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Abstract

Real-time behavior is materialized by timeliness specifications, which in essence
call for synchronous system models. However, systems many often rely on large-
scale, unpredictable and unreliable infrastructures, that suggest the use of asyn-
chronous models. Several models in between have addressed these antagonistic aims,
each in its own way. We propose an architectural construct that addresses the prob-
lem in a generic way. We assume the existence of a component that is capable of ex-
ecuting timely functions, however asynchronous the rest of the system may be. This
component can be used by other components to execute timely services. There is a
certain analogy to the trusted computing base principle used in security. We call it
the Timely Computing Base, TCB. In this paper, we show that a TCB can be used to
build dependable and timely applications exhibiting varying degrees of timing fault
tolerance, under several synchrony models.

1 Introduction and Motivation

The growth of networked and distributed systems in several application domains has
been explosive in the past few years. This has changed the way we reason about dis-
tributed systems in many ways. A large number of the emerging services have interac-
tivity or mission-criticality requirements, which are best translated into requirements for
fault-tolerance and real-time. That is, service must be provided on time, either because of
dependability constraints (e.g. air traffic control, telecommunication intelligent network
architectures), or because of user-dictated quality-of-service requirements (e.g. network
transaction servers, multimedia rendering, synchronized groupware).

This is a real-time systems behavior. Formally, it is materialized by timeliness specifi-
cations, which in essence call for a synchronous system model. Under this model there are
known bounds for the above-mentioned timing variables, and the mechanisms to meet
reliability and timeliness requirements are reasonably well understood, both in terms of
distributed systems theory and in real-time systems design principles. As examples, we
mention reliable real-time communication, real-time scheduling and real-time distributed
replication management.
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However, large-scale, unpredictable and unreliable infrastructures are not adequate
environments for synchronous models, since it is difficult to enforce timeliness assump-
tions. Violation of assumptions causes incorrect system behavior. In alternative, the
asynchronous model is a well-studied framework, appropriate for these environments.
’Asynchronous’ means, in order to be simple at this point, that there are no bounds on
essential timing variables, such as processing speed or communication delay. This model
has served a number of applications where uncertainty about the provision of service was
tolerated.

In consequence, this status quo leaves us with a problem: fully asynchronous mod-
els do not satisfy our needs, because they do not allow timeliness specifications; on the
other hand, correct operation under fully synchronous models is very difficult to achieve
(if at all possible) in large-scale infrastructures, since they have poor baseline timeliness
properties. One issue of definitive importance is the following: what system model to use
for applications with synchrony (i.e. real-time) requirements running on environments with un-
certain timeliness?

We propose a framework that describes the problem in a generic way. We call it the
Timely Computing Base (TCB) model. We assume that systems, however asynchronous
they may be, and whatever their scale, can rely on services provided by a special module,
the TCB, which is timely, that is, synchronous. Furthermore, if the system is distributed,
the TCB provides such services in a distributed way.

Classically, a timing failure is treated as a single phenomenon. However, we show
that in fact there are three mechanisms by which timing failures impact a system: de-
creased coverage; unexpected delay; contamination. The innovative aspect of this failure
analysis is that one can fine-tune the treatment of timing failures and build applications
with varying degrees of dependability and timeliness on systems with uncertain tempo-
ral behavior.

The TCB concept has a certain analogy with the approach described by the same
acronym in security[2], the ’trusted computing base’, a platform that can execute secure
functions, even if immersed in an insecure system, subjected to intentional faults caused
by intruders. The analogy is obvious: the timely computing base can, to a given extent,
ensure correct and timely operation of applications running on environments with un-
timely behavior.

The paper is organized as follows. In the next section we present a brief survey of
related work. In section 3 we introduce the system model and failure mode assumptions.
In Sections 4 and 5 we introduce the Timely Computing Base Model, and define the prop-
erties of the TCB services. Then, in Section 6, we describe the dependability problems
introduced by uncertain timeliness in applications and define desirable properties that
applications should enjoy in the presence of timing failures. We prove that these proper-
ties can be secured when programming with a TCB. Finally, in Section 7 we explain how
to use the TCB to achieve varying degrees of dependability vis-a-vis timing faults, from
fail-safe halting to timing error masking. The paper concludes with some considerations
about future work.
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2 Related Work

This problem is extremely relevant for large-scale real-time systems, since reconciling
timeliness expectations with the uncertainty of the environment is known to be a complex
task. The debate should no longer be about hard or soft real-time, but on correct real-time,
for given expectations about synchrony of the system vs. that of the environment.

The problem has been addressed in several previous works, in a number of differ-
ent ways, which in fact motivated the idea behind this paper: the search of a generic
paradigm for systems with uncertain temporal behavior. Chandra & Toueg have stud-
ied the minimal restrictions to asynchronism of a system that would let consensus or
atomic broadcast be solvable in the presence of failures, by giving a failure detector
which, should the system be ’synchronous’ for a long enough period, would be able to
terminate[13]. Cristian & Fetzer have devised the timed-asynchronous model, where the
system alternates between synchronous and asynchronous behavior, and where parts of
the system have just enough synchronism to make decisions such as ’detection of tim-
ing failures’ or ’fail-safe shutdown’[15]. We have devised the quasi-synchronous model
where parts of the system have enough synchronism to perform ’real-time actions’ with
a certain probability[36].

These works share a same observation: synchronism or asynchronism are not homo-
geneous properties of systems. That is, they vary with time, and they vary with the part
of the system being considered. However, each model has treated these asymmetries in
its own way: some relied on the evolution of synchronism with time, others with space
or with both. Other two works have dealt with systems that are not completely asyn-
chronous, i.e. exhibiting partial synchrony [17, 18]. They assumed a time-free liveness
perspective, while studying the minimum guarantees for securing the safety properties
of the system.

3 Failure Model

We assume a system model of participants or processes (we use both designations in-
terchangeably) which exchange messages, and may exist in several sites or nodes of the
system. Sites are interconnected by a communication network. The system can have any
degree of synchronism, that is, if bounds exist for processing or communication delays,
their magnitude may be uncertain or not known. Local clocks may not exist or may not
have a bounded rate of drift towards real time. We assume the system to follow an omis-
sive failure model, that is, components only have timing failures— and of course, omission
and crash, since they are subsets of timing failures— and no value failures occur. More
precisely, they only have late timing failures. In order to prove our viewpoint about the
effect of timing failures, we need to establish three things, and we will try to be as simple
as possible:

• high-level system properties— which allow us to express functional issues, such as
the type of agreement, or a message delivery delay bound;

• timed actions— which allow us to express the runtime behavior of the system in
terms of time, and detect timing failures in a complete and accurate way;

• the relationship between high-level properties and timed actions— here, rather than
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establishing an elaborate calculus of time, we simply wish to make the point that
some properties imply the definition of some timed actions, since the way this rela-
tion develops is crucial for application correctness.

High-Level Properties

We assume that a system is specified in terms of high-level safety and liveness properties.
A liveness property specifies that a predicate P will be true. A safety property specifies
that a predicate P will always be true[30]. Informally, safety properties specify that wrong
events never take place, whereas liveness properties specify that good events eventually
take place. A particular class of safety property is a timeliness property, which specifies that
a predicate P will be true at infinitely many instants of real time. Such a predicate is related
with doing timely executions, in bounded time, and there are a number of informal ways
of specifying such a behavior: “task T must execute with a period of Tp”; “any message is
delivered within a delay Td”; “any transaction must complete within Tt from the start”.
The examples we have just given can be specified by means of time operators or time-
bounded versions of temporal logic operators[27]. An appropriate time operator to define
timeliness properties in this context is based on real time durations: P within T from t0
(real time instant of reference). The within/from operator defines a duration, the interval
[t0, t0+T ] or [t0−T, t0], depending on whether T is positive or negative, such that predicate
P will become true at some point of the interval. A negative value of the duration is
useful to define a set-up interval, before the reference instant. On the other hand, the
negation of a formula with the within/from operator is useful to enforce a “not before”
or liveline condition for a predicate[37]. Unlike simpler operators such as “terminate at”,
this operator captures all relevant notions of time-related operations without ambiguity.

In this paper, we will distinguish between what we call logical safety properties, de-
scribed by formulas containing logic and temporal operators, and what we call timeliness
safety properties, containing time operators. For simplicity, we will call the former safety
properties, and the latter timeliness properties.

Timed Actions

A timeliness property is specified as a predicate, expressed by a within/from operator,
which holds at infinitely many instants of real time. Timeliness properties belong to the
class of properties where, in order to verify their correctness, we need to observe every
individual execution[30]. In order to be able to verify whether a predicate holds or not,
or in other words, to detect timing failures, we need to follow the runtime (real-time)
behavior that derives from the implementation of that property.

To that purpose, we introduce timed action, which we define as the execution of some
operation within a known bounded time T from its start. T is the allowed maximum
duration of the action. Examples of timed actions are the release of tasks with deadlines,
the sending of messages with delivery delay bounds, and so forth. For example, time-
liness property “any message delivered to any process is delivered within T from the
time of the send request” must be implemented by a protocol that turns each request
send request( p, Mi) of message Mi addressed to p, issued at real time ts, into a timed
action: execute the delivery of Mi at p within T from ts.
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Note that in a distributed system some operations may start on one node and end on
another, such as message delivery. Furthermore, several factors may contribute to the de-
lay budget of a real-time activity1. Runtime enforcement of bounds on these delays obeys
to known techniques in distributed scheduling and real-time communication[33, 10].
However, the problem as we stated it in the beginning is that bounds may be violated, and
in consequence a systematic way of detecting timing failures must be devised. We base
our approach on the observability of the termination event of a timed action, regardless
of where it originated.

Take again the example of message delivery to a process p with bounded delay T :
the termination event (delivery ) must take place at p by a real time instant te that is a
priori definable for each execution, upon its triggering (send ), and which in the example
is te = ts + T . Generalizing, a timed action can be defined as follows:

Timed Action - Given process p, event e, and real time instant te, a timed action X(p, e, te) is
the execution of some operation, such that its termination event e takes place at p, at a real
time instant t ≤ te

The time-domain correctness of the execution of a timed action may be observed if
e is observable. If a timed action does not incur in a timing failure, the action is timely,
otherwise, a timing failure occurs:

Timing Failure - There is a timing failure at p, iff given the execution of a timed action
X(p, e, te), e takes place at a real time instant t

′
e, te < t

′
e ≤ ∞. The lateness degree is

the delay of occurrence of e, Ld = t
′
e − te

Wrapping up

The assumption that the system’s components only have timing failures means that time-
liness properties may, under certain circumstances, by violated, but safety properties
should not. However, as we will show, this may not always be true unless adequate
measures are taken.

In what follows, we introduce some simple notation. An application A is a com-
putation in general (e.g. a consensus protocol, a replication management algorithm, a
multimedia rendering application). Any application implements a set of properties PA,
of which some are (logical) safety (PS) and others are timeliness (safety) (PT ) properties.
An implementation may require an activity to be performed within a bounded duration
T , in consequence of which a component may perform one, several or infinitely many
timed actions.

Recall the message delivery example of the previous section, where timeliness prop-
erty P , “any message delivered to any process is delivered within T from the time of the
send request”, must be fulfilled. Each message send request originates a timed action.
Although te is different each time and p may sometimes be different, all timed actions
generated in the course of the execution of the protocol relate to the same bound T , and

1The overall delay of message delivery is composed of the sum of several delay terms, such as: send set-
up; network access; network propagation; reception. Of course, we might decompose the delivery delay in
several timed actions, but this would lead us to a recursive argument, so we just consider a timed action as
the smallest unit of execution for the sake of observing timeliness.
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to fulfilling the same property P . In fact, the computation of te is derived from T , or
ultimately, from P .

Note that the actual form of the relation itself is very implementation dependent. For
example, timed actions may also derive from the implementation of safety properties, if
time is used as an artifact: algorithms for solving consensus problems have used timeouts
even in time-free models (where timeliness properties do not exist). Whether this is an
adequate approach will be discussed in the following sections.

It is important to retain such relations of timed actions to duration bounds, and finally,
to properties. For example, by logging a history of the actual duration of the execution of
all timed actions related with bound T , we can build a distribution of T . By following all
timed actions related with a timeout implied by property P , we can detect and assess the
effect of timing failures in the protocol implementing P . We introduce just the necessary
notation to reflect these relations:

• We define a history H = R1, ..., Rn, as a finite and ordered set of executions of timed
actions, where each entry Ri of H is a tuple 〈Xi, T (i), timely〉. T (i) is the observed
duration of the execution of timed action Xi. timely is a Boolean which is true if
the action was executed on time, or false if otherwise, according to the definition of
timing failure.

• We denote H(T ) as a history where ∀X(p, e, te) ∈ H(T ), the value of te is related to
T . The existence of the relation is important for the results of this paper. The exact
relation is only relevant for the implementation.

• We denote TP as a duration bound derived from property P . That is, a new T is
derived whenever a bound is established in the course of implementing a property
(be it timeliness or safety). In order to simplify our notation in the rest of the paper,
we also represent this fact through the informal relation derived from, −→d , that is,
T −→d P .

• Finally, we generalize to histories by denoting H(TP) as a history where all timed
actions are related to a duration bound that is derived from property P . We also
represent this fact by H−→d P .

We will omit parenthesis and subscripts whenever there is no risk of ambiguity.

4 The Timely Computing Base Model

Given the above introductory sections, the fundamental problem is how to do distributed
computations in bounded time. Its hardness consists in achieving reliable and timely pro-
cessing and communication in a distributed system over an infrastructure with uncertain
timeliness.

The system model we follow is one of uncertain timeliness: bounds may be violated,
or may vary during system life. Still, the system must be dependable with regard to
time: it must be capable of timely executing certain functions or detecting the failure
thereof. These objectives require a form of: computing in bounded delay; measuring
durations; detecting failures. The apparent incompatibility of these objectives with the
uncertainty of the environment may be solved if processes in the system have access to a
timely computing base, that is, a component that performs these functions on their behalf.
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In the following sections, we start by defining what is a Timely Computing Base, TCB,
and introduce a set of services to be provided by the TCB. Next, we define the necessary
properties of a generic timely computing model. We motivate the need for those properties
by referring to the reasons why systems fail in the presence of uncertain timeliness. Then,
we prove that the TCB, with the help of the above-mentioned services, secures the desired
properties.

There is one local Timely Computing Base at every site. Inspired by the trusted com-
puting base work[2], we define the architectural principles that the TCB must fulfil, in
order to guarantee that: a) its operation is not jeopardized by the lack of timeliness of the
rest of the system; b) its timeliness can be trusted:

Interposition - the TCB position is such that no direct access to resources vital to timeli-
ness can be made in default of the TCB (e.g. by detouring it)

Shielding - the TCB construction is such that it is itself protected from faults affecting
timeliness (e.g. delays in the outside system affecting TCB computations)

Validation - the TCB functionality is such that it allows the implementation of verifiable
mechanisms w.r.t. timeliness

We now define the fault and synchronism model of the TCB. We assume only crash
failures for the TCB components, i.e. that they are fail-silent. Furthermore, we assume
that the failure of a local TCB module implies the failure of that site. This comes from the
Interposition principle. We proceed by defining informally a few synchronism properties
that should be enjoyed by the TCB local to a site.

Ps 1 There exists a known upper bound T 1
Dmax

on processing delays

Ps 2 There exists a known upper bound T 2
Dmax

on the rate of drift of local clocks

Property Ps 1 refers to the determinism in the execution time of code elements by the
TCB. Property Ps 2 refers to the existence of a local clock in each TCB whose individual
drift is bounded. This allows measuring local durations, that is, the interval between two
local events. These clocks are internal to the TCB. Remember that the general system may
or may not have clocks.

We need to extend the operation of the TCB to distributed systems. In consequence,
we define a distributed TCB as the collection of all local TCBs in a system, interconnected
by inter-TCB communication channels by which local TCBs exchange messages. The con-
struction of the distributed TCB must obviously satisfy the interposition, shielding and
validation principles. Likewise, communication must possess the same synchronism as
the rest of the TCB functions. Furthermore, we assume that the inter-TCB channels pro-
vide reliable delivery, in the sense that no messages addressed to correct TCB modules are
lost. Property Ps 3 completes the synchronism properties, referring to the determinism in
the time to exchange messages amongTCB modules:

Ps 3 There exists a known upper bound T 3
Dmax

, on message delivery delays
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The achievement of reliable (unicast or multicast) delivery is not treated in this pa-
per, since it will depend on the particular implementation of the TCB. However, without
loss of generality, we point the reader to a number of known reliable delivery protocols
for synchronous systems on fail-silent models. In consequence, we also assume nothing
about how many local TCBs can fail, since under a fail-silent model this is irrelevant to
the correctness of operation of the distributed TCB. From now on, when there is no am-
biguity, we refer to TCB to mean the ’distributed TCB’, accessed by processes in a site via
the ’local TCB’ in that site.

Due to lack of space, we will not go very far into discussing how to implement and
validate a TCB. There is a body of research on real-time operating systems and networks
that has contributed to this subject[9, 24, 25, 26]. Interposition can be assured by imple-
menting a native real-time system kernel that controls all the hardware and runs the TCB,
besides supporting the actual operating system that runs on the site. Shielding can be
achieved by scheduling the system in order to ensure that TCB tasks are hard real-time
tasks, immune to timing faults in the other tasks.

These principles also postulate the control of the TCB over a timely inter-TCB com-
munication channel. Note that this channel, that we call control channel, may or may
not be based on a physically different network from the one supporting the channel used
for normal communication, that we call payload channel. The assumption of a restricted
channel with predictable timing characteristics (control) coexisting with essentially asyn-
chronous channels (payload) is feasible in some of the current networks. Observe that the
bandwidth that is required of the control channel is much smaller than that of the payload
channel: local TCBs only exchange control messages. Besides, we said nothing about the
magnitude of bound T 3

Dmax
, just that it must exist and be known. In a number of local area

networks, switched networks, and even wider area networks, it is possible to give guar-
antees for the highest priority messages[32, 8, 7, 34]. In more demanding scenarios, one
may resort to alternative networks (ISDN connection, GSM Short Message Service, Low
Earth Orbit satellite constellations). Finally, the TCB should be designed for validation,
ensuring that it is simple and deterministic w.r.t. the mechanisms related to timeliness.

5 Services of the TCB

The TCB provides the following services: timely execution; duration measurement; tim-
ing failure detection. These services have a distributed scope, although they are provided
to processes via the local TCB instantiations. Any service may be provided to more than
one user in the system. For example, failure notification may be given to all interested
users. We define below the properties of the services. We start with timely execution and
duration measurement.

Timely Execution

TCB 1 Eager Execution: Given any function F with an execution time bounded by a known
constant TXEQmax, for any eager execution of the function triggered at real time tstart, the TCB
terminates F within TXEQmax from tstart
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TCB 2 Deferred Execution: Given any function F , and a delay time lower-bounded by a known
constant TXEQmin

, for any deferred execution of the function triggered at real time tstart, the TCB
does not start the execution of F within TXEQmin

from tstart

Eager Execution allows the TCB to execute arbitrary functions deterministically, given
a feasible TXEQmax. Deferred Execution allows the TCB to execute delayed functions, such
as those resulting from timeouts (TXEQmin

). Informally, the former ensures that something
finishes before a deadline, whereas the latter ensures that something does not start be-
fore a liveline[37]. Another useful service in some applications, the deterministic (time
bounded) execution of a function after a delay, can be achieved by compounding TCB 2
and TCB 1 in this order.

Duration Measurement

TCB 3 There exists TDURmin
such that given any two events es and ee separated by an interval

bounded by a known constant TSEPmax, and occurring in any two nodes, respectively at real times
ts and te, ts < te, the TCB measures the duration between es and ee as te − ts − TDURmin

≤ Tse ≤
te − ts + TDURmin

The TCB can measure distributed durations, with an error TDURmin
. Obviously, if the

events are separated by less than TDURmin
, the measurement is not significant. This is

treated further in [35]. The error TDURmin
depends on TSEPmax , because the local clocks

skew from real-time (Property Ps 2).
Another crucial service of the TCB is failure detection. We define a Perfect Timing

Failure Detector (pTFD), using an adaptation of the terminology of Chandra[13].

Timing Failure Detection

TCB 4 Timed Strong Completeness: There exists TTFDmax such that given a timing failure at
p in any timed action X(p, e, te), the TCB detects it within TTFDmax from te

TCB 5 Timed Strong Accuracy: There exists TTFDmin
such that given any timely timed action

X(p, e, te) by p that does not occur within −TTFDmin
from te, the TCB considers p timely

Timed Strong Completeness can be understood as follows: “strong” specifies that
any timing failure is perceived by all correct processes; “timed” specifies that the failure
is perceived at most within TTFDmax of its occurrence. In essence, it specifies the detection
latency of the pTFD.

Timed Strong Accuracy can also be understood under the same perspective: “strong”
means that no timely action is wrongly detected as a timing failure; but “timed” qualifies
what is meant by ’timely’, by requiring the action to occur not later than a set-up interval
TTFDmin

before the detection threshold (the specified bound). In essence, it specifies the
detection accuracy of the pTFD.

The majority of detectors known are crash failure detectors. Crash failures are partic-
ular cases of timing failures, where the process responsible for executing a specification
produces infinitely many timing failures with infinite lateness degree. In consequence,
the TCB is also capable of detecting crash failures. In fact, there is a transformation from
the TFD to a Crash Failure Detector that we do not introduce here, due to lack of space,
and since it is not fundamental for the results of this paper.
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6 Dependable and Timely Computing with a TCB

The architecture of a system with a TCB is suggested by Figure 1. Whilst there is a generic,
payload system over a global network, or payload channel, the system admits the construc-
tion of say, a control part, made of local TCB modules, interconnected by some form of
medium, the control channel. The medium may be a virtual channel over the available
physical network or a network in its own right. Processes p execute on the several sites,
making use of the TCB whenever appropriate. The TCB subsystem, dashed in the figure,
preserves, by construction, properties Ps 1 to Ps 3. The nature of the modules and the
interconnection medium is outside the scope of this paper, but these are problems with
known solutions, and we have given a few hints on how to implement a TCB in Section 4.

How applications interact with the TCB is also another important problem. While
this is an issue we will tackle in another paper, it deserves at least a brief discussion, so
we leave here the intuition behind our approach. The first remark is that applications
can only be as timely as allowed by the synchronism of the payload system. That is, the
TCB does not make applications timelier, it just detects how timely they are. The second
is that the TCB always detects a late event as a timing failure, within the terms of the
definition of timing failure detector. Finally, although the TCB detects timing failures,
nothing obliges an application to become aware of such failures. In consequence, appli-
cations take advantage from the TCB by construction, typically using it as a pacemaker,
inquiring it (explicitly or implicitly) about the correctness of past steps before proceeding
to the next step.

Site C

TCB

P Site A

TCB

Site B

TCB

P

P

P

P

P

P

TCB

Global
Network

Figure 1: The TCB Architecture

How can the TCB help design dependable and timely applications? A constructive
approach consists in analyzing why systems fail in the presence of uncertain timeliness,
and deriving sufficient conditions to solve the problems encountered, based on the be-
havior of applications and on the properties of the TCB.

We recall that an application is a computation in general, that any application is de-
fined by a set of safety and timeliness properties PA. We also remind the reader that we
consider a model where components only do late timing failures. In the absence of timing
failures, the system executes correctly. When timing failures occur, there are essentially
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three kinds of problems, that we define and discuss below:

• decreased coverage
• unexpected delay
• contamination

When we make assumptions about the absence of timing failures, we have in mind
a certain coverage, which is the correspondence between system timeliness assumptions
and what the environment can guarantee. We define assumed coverage PP of a property
P as the assumed probability of the property holding over an interval of reference. This
coverage is necessarily very high for hard real-time systems, and may be somewhat re-
laxed for any other realistic real-time system, like mission-critical or soft real-time. How-
ever, in a system with uncertain timeliness, this correspondence varies during system life.
If the environment conditions start degrading to states worse than assumed, the cover-
age incrementally decreases, that is, the probability of timing failure increases. On the
other hand, if coverage is better than assumed, we are not taking full advantage from
what the environment gives. This is a generic problem for any class of system relying
on the assumption/coverage binomial[31]: if coverage of failure mode assumptions does
not stay stable, a fault-tolerant design based on those assumptions will be impaired. A
sufficient condition for that not to happen consists in ensuring that coverage stays close
to the assumed value, over an interval of mission.

Formally, we specify this condition by the following property:

Coverage Stability: Given a history H(TP) derived from property P ∈ PA, with
assumed coverage PP , H has coverage stability iff the set of executions contained in
H is timely with a probability pH, such that |pH − PP | ≤ pdev, for pdev known and
bounded.

The Coverage Stability property can be explained very easily. If we adapt our timeli-
ness requirements say, by relaxing them when the environment is giving poorer service
quality, and tightening them when the opposite happens, we maintain the actual cover-
age (pH) around a desirably small interval of confidence of the assumed coverage (PP).
The interval of confidence pdev is the measure in which coverage stability is ensured. This
handles the first of the problems we enumerated as a consequence of timing failures: de-
creased coverage.

Nevertheless, even if long term coverage stability is ensured, instantaneously the sys-
tem can still have timing failures. The immediate effect of timing failures may be twofold:
delay and/or incorrectness by contamination. We define unexpected delay as the viola-
tion of a timeliness property. That can sometimes be accepted, as we discuss in the next
section. However, there can also be contamination, that we define as the incorrect be-
havior resulting from the violation of safety properties on account of the occurrence of
timing failures. This effect has not been well understood, and haunts many designs, even
those supposedly asynchronous. For example, aggressive timeouts, and failure detection,
when embedded in the protocols, create scenarios that bring the FLP problem inexorably
back, as reported in [13, 12]. In fact, these problems assume a simple dimension, when
explained under the light of timing failures. These designs fail because: (a) although
time-free by specification, they rely on time, often in the form of timeouts, and are thus
prone to timing failures, without taking measures to counter them (because they were not
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supposed to exist!); (b) in consequence, by not ensuring error confinement[28] they some-
times let timing failures contaminate (logical) safety properties2. The violation of safety
properties, such as having processes choose different values in consensus, because of er-
roneous timeout-based error detection, is well exemplified in [5, 12]. The contamination
problem was first described in the context of ordered broadcast protocols in [22]. In this
paper, we give a generic definition of the problem, for a system with omissive failures. If
the system has the capacity of timely detecting timeliness violations, then contamination can
be avoided with adequate algorithm structure. To provide an intuition on this, suppose
that the system does not make progress without having an assurance that previous steps
were timely. Now observe that “timely” means that the detection latency is bounded. In
consequence, if processing steps wait more than the detection latency, absence of failure
indication means “no failure”, and thus they can proceed. If an indication does come,
then it can be processed before the failure contaminates the system, since the computa-
tion has not proceeded. The only consequence is an extra delay. A sufficient condition for
absence of contamination is thus to confine the effect of timing failures to the violation of
timeliness properties alone, specified by the following property:

No-Contamination: Given a history H(TP) derived from property P ∈ PA, H
has no-contamination iff for any timing failure in any execution X ∈ H, no safety
property in PA is violated.

The reader will note that in the model of Chandra[13], the agreement algorithms have
no-contamination, since their design is completely time-free, and all possible problems
deriving from timing failures (such as “wrong suspicions”) are encapsulated in the fail-
ure detector. Chandra then bases the reliability of his system on the possibility of imple-
menting a given failure detector. In contrast, we define an architectural framework where
aside of the payload part containing the algorithms or applications, a placeholder exists
for the viable implementation of special services such as failure detection— the control
part. One important advantage is generality of the programming model, by letting the
payload system have any degree of synchrony. That is, we devise a single framework for
correct execution of synchronous and asynchronous applications, of several grades that
have been represented by partial models such as asynchronous with failure detectors,
timed asynchronous, or quasi-synchronous.

The next step is to prove that the TCB helps applications to secure coverage stability
and no-contamination, despite the uncertainty of the environment. In all the proofs that
follow, timely execution is secured by services TCB 1 and TCB 2.

6.1 Enforcing Coverage Stability with the TCB

We start with a definition of coverage stability for an application.

Definition 1 An application A has coverage stability iff all histories derived from properties of A
have coverage stability

∀P ∈ PA, ∀H s.t. H−→d P : H has coverage stability

2As a matter of fact they may also contaminate liveness properties, by preventing progress. We do not
explicitly discuss liveness properties in this paper.
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Not all applications can benefit from the Coverage Stability property. Let us define a
useful class that can indeed benefit.

Definition 2 Time-Elastic Class (T ε) - Given an application A, represented by a set of proper-
ties PA, A belongs to the time-elastic class T ε, iff none of the duration bounds derived from any
property P of A are invariant3

A ∈ T ε
∆
= ∀P ∈ PA, ∀T s.t. T −→d P : T is not an invariant

In practical terms, T ε applications are those whose bounds can be increased or de-
creased dynamically, such as QoS-driven applications. We now prove that a T ε appli-
cation achieves coverage stability under certain conditions. We start by giving informal
proofs of two lemmata about the capability of the TCB to make histograms of the distri-
bution of durations (service TCB 3) and thus gathering evidence about coverage.

Lemma 1 Given a history H(T ) and given a finite initial number of executions n0, the TCB can
compute the probability density function pdf of duration T and there exists a pdev0 known and
bounded, such that for any P = pdf(T ), and p, the actual probability of T , |p − P | ≤ pdev0

PROOF SKETCH:
From service TCB 3, the TCB is capable of measuring all durations T (i) in any history H.
For a history H(T ), T (i) are the observed durations representing the specified duration bound
T . For any given actual distribution of T , there is a minimum n0 such that a discrete
probability distribution function pdf , built with n0 observations T (i) subjected to the TCB
duration measurement error, TDURmin

, represents T with an error of pdev0[19]. 2

A

B

TA TB t

P

pdf(T)

Figure 2: Example variation of distribution pdf(T ) with the changing environment

In systems of uncertain timeliness, the pdf of a duration varies with time. Normally, if
a sufficiently large interval of observation is considered, so as to damp short-term insta-
bility, what can be observed is a shift of the baseline pdf , as depicted in Figure 2, by curves
A and B. For the results of this paper, it is enough to know that pdev remains bounded,
as we state in Lemma 2 below. However, one wishes to keep the error pdev small in order
to predict the probability of any T accurately, even with periods of timeliness instability.
As future work, we plan to study efficient functions to keep pdev small, in the presence of
large deviations [38].

3Invariant is taken in the sense of not being able to change during the application execution.
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Lemma 2 Given pdfi−1(T ), of duration T in H(T ), and given any immediately subsequent n
executions, the TCB can compute pdfi(T ) and there exists a pdev known and bounded, such that
for any P = pdfi(T ), and p, the actual probability of T , |p − P | ≤ pdev

PROOF SKETCH:
From Lemma 1, the TCB is capable of recomputing pdf(T ) for any additional n (consider
n′

0 = n0 + n). Then, pdf must preserve a bounded error, event in the presence of large
deviations: for any T with actual probability of p, and any n, there is a subset ni−1 of the
last executions of the original history H, and an adequate function[38], such that P =
pdfi(T ) recomputed with the ni−1 + n observations has a bounded error pdev from p. 2

Next we prove that every H has coverage stability by constructing a very simple algo-
rithm which, assisted by the TCB, allows the execution of any application to adapt to the
changing timeliness of the environment. We call it the timeliness-tuning algorithm, and it
is given in Figure 3.

For each function f of an application A having assumed duration Tf , with coverage Pf

01 // pdf(Tf ) exists and is kept updated by the TCB
02 // pdf−1 is the ”inverse” of pdf
03 // Tf is initialized to some value
04 // h is the hysteresis of triggering of the algorithm
05 // TCB setT o sets Tf to pdf−1(Pf )
06
07 foreach f do
08 when |pdf−1(Pf ) − Tf | > h do
09 TCB setT o(Tf , pdf−1(Pf ))
10 od
11 od

Figure 3: Timeliness-Tuning Algorithm

Consider any function of an application A depending on a specified duration Tf , as-
sumed to hold with a probability Pf . An execution of a timed action X is triggered when-
ever the application takes an action conditioned to Tf . Typically, this action can be the
sending of a message (which generates a remote event) or the execution of a local func-
tion. In either case the TCB follows the execution of this action, and in consequence the
timeliness-tuning algorithm assumes that the TCB has created pdf(Tf) and keeps it up-
dated.

Given pdf and Pf such that Pf = pdf(T ), it is easy to extract an approximation of
value T . In the algorithm of Figure 3, we denote this operation by pdf−1, pdf−1(Pf) ' T
being the current observed duration that holds with the desired probability Pf (it may
have deviated from the specified duration Tf ).

For example, consider that curve A as depicted in Figure 2 represents the steady-state
initial operational environment for Tf : if P = Pf , then Tf ' TA. Whenever the TCB de-
tects a significant variation in the environment (line 8), that is, when pdf−1(Pf) exceeds
an interval h around Tf , Tf is set to T . We represent this update in the algorithm (line 9)
by a function TCB setTo(). The semantics of TCB setTo() may be tuned to specific ap-
plications. However, most of the times, it can be as simple as ”set Tf = pdf−1(Pf) in all
processes”. Please note that this new value corresponds to what the TCB considers the
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adequate value to obtain the desired probability Pf of bound Tf holding. To understand
why, let us look again at Figure 2: the environment got slower, and there was a shift of pdf
to the right. From the graphic, the value for the bound that still complies with P = Pf is
now TB . If TB is substituted in Tf , the application maintains the degree of coverage. Note
that these remarks are also true when the environment gets faster: the bound should get
back to its lower value as soon as possible. Tf is only changed again when the measured
bound deviates from Tf more than h, the hysteresis of triggering of the algorithm.

Lemma 3 Given property P with assumed coverage PP , and any history H(TP) derived from P ,
built using a TCB and the timeliness-tuning algorithm, H has coverage stability

PROOF:
Immediate from Lemmata 1 and 2, and the discussion of the algorithm 2

Now we have the final theorem.

Theorem 1 An application A ∈ T ε using a TCB and the timeliness-tuning algorithm has cover-
age stability

PROOF:
From Definition 2, we see that any T derived from any property P of A, is not an in-
variant, and as such, the correctness of A does not depend of the absolute value of any
T . In consequence, any T can be modified, namely with the intent of achieving coverage
stability. From Lemma 3, we see that any bound T can be continuously adjusted with the
timeliness-tuning algorithm, so that the history H(T ) has coverage stability. By induction
on every P ∈ PA, and by Definition 1, application A has coverage stability. 2

6.2 Avoiding Contamination with the TCB

We start with a definition of no-contamination for an application.

Definition 3 An application A has no-contamination iff all histories derived from properties of
A have no-contamination

∀P ∈ PA, ∀H s.t. H−→d P : H has no-contamination

Firstly, we prove some lemmata about the capability of failure detection of the TCB
(services TCB 4 and TCB 5).

Lemma 4 Given any H(T ′), and any X ∈ H, if the execution of X fails the TCB detects it by
T = T ′ + TTFDmax

PROOF
This comes directly from the TFD, from service TCB 4. 2

Lemma 5 Given any H(T ′), and any X ∈ H, the TCB never detects the execution of X as failed
if it takes place by T ′′ = T ′ − TTFDmin

PROOF
This comes directly from the TFD, from service TCB 5. 2

These two lemmata reveal a very interesting implementation result.
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Rule 1 Given P and T −→d P , implemented such that:

• T is the bound as seen by the application;
• T ′ = T − TTFDmax is the bound as seen by the TCB;
• T ′′ = T − TTFDmax − TTFDmin

is the bound as achieved by the environment (the “real”
bound);

then:

• any timing failure (delay beyond T ′) is detected by the TCB by T
• any timely execution (terminating by T ′′) is never detected as failed

That is, when implementing property P in classical systems, one would base specifi-
cations on bound T . T would be based on the matching between what was desired for
the application and what the support environment (e.g. a network) would yield. Tim-
ing failure detection would be based on guaranteeing that T were met. In fact, Rule 1
proposes to use different values for each of the three above-mentioned aspects of the im-
plementation of P (specification, implementation, error detection): given T ′′, the possible
bound yielded by the support environment, we use T ′ = T ′′ + TTFDmin

as the failure de-
tection threshold, and T = T ′ + TTFDmax as the bound visible to the application (which
the failure detector will secure).

Now we proceed with our treatment of contamination. Not all applications can ben-
efit from the No-Contamination property. Intuitively, the least effective class that can
indeed benefit is the fail-safe class, since it stops upon the first detected timing failure.

Definition 4 Fail-Safe Class (Fσ) - Given an application A, represented by a set of properties
PA, A belongs to the fail-safe class Fσ, iff there is a state sFS to which A can transit permanently,
from any state si, at any time tFS, such that for any safety property P of A, if P was true in time
interval [..., tFS[, it remains true for [tFS, ...[

A ∈ Fσ
∆
= ∃sFS∀si∀tFS :

(si
tF S→ sFS) ∧ ∀(P ∈ PS ∩ PA)((∀t < tFS, t |= P) ⇒ (∀t ≥ tFS, t |= P))

In practical terms, Fσ applications are those that can switch at any moment to a fail-
safe state and remain there permanently, such that in absence of failures the system’s
safety properties remain correct. We now prove the first theorem about the reliability of
applications based on a TCB: that an Fσ application achieves no-contamination under
certain conditions.

Theorem 2 An application A ∈ Fσ using a TCB has no-contamination

PROOF:
Consider a timing failure in H(T ) derived from timeliness property P ∈ A. By Lem-
mata 4 and 5, we see that for any bound T established as per Rule 1, failures are not
wrongly detected, and any failure of X ∈ H(T ), is detected until T has elapsed. Con-
sider this instant as corresponding at the latest to tFS , when fail-safe switching is done,
by Definition 4. Then, if up to instant tFS (corresponding to detection threshold T ) there
was no evidence of failure in H(T ), the system was correct. Since the system halts at this
point, the corresponding history H(T ) has no-contamination, by the respective defini-
tion. The effect of the failure could not propagate, and in consequence, all other histories
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have no-contamination. In consequence, any safety property that was true before tFS ,
will remain correct after halting, by Definition 4. Then, by Definition 3, application A has
no-contamination. 2

It is not interesting to halt an application upon the first timing failure, if better can
be done. However, we know that not all applications can enjoy the No-Contamination
property after timing failures occurring. We define a class that can.

Definition 5 Time-Safe Class (T σ) - Given an application A, represented by a set of properties
PA, A belongs to the time-safe class T σ, iff no histories H(TP) are derived from any safety property
in PA

A ∈ T σ
∆
= ∀P ∈ PA, ∀H s.t. H−→d P : ¬(P ∈ PS)

In practical terms, T σ applications are those: in whose properties timeliness is neatly
separated from logical safety; and where the implementation of safety properties does
not depend on time (e.g. timeouts). We now prove that a T σ application achieves no-
contamination under certain conditions, in a second theorem.

Theorem 3 An application A ∈ T σ using a TCB has no-contamination

PROOF:
If A ∈ T σ, then no histories are derived from safety properties. In consequence, any
history H(T ) has to have been derived from a timeliness property. By definition of no-
contamination, such histories have no-contamination. By Definition 3, application A has
no-contamination. 2

7 Example Applications of the TCB Model

Timing failures, in a fault-tolerance sense, can be handled in one of the following ways:
masking; detection and/or recovery. A generic approach to timing fault tolerance, that is,
one that can use any or all of the methods above, requires the following basic attributes:

• timeliness- to act upon failures within a bounded delay;
• completeness- to ensure that failure detection is seen by all participants;
• accuracy- not to detect failures wrongly;
• coverage- to ensure that assumptions hold during the lifetime of the system (e.g.

number of failures and magnitude of delays);
• confinement- to ensure that timing failures do not propagate their effect.

These attributes are mostly ensured by the TCB and its services. The last two are
secured indirectly, by the Coverage Stability and No-Contamination properties. Further-
more, our model is able to distinguish between several mechanisms of timing failure:

• decreased coverage;
• unexpected delay;
• contamination.

In consequence, one should be able to program real-time applications which have
several degrees of dependability, despite the occurrence of timing failures: by detecting
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timing failures and still being able to recover by reconfiguration (e.g. by postponing a
decision, by increasing the deadline, etc.); by detecting irrecoverable timing failures and
doing a fail-safe shutdown; by masking independent timing failures with active replicas.

The TCB provides a framework for addressing all of these techniques, for any degree
of synchronism of the payload system. We consider increasingly effective fault tolerance
mechanisms, requiring combinations of the following attributes:

• timing failure detection (TFD)
• fail-safety (Fσ)
• time-safety (T σ)
• time-elasticity (T ε)
• replication (REP)

TFD comes by default in the TCB. Fail-safety, time-safety, and time-elasticity corre-
spond to application programming styles. Replication introduces a novel approach to
real-time computing, by applying the classical concepts of fault tolerance to timing faults.
As long as the latter are temporary and independent, the application remains timely, de-
spite timing faults in some replicas.

In what follows, we explain the methodology for each of the above-mentioned classes
of applications to achieve their objectives with the help of the TCB. For lack of space, this
explanation will be necessarily summarized. However, when apppropriate, we refer the
reader to some works under several models, which separately approximate some of the
solutions we now propose in a unified way under the TCB model.

7.1 Fail-safe Operation

By Theorem 2, any class of application with a fail-safe state can be implemented using a
TCB. This is because the TCB has the ability of timely detecting timing failures. However,
care must be taken with the setting of bounds, to avoid contamination. It is not enough
to detect a failure and shutdown: the timely execution of these operations is crucial. The
methodology should be the following:

• define all important timing parameters so that timing failures can be detected by
the TCB;

• Rule 1 (Section 6.2) should be followed, so that failure detection can be done before
any harm happens, and if nothing else can be done, at least the application fails-safe
before getting incorrect;

• moreover, since all processes can be informed by the TCB of failure occurrences,
switching to a fail-safe state can be done in a controlled way in the case of dis-
tributed or replicated applications.

Several examples of applications with a fail-safe state can be encountered in the
literature[29, 20, 21]. In the examples described in [20] and [21], the authors show how
a fail-safe application can be implemented in the timed-asynchronous model. The detec-
tion of timing failures is done by using fail-aware services but the assurance of crucial
safety properties also requires communication by time in the realm of the application.
While fail-safety has been ensured in the works we know of on a case-by-case basis, the
novelty of our approach is that instead of giving an implementation, we define a class
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(Fσ) of applications. Any implementation of an application of this class on the TCB can
achieve no-contamination in the presence of timing failures, regardless of other aspects of
its semantics. The TCB model also removes an ambiguity sometimes encountered in pre-
vious works: systems with unbounded execution time state the capability of immediate
(timely) fail-safe shutdown, an apparent contradiction. Timely switching to the fail-safe
state can be ensured by the TCB, no matter how asynchronous the payload system.

7.2 Reconfiguration and Adaptation

A more effective approach, other than simply halting the system, is trying to keep the ap-
plication running. Again, this can be done on a case-by-case basis, or by defining classes
of applications with given attributes, namely time-elasticity or time-safety.

It is very interesting to verify that a lot of work has been done recently in studying and
proposing ways of dealing with QoS adaptation[1, 3, 14, 6, 16, 23]. The point is that many
applications are naturally able to provide services with different QoS, and so if there is
any possibility of dynamically adapting this QoS to the changing environment, then the
application should do that. However, the works we know of do not always follow a met-
rics that relates the QoS adaptation to the dependability issue: coverage stability. Others
do establish thresholds for failure detection, but they cannot guarantee the precision of
this detection, due to the lack of synchrony of the system.

By Theorem 1, applications of the time-elastic class, running under the TCB model
provide a means to achieve QoS adaptation while maintaining coverage stability. The
methodology was laid down in Section 6.1:

• defining all important timing variables;
• building a pdf for each of those variables with the support of the TCB;
• applying the timeliness-tuning algorithm (Fig. 3) to relax or tighten the bounds dy-

namically.

Having this property means that it is possible to maintain the application running at
a stable reliability level, despite environment changes to states worse than expected. This
has a cost in the quality of the service the application can give. However, for many appli-
cations it is much better to keep running in a degraded mode (or with a lower QoS) than
stopping, or worse, start having unexpected failures, as per the assumed coverage. Cov-
erage stability is maintained in both directions: it also means that when the environment
recovers, the application quickly comes back to the initial QoS.

Finally, we address the effect of an individual timing failure. Again, there is room for
ad-hoc solutions to this problem, but as shown by Theorem 3, an application possessing
the time-safety property is guaranteed to be free from contamination when timing fail-
ures occur, regardless of the way it is implemented. The methodology was laid down in
Section 6.2, and is simply based on:

• specifying applications such that safety and timeliness specifications are neatly sep-
arated;

• having all applications be implemented in a modular fashion, such that the algo-
rithmics related with the implementation of safety properties are time-free, that is,
they do not generate timed actions;
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• having the implementation of timeliness properties be assisted by the TCB services
(eager and deferred execution, duration measurement and obviously, timing failure
detection) when necessary;

7.3 Timing Error Masking

Finally, we discuss the issue of timing fault tolerance. This is an innovative idea which
consists of using the replication and error processing principles of general fault tolerance,
to timing faults (to keep the discussion clear, we now switch to system-level ’timing faults’
and errors to designate component timing failures and their effect).

Several works have addressed the issue of fault tolerance in real-time systems[37, 16,
26, 39]. However, to our knowledge, the work presented in [4] was the first to address
the issue of timing fault tolerance by replication. Although designed around the quasi-
synchronous system model, there is enough affinity with the work described here that it
can very easily be explained under the light of the TCB framework. The methodology,
that we detail below, is essentially the following:

• defining the replica set, choosing the replication degree to be greater than maximum
expected number timing faults;

• defining timing parameters such that the TCB accurately detects faults;
• obtaining timely service by selecting timely replicas on a per service basis with the

support of the TCB;
• applying the time-safety property to ensure no-contamination by late replicas
• applying the time-elasticity property to the whole replica set, to avoid total failure

when the environment degrades for all replicas.

We give a brief explanation of how an application using the TCB can achieve timing
fault tolerance. The idea is to use a replication scheme for fault-tolerant components
in order to mask independent timing errors affecting one or more of those components.
The replication degree must be chosen in order to have more replicas than the maximum
number of timing faults that can occur during a given protocol run. Up to this point,
timing fault tolerance looks extremely simple. There are however a few subtle points that
we discuss below.

A specific protocol is executed by the application to handle the faults and to guarantee
that the service will be timely executed. The simplest would be to use the first timely
replica. However, timing fault detection itself should be left to the TCB. Accurate timing
fault detection and time-safety are important to ensure: selection of timely service by
the timely replicas; no-contamination of the late replicas. Otherwise, upon the first fault,
a replica would have to shut down, and the replication degree would quickly be lost.
This is one of the subtle aspects of replication for timing fault tolerance. On the other
hand, a replica set should desirably preserve long-term coverage of the fault assumptions.
A replica set is a good approach to mask transient timing errors in individual replicas.
However, when the environment degrades for all replicas, timing fault rate increases,
and this may reach a point where all replicas have faults in an execution. This is highly
undesirable because it means the complete failure of the fault tolerance mechanisms.

The only way to counter this problem is by applying the time-elasticity property to
the whole replica set. The reader will note that: either the application cannot withstand
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this increased delay, meaning it is not time-elastic, and then it must be shut-down; or, if
it can, there must be a means to maintain both the spare coverage (number of operational
replicas) and the individual coverage of each replica (probability of being timely). This is
the second subtle issue to timing fault tolerance by replication. This obviously requires
the application to switch to another long-term operational envelope, where the timing er-
ror being masked concerns a bound, which is longer than the previous one[37]. However,
the coverage guarantees for replica set have been recovered.

8 Conclusion

We proposed a model to build dependable and timely applications exhibiting varying
degrees of timing fault tolerance, under several synchrony models. In essence, our pa-
per is an attempt to provide a unifying solution for a problem that has been addressed
by several research teams: how to reconcile the need for synchrony, with the temporal
uncertainty of the environment.

We have proposed an architectural construct that we have called Timely Computing
Base (TCB), capable of executing timely functions, however asynchronous the rest of the
system may be. Then, we postulated a few necessary services for the TCB to fulfil its role:
timely execution, duration measurement, timing failure detection. The synchrony of the
TCB does not mandatorily imply special hardware. Rather, the paradigm is based on the
observation that synchronism is not a homogeneous property: it varies with time and
space in a system. The quality of the synchrony of the TCB (speed, precision) is the only
thing that may be improved by special components.

We introduced an innovative analysis of the effect of timing failures on applica-
tion correctness. Besides the obvious effect of delay, we identified a long-term effect,
of decreased coverage of assumptions, and an instantaneous effect, of contamination of
other properties. Even when delays are allowed, any of these effects can lead to un-
desirable behavior of a system. Separating the mechanisms of timing failure into these
three components— delay, uncoverage and contamination— has allowed us to introduce
classes of applications that deal with combinations of the former, achieving varying de-
grees of dependability, when assisted by a TCB: fail-safe, which exhibits correct behavior
or else stops in fail-safe state; time-elastic, which exhibits coverage stability; and time-
safe, which exhibits no-contamination.

We showed that the computational model based in the TCB is generic enough to:

• support applications (algorithms, services, etc.) based on any synchrony of the pay-
load system, from asynchronous to synchronous; from a system design viewpoint,
this is the same as saying from non real-time to hard real-time;

• support several fault tolerance and performability adaptation techniques, such as
fail-safe halting, error detection and reconfiguration, QoS adaptation, or replication
management;

• provide a suitable architectural framework for the common explanation of the sev-
eral known models of partial synchrony.

The opportunities for future exploration are manifold. With regard to the first item,
consider a hard real-time system for critical applications. The TCB might provide the
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generic and formal framework for the clear-cut separation between application and sup-
port system functionalities, which is sometimes hard to do in ad-hoc designs as we
know them today: fail-safe shutdown, self-checking, watchdogs, etc. With regard to the
last item, it remains to be seen whether the TCB, by a refinement of its failure detector
structure, can provide the basis for a common explanation of what has up to now been
represented by partial models such as asynchronous with failure detectors, timed asyn-
chronous, or quasi-synchronous[11].
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