
The Timely Computing Base:
Timely Actions in the Presence of Uncertain Timeliness

Paulo Ver´ıssimo António Casimiro Christof Fetzer
pjv@di.fc.ul.pt casim@di.fc.ul.pt christof@research.att.com

FC/UL∗ FC/UL AT&T †

Abstract

Real-time behavior is specified in compliance withtime-
linessrequirements, which in essence calls for synchronous
system models. However, systems often rely on unpre-
dictable and unreliable infrastructures, that suggest the use
of asynchronous models. Several models have been pro-
posed to address this issue. We propose an architectural
construct that takes a generic approach to the problem of
programming in the presence of uncertain timeliness. We
assume the existence of a component, capable of executing
timely functions, which helps applications with varying de-
grees of synchrony to behave reliably despite the occurrence
of timing failures. We call this component the Timely Com-
puting Base, TCB. This paper describes the TCB architec-
ture and model, and discusses the application programming
interface for accessing the TCB services. The implementa-
tion of the TCB services uses fail-awareness techniques to
increase the coverage of TCB properties.

1. Introduction and Motivation

A large number of the emerging services have response
or mission-criticality requirements, which are best trans-
lated into requirements for fault-tolerance and real-time.
That is, service must be provided on time, either because of
dependability constraints (e.g. air traffic control, telecom-
munication intelligent network architectures), or because
of user-dictated quality-of-service requirements (e.g. net-
work transaction servers, multimedia rendering, synchro-
nized groupware).

Real-time behavior is specified in compliance withtime-
linessrequirements, which in essence calls for synchronous
system models. Under this model there are known bounds
for all relevant timing variables.

∗Faculdade de Ciˆencias da Universidade de Lisboa. Bloco C5, Campo
Grande, 1700 Lisboa - Portugal. Tel. +(351) 21 750 0087 (secretariat);
+(351) 21 750 0103 (direct) (office). Fax +(351) 21 750 0084. Naviga-
tors Home Page: http://www.navigators.di.fc.ul.pt. This work was par-
tially supported by the FCT, through projects Praxis/P/EEI/12160/1998
(MICRA) and Praxis/P/EEI/14187/1998 (DEAR-COTS), and by the EC,
through project IST-1999-11583 (MAFTIA).

†AT&T Labs. 180 Park Ave, Florham-Park, NJ07932, USA.

However, unpredictable and unreliable infrastructures
are not adequate environments for synchronous models,
since it is difficult to enforce timeliness assumptions. Vi-
olation of assumptions might cause incorrect system behav-
ior. In contrast, an asynchronous model is a well-studied
framework, appropriate for these environments. Informally,
’asynchronous’ means that there are no bounds on timing
variables, such as processing speed or communication de-
lay. In summary, fully asynchronous models do not satisfy
our needs, because they do not allow the specification nor
the enforcement of timeliness specifications. On the other
hand, enforcing the properties of fully synchronous mod-
els is very difficult to achieve in infrastructures with poor
baseline timeliness properties. The issue that has to be ad-
dressed is:what system model to use for applications with
synchrony (i.e. real-time) requirements running on environ-
ments with uncertain timeliness?

We propose a framework that describes the problem in a
generic way. We call it theTimely Computing Base (TCB)
model. We assume that systems can rely on services pro-
vided by a synchronous module, the TCB.

The proposed TCB is just a small part of the system and
thus its properties can be implemented with high coverage.
We describe an architecture that takes reliability concerns
into account, enforcing the coverage of TCB synchronism
properties. We show how the TCB services can be imple-
mented and how they can be used by applications.

The paper is organized as follows. In the next section
we present a brief survey of related work. Section 3 pro-
vides the definition of timing failure. The Timely Com-
puting Base Model is introduced in Section 4, after which
we present the services and application programming inter-
face of the TCB, in Section 5. Sections 6 and 7 discuss how
to implement the TCB services and improve their coverage
through self-checking mechanisms. The paper concludes
with some considerations about future work.

2. Related Work

Several previous papers have proposed models for sys-
tems with uncertain temporal behavior. Chandra & Toueg
have studied the minimal strengthening of the time- free
model [14] such that the consensus and atomic broadcast

problems become solvable in the presence of crash failures:
they give a failure detector which will eventually stop sus-
pecting at least one correct process and that will eventually
suspect all crashed processes[6]. The present authors, in
separate teams, have developed models of partial synchrony
that can be seen as precursors of the present work: the
timed-asynchronous model, where the system alternates be-
tween synchronous and asynchronous behavior, and where
hardware clocks provide sufficient synchronism to make de-
cisions such as ’detection of timing failures’ or ’fail-safe
shutdown’[8]; the quasi-synchronous model, where parts
of the system have enough synchronism to perform ’real-
time actions’ with a certain probability[20]. All these works
share a same observation:synchronism or asynchronism are
not homogeneous properties of systems. That is, they vary
with time, and they vary with the part of the system being
considered. However, each model has treated these asym-
metries in its own way: some relied on the evolution of syn-
chronism with time, others with space or with both. Other
works have studied the minimum guarantees for securing
the safety properties of the system, assuming a time-free
liveness perspective [9, 10].

3. Timing Failures

In our opinion, a general model can be devised that en-
compasses the entire spectrum of what is sometimes called
partial synchrony. The common denominator of systems
belonging to that realm is thatthey can exhibit timing fail-
ures, denoted as the violation of timeliness properties. In-
formally, timeliness properties concern the specification of
timed actions, such as:P within T from t0 (T - duration;
t0- instant of reference). Examples of timed actions are
the release of tasks with deadlines, the sending of messages
with delivery delay bounds, and so forth. A full discussion
can be found in [22].

The bounds specified for a timed action may be violated,
in which case a timing failure occurs. We base our approach
on the observability of the termination event of a timed ac-
tion, regardless of where it originated. If a timed action does
not incur in a timing failure, the action istimely.

Timing Failure - Given the execution of a timed actionX
specified to terminate until real time instantte, there
is a timing failure atp, iff the termination event takes
place at a real time instantt

′
e, te < t

′
e ≤ ∞. The

delay,Ld = t
′
e − te, is the lateness degree

This brings us to the central issue of this paper: the
Timely Computing Base (TCB) model and its implementa-
tion and programming interface, as a paradigm for achiev-
ing timely actions in the presence of uncertain timeliness.

4. The Timely Computing Base Model

The architecture of a system with a Timely Computing
Base (TCB) is suggested by Figure 1. The first relevant as-
pect is that the heterogeneity in system synchronism was

cast into the system architecture. There is a generic orpay-
load system, over a global network orpayloadchannel.
This prefigures what is normally ’the system’ in homoge-
neous architectures, that is, where applications run. Addi-
tionally, there is acontrolpart, made of local TCB modules,
interconnected by some form of medium, thecontrolchan-
nel. The medium may be a virtual channel over the available
physical network or an alternative network in its own right.
The second relevant aspect is that the TCB has well-defined
synchronism properties. The TCB provides simple support
services, such as the ability to detect failures, to measure
durations, and to executetimely timed actions. For certain
types of less critical applications, it is not necessary that
all sites have TCBs. However, note that this decreases the
capability of these sites to exhibit guaranteed synchronous
behavior, which may be a nuisance in, e.g., fail-safe or real-
time systems. So, for simplicity, and to show the virtues
of the model, in this paper we assume that every site has a
TCB.

Site C

TCB

P Site A

TCB

Site B

TCB

P P

P

P

P
P

TCB
Global

Network

Figure 1. The TCB Architecture

4.1. Payload System Properties

We assume a system model of participants or processes
(we use both designations interchangeably) which exchange
messages, and may exist in several sites or nodes of the sys-
tem (we use both designations interchangeably). Sites are
interconnected by a communication network. The system
can have any degree of synchronism, that is, if bounds ex-
ist for processing or communication delays, their magnitude
may be uncertain or not known. Local clocks may not ex-
ist or may not have a bounded drift rate. We assume the
system to follow an omissive failure model, that is, com-
ponentsonly have late timing failures— and omission and
crash, since they are subsets of timing failures— no value
failures occur. The system model has uncertain timeli-
ness: bounds may be violated, or may vary during system
life. Still, the system must be dependable with regard to
time: it must be capable of timely executing certain func-
tions or detecting the failure thereof.

4.2. Timely Computing Base Properties

We now define the fault and synchronism model of the
TCB. There is one local Timely Computing Base at every
site. We assume only crash failures for the TCB compo-
nents, i.e. that they are fail-silent. Furthermore, we assume
that the failure of a local TCB module implies the failure of
that site. The TCB subsystem, shown dashed in the figure,
preserves, by construction, the properties of a synchronous
system:

Ps 1 There exists a known upper boundTD1
max

on TCB pro-
cessing delays
Ps 2 There exists a known upper boundTD2

max
on the drift

rate of local TCB clocks

Ps 3 There exists a known upper boundTD3
max

, on the de-
livery delay of messages exchanged between TCB moduleFs

PropertyPs1 refers to the determinism in the execution
time of code elements by the TCB. PropertyPs2 refers to
the existence of a local clock in each TCB whose individual
drift is bounded. This allows measuring local durations, that
is, the interval between two local events. These clocks are
internal to the TCB. PropertyPs3 completes the synchro-
nism properties, referring to the upper bound on the time
to exchange messages among TCB modules. We assume
that the inter-TCB channels provide reliable delivery, in the
sense that no messages addressed to correct TCB modules
are lost. The distributed TCB is the collection of all local
TCBs in a system, together with the inter-TCB communi-
cation channels (see Figure 1). From now on, when there
is no ambiguity, we refer to TCB to mean the ’distributed
TCB’, accessed by processes in a site via the ’local TCB’ in
that site. We assume nothing about how many local TCBs
can fail, since under a fail-silent model this is irrelevant to
the correctness of operation of the distributed TCB.

Note that having a computing base with these properties
opens very interesting perspectives, in terms of turning the
TCB into an oracle for applications (even asynchronous)
to solve their time-related problems. Accomplishing this
raises three orders of problems:

• defining the minimal services— the TCB must be kept
simple;

• defining the payload-to-TCB interface— to allow po-
tentially asynchronous applications to dialogue with a
synchronous component may prove delicate;

• implementing the TCB services with the necessary
coverage.

The minimal services required to satisfy a wide range
of applications with timeliness requirements have essen-
tially to do with: ability to measure distributed durations
with bounded accuracy; complete and accurate detection of
timing failures; ability to execute well-defined functions in
bounded time.

The way applications interact with the TCB is also an-
other important problem. Applications can only be as
timely as allowed by the synchronism of the payload sys-
tem. That is, the TCB does not make applications timelier,

it just detects how timely they are. However, when tim-
ing failures occur, the TCB can help implement contingency
plans, such as timely fail-safe shutdown. Finally, although
the TCB detects timing failures, nothing obliges an applica-
tion to become aware of such failures. In consequence, ap-
plications take advantage of the TCB by construction, typ-
ically using it as a pacemaker, letting it assess (explicitly
or implicitly) the correctness of past steps before proceed-
ing to the next step. The crux of this style of operation is
the application programming interface, which we discuss in
Section 5, together with the TCB services.

Finally, the TCB implementation, which we discuss in
Section 6. One may suggest that we are only hiding in
the TCB the main problem that other systems have: achiev-
ing coverage of synchrony assumptions. We stress the fun-
damental architectural principle that makes the approach
different from previous models— by design, there are: a
larger-scale, more complex, asynchronous at the limit, pay-
load part, where we can run the logic part of our algorithms,
which can even be time-free; and a small-scale, simple, syn-
chronous, control part, where we can run the time-related
part of our algorithms, with the support of the TCB ser-
vices. In consequence, the coverage of the implementation
of synchronous services on the TCB can be made compa-
rably much higher than one would achieve for the same
services implemented on the payload system. In generic
terms, the TCB can be seen as acoverage amplifierfor the
execution of the time-critical functions of any system (the
TCB services). Still, the TCB can still fail with nasty conse-
quences for the safety of applications no matter how small
and simple it may be. In Section 7, we show how to improve
the coverage of the TCB through very simple self-checking
mechanisms.

5. Dependable Programming on the TCB

How can the TCB help design dependable and timely ap-
plications? We begin this section with the presentation of a
simple set of services to be provided by the TCB. Then, we
introduce and explain the application programming inter-
face between payload applications and the TCB. Note that
the interface must ensure correct interaction between the es-
sentially asynchronous world of the payload applications,
and the synchronous world of the TCB.

5.1. Services of the TCB

The TCB provides the following services: timely execu-
tion; duration measurement; timing failure detection. These
services have a distributed scope, although they are pro-
vided to processes via the local TCB instantiations. Any
service may be provided to more than one user in the sys-
tem. For example, failure notification may be given to all
interested users. We define below the properties of the ser-
vices. The properties are defined as seen at the TCB inter-
face. We start with timely execution and duration measure-
ment.

Timely Execution

TCB 1 Eager Execution: Given any functionF with an
execution time bounded by a known constantTXmax, for
any eager execution of the function triggered at real time
tstart, the TCB terminatesF within TXmax from tstart

TCB 2 Deferred Execution: Given any functionF , and
a delay time lower-bounded by a known constantTXmin,
for any deferred execution of the function triggered at real
timetstart, the TCB does not start the execution ofF within
TXmin from tstart

Eager Execution allows the TCB to execute arbitrary
functions deterministically, given a feasibleTXmax. De-
ferred Execution allows the TCB to execute delayed func-
tions, such as those resulting from timeouts (TXmin).

Duration Measurement

TCB 3 There existTDmin, TD2
max

such that given any two
eventses andee occurring in any two nodes, respectively at
real timests andte, ts < te, the TCB measures the duration
betweenes andee asTse, and the error ofTse is bounded
by (te − ts)(1 − TD2

max
) − TDmin ≤ Tse ≤ (te − ts)(1 +

TD2
max

) + TDmin

The measurement error has 1) a fixed componentTDmin

that depends on the measurement method, and 2) a compo-
nent that increases with the length of the measured interval,
i.e., with te − ts. This is because the local clocks drift per-
manently from real-time as per PropertyPs2.

The measurement error can only be bounded a priori if
the applications are such that we can put an upper limit on
the length of the intervals being measured, sayTINT . This
would bound the error by:TINT TD2

max
+ TDmin. When

it is impossible or impractical to determine the maximum
length of intervals, the clocks in the TCB must be exter-
nally synchronized. In that case it is guaranteed that at any
time a TCB clock is at most some knownε apart from real-
time. In systems with external clock synchronization, the
measurement error is bounded by2ε. Note that internal
clock synchronization for the matter would not help here.
Although given propertiesPs1–Ps3 one could implement
global time, explicitly synchronized clocks would just im-
prove some variables quantitatively, but they would not in-
crease the power of the model. To minimize the assump-
tions of the model, we refrain from requiring synchronized
clocks.

Timing Failure Detection
Another crucial service of the TCB is failure detection.

We define aPerfect Timing Failure Detector (pTFD), using
an adaptation of the terminology of Chandra[6].

TCB 4 Timed Strong Completeness: There exists
TTFDmax such that given a timing failure atp in any timed
actionX(p, e, TA, tA), the TCB detects it withinTTFDmax

from te

TCB 5 Timed Strong Accuracy: There existsTTFDmin

such that any timely timed actionX(p, e, TA, tA) that does
not terminate within−TTFDmin from te is considered
timely by the TCB if the local TCB does not crash until
te + TTFDmax

The majority of detectors known arecrashfailure detec-
tors. We introduce timing failure detectors. Timed Strong
Completeness can be understood as follows: “strong” spec-
ifies that any timing failure is perceived by all correct pro-
cesses; “timed” specifies that the failure is perceived at most
within TTFDmax of its occurrence. In essence, it speci-
fies the detection latency of the pTFD. Timed Strong Ac-
curacy can also be understood under the same perspective:
“strong” means that no timely action is wrongly detected
as a timing failure; but “timed” qualifies what is meant by
’timely’, by requiring the action to occur not later than a
set-up intervalTTFDmin before the detection thresholdte.
In essence, it specifies the detection accuracy of the pTFD.

5.2. Application Programming Interface

Given the baseline asynchronism of a payload applica-
tion, there are no guarantees about the actual time of invo-
cation of a TCB service by the former. In fact, the latency
of service invocation may not be bounded. The same can be
said of the actual time that responses or notifications from
the TCB arrive at the application buffer. When consider-
ing the interface definition this is perhaps the most impor-
tant problem. The interface presented in this section makes
the bridge between a synchronous environment and a po-
tentially asynchronous one.

Duration Measurement

The most basic function we have to provide is obviously
one that allows applications to read a clock:

timestamp ← getTimestamp ()

The function returns a timestamp generated inside the
TCB. Since the application runs in the payload part of the
system, when it uses a single timestamp there are no guar-
antees about how accurately this timestamp reflects the cur-
rent time. However, a difference between two timestamps
represents an upper bound for a time interval, if the inter-
val took place between the two timestamps. For instance,
just by using this function an application is able to obtain
an upper bound on the time it has needed to execute a com-
putation step: it would suffice to request two timestamps,
one before the execution and another after it. If this exe-
cution is a timed action, then the knowledge of this upper
bound is also sufficient to detect a timing failure, should it
occur. The TCB recognizes the importance of measuring
local durations and explicitly provides interface functions
to do this:

tag ← startMeasurement (start ev)
end ev,procdelay ← stopMeasurement (tag)

When thestartMeasurement function is called, the
application has to provide a timestamp to mark the start

event. It gets a requesttag . When it wants to mark the end
event, and obtain the measured duration, it callsstopMea-
surement for tag . The service gets a timestamp for the
end event, and the difference between the two timestamps
yields the duration. A very simple example of the usage
of these functions is depicted in Figure 2a. Here, an appli-
cation has to execute some computation in a bounded time
interval (Tspec), on a best-effort basis. If this is achieved,
the computation results can be accepted. Otherwise they are
rejected. Possibly there will be subsequent (adjacent) com-
putations also with timeliness requirements. In that case,
the end event of a computation is used as the start event of
the next one in order to cancel the time spent to verify the
execution timeliness (shown in the far right of the figure,
with startMeasurement(B)).

Timely Execution

The timely execution service allows the construction of ap-
plications where strict timeliness guarantees are sporadi-
cally required. In essence, timely execution means the pos-
sibility of guaranteeing that something will be executed be-
fore a deadline (eager), or that something will not be exe-
cuted before a liveline[21] (deferred). This maps onto the
following interface function:

end ev ←
startExec (start ev,delay,t exec max,func)

When this is called,func will be executed by the TCB.
The specification of an execution deadline is done through
thestart ev andt exec max parameters. The former is a
timestamp that marks a reference point from where the ex-
ecution time should be measured. The latter, a duration,
indicates the desired maximum termination time counted
from start ev . On return, theend ev parameter contains
a timestamp that marks the termination instant. Thedelay
parameter is the deferral term, counted fromstart ev . If
it is zero, it is a pure eager execution function. The feasibil-
ity of timely execution of each function must be analyzed,
for instance, through the calculation of the worst-case exe-
cution time (WCET) and schedulability analysis (see Sec-
tion 6).

Not all eager execution requests are feasible. Depending
on the specified parameters and on the instant the request
is processed, the TCB may not be able to execute it and, in
that case, an error status reporting this fact will be returned
and made available in the interface.

The example of figure 2b illustrates the utility of the ea-
ger execution service. Suppose the application had to exe-
cute the computation of the Figure 2a with such strict time-
liness requirements (instead of on a best-effort basis) that
it would delegate it to the timely execution service of the
TCB. The computation had a WCET and was short enough
to be schedulable by the TCB. Then, instead of issuing
a startMeasurement request, the application would call
startExec with the appropriatefunc . t exec max would
beTspec. The request would always succeed, unless the de-
lay between thegetTimestamp call and the execution start

was so large that the execution was no longer schedulable.
The application would just need to check thestartExec
return status.

Timing Failure Detection

We now present the API of the timing failure detection
(TFD) service and give two short examples that illustrate
how it should be used to solve concrete problems.

As introduced in section 5.1, there is logically only one
TFD service, with the propertiesTCB4 andTCB5. How-
ever, in practice it is wise to make a distinction between the
detection of timing failures in local timed actions and in dis-
tributed timed actions. This distinction is important in terms
of interface, because in one case the failures are only impor-
tant to one process (the one performing the action) while in
the other they are important to many (all those affected by
the distributed action). Therefore, the API described here
has two sets of functions: for local and for distributed tim-
ing failure detection. The following two functions provide
for all that is necessary concerning local timing failure de-
tection:

tag ← startLocal (start ev,spec,handler)
end ev,procdelay,faulty ← endLocal (tag)

With startLocal an application requests the service to
observe the timeliness of some execution. The TFD service
takesstart ev as the start instant of the observed execu-
tion, andspec as the specified execution duration. Each
request receives a uniquetag so that it is possible to han-
dle several concurrent requests. Since the service has to
timely detect timing failures, it does not accept requests to
observe executions that have already failed. The timely re-
action to a timing failure can be delegated on the TCB, us-
ing thehandler parameter. This parameter identifies one
of the built-in functions of the TCB, executed as soon as the
failure is detected (e.g., an orderly fail-safe shutdown pro-
cedure). Note that there would be no guarantees about the
timeliness of the reaction if it were done in the payload part
of the system.

When the execution finishes the application has to call
the end local function, with the identifiertag , in order
to disable the detection for this action and receive informa-
tion about the execution: when it finished, its duration and
whether it was timely.

The relevance of this service and the importance of
timely reaction to failures can be better explained with the
following example. Consider a distributed system com-
posed of a controller, a sensor and an actuator processes
(Figure 3a). The system has a TCB and the payload part is
asynchronous. Since processes are in different nodes, they
can only communicate by message passing. The sensor pro-
cess periodically reads a temperature sensor and sends the
value to the controller process. When the controller receives
a new reading, it compares it with the set point, and com-
putes the new value to send to the burner, in order to keep
the temperature within the allowed error interval. It then
sends a command to the actuator process. The system has
three classes of critical requirements: (a) the temperature

tag startMeasurement (A)

A getTimestamp ()

B; (B-A) stopMeasurement (tag)

Execution of
timed computation

Verification

tA B

If (B-A > Tspec)
reject results

and abort

Start

TCB

startMeasurement (B)

A2 startExec (A,Delay,Tspec,func)

A getTimestamp ()

tA B

Start

TCB

startMeasurement (A2)

Execution of
timed computation

Execution delay
uncertainty

func

Guaranteed timely
execution: (A2-A < Tspec)
Verification not needed

A2A1

Delay

Duration Measurement Timely Execution

Figure 2. Using TCB services: (a) Duration Measurement; (b) Timely Execution

must remain within±ε of a set point; (b) the control loop
must be executed frequently enough (the controller must
receive a valid temperature reading everyD2 time units);
(c) once the sensor value read, the actuation value must be
computed and sent fast enough to the actuator to achieve
accurate control. Let us neglect, for simplicity, the delay in
sending the temperature reading from sensor to controller,
and consider that the actuation must be acknowledged in
D1 time units after the reading has been received. A solu-
tion for detecting delayed temperature readings is presented
in [13].

Requirement (a) can be ensured by the application logic
residing in the payload part. Requirements (b) and (c) can
be controlled by the TCB on behalf of the application.

System safety is compromised ifD1 or D2 are violated.
In this case the system has to switch to a safe state. We as-
sume the controller node to have full control of the heating
device power switch and thus able to turn it off, putting the
system in a safe state.

Since the system is asynchronous but has timeliness re-
quirements, it has to rely on the TCB. In figure 3b it is pos-
sible to observe how the TFD service is used to detect local
timing failures. The controller receives a new temperature
reading at instantt1 (measured by the TCB). From this mo-
ment on the boundsD1 andD2 must be checked, and so
it is necessary to invoke thestartLocal function twice.
Note the callendLocal (id0) after the other two: the call
disables detection for the previous period (D2 specification,
not shown), since a new message arrived. The controller
then sends a command to the actuator and, when it receives
the acknowledgment,endLocal is called again, this time
to terminate the execution ofid1. Normally, neitherD1 nor
D2 expire. If the computation takes so long thatD1 ex-
pires, or if a message is not received from the sensor before
D2 expires (as depicted), the handler is immediately exe-
cuted by the TCB. The handler function passed as argument
can be a very simple function that is executed by the TCB,
issuing a command to the actuator that turns off the heating
device.

A distributed execution requires at least one message to
be sent between two processes. Thus, the action to be ob-
served for timing failure detection, in addition to local ac-
tions, is message delivery. Since a delivery delay is bounded

by a send and a receive event, the TFD service just has to
intercept message transmissions. The described interface
provides not only the required functionality but also allows
message interceptions to be done in a very simple and intu-
itive manner. In the following functions we only present the
TFD service-specific parameters (we omit normal parame-
ters such as addresses, etc.).

tag ← send (send ev,spec,handler)
tag,deliv ev ← receive ()

The meaning of thesend function parameters is simi-
lar to the ones of thestartLocal function. We assume
it is possible to multicast a message to a set of destination
processes using thissend function. Thereceive function
blocks the application until a message is received. On re-
turn, the function provides a messagetag and a timestamp
for the delivery event. The information relative to timing
failures is queried by means of another function:

info 1 · · · info n ← waitInfo (tag)
info = (delivdelay,faulty)

WhenwaitInfo is called, the application will block un-
til all information is available, but never more than the max-
imum timing failure detection latency (TTFDmax). wait-
Info returns the delivery delay and the failure result for
each receiver process of messagetag .

Using this service in the example of figure 3, we may
now extend the response time control (D1) back to the sen-
sor reading moment, to enforce the freshness of sensor read-
ings. In order to achieve that, the sensor message would be
sent using this interface, by specifying some maximum de-
livery delay. Upon message reception thewaitInfo func-
tion could be used to detect a timing failure. There are other
examples of the utility of timing failure detection in appli-
cation construction [1, 12, 11].

6. Implementing TCB Services

This section provides the basic principles and guidelines
to implement the TCB services. We show that despite the
importance of the services, their construction can be quite
simple. Likewise, their overhead on system execution is
kept at a low level.

Controller

Sensor

Actuator

Log Values &
Compute decisionTemperature

Command Acknowledgment

D1
D2

Controller

Sensor

Actuator

D1
D2

TCBController

id1 startLocal (t1,D1,handler,)

id2 startLocal (t1,D2,handler)
endLocal (id0)

t1 t

endLocal (id1)
handler

Fail-safe
procedures

Figure 3. Using Local Timing Failure Detection: (a) Example Scenario and Timing Specifications; (b)
Detecting and Handling Timing Failures with the TCB

6.1. Timely Execution Service

There are two essential functions that must be provided
by the timely execution service, in order to enforce prop-
ertiesTCB1 andTCB2 introduced in Section 5.1: eager
execution and deferred execution. They can be combined,
as found in some real-time schedulers[4].

By definition, the timely execution service is designed
for the execution of short-lasting time-critical application
functions. These functions should not reside in the appli-
cation address space. Functions have guaranteed behavior
when directly called by the TCB (for instance, they can not
be swapped out, otherwise it would be impossible to com-
pute execution times). Inside the TCB, we have to assume
that a number of measures have been taken a priori, such
as the calculation of the worst-case execution time and the
schedulability analysis of the critical albeit simple set of
functions submitted to the TCB by each application. There
is a body of research on the schedulability of real-time op-
erating systems and networks that contributes to the subject
of building the system support of a TCB[4, 15, 16, 17]. A
more detailed discussion about the engineering principles
behind the construction of a TCB can be found in [22].

Timely function execution can be explicitly triggered by
an application, but can also beimplicitly triggeredas a re-
sponse to some failure detected by the timing failure detec-
tion service. The former method is intended for applications
where specific actions have to be executed in a bounded
amount of time. The latter is mostly useful for the im-
plementation of fail-safe orderly shutdown procedures that
must be timely executed upon the occurrence of irrecover-
able failures.

6.2. Duration Measurement Service

The local TCB module is trusted to provide accurate
readings of time intervals, enforcing propertyTCB3 (see
Section 5.1). Thus, when applications in the payload part
have to determine durations of executions or transmissions,
they delegate this task on the TCB, with the interface dis-
cussed in Section 5.

The availability of a local clock with bounded drift rate
is sufficient for the measurement oflocal durations. The
service has to know which are the two events that bound the
time interval, so that it can determine their timestamps. The
difference between the two timestamps yields the measured
duration. Another way for applications to keep track of their
timeliness is by using the timing failure detection service in-
terface. This has the advantage of detecting whether a dura-
tion threshold is exceeded, besides measuring the duration.

Measurement ofdistributed durationsis done differ-
ently. Given that we do not assume the existence of syn-
chronized clocks, the methodology for measuring a dis-
tributed duration, that is, for relating timestamps of events
in different sites, relies on the well-known round-trip dura-
tion measurement technique[7], which is for the matter an
implicit clock synchronization action. Distributed durations
are often associated to the measurement of message deliv-
ery delays. A send and a deliver event bound the measured
duration. This technique produces an error associated to
each measurement whose value is dictated by several fac-
tors, including the separation between the two events[13],
as discussed in Section 5.1.

6.3. Timing Failure Detection Service

To construct the timing failure detection (TFD) service it
is necessary to employ more elaborate algorithms than for
the previously described services. The problem we have to
solve is how to build a timing failure detector which satis-
fies propertiesTCB4 andTCB5 (see section 5.1). Timing
failure detection of local actions is dealt with at the end of
this section. Timing failure detection of distributed actions
requires a protocol to be executed by all TFD modules on
top of the control channel. Recall that we are talking about
actionsin the payload system.

For lack of space, in this paper we only provide the
intuition behind this protocol. However, the protocol is
available in a technical report[5]. The protocol executes
in rounds, during which each TFD instance broadcasts all
relevant information for the detection of timing failures.
Distributed common knowledge of failure occurrences is

achieved by disseminating information about locally de-
tected failures. When an application sends a message, the
TFD service uses the distributed duration measurement ser-
vice to measure its delivery delay. Therefore, TFD instances
in all destination sites will collect the measured value. The
error associated to this measurement yields the value of
TTFDmin specified in propertyTCB5 (see [5] for a proof).
The TCB of the sender site logs the timed action specifica-
tion of the sent message for later use. Each send request is
tagged with a unique identifier, known to the TFD service
and to the application. The information concerning each
sent message (identifier and bound specification) is dissem-
inated to the relevant sites during the next round.

On each receiver site, the TFD service will eventually
learn the delivery delay and the specified bound of each
received payload message. The bound on the timing fail-
ure detection latency, expressed byTTFDmax in property
TCB4, is enforced by timely executing a decision function
after a given amount of time.

Applications that want to perform a timed action provide
a timestamp for the start event (the measurement may start
before the action actually starts, but that only depends on the
application’s own timeliness). The TFD service performs an
admission test before accepting to control the action. This
test is required to guarantee that timely detection of failure
is achievable. In certain conditions (in the limit, if the start
timestamp is already older thantnow − Tduration) timing
failure detection is infeasible and so the request fails. For
the application, this equals a timing failure.

Local actions are a subset of distributed actions, and they
can be checked locally. To detect timing failures of local ac-
tions it is necessary to pre-register those actions, specifying
the duration and getting a timestamp for the start instant.
Again, there is an admission test and the request may be
denied. The TFD service uses the timestamp, the current
time and the specified duration to set a timer that counts the
remaining time interval. Thereafter, either the TFD service
receives an indication that the action has ended or the timer
expires. The TFD service delivers the result, success in the
former case, failure in the latter.

As we mentioned above, it is possible to trigger the eager
execution of some function when a failure is detected. This
is the way to guarantee timely reaction to failures and thus
maintain correctness of the system (even when that means
the orderly execution of a shutdown procedure).

7. Enforcing Synchronism Properties of the
TCB

The TCBcanbe built in any way that enforces the TCB
synchronism propertiesPs1, Ps3 andPs2 stated in Sec-
tion 4. The TCBshouldbe built in a way that secures the
above-mentioned properties with〈bound,coverage〉 pairs
that are commensurate with the time-scales and criticality
of the application. In consequence, the local TCB can ei-
ther be a special hardware module, or an auxiliary firmware-
based microcomputer board, or a software-based kernel on

a plain desktop machine such as a PC or workstation. Like-
wise, the distributed TCB assumes the existence of a timely
inter-TCB communication channel. This channel can as-
sume several forms that exhibit different〈bound,coverage〉
values for the message delivery delay (TD3

max
). It may or

not be based on a physically different network from the one
supporting thepayloadchannel. Virtual channels with pre-
dictable timing characteristics coexisting with essentially
asynchronous channels are feasible in some of the current
networks, even in Internet [19]. Observe that the bandwidth
required of the control channel is much smaller than that
of the payload channel: local TCBs only exchange control
messages. In a number of local area networks, switched net-
works, and even wider area networks, it is possible to give
guarantees for high priority messages[18, 3, 2]. In more de-
manding scenarios, one may resort to alternative networks
(real-time LAN, ISDN connection, GSM Short Message
Service, Low Earth Orbit satellite communication).

In fact, a TCB can be built out of normal hardware, and
this is the scenario that we consider here, as the most ad-
equate to show the feasibility of the model. As shown in
Figure 4, the TCB is set-up on a real-time kernel that sits
directly on the hardware, so that it controls all time-critical
resources (e.g., clock, scheduler, network interface). The
regular operating system (e.g., Linux) is layered on top of
the kernel. The placement of the TCB between the O.S. and
the resources allows the TCB to monitor application calls
and protect the kernel activity with regard to timeliness. The
TCB offers a TCB- specific application programming inter-
face (API)— presented in Section 5— which is provided
to the payload applications together with the regular O.S.
and system libraries interface. The API offers access to the
timely execution, duration measurement and timing failure
detection services. Note however, that applications not us-
ing the TCB need not be aware of the existence of the latter.

Payload
Application

Payload
Application

APITCB Specific Regular

TFD

System HW Resources
(Clock, Processor, Memory, etc.)

Fail-Silence Switch

Networking Infrastructure

Regular
OS

DUR
EXEC

Fail-awareness
Mechanisms

TCB

Figure 4. Block Diagram of a System with TCB

We are assuming the TCB to be fully synchronous. We
are considering that the macroscopic services (timely exe-

cution, duration measurement and timing failure detection)
always execute correctly. As such, we are also consider-
ing that the microscopic operations on the resources— code
module executions and message transmissions— on which
their correctness depends, are perfectly timely, as per thePs
properties. These are the foundations of a hard real-time de-
vice, which enforces the desired timeliness properties of the
TCB services, namely by testing schedulability and actually
scheduling computations and communication adequately.

However, there is always a risk that deadlines may be
missed, mainly if sporadic or event-triggered computations
take place [4]. We implement a few measures to amplify
the coverage of thePs properties, which consist in trans-
forming unexpected timing failures into crash failures: we
enforce fail-silence upon the first timing failure of a unit.
We can afford to do that because these failures will be rare
events, which could however compromise the safety of the
system. Note that weare notallowing timing failures inside
the TCB, so these are not tolerance measures, but safety
measures: with this transformation, we bring some unex-
pected failures back into the assumed failure mode universe
(crash). Note that there may be other, more sophisticated
approaches to improve coverage of a TCB, and there may be
distributed algorithmic approaches to a fault-tolerant TCB.
Again, we wish to persuade the reader that a baseline im-
plementation of this model can lead to very robust systems
with simple mechanisms. Here is the approach and its vali-
dation:

• we only attempt to deal with unexpected failures in
time (not in the value) domain;

• we assume propertyPs2 (clocks) to be always valid;
we further assume that the same reliance can be put on
clock-based operations in general, such as reading the
local clock, and have the kernel set up alarms (watch-
dogs) that trip at a given time on the local clock;

• as such, we are concerned with the coverage of the
more fragile properties:Ps1 (processing) andPs3
(communication);

• we monitor the termination instants of local computa-
tions submitted to the kernel and compare them with
the respective deadlines;

• we monitor the delivery instants of messages submit-
ted to the kernel for transmission and compare them
with the respective deadlines;

• should any deadline be missed, we enforce fail-silence
of the unit observing the failure.

As depicted in Figure 4, the lower interface of the
TCB with the system resources is under the surveillance of
the monitoring mechanisms, based on fail-awareness tech-
niques, i.e., techniques that allow the component to realize
it has suffered a timing failure. As suggested in the figure,
these mechanisms are hooked to afail-silence switch, an
abstraction whose implementation has the effect of imme-
diately halting the whole site.

Improving the Coverage of Timely Processing

To improve the coverage ofPs1 we use the local clock to
measure local kernel execution durations. Recall that we
assume that we can place more reliance on the timeliness of
an alarm (watchdog), than on task scheduling. The kernel
logs the start timestamp (Ts) of a time-critical computation
with maximum termination timeTA, and sets an alarm for
the desired deadline (tdead = Ts+TA). Either the computa-
tion ends in time, that is, until the deadline (Te ≤ tdead) and
the alarm does not trip, or else the alarm trips and causes the
immediate activation of the fail-silence switch, crashing the
whole site.

Improving the Coverage of Timely Communication

A similar principle can be used to improve the coverage of
the bounded message delivery delay property (Ps3). Mes-
sage delivery delays are measured and compared to previ-
ously specified bounds. Round-trip duration measurement
is used, since we are in the presence of a distributed dura-
tion. From a structural point of view, the idea is to apply the
fail-awareness concept[12] to build a fail-aware broadcast
as the basic kernel communication primitive to serve the
TCB control channel. If a message is not delivered on time,
an exception is raised that causes the immediate activation
of the fail-silence switch, crashing the whole site.

Note that we cannot be as aggressive as with processing:
we can only act on delivery of the message and not at the
deadline instant. If we acted at the deadline point, we might
be acting on either a crash or a timing failure. Whatever
we did might not be appropriate in the case of crash, since
we would be interfering with an assumed failure mode. For
example, since we would crash a TCB that failed to receive
a message until the maximum delivery time, the crash of a
sending TCB (a normal event as per the assumptions) would
cause all recipient TCBs to commit suicide, crashing the
entire system. This would be inappropriate, since the crash
of a TCB causes no safety problems, so we only crash TCBs
after they receive a late message. On the other hand, with
our technique, if a sending TCB or the network would cause
all of the TCBs to receive a late message, then all the TCBs
would crash as well. However, from a safety viewpoint this
would be appropriate, in order to avoid contamination.

8. Conclusion

In essence, our paper is an attempt to provide a unifying
solution for a problem that has been addressed by several
research teams: how to reconcile the need for synchrony,
with the temporal uncertainty of the environment. Such
systems are characterized by having timeliness assumptions
that may be violated, producing timing failures in compo-
nents. An analysis of the effect of timing failures on appli-
cation correctness shows that besides the obvious effect of
delay, there are undesirable side effects: a long-term one, of
decreased coverage of assumptions; and an instantaneous

one, of contamination of other properties. Even when de-
lays are allowed (e.g. soft real-time systems), any of these
effects can lead to undesirable behavior of a system. Deal-
ing with them requires some capability of acting timely at
critical moments.

We have proposed an architectural construct that we have
called Timely Computing Base (TCB), capable of execut-
ing timely functions, however asynchronous the rest of the
system may be. Special hardware is not mandatory to
achieve synchrony of the TCB. The quality of that syn-
chrony (speed, precision) is the only thing that may be im-
proved by special components. By implementing only a
small and simple part of the system, the TCB can affordably
implement stronger properties. It acts in fact as a coverage
amplifier, for the execution of certain functions where high
assurance is desired.

We introduced a computational model based on the TCB,
generic enough to support applications (algorithms, ser-
vices, etc.) based on any synchrony of the payload system,
from asynchronous to synchronous. From a system design
viewpoint, this is the same as saying from non real-time to
hard real-time. Namely: we proposed a few services for
the TCB to fulfill its role— timely execution, duration mea-
surement, timing failure detection; and we devised an ap-
plication programming interface allowing to propagate the
notion of time from the TCB to payload applications. Fi-
nally, we discussed the implementation of the TCB services
and the enforcement of the synchronism properties of the
TCB platform, by using fail-awareness techniques.

We are currently developing an experimental prototype
of a TCB. The infrastructure is composed of normal Pen-
tium PCs, running Real-Time Linux, and communicating
over a LAN. We expect to be able to publish the results of
our experiments in the near future.

References

[1] C. Almeida and P. Ver´ıssimo. Timing failure detection and
real-time group communication inquasi-synchronoussys-
tems. InProceedings of the 8th Euromicro Workshop on
Real-Time Systems, L’Aquila, Italy, June 1996.

[2] R. Braden, Ed., L. Zhang, S. Berson, S. Herzog, and
S. Jamin. RFC 2205: Resource ReSerVation Protocol
(RSVP) — version 1 functional specification, Sept. 1997.
Status: PROPOSED STANDARD.

[3] R. Brand. Iso-Ethernet: Bridging the gap from WAN to
LAN. Data Communications, July 1995.

[4] A. Burns and A. Wellings.Real-Time Systems and Program-
ming Languages. International Computer Science Series.
Addison-Wesley publishers Ltd., 1996.

[5] A. Casimiro and P. Ver´ıssimo. Timing failure detection with
a timely computing base. InThird European Research Sem-
inar on Advances in Distributed Systems, Madeira Island,
Portugal, May 1999. Available as Tech. Report, Department
of Informatics, University of Lisboa, DI/FCUL TR-99-8.

[6] T. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems.Journal of the ACM, 43(2):225–
267, Mar. 1996.

[7] F. Cristian. Probabilistic clock synchronization.Distributed
Computing, 3(3):146–158, 1989.

[8] F. Cristian and C. Fetzer. The timed asynchronous dis-
tributed system model.IEEE Transactions on Parallel and
Distributed Systems, pages 642–657, Jun 1999.

[9] D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal
synchronization needed for distributed consensus.Journal
of the ACM, 34(1):77–97, Jan. 1987.

[10] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in
the presence of partial synchrony.Journal of the ACM,
35(2):288–323, Apr. 1988.

[11] D. Essam´e, J. Arlat, and D. Powell. PADRE: A Protocol
for Asymmetric Duplex REdundancy. InProceedings of the
Seventh IFIP International Working Conference on Depend-
able Computing for Critical Applications, pages 213–232,
San Jose, California, USA, Jan. 1999.

[12] C. Fetzer and F. Cristian. Fail-awareness: An approach to
construct fail-safe applications. InProceedings of the 27th
Annual International Fault-Tolerant Computing Symposium,
pages 282–291, Seattle, Washington, USA, June 1997. IEEE
Computer Society Press.

[13] C. Fetzer and F. Cristian. A fail-aware datagram service.IEE
Proceedings - Software Engineering, pages 58–74, April
1999.

[14] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty process.Journal of
the ACM, 32(2):374–382, Apr. 1985.

[15] F. Jahanian. Fault tolerance in embedded real-time systems.
LNCS, 774:237–249, 1994.

[16] E. D. Jensen and J. D. Northcutt. Alpha: A non-proprietary
os for large, complex, distributed real-time systems. In
Proceedings of the IEEE Workshop on Experimental Dis-
tributed Systems, pages 35–41, Huntsville, Alabama, USA,
Oct. 1990. IEEE Computer Society Press.

[17] H. Kopetz, R. Zainlinger, G. Fohler, H. Kantz, P. Puschner,
and W. Schutz. An engineering approach towards hard real-
time system design.LNCS, 550:166–188, 1991.

[18] M. d. Prycker. Asynchronous Transfer Mode: Solution For
Broadband ISDN. Prentice-Hall, third edition edition, 1995.

[19] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson.
RTP: A transport protocol for real-time applications. Pro-
posed Standard RFC 1889, Audio-Video Transport Working
Group, Jan. 1996.

[20] P. Verı́ssimo and C. Almeida. Quasi-synchronism: a step
away from the traditional fault-tolerant real-time system
models. Bulletin of the Technical Committee on Operating
Systems and Application Environments (TCOS), 7(4):35–39,
Winter 1995.

[21] P. Verı́ssimo, P. Barrett, P. Bond, A. Hilborne, L. Rodrigues,
and D. Seaton. The Extra Performance Architecture (XPA).
In D. Powell, editor,Delta-4 - A Generic Architecture for
Dependable Distributed Computing, ESPRIT Research Re-
ports, pages 211–266. Springer Verlag, Nov. 1991.

[22] P. Verı́ssimo and A. Casimiro. The timely computing base.
DI/FCUL TR 99–2, Department of Computer Science, Uni-
versity of Lisboa, Apr. 1999. Short version appeared in the
Digest of Fast Abstracts, The 29th IEEE Intl. Symposium on
Fault-Tolerant Computing, Madison, USA, June 1999.

