
Quasi-Synchronism: a step away from the traditional fault-tolerant

real-time system models

Paulo Ver��ssimo Carlos Almeida

University of Lisboa � Technical University of Lisboa

FCUL IST

Abstract

Distributed fault-tolerant real-time system models

have exhibited a trend to polarize themselves in ex-

treme positions.

In this paper, we assess the �tness of current mod-

els to represent the attributes underlying the distrib-
uted fault-tolerance of real-time systems. Namely, we

are concerned with the correctness issues arising from

the temporal properties of interprocess communication:

reliable and ordered group communication, replication

management protocols, time services, etc.

We are particularly concerned with best-e�ort or

mission-critical systems, where despite the hard need

to ful�l timing guarantees, this cannot be ensured at

all times in a given operational envelope, mandating

that the system be highly dynamic and adaptive. In the

paper, we suggest quasi-synchronism as a framework

to address this kind of systems. We �nalize by pointing

out some contributions to materialize the model.

1 Introduction

Fault-tolerant real-time system models, or in the
context of this paper, distributed fault-tolerant real-
time system models, have exhibited a trend to polar-
ize themselves in extreme positions: time- or event-
triggered, hard real-time or not-at-all real-time, and
so forth.

What we care to address, in the context of this
paper, is the �tness of current models to represent

�Department of Informatics, F.C.U.L. - Faculty of Sciences
of the University of Lisboa, Bloco C5, Campo Grande, 1700
Lisboa - Portugal. Tel. +(351) 1 750 0084 (o�ce). Fax

+(351) 1 750 0103. E-mail: pjv@di.fc.ul.pt. The WWWeb:
http://www.navigators.di.fc.ul.pt/. This work has been suppor-
ted in part by the CEC, through Esprit Projects BROADCAST
and GODC, and JNICT, through Programme PRAXIS-XXI.

This paper appeared in the IEEE TCOS Bulletin, Nr.4,

Vol.7, December 1995.

real-life distributed fault-tolerant systems, in the fa-
cet concerned with real-time properties. Namely, we
are concerned with what underlies distributed fault-

tolerance of real-time systems, that is to say, the cor-
rectness issues arising from the temporal properties
of interprocess communication: reliable and ordered
group communication, replication management proto-
cols, time services, etc.

We will start by brie
y analyzing the current models
under the above-mentioned communication-oriented
perspective, then we make our point about a possibly
interesting model that we call quasi-synchronism, ex-
plaining what are the motivations for such a model.
We �nalize by pointing out some contributions to ma-
terialize the model.

2 The Models

Synchronism, as a fundamental system property,
has separated the world of distributed systems in two
main streams: asynchronous and synchronous. The
latter being the obvious �eld of development of distrib-
uted real-time systems. A commonly accepted de�ni-

tion of synchronism can be described by the following
system properties:

P 1 Bounded and known processing speed

P 2 Bounded and known message delivery delays

P 3 Bounded and known local clock rate drift

Which we would like to complement with the fol-
lowing additional properties, less commonly cited as
contributing for a measure of system synchronism:

P 4 Bounded and known load patterns

P 5 Bounded and known di�erence among local clocks



Property 4 de�nes the maximum load imposed on
the system, without which no synchronism measure
makes sense. Property 5 refers to the existence of syn-
chronized clocks. With this, we are implying that there
may exist real-time communication without a global
clock. We will get back to this point later.

As for synchronous systems, the basis of real-time
systems, two frequently opposing schools of thought
have prevailed:

Time-triggered system is one that reacts to

signi�cant external events at pre-speci�ed in-

stants.

Event-triggered system is one that reacts to

signi�cant external events directly and immedi-

ately.

We have contributed[11] to show that these two
models are not opposite, they simply serve di�erent
objectives, as to the kind of criticality, scale, dynam-
ics, of the environment they are to be used on.

Furthermore, since we are focusing on communic-
ation and distributed processing, it is mandatory to
�nely characterize temporal properties of protocols.
Which we have done by introducing two notions[19]:
of the importance of the way in which protocols use
clocks to secure temporal properties; of there existing
a variable (and measurable) degree of synchronism of
protocols.

The �rst notion is materialized by the following in-
formal de�nitions:

Clock-driven protocols rely on a clock , in the

sense of a global time-base| that is, an absolute

global time reference.

Timer-driven protocols rely on local timers|

i.e. relative time references.

The second notion is materialized by the following
informal de�nition of degree of synchronism:

Steadiness of a protocol is the greatest di�er-

ence between message delivery delays, observed

at one site, for all executions, all sites

For a formal treatment of these issues, please refer
to [19].

3 Quasi-synchronism

The question is that real-life system requirements
rarely �t completely into one of the de�nitions above.
That is, the designer would like to be able to compound
time- and event-triggered behavior, to use timer- and
clock-driven protocols in his/her infrastructure, and so
forth.

The reasons why can be explained by the growing
use of distributed fault-tolerant real-time systems in
areas outside life-critical applications such as nuclear
plant control and avionics. The latter �t| by need
of full control and testability of the design| in very
simple, stable and static frameworks, whose predict-
able and repetitive behavior is very tractable by the
so-called fully synchronous models, translated, in the
context of this paper, to time-triggered, clock-driven
behavior and, more importantly, very high coverage of
the assumptions underlying the Px synchronism prop-
erties. When the application is a very critical one, hav-
ing in its dependence human life or high cost resources,
then one must make sure that all timing constraints are
met.

There are, however, other real-time applications
where, despite the need for dependability, meeting tim-
ing constraints is important but it is acceptable to
eventually miss some of them, if the most important
ones are achieved. Let us emphasize that this indul-
gence by the system user or designer often derives from
the sheer impossibility of determining an operational
envelope for those constraints: most of these applica-
tions are distributed, and have dynamic characteristics
or run in dynamic environments, where it is di�cult to
evaluate a worst-case scenario, or the one obtained is
so far from the normal case that it makes the use of a
resource adequacy policy not cost-e�ective. Examples
of this type of real-time application can be found in

settings such as: factory plant control; command, con-
trol and communications systems; air tra�c control.

In such situations, it is desirable to help the applic-
ation programmer in adapting to this environment, by
providing the adequate system support for interpro-
cess communication and distributed processing. The
problem has not deserved so far a complete treatment
for dynamic and incompletely speci�ed real-time set-
tings. Indeed, most of the previously published work
for dynamic and incompletely speci�ed settings has
treated the subject under asynchronous| that is not-
at-all-real-time| assumptions and thus with no util-
ity for our problem[4, 6, 14]. Other work[7] has ad-
dressed a similar issue, coming from the other ex-
treme of the spectrum: how to restrict the asynchron-
ism of a system| what the authors have called par-
tial synchrony| to allow it to overcome a known res-
ult of impossibility of guaranteed consensus in fully-
asynchronous systems[8]. However, this work being

concerned with the eventuality of reaching consensus,
did not address the issue of timeliness, or known
bounds for delays. Finally, the problem of the kind
of systems we are suggesting as our "target", has been



addressed at architectural level in previous works, such
as Alpha[9] or DELTA-4[21] or DRTEE[3].

A bit of formalization

The �rst thing to emphasize is that these systems
are not soft real-time systems in the strict sense of the
word. The need to ful�ll timing guarantees is hard in
a given operational envelope. That is, the cost of not
meeting those guarantees is commensurate to the be-
ne�t in absence of failure. However, unlike hard real-
time systems[10], they are designed such that the prob-
ability of there being timing faults is non negligible,
and as such imposes adequate timing-fault-tolerance
measures, to avoid timing failures. Namely, detect-
ing and recovering from timing faults. These systems
have been commonly designated best-e�ort ormission-

critical.
Synchronism in this framework can be formally

de�ned, if the failure semantics can be formally de�ned
(as in any other fault-tolerant system). We call it:

Quasi-synchronism- a system is quasi-

synchronous if:

� it can be de�ned by properties Px;

� there is at least one bound where there is

a known probability (6= 0) that the bound

assumption does not hold| this probability

is called assumption uncoverage
1
;

� any property can be de�ned in terms of a

series of pairs (bound, assumption uncov-

erage)

By quasi-synchronous we mean that the bounds re-
ferred to in properties Px (process speed, message
transmission delay, clock rate drift, etc.) exist, but
some or all of them are too far from the normal case
that in practice we are going to use other values (closer
to the normal case). In this case, there is obviously a
non-null probability that the values we pick are not
correct.

The attentive reader is probably arguing at this mo-
ment that the applicability of our model depends on
the capability of attaching realistic failure semantics
to each property, and on an appropriate architecture
capable of timing error processing, in order to achieve
(timing-)fault-tolerance. We will address these issues
in section 4.

For now, let us suggest that it is a realistic scen-
ario to have a bi-modal distribution of a given bound,

1Coverage [12, 15] is a measure of the representativity of the
situations to which a system is submitted during its validation
compared to the actual situations it will be confronted with
during its operational life.

where there is a known and very high probability that
the system's operational envelope lies within a smal-
ler, "normal" bound, whereas it can assume, with cor-
respondingly very low probability, a greater worst-
case bound, in situations of overload, for example.
We assumed a bi-modal distribution for simplicity
of example: nothing prevents the system from being
equated around a multi-modal distribution. Figure1
exempli�es best what we are talking about, with
several bounds for maximum message delivery time,
TD, assumed in the distribution, with correspondingly
smaller probabilities of being violated. In a classical
system, only the rightmost bound with a acceptable re-
sidual probability of not holding, would be considered.

T D
maxmax

DT ’’ T D
max

’

Figure 1: Distribution function for the message deliv-
ery time

Properties of a quasi-synchronous system

We now address the implications of quasi-
synchronism in the Px properties. It is obvious that
we can and should take some of them for granted even
in a quasi-synchronous system. In this lot, we include
properties 1 and 3.

Secondly, there is a property, 5, that depends on the
existence and quality of clock synchronization. The
issue has been well studied[17, 16], and can be self-
contained, in a divide-and-conquer approach. Further-
more, securing property 5 is not mandatory to achieve
real-time communication, as we discuss in [19], so we
refer this discussion to the works cited above.

In consequence, we are left with properties 2 and 4.
They are the crux of the problem we wish to dis-
cuss here. Since we are concerned with interpro-
cess communication, we will further restrict the scope
of property 4 to communication load, as opposed
to processing load. Handling load has to do with
scheduling resources, and though a global approach
to schedulability would be desirable[5], this is a point
of controversy[13]. It is perfectly obvious to us that
this problem is only made worse in the kind of largely
unpredictable environments we are bound to �nd in



the �eld of best-e�ort applications: systems composed
of heterogeneous hosts over standard communication
media, such as LANs or bridged LANs, or Internet.
A divide-and-conquer strategy as was followed in [21],
separating processing and communications scheduling,
not being the perfect solution, has the merit of letting
us focus on one problem at a time, and in this case,
interprocess communication.

At this point, we also apply the divide-and-conquer
approach to property 2, and split it into two properties:

P2. 1 Bounded and known access and transmission delay

P2. 2 Bounded and known number of transmission fail-

ures

That is, we separate what de�nes the bound of an in-
dividual network access, 1, from the number of network
accesses needed to make the message reach through
in the presence of failures, 2. This has the virtue of
making property 4 be subsumed by property 2: access
and transmission delay will depend on the load im-
posed on the communication system versus its capa-
city (throughput, latency), and we know how to model
the network subsystem that way [20].

In conclusion, we simplify the interprocessing com-
munication aspects of conceiving a quasi-synchronous
distributed fault-tolerant system, to the task of hand-
ling property 2: achieving known and bounded mes-
sage delivery delays.

4 Some contributions

The main implication of formalizing such a quasi-
synchronism model is contributing to correctly specify
fault-tolerant systems of the best-e�ort kind. That is,
providing a framework for handling imprecise, coarse
and highly variable timing assumptions. We have
made some contributions towards this objective. Due
to lack of space, we will brie
y outline them and give
pointers to the relevant papers.

Given that these systems are potentially non-
deterministic, they tend to be treated in a homogen-
eous probabilistic framework, in sort of a soft real-time
approach. With this kind of approach, no hard guar-
antees can be given. The quasi-synchronism model,
on the other hand, allows the designer to de�ne a set
of operational envelopes, tracing a path of graceful de-
gradation which the system goes through, in the meas-
ure where faults occur. Whenever timing assump-
tions are not met, it is essential to detect the fact
and recover from it. In [1] and [2] we develop the in-
novative notion of timing failure detector, in contrast

to the known crash failure detectors in asynchronous
systems[6]. The timing failure detector is an oracle
capable of telling which timing assumptions have been
violated. This information is capable of triggering re-
con�guration procedures, for example, migrating to
another envelope.

Given the nature of these systems, they rely very
much on event-triggered behavior, and timer-driven
protocols. One obvious aim is to de�ne a correctness
setting for clock-driven and timer-driven protocols to
coexist in a same system, and be proven correct. It
should be understood that this was not allowed un-
til now, for the sake of correctness of time-triggered
systems[10]. In [19], we de�ned such generic correct-
ness conditions based on fundamental properties of
protocols such as steadiness de�ned in section 2. Not
only have we showed they can coexist, but also that the
normally coarse parameters and widely varying bounds
expected of quasi-synchronous systems can yield or-
dering properties as useful as their highly-precise fully-
or tightly-synchronous counterparts. The key of the
argument lies in that a lot of real-time applications'
requirements match the coarseness of system paramet-
ers such as the minimum and maximum propagation
delays, or the minimum inter-event spacing.

In [18], we apply the above-mentioned reasoning to
the ordering of events from time-stamps. We show that
the classical attitude of having clocks as precise as pos-
sible, and with as low granularity as possible, does not

necessary yield better results than coarser granularit-
ies. It all depends on what there is to be measured.
Clearly, this result is well-suited to quasi-synchronous
systems, since precision of clock synchronization de-
pends, among other factors, on message delay vari-
ance.

In [20] we have addressed techniques to enforce
properties 1 and 2 on real-time LANs, in the pres-
ence of overload and failures, that is, subsuming prop-
erty 4, bounded and known load patterns, by the
above-mentioned properties, bounded and known ac-
cess and transmission delay and number of transmis-
sion failures.

In group communication, quasi-synchronism
presents a suitable framework for protocols that usu-
ally have an execution time that is much faster than the
worst-case (thus allowing the implementation of what
is called early-delivery [1]), while still being able to
work correctly in worst-case delays. Causal delivery,
an important property in distributed system protocols,
is generalized for real-time systems in [19]. There, it is
also shown that coarse-granular protocols such as the
ones one may �nd in quasi-synchronous systems, may



be as e�ective as their �ne-granular counterparts, all
depending on the system's parameters.

5 Conclusions

We addressed the shortcomings of current models to
represent a class of real-life distributed fault-tolerant
real-time systems, such as best-e�ort ones. After mo-
tivating our approach, we presented the model that we
referred to as quasi-synchronism.

We pointed out some contributions to materialize
the model, namely, contributing to correctly specify
fault-tolerant systems of the best-e�ort kind. Spe-
ci�cally, in related works previously published we in-
troduced: the notion of timing failure detector; gen-
eric correctness conditions for clock-driven and timer-
driven protocols to coexist in a same system, and be
proven correct; techniques to enforce bounded and
known message delivery delay on real-time LANs, in
the presence of overload and failures; real-time early-
delivery and causal delivery protocols.

The work presented in this paper is still in progress.
We intend to pursue the current development of a sys-
tem architecture applying these concepts, and evaluate
its merits for fault-tolerant best-e�ort systems.

References

[1] Carlos Almeida and Paulo Ver��ssimo. An adaptive real-

time group communication protocol. In Proceedings of the
First IEEE Workshop on Factory Communication Sys-

tems, Lausanne, Switzerland, October 1995.

[2] Carlos Almeida and Paulo Ver��ssimo. Timing failure
detection and real-time group communication in quasi-
synchronous systems. Technical Report RT/20-95, INESC,
Lisboa, Portugal, November 1995. submitted for public.

[3] N. Audsley, K. Tindell, A. Burns, M. Richardson, and
A. Wellinds. The drtee architecture for distributed hard
real-time systems. In Proceedings of the 10th IFAC Work-

shop on Distributed Computer Control Systems, Semmer-
ing, Austria, September 1991. IFAC.

[4] Kenneth Birman, Andre Schiper, and Pat Stephenson.

Lightweight Causal and Atomic Group Multicast. ACM
Transactions on Computer Systems, 9(3), August 1991.

[5] A. Burns and A. Wellings. Real-time distributed comput-
ing. In Proceedings of the 5th Workshop on Future Trends

of Distributed Computing Systems, pages 34{40, Cheju Is-
land, Korea, August 1995.

[6] Tushar DeepakChandra and Sam Toueg. Unreliable failure
detectors for asynchronous systems (preliminary version).
Technical report, Department of Computer Science, Cor-
nell University, Ithaca, USA, July 1991.

[7] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer.
Consensus in the presence of partial synchrony. Journal
of the ACM, 35(2):288{323, April 1988.

[8] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Im-
possibility of distributed consensus with one faulty pro-
cess. Journal of the Association for Computing Ma-
chinery, 32(2):374{382, April 1985.

[9] E. Douglas Jensen and J. Duane Northcutt. Alpha: A
non-proprietaryos for large, complex, distributed real-time

systems. In Proceedings of the IEEE Workshop on Ex-
perimental Distributed Systems, pages 35{41, Huntsville,
Alabama, October 1990. IEEE.

[10] Hermann Kopetz, Andreas Damm, C. Koza, Marco
Mulazzani, Wolfgang Schwabl, C. Senft, and R. Zainlinger.
Distributed Fault-Tolerant Real-Time Systems: The Mars
Approach. IEEE Micro, pages 25{41, February 1989.

[11] Hermann Kopetz and Paulo Ver��ssimo. Real-time and De-
pendability Concepts. In S.J. Mullender, editor, Distrib-
uted Systems, 2nd Edition, ACM-Press, chapter 16, pages
411{446. Addison-Wesley, 1993.

[12] J. C. Laprie. Dependability: A Unifying Concept for Re-
liable Computing and Fault-Tolerance. In T. Anderson,
editor, Dependability of Resilient Computers. BSP Profes-
sional Books, 1989.

[13] Gerard Le Lann. Timing failures and timeliness proofs in
the case of distributed systems (draft). Technical report,

September 1994. Presented at the Dagstuhl Seminar.

[14] Dalia Malki, Ken Birman, Aleta Ricciardi, and Andr�e
Schiper. Uniform actions in asynchronous distributed sys-
tems. In Proceedings of the 13th annual ACM symposium

on the Principles of Distributed Computing (PODC),
pages 274{284, Los Angeles, August 1994. also as TR 94-

1447, Cornell University.

[15] David Powell. Failure mode assumptions and assumption
coverage. In Digest of Papers, The 22nd International

Symposium on Fault-Tolerant Computing Systems, page
386. IEEE, 1992.

[16] Parameswaran Ramanathan, Kang G. Shin, and Ricky W.
Butler. Fault-Tolerant Clock Synchronization in Distrib-
uted Systems. IEEE, Computer, pages 33{42, October
1990.

[17] Fred B. Schneider. Understanding protocols for byzantine
clock synchronization. Technical report, Cornell Uni-
versity, Ithaca, New York, August 1987.

[18] P. Ver��ssimo. Ordering and Timeliness Requirements of
Dependable Real-Time Programs. Journal of Real-Time
Systems, Kluwer Eds., 7(2):105{128, September 1994. Also

as INESC AR/14-94.

[19] P. Ver��ssimo. Causal Delivery Protocols in Real-time Sys-
tems: a Generic Model. Journal of Real-Time Systems, to
appear 1995.

[20] Paulo Ver��ssimo. Real-time Communication. In S.J. Mul-
lender, editor, Distributed Systems, 2nd Edition, ACM-
Press, chapter 17, pages 447{490. Addison-Wesley, 1993.

[21] Paulo Ver��ssimo, P. Barrett, P. Bond, A. Hilborne,
L. Rodrigues, and D. Seaton. The Extra Performance Ar-
chitecture (XPA). In D. Powell, editor, Delta-4 - A Gen-

eric Architecture for Dependable Distributed Computing,
ESPRIT Research Reports, pages 211{266. Springer Ver-
lag, November 1991.


