (7) in the conservative extension of the result
of removing Msgs(Q;_1,r;,t") from Q;_1(<t’). Thus <Q;_1,8,r;,t+y> is in the domain of
7f. By the induction hypothesis, Q;_1 is witness equivalent to Q;j_1.1, Qj-1 ~r, ¢+ @j-1.1,
either § or §’ satisfies condition (7) in Q;_1.1, and r; sends no messages at or after t4y in
Q;-1.1. Thus no processor correct in both (excluding r;) can distinguish between Q;_; 4
and Q;_1.2, which is obtained by adding m; to Q;_;.1 according to step 4. Also we have
Qj-11 ~qt Qj-1.2, and either § or §’ satisfies (7) in Q;_1.2, since q sends no messages after
tin Q;_1.2 even if j=k and q does not crash at t. Since <E,sh,x-h> is an adverse case,
there is a processor other than r; that is correct in both; so Q;_;, is witness equivalent
to Qj—1.2. If 1; crashes in Q;_1.2, then <Q;_1.2,8’,r;,t’> is in the domain of 7. and 3’ is
longer than a; so Q;, which is 7.(Q;_1.2,8’,r;,t") according to step 5, is witness equivalent to
Qj-1.2 with Q; ~,, v Q;_1 .2 and a prefix of 3 satisfies (7) in Q; by the induction hypothesis.
Thus, by induction on j (from 1 to k), we have Q witness equivalent to Qg, Q ~4+ Qg, and
a prefix of § satisfies (7) in Q. If q does not crash in Qi, then R = Qj according to step
6, and a prefix of 3 without f, which is a prefix of a without f, satisfies (7) in R; otherwise,
<Qpg,a,q,t’> is in the domain of 7., where t’ is the time > t at which q crashes in Q. In
the latter case, by the induction hypothesis, Q ~,; R, Q and R are witness equivalent, and
a prefix of a without q satisfies (7) in R, since R = 7.(Qg,a,q,t”).

Now assume that <Q,a,q,t> is in the domain of 74 and we have the previous induction
hypothesis. We assume that the number of links between s and q on « is less than h-1
and that t < (h-1)y. Thus at most h-2 processors crash in Q. (This is important because
we will want to crash as many as an additional two processors during the execution of
7¢.) If there is no time t">t such that Msgs(Q,q,t’) is nonempty, then R = Q and we are
done. If there is such a t’ but only greater than t, then again we are done by the induction
hypothesis, because R = 74(Q,a,q,t) = 74(Q,a,q,t’). Thus we assume that there is such
a t” and that t" = t. Hence we have case b and R is determined by steps 2 through 6.
According to step 2, if t is the latest time such that Msgs(Q,q,t) is nonempty, then Qg = Q;
otherwise, there is a later such time t.” Since <Q,a,q,t> is in the domain of 74, <Q,a,q,t”>
is also. Thus, by the induction hypothesis, Qo = 7¢(Q,0,q,t”) is witness equivalent to Q,
Q ~4,¢ Qo, f sends no messages at or after t” so q crashes in Qg at t”, and an extension
of a by q and a link from q satisfies (7) in Qg. Assume Q is witness equivalent to Q_;,
Q ~gt Qk—j, I sends no messages after t in Qg_;, and 3 satisfies (7) in Qx_; where 3 is
any extension of a by q and a link from q leading to a processor outside the extension. If
case ¢ holds, then Q_;41 is obtained according to step 3 by removing m; from @_; and
either no message reaches r; from q or r; sends no messages after t in both Q_; and in
Qk—;+1. Thus no processor (excluding r;) correct in both could distinguish between Qj_;
and Qg—;4+1. Since <E,s,h,x-h> is an adverse case, there is a processor other than r; that
is correct in both runs; so Qj_; is witness equivalent to Qg_;41. Also, Qr—; ~¢.t Qr—j+1,
Path § defined above satisfies (7) for Qx_;41, and q sends no messages after t in Qp_;41. If
case d holds, then Qj_;4 is determined by steps 4 through 6. In this case 3 leads to r; and
<Qk—;,8,rj,t+y> is in the domain of 7y because 3 has at most h-1 links. According to step
4, Qp—j1 = 7#(Qk—;,0,r;,t+y). By the induction hypothesis, Qx_; is witness equivalent to
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Qr—j1, Qr—; Nty Qk—j1, r; sends no messages at or after t+y in Qx_;.1, and either 3 or
an extension of 4 by r; and a link from r; to a processor not on the extension satisfies (7)
for Qx—;.1, depending on whether r; actually crashes in Qj—_;.1. Since Qy_; Nty Qr—j1,f
sends no messages after t in Q_; 1. According to step 5, Qx—;. is obtained from Q_;1 by
removing m; Thus no processor (excluding r;) correct in both runs can distinguish between
them. Since <E,s,h,x-h> is an adverse case, there is a processor other than r; correct
in both runs. Thus Qx_;1 and Qi—;2 are witness equivalent, Qr_;1 ~q,¢ Qr—j.2, f sends
no messages after t in Q_;2, and either 8 or the extension of 8 defined above satisfies
(7) for Qg—j2. If r; does not crash in Qx_; 2, then Qx_;41 = Qi—; according to step 6.
Assume r; crashes in Qg_;2 and let 3’ and t’ be defined according to step 6. Note that
t’>t+y. Then 3’ satisfies (7) in Qg—_;2 and <Qg—_;2,8",r;,t’> is in the domain of 7,. By the
induction hypothesis, Qx_;. is witness equivalent to Qg_;41 = 7(Q”(k-j),5",r;,t"), Q7 (k-j)
~p; ¢ Qk—j+1, and a prefix of 3 satisfies (7) in Q(k-j+1). Thus Q is witness equivalent to
Q(k-j+1), Q ~4¢ Q(k-j41), and § satisfies (7) in Q(k-j+1) since q crashes at t in Q(k-j+1).
By induction on j (from k to 1), Q is witness equivalent to Qi =R, Q ~,; R, the appropriate
extension of « satisfies (7) in R, and q sends no messages at or after t in R.

This completes the proof of the lemma. O
Lemma 13 suffices to prove Theorem 4 as outlined above.O

Note that because of condition (6) we only used crash failures in our proof. Thus Theorem
4 holds for crash failures as well as for omission failures. Moreover, we were careful not to
disturb the order in which messages were required to be sent by A; so Theorem 4 holds for
orderly crash failures (in which the failing processor cannot send messages out of order).

It is easy to show that a completely connected network of n nodes requires 7+1 steps
(to tolerate 7 <n-1 processor omission failures and A =0 link failures), so Theorem 4 is
consistent with the result in [DS].

9.3 A time lower bound for authentication-detectable Byzantine failures

We now move from omission failures to authentication-detectable Byzantine failures and
show that our protocols are best possible for the case of an n processor Hamiltonian network
that must tolerate n-2 processor authentication-detectable Byzantine failures. A Hamilto-
nian network is one that has an acyclic path containing all the network nodes. A fully
connected network and a 3-dimensional cube are examples of Hamiltonian networks.

Theorem 5 Any atomic broadcast protocol for a Hamiltonian network with n processors
that tolerates n-2 authentication-detectable Byzantine processor failures cannot have a ter-
mination time smaller than (n-1)(8 + epsilon).
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Proof: Let G be a Hamiltonian network with processors numbered 0 to n-1 on some acyclic
path. Let D be the hypothesized termination time for such an atomic broadcast protocol A
and suppose that D<(n-1)(6 4 epsilon). As in the proof of Theorem 4,1let 0 < y < §,0 < z
< epstlon, and D<(n-1)(y+z). Let R. be the set of runs of A in which processor 0 initiates
the atomic broadcast of update o at time 0 which satisfy the following properties: (1) all
processor clocks run at the rate of real time, (2) for any j, 0 < j < n-1: processor j behaves
as if C';(0) = jz (when z is very close to €, at most two processors can be correct since we
assume that the clocks of correct processors run within € of each other); (3) all messages
sent that are received take exactly y time units, (4) in each run only two processors i-1
and i are correct, 1 < j < n-1 (we denote by S(i) the run in which processors i-1 and i are
correct), (5) each processor j follows A according to the clock C;, except that if j is not
correct in S(i), then j omits to receive or send any messages from or to processors other
than j-1 and j4+1. Again we assume without loss of generality that any random choices are
made in the same way in each run at all processors. By construction, each adjacent pair of
runs S(i), S(i+1) 1 <1 < n-2 has identical message histories at the correct processor i they
share. Thus, the runs S(i) are witness (and hence output) equivalent. At real time 0 when
the atomic broadcast is initiated by processor 0, the clock of processor (n-1) reads (n-1)z.
Since the broadcast is timestamped 0, run S(n-1) cannot have processor (n-1) deliver the
update. Indeed, since the faulty processors confine any information exchange to be between
neighbors j,j+1 only, it takes (n-1)y time units for any information from 0 to reach n-1,
and when such information reaches n-1, the termination time D is already past on n-1’s
clock. Thus in run S(n-1), in which processors n-2 and n-1 are the only ones correct, neither
processor delivers 0. An induction on i (using witness equivalence) shows that the same
property holds of each run S(i): neither correct processor delivers . Thus in run S(1)
neither processor 0 nor processor 1 delivers o, contradicting the termination property of the
hypothesized protocol A. O

Therefore, in a Hamiltonian n-node network where the objective is to tolerate up to n-2
authentication-detectable Byzantine failures our third protocol achieves the best possible
termination time. For example, according to Theorem 5, in a fully connected network of
4 processors the best possible termination time for handling 2 authentication-detectable
Byzantine processor failures is 3(6 + ¢) which is identical to the termination time of our
second and third protocols, since 7 =2 and d=1.

10 Conclusion

This paper has specified the atomic broadcast problem, has proposed a classification of the
failures observable in distributed systems, has investigated three protocols for atomic broad-
cast in systems with bounded transmission delays and no partition failures, has proven their
correctness and discussed their performance, and has also proved two lower bound theorems
which show that, in many cases, these protocols provide the best possible termination times.
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Atomic broadcast simplifies the design of distributed fault-tolerant programs by enabling
correct processes to access global state information in synchronous replicated storage. This
notion reduces the problem of distributed programming to that of “shared storage” pro-
gramming without having a single point of system failure. In the Highly Available Systems
prototype, we used synchronous replicated storage to store crucial system configuration
information that must remain available despite (possibly multiple) processor failures.

The three protocols derived share the same specification, have the same diffusion-based
structure, but differ in the classes of failures tolerated, ranging from omission failures, to
authentication-detectable Byzantine failures. Besides being of pedagogical value for those
not familiar with the intricacies of achieving Byzantine agreement, our derivation sheds new
light on the continuum that exists between rather simple message diffusion protocols and
more complex Byzantine agreement protocols. Clearly, the complexity increases as more
failures are tolerated, but the complexity of the final protocol that handles authentication-
detectable Byzantine failures is not orders of magnitude greater than that of the initial
protocol. A variant of this protocol (which uses error correcting codes to authenticate
messages) has been implemented and runs on a prototype system designed by the Highly
Available Systems project at the IBM Almaden Research Center [GS]. The experience
accumulated during the implementation and test of this prototype showed us that the
failures most likely to be observed in distributed systems based on general purpose operating
systems such as VM or Unix are performance (or late timing) failures caused by random
variations in system load. Since we were aware of the difficulty of debugging distributed
protocols (especially when time-dependent), we proved the correctness of ours by using a
common diffusion induction principle for all protocols. We believe this proof technique is
applicable to many other distributed protocols based on information diffusion.

Given our implementation objective, we have based our protocols on a more realistic system
model (i.e. arbitrary network topology, approximately synchronized clocks, unreliable com-
munication links) than previous algorithms for achieving agreement based on the rounds
model. Abandoning the rounds model has led to better performance than we obtained
by a straightforward conversion of the rounds based protocol in [DS]. Even better perfor-
mance could be achieved by adopting a clock synchronization approach developed later [Cri]
which enables the achievement of synchronization precisions superior to those achievable by

algorithms such as those discussed in [CAS], [DHSS], and [Sc].

At the time when our protocols were invented (1983), we were unaware of other protocols
for atomic broadcast designed for system models more realistic than those assumed in
the Byzantine agreement literature [F], [LSP], [SD]. Since then, several other protocols
for atomic broadcast in system models similar to ours have been proposed (e.g. [BJ],
[BSD], [Ca], [CM], [D], [GSTC], [PG], [SDC]). All protocols proposed so far can be divided
into two classes: time oriented protocols providing bounded termination times even when
failures occur during broadcast, and acknowledgement-based protocols that do not provide
bounded termination times if failures occur during a broadcast. Examples of protocols in
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the first class (other than those given in this paper) are [BSD], [GSTC], [PG], and [SDC].
Examples of acknowledgement-based protocols are [BJ], [Ca], [CM], and [D]. While the
acknowledgement-based protocols have the potential of tolerating performance failures that
can cause network partitioning, diffusion protocols cannot tolerate partition failures. We
have investigated methods for detecting and reconciling inconsistencies caused by partitions
in systems using diffusion based atomic broadcast (e.g. [SSCA]), but such “optimistic”
approaches cannot be used in applications in which there are no natural compensation
actions for the actions taken by some processors while their state was inconsistent with
the state of other processors. The existence of these two classes of protocols pose a serious
dilemma to distributed system designers: either avoid network partitioning by using massive
network redundancy and real-time operating systems to guarantee bounded reaction time
to events in the presence of failures, or accept partitioning as an unavoidable evil (for
example because the operating systems to be used are not hard real-time) and abandon the
requirement that a system should provide bounded reaction times to events when failures
occur.
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