
Contention-Aware Metrics for Distributed Algorithms:
Comparison of Atomic Broadcast Algorithms∗

Péter Urbán, Xavier Défago, and Andr´e Schiper

Département de Systèmes de Communication
École Polytechnique F́ed́erale de Lausanne

1015 Lausanne EPFL, Switzerland
E-mail: {peter.urban,xavier.defago,andre.schiper }@epfl.ch

Abstract

Resource contention is widely recognized as having a
major impact on the performance of distributed algorithms.
Nevertheless, the metrics that are commonly used to predict
their performance take little or no account of contention.
In this paper, we define two performance metrics for dis-
tributed algorithms that account for network contention as
well as CPU contention. We then illustrate the use of these
metrics by comparing four Atomic Broadcast algorithms,
and show that our metrics allow for a deeper understand-
ing of performance issues than conventional metrics.

1 Introduction

Performance prediction and evaluation are a central part of
every scientific and engineering activity, including the con-
struction of distributed applications. Engineers of distributed
systems rely heavily on various performance evaluation tech-
niques and have developed the necessary techniques for this
activity. In contrast, algorithm designers invest considerable
effort in proving the correctness of their algorithms (which
they of course should do!), but often oversee the importance
of predicting the performance of their algorithms, i.e., they
rely on simplistic metrics. As a result, there is a serious gap
between the prediction and the evaluation of performance of
distributed algorithms.

Performance Prediction vs. Evaluation of Algorithms.
When analyzing performance, one has to make a distinction be-
tween prediction and evaluation. Performance prediction gives
an indication of the expected performance of an algorithm,be-
fore it is actually implemented. Performance prediction tech-
niques give fairly general yet imprecise information, and rely
on the use of various metrics. Conversely, performance eval-
uation is ana posteriorianalysis of an algorithm, once it has
been implemented and run in a given environment (possibly
a simulation). While the information obtained is usually very

∗Research supported by a grant from the CSEM Swiss Center for Elec-
tronics and Microtechnology, Inc., a company based in Neuchˆatel.

accurate and precise, the results depend on specific characteris-
tics of the environment and thus lack generality. Performance
prediction and evaluation are complementary techniques. Per-
formance prediction is used to orient design decisions, while
performance evaluation can confirm those decisions and allows
the dimensioning of the various system parameters.

Definition of a Metric. In this paper, we focus on the prob-
lem of predicting and comparing the performance of distributed
algorithms. The goal is hence to investigate metrics that an-
swer typical questions such as choosing the best algorithm for
a particular problem, or identifying the various performance
tradeoffs related to the problem. We define ametric as a
value associated with an algorithm that has no physical reality
and is used to define an order relation between algorithms.
A good metric should provide a good approximation of the
performance of an algorithm, regardless of the implementa-
tion environment1. Even though some performance evaluation
techniques are also based on an abstract model of the sys-
tem (e.g., analytical approaches, simulation), a metric must
be acomputablevalue. This is in contrast with simulation
techniques that can model details of the system and the envi-
ronment, and thus use complex models.

Existing Metrics for Distributed Algorithms. As men-
tioned earlier, performance prediction of distributed algorithms
is usually based on two rather simplistic metrics: time and mes-
sage complexity. These metrics are indeed useful, but there is
still a large gap between the accuracy of the information they
provide, and results obtained with more environment specific
approaches.

The first commonly used metric, calledtime complexity,
measures the latency of an algorithm. There exist many def-
initions of time complexity that are more or less equivalent.
A common way to measure the time complexity of an algo-
rithm (e.g., [1, 26, 22, 18, 14, 24]) consists in considering the
algorithm in a model where the message delay has a known

1A combination of several metrics, each focusing on different aspects
of performance, might yield better insight into the behavior of a given al-
gorithm than a single metric.

c©2000, IEEE Computer Society Press. Appeared inProc. of the7th Int’l Conference on Computer Communications and Networks (IC3N’2000).



upper boundδ. The efficiency of the algorithm is measured as
the maximum time needed by the algorithm to terminate. This
efficiency is expressed as a function ofδ, and is sometimes
called the latency degree. This metric islatency-oriented,
i.e., measures the cost ofoneexecution of the algorithm.

The second metric, calledmessage complexity, consists
in counting the total number of messages generated by the
algorithm [22, 14, 1]. This metric is useful when combined
with time complexity, since two algorithms that have the same
time complexity can generate a different volume of messages.
Knowing the number of messages generated by an algorithm
gives a good indication of its scalability and the amount of
resources it uses. Furthermore, an algorithm that generates a
large number of messages is likely to generate a high level of
network contention.

Resource Contention. Resource contention is often a lim-
iting factor for the performance of distributed algorithms. In
a distributed system, the key resources are (1) the CPUs and
(2) the network, any of which is a potential bottleneck. The
major weakness of the time and message complexity metrics
is that neither attaches enough importance to the problem of
resource contention. While the message complexity metric ig-
nores the contention on the CPUs, the time complexity metric
ignores contention completely.

Contribution and Structure. In this paper, we define two
metrics (one latency-oriented, the other throughput-oriented)
which account for resource contention, both on the CPUs and
the network. The use of those metrics is then illustrated by
comparing Atomic Broadcast algorithms. The rest of the pa-
per is structured as follows. Section 2 presents related work.
In Section 3, we present the system model on which our met-
rics are based. Section 4 presents alatency-orientedand a
throughput-orientedmetric. We then compare some algo-
rithms using our metrics in Section 5, and discuss the results.
Finally, Section 6 concludes the paper.

2 Related Work

Resource Contention in Network Models. Resource
contention (also sometimes called congestion) has been ex-
tensively studied in the literature. The bulk of the publications
about resource contention describe strategies to either avoid or
reduce resource contention (e.g. [15, 16]). Some of this work
analyze the performance of the proposed strategies. How-
ever, these analyses consist in performanceevaluation, and
use models that are often specific to a particular network (e.g.,
[21]). Distributed algorithms are normally developed assum-
ing the availability of some transport protocol. A metric that
compares these algorithms must abstract out details that are
only relevant to some implementations of a transport layer. In
other words, it is necessary to relinquish precision for the sake
of generality.

Resource Contention in Parallel Systems. Dwork, Her-
lihy, and Waarts [12] propose a complexity model for shared-
memory multiprocessors that takes contention into account.
This model is very interesting in the context of shared memory
systems but is not well suited to the message passing model
that we consider here. The main problem is that the shared
memory model is a high-level abstraction for communication
between processes. As such, it hides many aspects of com-
munication that are important in distributed systems. Dwork,
Herlihy, and Waarts associate a unit cost based on the access
to shared variables, which has a granularity too coarse for our
problem.

Computational Models for Parallel Algorithms. Unlike
distributed algorithms, many efforts have been directed at de-
veloping performance prediction tools for parallel algorithms.
However, the execution models are not adapted to distributed
algorithms: for instance, the PRAM model (e.g., [19]) re-
quires that processors evolve in lock-steps and communicate
using a global shared memory; the BSP model [31] requires
that processors communicate using some global synchroniza-
tion operation; the LogP model [9] assumes that there is an
absolute upper bound on the transmission delay of messages.
These models are not adequate to predict the performance of
distributed algorithms. The main reason is that they do not nat-
urally suitasynchronousdistributed algorithms, which do not
assume any form of global synchronization nor any restriction
on communication delays.

Competitive Analysis. Other work, based on the method
of competitive analysis proposed by Sleator and Tarjan [28],
has focused on evaluating the competitiveness of distributed
algorithms [5, 6]. In this work, the cost of a distributed algo-
rithm is compared to the cost of an optimal centralized algo-
rithm with a global knowledge. This work has been refined
in [2, 3, 4] by considering an optimaldistributedalgorithm as
the reference for the comparison. This work assumes an asyn-
chronous shared-memory model and predicts the performance
of an algorithm by counting the number of steps required by
the algorithms to terminate. The idea of evaluating distributed
algorithms against an optimal reference is appealing, but this
approach is orthogonal to the definition of a metric. The met-
ric used is designed for the shared-memory model, and still
ignores the problem of contention.

3 Distributed System Model

The two metrics that we define in this paper are based on an
abstract system model which introduces two levels of resource
contention:CPU contentionandnetwork contention. First,
we define a basic version of the model that leaves some aspects
unspecified, but is sufficient to define our throughput oriented
metric (see Definition 5). Second, we define an extended
version of the model by removing the ambiguities left in the
basic version. This extended model is used in Sect. 4 to define
our latency oriented metric (see Definition 3).

583



3.1 Basic Model

The model is inspired from the models proposed in [27, 29].
It is built around two types of resources: CPU and network.
These resources are involved in the transmission of messages
between processes. There is only one network that is shared
among processes, and it is used to transmit a message from one
process to another. Additionally, there is one CPU resource
attached to each process in the system. These CPU resources
represent the processing performed by the network controllers
and the communication layers, during the emission and the
reception of a message. In this model, the cost of running
the distributed algorithm is neglected, and hence this does not
require any CPU resource.
The transmission of a messagem from a sending processpi

to a destination processpj occurs as follows (see Fig. 1):

1. m enters thesending queue2 of the sending host, waiting
for CPUi to be available.

2. m takes the resourceCPUi for λ time units, whereλ is
a parameter of the system model (λ ∈ R

+
0 ).

3. m enters thenetwork queueof the sending host and waits
until the network is available for transmission.

4. m takes the network resource for 1 time unit.

5. m enters thereceiving queueof the destination host and
waits untilCPUj is available.

6. m takes the resourceCPUj of the destination host for
λ time units.

7. Messagem is received bypj in the algorithm.

3.2 Extended Model

The basic model is not completely specified. For instance,
it leaves unspecified the way some resource conflicts are re-
solved. We now extend the definition of the model in order
to specify these points. As a result, the execution of a (deter-
ministic) distributed algorithm in the extended system model
is deterministic.

Network Concurrent requests to the network may arise
when messages at different hosts are simultaneously ready
for transmission. The access to the network is modeled by a
round-robin policy,3 illustrated by Algorithm 1.

CPU CPU resources also appear as points of contention be-
tween a message in the sending queue and a message in the
receiving queue. This issue is solved by giving priority on
every host to outgoing messages over incoming ones.

2All queues in the model use a FIFO policy (sending, receiving, and
network queues).

3Many thanks to Jean-Yves Le Boudec for this suggestion.

Algorithm 1 Network access policy (executed by network).
i← 1
loop

wait until one network queue is not empty
while network queue ofCPUi is emptydo

incrementi (mod n)
m← extract first message from network queue ofCPUi

wait 1 time unit
insertm into receiving queue ofCPUdest(m)
incrementi (mod n)

Send to all Distributed algorithms often require to send a
messagem to all processes, using a “send to all” primitive.
The way this is actually performed depends on the model (see
below).

Definition 1 (point-to-point) ModelMpp(n, λ) is the ex-
tended model with parametersn ∈ N andλ ∈ R

+
0 , where

n > 1 is the number of processes andλ is the relative cost
between CPU and network. The primitive “send to all” is
defined as follows: Ifp is a process that sends a messagem
to all processes, thenp sends the messagem consecutively
to all processes in the lexicographical order (p1, p2, . . . ,
pn).

Nowadays, many networks are capable of broadcasting in-
formation in an efficient manner, for instance, by providing
support for IP multicast [10]. For this reason, we also define a
model that integrates the notion of a broadcast network.

Definition 2 (broadcast) ModelMbr(n, λ) is defined sim-
ilarly to Definition 1, with the exception of the “send to all”
primitive, which is defined as follows: Ifp is a process that
sends a messagem to all, thenp sends a single copy ofm,
the network transmits a single copy ofm, and each process
(exceptp) receives a copy ofm.

3.3 Illustration

Let us now illustrate the model with an example. We con-
sider a system with three processes{p1, p2, p3}which execute
the following simple algorithm. Processp1 starts the algorithm
by sending a messagem1 to processesp2 andp3. Upon re-
ception ofm1, p2 sends a messagem2 to p1 andp3, andp3

sends a messagem3 to p1 andp2.
Figure 2 shows the execution of this simple algorithm in

modelMpp(3, 0.5). The upper part of the figure is a time-
space diagram showing the exchange of messages between the
three processes. The lower part is a more detailed diagram
that shows the activity (send, receive, transmit) of each re-
source in the model. For instance, processp3 sends a copy
of messagem3 to processp1 (denotedm3,1) at time 3. The
message takes the CPU resource ofp3 at time 3, takes the
network resource at time 4.5, and takes the CPU resource of
p1 at time 5.5. Finally,m3 is received byp1 at time 6.

584



Network
(1tu)

CPU
(  tu)λ

CPU
(  tu)λ

m
receive

receiving
host

send
m

sending
host

7

6

5

4

3

2

1

process process
p

i
p

j

Distributed
Algorithm

System
Model

ji

Figure 1. Decomposition of the end-to-end delay (tu=time unit).

m1

m2

m3

m1,2 m1,3

m2,1 m2,3

m3,1 m3,2

m1,2 m1,3 m2,1 m2,3 m3,1 m3,2

m1,2

m1,3

m2,1

m2,3

m3,1

m3,2

p1

p2

p3

CPU3

CPU2

CPU1

network

t [tu] 0 1 2 3 4 5 6 7

network
(transmit)

CPU
(receive)

CPU
(send)

Figure 2. Simple algorithm in model Mpp(3, 0.5) (mi,j denotes the copy of message mi sent to process pj).

4 Contention-Aware Metrics

4.1 Latency Metric

The definition of the latency metric uses the terms: “start”
and “end” of a distributed algorithm. These terms are supposed
to be defined by the problemP that an algorithmA solves.
They are not defined as a part of the metric.

Definition 3 (latency metric, point-to-point) Let A
be a distributed algorithm. The latency metric
Latencypp(A)(n, λ) is defined as the number of time
units that separate the start and the end of algorithmA in
modelMpp(n, λ).

Definition 4 (latency metric, broadcast) Let A be a dis-
tributed algorithm. The latency metricLatencybr(A)(n, λ)
is defined as the number of time units that separate the start
and the end of algorithmA in modelMbr(n, λ).

4.2 Throughput Metric

The throughput metric of an algorithmA considers the
utilization of system resources in one run ofA. The most

heavily used resource constitutes a bottleneck, which puts a
limit on themaximal throughput, defined as an upper bound
on the frequency at which the algorithm can be run.

Definition 5 (throughput metric, point-to-point) Let
A be a distributed algorithm. The throughput metric is
defined as follows:

Thputpp(A)(n, λ) def=
1

maxr∈Rn Tr(n, λ)

where Rn denotes the set of all resources (i.e.,
CPU1, . . . , CPUn and the network), andTr(n, λ) denotes
the total duration for which resourcer ∈ Rn is utilized in
one run of algorithmA in modelMpp(n, λ).

Thputpp(A)(n, λ) can be understood as an upper bound
on the frequency at which algorithmA can be started. Let
rb be the resource with the highest utilization time:Trb

=
maxr∈Rn Tr. At the frequency given byThputpp(A)(n, λ),
rb is utilized at 100%, i.e., it becomes a bottleneck.

Definition 6 (throughput metric, broadcast) Let A be a
distributed algorithm. The definition of the throughput met-
ric Thputbr(A)(n, λ) is the same than Definition 5, but in
modelMbr(n, λ).

585



Relation with Message Complexity. The throughput met-
ric can be seen as a generalization of the message complexity
metric. While our metric considers different types of resources,
message complexity only considers the network. It is easy to
see thatTnetwork , the utilization time of the network in a single
run, gives the number of messages exchanged in the algorithm.

5 Comparison of Atomic Broadcast Algo-
rithms

We now illustrate the use of our two metrics by compar-
ing four different algorithms that solve the problem ofAtomic
Broadcast. These examples show that our metrics yield re-
sults that are more precise than what can be obtained by relying
solely on time and message complexity. This confirms the ob-
servation that contention is a factor that cannot be overlooked.

A more extensive analysis of total order broadcast algo-
rithms (using the same metrics) appears in [11].

5.1 Atomic Broadcast Algorithms

Atomic Broadcast is a fundamental problem in the context
of distributed systems [14]. Informally, the problem consists
in broadcasting messages to other processes, in such a way that
all messages are delivered in the same order by all destination
processes. The problem is defined in terms of the two eventsA-
BroadcastandA-Deliver. When a process wants to atomically
broadcast a messagem it executes A-Broadcast(m), and A-
Deliver(m) executed by processq corresponds to the delivery
of messagem by q. The latency of the algorithm with respect
to messagem is then defined as follows. We consider a run in
which no other message is A-Broadcast; the algorithm starts
when a process executes A-Broadcast(m) and ends when the
last process executes A-Deliver(m).

We briefly describe four different Atomic Broadcast algo-
rithms for a system with no failures, and compare them using
our metrics. Figure 3 shows the communication pattern as-
sociated with the broadcast of a single messagem for each
of the four algorithms. Note that the communication pattern
is enough to compute our metrics. For this reason, we have
omitted to give the details of each algorithm.

Lamport. In Lamport’s algorithm [20], every message car-
ries a logical time-stamp. To atomically broadcast a mes-
sagem, the sender process first sendsm to all other processes
(Fig. 3(a)). Upon reception ofm, a processp sends a time-
stamped “null message” to all others, thus informing them that
it has no other message that may have to be delivered before
m. These null messages appear only when a process has no
message to broadcast.

Skeen. Skeen’s algorithm (described in [8, 13, 25]) is a two-
phase protocol that can use Lamport’s logical clocks [20]. To
atomically broadcast a messagem, a processp first sendsm to
all processes (Fig. 3(b)). Upon reception ofm, the processes

send a time-stamped acknowledgment message top. Once
p has received all acknowledgments, it takes the maximum
of the time-stamps received, and sends this information to all
processes. Processes deliverm after they receive this message
(the details of the delivery condition are irrelevant here).

Token. In Rajagopalan and McKinley’s token-based algo-
rithm [23], a token circulates in the system and a process is
allowed to broadcast messages only when it holds the token.
To atomically broadcast a messagem, a processp must first
wait for the token4 (Fig. 3(c)). When it holds the token,p
broadcastsm to the other processes and passes the token to the
next process. The messagem can be delivered only after it has
been acknowledged by all processes. The acknowledgments
of messages are carried by the token. Som is delivered by the
last process only after two round-trips of the token.

Sequencer. Many Atomic Broadcast algorithms are based
on the principle that one process is designated as a sequencer
and constructs the order (e.g., [7, 17]). In the version that we
consider here (Fig. 3(d)), a process atomically broadcasts a
messagem by sendingm to the sequencer. Upon reception of
m, the sequencer attaches a sequence number tom and sends it
to all other processes. Messages are then delivered according
to their sequence number.

These algorithms are interesting to illustrate our metrics
because they take contrasting approaches to solve the problem
of Atomic Broadcast. Although they all deliver messages
according to some total order, these algorithms actually provide
varying levels of guarantees, and are hence not equivalent. An
actual comparison must take these issues into account.

5.2 Latency Metric

We now analyze the latency of the four Atomic Broad-
cast algorithms: Lamport, Skeen, Token, and Sequencer. For
each algorithm, we compute the value of the latency metric in
modelMpp(n, λ). The results are summarized in Table 1 and
compared in Fig. 4(a).5 Table 1 also shows the time complex-
ity of the algorithms. For time complexity, we use thelatency
degree[26]: roughly speaking, an algorithm with latency de-
greel requiresl communication steps.

Figure 4(a) represents the results of the comparison between
the four algorithms with respect to the latency metric. The area
is split into three zones in which algorithms perform differently
with respect to each other (e.g., in Zone I, we have Sequencer
> Lamport> Skeen> Token, where> means “better than”).
The latency metric and time complexity yield the same results

4In our analysis, we take the average case where the token is always
halfway on its path towardp.

5For reasons of clarity, we choose to give approximate formulas for
Latencypp(Lamport)(n, λ) and Latencypp(Skeen)(n, λ). The ex-
pressions given for these two algorithms ignore a factor that is negligible
compared to the rest of the expression. The exact expressions, as well as a
description of the analysis are given in [30].

586



A-Deliver(m)A-Broadcast(m)

m null messages

p1

p2

p3

p4

(a) Lamport

A-Broadcast(m) A-Deliver(m)

m ack ts(m)

p1

p2

p3

p4

(b) Skeen

A-Deliver(m)

token tokenm

A-Broadcast(m)
p1

p2

p3

p4

(c) Token

A-Deliver(m)

A-Broadcast(m)

m (seq#, m)

p1

p2

p3

p4

(d) Sequencer

Figure 3. Communication patterns of Atomic Broadcast algorithms.

Table 1. Latency metric: evaluation of Atomic Broadcast algorithms (in model Mpp(n, λ))

Algorithm A Latencypp(A)(n, λ) Time complexity

Lamport

≈ 3(n− 1)λ + 1 if n ≤ λ + 2

≈ 1
2
n(n− 3) + 2λn + 1

2
λ2 − 3

2
λ if n ≤ 2λ + 3

≈ 1
2
n(n− 1) + 2λn + λ2 − 7

2
λ− 3 if n ≤ 4λ− 4

≈ n(n− 1) + λ2 + λ + 5 otherwise

2

Skeen
≈ 3(n− 1) + 4λ if λ < 1

≈ (3n− 2)λ + 1 if λ ≥ 1
3

Token (2.5n − 1)(2λ + 1) + max(1, λ)(n − 1) 2.5n− 1

Sequencer 4λ + 2 + max(1, λ)(n − 2) 2

for three of the four algorithms: Token, Skeen, and Sequencer.
Both metrics yield that Sequencer performs better than Skeen,
which in turn performs better than Token. For Lamport, time
complexity (Table 1) suggests that it always performs better
than the other algorithms. This comes in contrast with our
latency metric which shows that the relative performance of
Lamport are dependent on the system parametersn andλ. The
reason is that Lamport generates a quadratic number of mes-
sages and is hence subject to network contention to a greater
extent. Time complexity is unable to predict this as it fails to
account for contention.

5.3 Throughput Metric

We now analyze the throughput of the four algorithms. In
a throughput analysis, one run of the algorithm should not be
considered in isolation. Indeed, many algorithms behave dif-
ferently whether they are under high load or not (e.g., Lamport
does not need to generate null messages under high load). For
this reason, the throughput metric is computed by consider-
ing a run of the algorithmunder high load. We also assume
that every process atomically broadcasts messages, and that
the emission is fairly distributed among them. For each al-
gorithm, we compute the value of the throughput metric in
modelMpp(n, λ). The results are summarized6 in Table 2.

6The full description of the analysis is given in [30].

The algorithms are then compared in Fig. 4(b).

Table 2. Throughput metric: evaluation of
Atomic Broadcast algorithms (in model Mpp(n, λ))

Algorithm A (Thputpp(A)(n, λ))−1 Message complexity

Lamport (n− 1) ·max(1, 2λ
n

) n− 1

Skeen 3(n − 1) ·max(1, 2λ
n

) 3(n− 1)

Token n ·max(1, 2λ
n

) n

Sequencer (n− 1
n

) ·max(1, λ) n− 1
n

Figure 4(b) illustrates the relative throughput of the four
algorithms. The graph is split into three zones in which algo-
rithms perform differently with respect to each other. The
throughput metric and message complexity both yield that
Lamport performs better than Token which in turn performs
better than Skeen. However, the two metrics diverge when
considering Sequencer. Indeed, while message complexity
(Table 2) suggests that Sequencer always performs better than
Skeen and Token, our throughput metric shows that it is not
always the case. In fact, Sequencer is more subject to CPU
contention than the other three algorithms. This type of con-
tention is especially noticeable in systems with large values
of λ. Message complexity fails to pinpoint this, as it does not
take CPU contention into account.

587



0.1

1

10

2 3 4 5 6 7 8 9 10

λ

n

I
Sequencer
> Lamport
> Skeen
> Token

II
Sequencer > Skeen
> Lamport
> Token III

Sequencer > Skeen
> Token > Lamport

(a)Latencypp(A)(n, λ)

0.1

1

10

2 3 4 5 6 7 8 9 10

λ

n

I
Lamport > Token
Skeen > SequencerII

Lamport > Token > Sequencer > Skeen

III
Lamport > Sequencer > Token > Skeen

(b) Thputpp(A)(n, λ)

0.1

1

10

2 3 4 5 6 7 8 9 10

λ

n

I

Lamport > Token > Sequencer > Skeen

II

Lamport > Sequencer > Token > Skeen

(c) Thputbr(A)(n, λ)

Figure 4. Comparison of Atomic Broadcast algorithms ( A > A′ means A “better than” A′).

5.4 Latency and Throughput in Broadcast Net-
works

The analyses in modelMbr(n, λ) are not much different.
In fact, there are less messages and less contention7. Table 3

Table 3. Latencybr(A)(n, λ): evaluation of
Atomic Broadcast algorithms.

Algorithm A Latencybr(A)(n, λ)

Lamport 4λ + n

Skeen 6λ + 3 + (n− 2) ·max(1, λ)

Token ( 5n
2
− 1)(2λ + 1) + max(1, λ)

Sequencer 4λ + 2

Table 4. Thputbr(A)(n, λ): evaluation of Atomic
Broadcast algorithms.

Algorithm A (Thputbr(A)(n, λ))−1 Msg complexity

Lamport max(1, λ) 1

Skeen max(n + 1, 4n+1
n

λ) n + 1

Token max(2, n+2
n

λ) 2

Sequencer 2n−1
n

max(1, λ) 2− 1
n

and Table 4 show the results of the two metrics in a broad-
cast network (Latencybr(A)(n, λ) andThputbr(A)(n, λ)).
Apart from the fact that these results are simpler than in a
model with point-to-point communication, there are interest-
ing differences.

According to the latency metric, for any “realistic” value8

of λ andn, the algorithms are always ordered as follows:

Sequencer > Lamport > Skeen > Token
7The full description of the analysis in modelMbr(n, λ) is given

in [30].
8Realistic values for the parametersλ andn are:λ ≥ 0 andn ≥ 2.

Unlike the results obtained withLatencypp(A)(n, λ), there
is only one single zone with a broadcast network. This
zone corresponds to zone I depicted on Figure 4(a) but, in
modelMbr(n, λ), the algorithms are not ordered differently
asn increases. This is easily explained by the fact that Lam-
port is quadratic in modelMpp(n, λ) while it is linear in
modelMbr(n, λ). The latency of the three other algorithms
is not so different because they are linear in both models.

Similarly, Thputbr(A)(n, λ) yields simpler results than
Thputpp(A)(n, λ). As shown in Figure 4(c), the pa-
rameter space is cut into two zones (instead of three for
Thputpp(A)(n, λ), as shown on Fig. 4(b)). The difference
between the two zones is the relative performance (through-
put) of Sequencer and Token. This yields that Token is better
than Sequencer when the CPU is a limiting factor. In fact,
Sequencer is limited by the sequencer process which becomes
a clear bottleneck. Conversely, Token spreads the load evenly
among all processes, and so none becomes a bottleneck. Once
again, both classical metrics (time and message complexity)
fail to capture this aspect.

6 Conclusion

The paper proposes two metrics to predict the latency and
the throughput of distributed algorithms. Unlike other existing
metrics, the two complementary metrics that we present here
take account of both network and CPU contention. This al-
lows for more precise predictions and a finer grained analysis
of algorithms than what time complexity and message com-
plexity permit. In addition, our metrics make it possible to find
out whether the bottleneck is the network or the CPU of one
specific process.

The problem of resource contention is commonly recog-
nized as having a major impact on the performance of dis-
tributed algorithms. Because other metrics do not take ac-
count of contention to the same extent as ours, our metrics
fill a gap that exists between simple complexity measures and
more complex performance evaluation techniques.

The system model for the metrics presented here can be

588



extended in a variety of ways. Modeling a separate network
processor beside the CPUs would bring it closer to the architec-
ture of current networks. Also, the simple bus-based network
could be replaced by more complex topologies9. Careful ex-
perimentation is needed to decide which extensions result in
more realistic models, without making the computation of the
metrics unnecessarily difficult.

Acknowledgments

We would like to thank Jean-Yves Le Boudec for his nu-
merous comments and advice on early versions of this work.
We would also like to thank the anonymous reviewers for their
comments, especially their ideas on how to develop our metrics
further.

References

[1] M. K. Aguilera, W. Chen, and S. Toueg. Failure detection
and consensus in the crash-recovery model. InProc. 12th
Int’l Symp. on Distributed Computing (DISC), pages 231–
245, Sept. 1998.

[2] M. Ajtai, J. Aspnes, C. Dwork, and O. Waarts. A theory of
competitive analysis for distributed algorithms. In S. Gold-
wasser, editor,Proc. 35th Annual Symp. on Foundations of
Computer Science, pages 401–411, Nov. 1994.

[3] J. Aspnes and O. Waarts. A modular measure of com-
petitiveness for distributed algorithms (abstract). InProc.
14th ACM Symp. on Principles of Distributed Computing
(PODC), page 252, Aug. 1995.

[4] J. Aspnes and O. Waarts. Modular competitiveness for dis-
tributed algorithms. InProc. 28th ACM Symp. on Theory of
Computing (STOC), pages 237–246, May 1996.

[5] B. Awerbuch, S. Kutten, and D. Peleg. Competitive dis-
tributed job scheduling. InProc. 24th ACM Symp. on Theory
of Computing (STOC), pages 571–580, May 1992.

[6] Y. Bartal, A. Fiat, and Y. Rabani. Competitive algorithms
for distributed data management. InProc. 24th ACM Symp.
on Theory of Computing (STOC), pages 39–50, May 1992.

[7] K. Birman, A. Schiper, and P. Stephenson. Lightweight
causal and atomic group multicast.ACM Trans. Comput.
Syst., 9(3):272–314, Aug. 1991.

[8] K. P. Birman and T. A. Joseph. Reliable communication in
presence of failures.ACM Trans. Comput. Syst., 5(1):47–76,
Feb. 1987.

[9] D. E. Culler, R. M. Karp, D. Patterson, A. Sahay, E. E. San-
tos, K. E. Schauser, R. Subramonian, and T. von Eicken.
LogP: A practical model of parallel computation.Commun.
ACM, 39(11):78–85, Nov. 1996.

[10] S. E. Deering. RFC 1112: Host extensions for IP multicast-
ing, Aug. 1989.

[11] X. Défago. Agreement-Related Problems: From Semi-
Passive Replication to Totally Ordered Broadcast. PhD the-
sis,École Polytechnique F´edérale de Lausanne, Switzerland,
Aug. 2000. Number 2229.

[12] C. Dwork, M. Herlihy, and O. Waarts. Contention in shared
memory algorithms.J. ACM, 44(6):779–805, Nov. 1997.

9We primarily see the bus-based network of the model as the simplest
mechanism we could think of to introduce network contention.

[13] R. Guerraoui and A. Schiper. Total order multicast to mul-
tiple groups. InProc. 17th Int’l Conf. on Distributed Com-
puting Systems (ICDCS), pages 578–585, May 1997.

[14] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and
related problems. In S. Mullender, editor,Distributed Sys-
tems, chapter 5, pages 97–146. Second edition, 1993.

[15] A. Heddaya and K. Park. Congestion control for asyn-
chronous parallel computing on workstation networks.Par-
allel Computing, 23(13):1855–1875, Dec. 1997.

[16] J.-H. Huang, C.-C. Yang, and N.-C. Fang. A novel conges-
tion control mechanism for multicast real-time connections.
Computer Communications, 22:56–72, 1999.

[17] M. F. Kaashoek and A. S. Tanenbaum. Fault tolerance us-
ing group communication.ACM Operating Systems Review,
25(2):71–74, Apr. 1991.

[18] E. V. Krishnamurthy. Complexity issues in parallel and dis-
tributed computing. In A. Y. H. Zomaya, editor,Parallel &
Distributed Computing Handbook, pages 89–126. 1996.

[19] L. I. Kronsjö. PRAM models. In A. Y. H. Zomaya, editor,
Parallel & Distributed Computing Handbook, pages 163–
191. McGraw-Hill, 1996.

[20] L. Lamport. Time, clocks, and the ordering of events in a dis-
tributed system.Commun. ACM, 21(7):558–565, July 1978.

[21] C.-C. Lim, L.-J. Yao, and W. Zhao. A comparative study
of three token ring protocols for real-time communications.
In Proc. 11th Int’l Conf. on Distributed Computing Systems
(ICDCS), pages 308–317, May 1991.

[22] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann,
1996.

[23] B. Rajagopalan and P. McKinley. A token-based protocol
for reliable, ordered multicast communication. InProc. 8th
Symp. on Reliable Distributed Systems (SRDS), pages 84–
93, Oct. 1989.

[24] M. Raynal. Networks and Distributed Computation. MIT
Press, 1988.

[25] L. Rodrigues, R. Guerraoui, and A. Schiper. Scalable atomic
multicast. InProc. 7th IEEE Int’l Conf. on Computer Com-
munications and Networks (IC3N’98), pages 840–847, Oct.
1998.

[26] A. Schiper. Early consensus in an asynchronous system with
a weak failure detector.Distributed Computing, 10(3):149–
157, 1997.

[27] N. Sergent.Soft Real-Time Analysis of Asynchronous Agree-
ment Algorithms Using Petri Nets. PhD thesis,́Ecole Poly-
technique F´edérale de Lausanne, Switzerland, 1998.

[28] D. D. Sleator and R. E. Tarjan. Amortised efficiency of list
update and paging rules.Commun. ACM, 28(2):202–208,
Feb. 1985.

[29] K. Tindell, A. Burns, and A. J. Wellings. Analysis of hard
real-time communications.Real-Time Systems, 9(2):147–
171, Sept. 1995.

[30] P. Urbán, X. Défago, and A. Schiper. Contention-aware met-
rics: Analysis of distributed algorithms. Technical Report
DSC/2000/012,́Ecole Polytechnique F´edérale de Lausanne,
Switzerland, Feb. 2000.

[31] L. G. Valiant. A bridging model for parallel architectures.
Commun. ACM, 33(8):103–111, Aug. 1990.

589


