Contention-Aware Metrics for Distributed Algorithms:
Comparison of Atomic Broadcast Algorithms*

Péter Urlein, Xavier Bfago, and And¥'Schiper

Département de Sysnes de Communication

Ecole Polytechnique&terale de Lausanne
1015 Lausanne EPFL, Switzerland

E-mail: { peter.urban,xavier.defago,andre.schiper) @epfl.ch

Abstract accurate and precise, the results depend on specific characteris-
tics of the environment and thus lack generality. Performance
Resource contention is widely recognized as having aprediction and evaluation are complementary techniques. Per-
major impact on the performance of distributed algorithms. formance prediction is used to orient design decisions, while
Nevertheless, the metrics that are commonly used to predicperformance evaluation can confirm those decisions and allows
their performance take little or no account of contention. the dimensioning of the various system parameters.
In this paper, we define two performance metrics for dis-
tributed algorithms that account fo_r network contention as pefinition of a Metric. In this paper, we focus on the prob-
well as CPU contention. We then illustrate the use of these|em of predicting and comparing the performance of distributed
metrics by comparing four Atomic Broadcast algorithms, 4gorithms. The goal is hence to investigate metrics that an-
and show that our metrics allow for a deeper understand- syer typical questions such as choosing the best algorithm for
ing of performance issues than conventional metrics. a particular problem, or identifying the various performance
tradeoffs related to the problem. We definemetric as a
value associated with an algorithm that has no physical reality
1 Introduction and is used to define an order relation between algorithms.
A good metric should provide a good approximation of the
Performance prediction and evaluation are a central part ofperformance of an algorithm, regardless of the implementa-
every scientific and engineering activity, including the con- tion environment. Even though some performance evaluation
struction of distributed applications. Engineers of distributed techniques are also based on an abstract model of the sys-
systems rely heavily on various performance evaluation tech-tem (e.g., analytical approaches, simulation), a metric must
niques and have developed the necessary techniques for thigeé acomputablevalue. This is in contrast with simulation
activity. In contrast, algorithm designers invest considerable techniques that can model details of the system and the envi-
effort in proving the correctness of their algorithms (which ronment, and thus use complex models.
they of course should do!), but often oversee the importance
of predicting the performance of their algorithms, i.e., they Existing Metrics for Distributed Algorithms. ~ As men-
rely on simplistic metrics. As a result, there is a serious gap tioned earlier, performance prediction of distributed algorithms
between the prediction and the evaluation of performance ofjs ysually based on two rather simplistic metrics: time and mes-

distributed algorithms. sage complexity. These metrics are indeed useful, but there is
still a large gap between the accuracy of the information they
Performance Prediction vs. Evaluation of Algorithms. provide, and results obtained with more environment specific

When analyzing performance, one has to make a distinction be-approaches.

tween prediction and evaluation. Performance prediction gives The first commonly used metric, calléune complexity

an indication of the expected performance of an algorithe, measures the latency of an algorithm. There exist many def-
foreit is actually implemented. Performance prediction tech- initions of time complexity that are more or less equivalent.
niques give fairly general yet imprecise information, and rely A common way to measure the time complexity of an algo-
on the use of various metrics. Conversely, performance eval-rithm (e.g., [1, 26, 22, 18, 14, 24]) consists in considering the
uation is arna posteriorianalysis of an algorithm, once it has algorithm in a model where the message delay has a known

n implemen nd run in iven environmen ibl
be'? | p.e ev\t/ehdl a hd .uf a g € be . 8 . ent (|F|)OSS bly 1A combination of several metrics, each focusing on different aspects
a simulation). lle the information obtained Is usually very of performance, might yield better insight into the behavior of a given al-

*Research supported by a grant from the CSEM Swiss Center for Elec- gorithm than a single metric.
tronics and Microtechnology, Inc., a company based in Nateth™

(©2000, IEEE Computer Society Press. AppeareBric. of the7*” Int’| Conference on Computer Communications and Networks (IC3N'2000)

upper bound. The efficiency of the algorithm is measured as Resource Contention in Parallel Systems. Dwork, Her-
the maximum time needed by the algorithm to terminate. This lihy, and Waarts [12] propose a complexity model for shared-
efficiency is expressed as a function®@fand is sometimes memory multiprocessors that takes contention into account.
called the latency degree. This metricl&ency-oriented This model is very interesting in the context of shared memory
i.e., measures the costofieexecution of the algorithm. systems but is not well suited to the message passing model
The second metric, callethessage complexjtgonsists that we consider here. The main problem is that the shared
in counting the total number of messages generated by thenemory model is a high-level abstraction for communication
algorithm [22, 14, 1]. This metric is useful when combined between processes. As such, it hides many aspects of com-
with time complexity, since two algorithms that have the same munication that are important in distributed systems. Dwork,
time complexity can generate a different volume of messages,Her”hy, and Waarts associate a unit cost based on the access
Knowing the number of messages generated by an algorithmto shared variables, which has a granularity too coarse for our
gives a good indication of its scalability and the amount of problem.
resources it uses. Furthermore, an algorithm that generates a
large number of messages is likely to generate a high level of Computational Models for Parallel Algorithms. Unlike
network contention. distributed algorithms, many efforts have been directed at de-
veloping performance prediction tools for parallel algorithms.
. o) However, the execution models are not adapted to distributed
Resource Contention. Resource contention is oftgn alim- algorithms: for instance, the PRAM model (e.g., [19]) re-
iting chtor for the performance of distributed algorithms. In quires that processors evolve in lock-steps and communicate
a distributed system, the key resources are (1) the CPUs a”qleing a global shared memory; the BSP model [31] requires

(2) the network, any of which is a potential bottleneck. The ¢ processors communicate using some global synchroniza-
major weakness of the time and message complexity metricSjon gperation; the LogP model [9] assumes that there is an

is that neither attaches enough importance to the problem ofyp1ute upper bound on the transmission delay of messages.

resource contention. While the message complexity metric i9-These models are not adequate to predict the performance of

nores the contention on the CPUs, the time complexity metric gisyrihuted algorithms. The main reason is that they do not nat-

ignores contention completely. urally suitasynchronouslistributed algorithms, which do not
assume any form of global synchronization nor any restriction

Contribution and Structure. In this paper, we define two on communication delays.

metrics (one latency-oriented, the other throughput-oriented) »)

which account for resource contention, both on the CPUs andCompetitive Analysis. Other work, based on the method
the network. The use of those metrics is then illustrated by Of competitive analysis proposed by Sleator and Tarjan [28],
comparing Atomic Broadcast algorithms. The rest of the pa- has focused on evaluating the competitiveness of distributed
per is structured as follows. Section 2 presents related work.2/gorithms [5, 6]. In this work, the cost of a distributed algo-
In Section 3, we present the system model on which our met- rithm is compared to the cost of an optimal centralized algo-
throughput-orientednetric. We then compare some algo- N [2, 3, 4] by considering an optimalistributedalgorithm as

rithms using our metrics in Section 5, and discuss the results.the reference for the comparison. This work assumes an asyn-
Finally, Section 6 concludes the paper. chronous shared-memory model and predicts the performance

of an algorithm by counting the number of steps required by
the algorithms to terminate. The idea of evaluating distributed
2 Related Work algorithms against an optimal reference is appealing, but this
approach is orthogonal to the definition of a metric. The met-

. . ric used is designed for the shared-memory model, and still
Resource Contention in Network Models. Resource ignores the problem of contention.

contention (also sometimes called congestion) has been ex-
tensively studied in the literature. The bulk of the publications L
about resource contention describe strategies to either avoid o8~ Distributed System Model

reduce resource contention (e.g. [15, 16]). Some of this work

analyze the performance of the proposed strategies. How- The two metrics that we define in this paper are based on an
ever, these analyses consist in performagealuation and abstract system model which introduces two levels of resource
use models that are often specific to a particular network (e.g.,contention: CPU contentiorandnetwork contentionFirst,

[21]). Distributed algorithms are normally developed assum- we define a basic version of the model that leaves some aspects
ing the availability of some transport protocol. A metric that unspecified, but is sufficient to define our throughput oriented
compares these algorithms must abstract out details that arenetric (see Definition 5). Second, we define an extended
only relevant to some implementations of a transport layer. In version of the model by removing the ambiguities left in the
other words, it is necessary to relinquish precision for the sakebasic version. This extended model is used in Sect. 4 to define
of generality. our latency oriented metric (see Definition 3).

583

3.1 Basic Model Algorithm 1 Network access policy (executed by network).
i1
e ; ; loop

_Thelmodel is inspired from the models.proposed in[27,29]. wait until one network queue is not empty
It is built around two types of resources: CPU and network. while network queue o PU; is emptydo
These resources are involved in the transmission of messages incrementi (mod 1)
between processes. There is only one network that is shared ™ jt—let?“faCt f'{St message from network queuedtU;

PR H wal ime uni

among processes, and it |.s.used to transmit a message fromone [1C 1 o receiving queue aEPU o, (1)
process to another. Additionally, there is one CPU resource incrementi (mod n)
attached to each process in the system. These CPU resources

represent the processing performed by the network controllers

and the communication layers, during the emission and the N . .
: . - “Send to all Distributed algorithms often require to send a
reception of a message. In this model, the cost of running - p PR
messagen to all processes, using a “send to all” primitive.

the distributed algorithm is neglected, and hence this does not.l.he way this is actually performed depends on the model (see
require any CPU resource. below)

The transmission of a messagefrom a sending process
to a destination procegg occurs as follows (see Fig. 1):

Definition 1 (point-to-point) Model M,,,(n,) is the ex-
1. menters thsending queu?ef)f the Sending hOSt, Waltlng tended model with parametemse N and)\ c R+, where
for CPU; to be available. n > 1 is the number of processes ahds the relative cost
between CPU and network. The primitive “send to all” is
defined as follows: If is a process that sends a message
to all processes, thep sends the message consecutively
to all processes in the lexicographical order(po, ...,

2. m takes the resourc€PU; for A time units, where\ is
a parameter of the system modal¢ R).

3. menters theetwork queuef the sending host and waits
until the network is available for transmission. Pn)-

4. m takes the network resource for 1 time unit. Nowadays, many networks are capable of broadcasting in-
formation in an efficient manner, for instance, by providing
support for IP multicast [10]. For this reason, we also define a
model that integrates the notion of a broadcast network.

5. m enters theeceiving queuef the destination host and
waits untilCPUj; is available.

6. m takes the resourc€PU; of the destination host for

A time units. Definition 2 (broadcast) Model My, (n, A) is defined sim-
ilarly to Definition 1, with the exception of the “send to all”
7. Messagen is received by in the algorithm. primitive, which is defined as follows: ffis a process that
sends a message to all, thenp sends a single copy of,
3.2 Extended Model the network transmits a single copyrf and each process

(exceptp) receives a copy of.

The basic model is not completely specified. For instance,
it leaves unspecified the way some resource conflicts are re3 3 |||lustration
solved. We now extend the definition of the model in order
to specify these points. As a result, the execution of a (deter-

ministic) distributed algorithm in the extended system model L€t us now illustrate the model with an example. We con-
is deterministic sider a system with three proces$es, p2, p3 } which execute

the following simple algorithm. Proceps starts the algorithm

. by sending a message; to processep, andps. Upon re-
Network Concurrent requests to the network may arise ception ofrny, ps sends a messages to p; andps, andps
when messages at different hosts are simultaneously ready 45 ameséageg to p, andps '

for transmission. The access to the network is modeled by a

round-robin policy illustrated by Algorithm 1. Figure 2 shows the execution of this simple algorithm in

model M,,,(3,0.5). The upper part of the figure is a time-
space diagram showing the exchange of messages between the
CPU CPU resources also appear as points of contention bethree processes. The lower part is a more detailed diagram
tween a message in the sending queue and a message in theat shows the activity (send, receive, transmit) of each re-
receiving queue. This issue is solved by giving priority on source in the model. For instance, procgsssends a copy

every host to outgoing messages over incoming ones. of messagen to procesg; (denotedms ;) at time 3. The
2All queues in the model use a FIFO policy (sending, receiving, and message takes the C_:PU resourcepgfat time 3, takes the
network queues). network resource at time 4.5, and takes the CPU resource of
3Many thanks to Jean-Yves Le Boudec for this suggestion. p1 attime 5.5. Finallyjns is received by, at time 6.

584

process process Distributed
P P Algorithm
send><] - -i-cpiic it @ D><]receive
m m
@ N
CcPU, |, [cpu,
T L e = ®© o
‘ System
................. Model
) i Network 3 .
sending L) receiving
host host
Figure 1. Decomposition of the end-to-end delay (tu=time unit).
P M ‘ j : —
N m, ‘ CPU
0, — M——— (send)
, |
CPU, — — = iy
CPU, 12 hg, — 21, 3.1 — (receive)
CPLJS 1,2 : 2,1 m2,3 — — \ = 3.2 :
network —— =———p—— > S 52 23 network
‘ m, m s M, m,s ms, ms, (transmit)
tftuy o T 2 3 4 5 6 7

Figure 2. Simple algorithm in model

4 Contention-Aware Metrics

4.1 Latency Metric

M, (3,0.5) (m; ; denotes the copy of message m; sentto process p;).

heavily used resource constitutes a bottleneck, which puts a
limit on the maximal throughputdefined as an upper bound
on the frequency at which the algorithm can be run.

Definition 5 (throughput metric, point-to-point) Let

The definition of the latency metric uses the terms: “start” 4 pe a distributed algorithm. The throughput metric is
and “end” of a distributed algorithm. These terms are supposedgefined as follows:

to be defined by the problef® that an algorithmA solves.
They are not defined as a part of the metric.

Definition 3 (latency metric, point-to-point) Let A
be a distributed algorithm. The latency metric
Latency,,(A)(n,\) is defined as the number of time
units that separate the start and the end of algoritinin
modelM,,,(n, A).

Definition 4 (latency metric, broadcast) Let A be a dis-
tributed algorithm. The latency metriatency,,, (A)(n, A)

is defined as the number of time units that separate the start

and the end of algorithmil in modelM . (n, A).
4.2 Throughput Metric

The throughput metric of an algorithod considers the
utilization of system resources in one run.df The most

585

1
maxreRr,, T7‘ (’I’L,)‘)

Thput,,(A)(n,) def

where R, denotes the set of all resources (i.e.,
CPUy,...,CPU, and the network), and; (n, \) denotes
the total duration for which resource € R, is utilized in
one run of algorithmA in modelM,,,(n, A).

Thput,,,(A)(n, A) can be understood as an upper bound
on the frequency at which algorithtd can be started. Let
rp, be the resource with the highest utilization time;,

max,er, 1. Atthe frequency given bfhput,, (A)(n, A),
rp 1S utilized at 100%, i.e., it becomes a bottleneck.

Definition 6 (throughput metric, broadcast) Let A be a
distributed algorithm. The definition of the throughput met-
ric Thput,, (A)(n, A) is the same than Definition 5, but in
modelMy,(n, A).

Relation with Message Complexity. The throughputmet- send a time-stamped acknowledgment message t@®nce

ric can be seen as a generalization of the message complexity has received all acknowledgments, it takes the maximum
metric. While our metric considers different types of resources, of the time-stamps received, and sends this information to all
message complexity only considers the network. It is easy toprocesses. Processes delivenfter they receive this message
see thafl’,.+.0rk, the utilization time of the networkina single (the details of the delivery condition are irrelevant here).

run, gives the number of messages exchanged in the algorithm.

Token. In Rajagopalan and McKinley's token-based algo-
5 Comparison of Atomic Broadcast Algo- rithm [23], a token circulates in the system and a process is
rithms allowed to broadcast messages only when it holds the token.
To atomically broadcast a message a proces® must first
wait for the tokefi (Fig. 3(c)). When it holds the tokem
broadcastsn to the other processes and passes the token to the
next process. The messagecan be delivered only after it has

Broadcast These examples show that our metrics yield re- been acknowledged by all processes. The acknowledgments

sults that are more precise than what can be obtained by relyin . . .
solely on time and message complexity. This confirms the Ob_?gsTSrsosfgsisoﬁs (;?tr:res,vgyréz(?fjcilt(r?;éngcfhdeetlgféﬁd by the

servation that contention is a factor that cannot be overlooked.
A more extensive analysis of total order broadcast algo-

We now illustrate the use of our two metrics by compar-
ing four different algorithms that solve the problemAdbmic

rithms (using the same metrics) appears in [11]. Sequencer. Many Atomic Broadcast algorithms are based
on the principle that one process is designated as a sequencer
5.1 Atomic Broadcast Algorithms and constructs the order (e.g., [7, 17]). In the version that we

consider here (Fig. 3(d)), a process atomically broadcasts a
messagen by sendingn to the sequencer. Upon reception of
m, the sequencer attaches a sequence numbeattd sends it

Q all other processes. Messages are then delivered according
0 their sequence number.

Atomic Broadcast is a fundamental problem in the context
of distributed systems [14]. Informally, the problem consists
in broadcasting messages to other processes, in such a way th
all messages are delivered in the same order by all destination
processes. The problemis defined interms of the two eyents
BroadcastndA-Deliver. When a process wants to atomically These algorithms are interesting to illustrate our metrics
broadcast a message it executes A-Broadcast(), and A- becausg they take contrasting approaches to §olve the problem
Deliver(m) executed by processcorresponds to the delivery ~ Of Atomic Broadcast. Although they all deliver messages
of messagen by ¢. The latency of the algorithm with respect according to some total order, these algorithms actually provide
to messagen is then defined as follows. We consider arunin Varying levels of guarantees, and are hence not equivalent. An
which no other message is A-Broadcast; the algorithm startsactual comparison must take these issues into account.
when a process executes A-Broadcagténd ends when the
last process executes A-Delivet). 5.2 Latency Metric

We briefly describe four different Atomic Broadcast algo-
rithms fo_r a system with no failures, and compare themusing we now analyze the latency of the four Atomic Broad-
our metrics. Figure 3 shows the communication pattern as-cast algorithms: Lamport, Skeen, Token, and Sequencer. For
sociated with the broadcast of a single messagor each gach algorithm, we compute the value of the latency metric in
pf the four algorithms. Note tha}t the communication pattern modelM,,(n, A). The results are summarized in Table 1 and
is enough to compute our metrics. For this reason, we havecompared in Fig. 4(a).Table 1 also shows the time complex-
omitted to give the details of each algorithm. ity of the algorithms. For time complexity, we use fagency

degred26]: roughly speaking, an algorithm with latency de-
Lamport. In Lamport’s algorithm [20], every message car- greel requires communication steps.
ries a logical time-stamp. To atomically broadcast a mes- Figure 4(a) represents the results of the comparison between
sagem, the sender process first sendgo all other processes the four algorithms with respect to the latency metric. The area
(Fig. 3(a)). Upon reception aof:, a proces® sends a time- is splitinto three zones in which algorithms perform differently
stamped “null message” to all others, thus informing them that with respect to each other (e.g., in Zone |, we have Sequencer
it has no other message that may have to be delivered before> Lamport> Skeen> Token, where> means “better than”).
m. These null messages appear only when a process has ndhe latency metric and time complexity yield the same results
message to broadcast.

4In our analysis, we take the average case where the token is always
halfway on its path towarg.
Skeen. Skeen'’s algorithm (described in [8, 13, 25]) is a two- SFor reasons of clarity, we choose to give approximate formulas for

phase protocol that can use Lamport's logical clocks [20]. To Latencyp, (Lamport)(n, A) and Latency ,,, (Skeen)(n, A). The ex-
pressions given for these two algorithms ignore a factor that is negligible

atomically broad_caSt amessagea procesp first sendsn to compared to the rest of the expression. The exact expressions, as well as a
all processes (Fig. 3(b)). Upon receptiomef the processes description of the analysis are given in [30].

586

A-Broadcast(m) A-Deliver(m) A-Broadcast(m) A-Deliver(m)

; Py :
: P : :
i Ps i i o—>
: o Py A4 : A
m ' null messages m ! ack ! ts(m)
(a) Lamport (b) Skeen
D A-Broadcast(m) 1 A-Deliver(m) D A-Déliver(m)
1 -O y y O > 1 y O
P, f'\; '¥ f \ O P, / . \ o >
Y AT N R I A N S S A N G-
o\ NIV g o ° - ~ o
token ' m ! token m ' (seg#, m)
(c) Token (d) Sequencer
Figure 3. Communication patterns of Atomic Broadcast algorithms.
Table 1. Latency metric: evaluation of Atomic Broadcast algorithms (in model Mopp(n, A))
| Algorithm A | Latency,,(A)(n, A) | Time complexity |
~3n—-1)A+1 ifn<A+2
o Loy(m — 1y2_ 3 i <
Lamport %n(n 3)+2)\n+22>\ 72)\ Tfn_2)\+3 2
~gn(n—1)+2 n+ A — FA -3 ifn <4Xx—4
~nn—1)+A2 +1+5 otherwise
Skeen ~3(n—1)+4Xx %f)\ <1 3
~@Bn—-2)A+1 ifA>1
Token (2.5n — 1)(2X + 1) + max(1,\)(n — 1) 2.5n —1
Sequencer | 4A + 2+ max(1,\)(n —2) 2

for three of the four algorithms: Token, Skeen, and Sequencer.The algorithms are then compared in Fig. 4(b).

Both metrics yield that Sequencer performs better than Skeen,

which in turn performs better than Token. For Lamport, time

complexity (Table 1) suggests that it always performs better ~Table 2. Throughput metric: evaluation of

than the other algorithms. This comes in contrast with our ~ Atomic Broadcast algorithms (inmodel ~ M, (n, A))
latency metric which shows that the relative performance of

Lamport are dependent on the system parametarsi\. The | Algorithm A | (Thput,,(A)(n,) ! | Message complexity|
reason is that Lamport generates a quadratic number of mes{ amport (n— 1) - max(1, 2) n—1

sages and is hence subject to network contention to a greate Skeen 3(n — 1) - max(1, 2%) 3(n—1)
extent. Time complexity is unable to predict this as it fails to Token n - max(l, 2) B "

account for contention. Sequencer | (n— 1) max(1, %) Ty

5.3 Throughput Metric
Figure 4(b) illustrates the relative throughput of the four

algorithms. The graph is split into three zones in which algo-
rithms perform differently with respect to each other. The
throughput metric and message complexity both yield that
Lamport performs better than Token which in turn performs

etter than Skeen. However, the two metrics diverge when
considering Sequencer. Indeed, while message complexity
(Table 2) suggests that Sequencer always performs better than

keen and Token, our throughput metric shows that it is not
always the case. In fact, Sequencer is more subject to CPU
contention than the other three algorithms. This type of con-
tention is especially noticeable in systems with large values
of A. Message complexity fails to pinpoint this, as it does not
6The full description of the analysis is given in [30]. take CPU contention into account.

We now analyze the throughput of the four algorithms. In
a throughput analysis, one run of the algorithm should not be
considered in isolation. Indeed, many algorithms behave dif-
ferently whether they are under high load or not (e.g., Lamport
does not need to generate null messages under high load). F
this reason, the throughput metric is computed by consider-
ing a run of the algorithnunder high load We also assume
that every process atomically broadcasts messages, and th
the emission is fairly distributed among them. For each al-
gorithm, we compute the value of the throughput metric in
model M,,,(n, \). The results are summariZeth Table 2.

587

10 T T] 10 T T T T T] 10 T

Lamport > Token] |
I Skeen > Sequencer |
Lamport > Token > Sequencer > Skeen

Lamport > Token > Sequencer > Skeen |

< 1k Sequencer > Skeen . < 1k < 1

> Lamport 3 3 3

> Token T 11] I
Sequencer > Skeen] Lamport > Sequencer > Token > Skeen Lamport > Sequencer > Token > Skeen
> Token > Lamport

0 1 Il Il Il Il Il Il 01 Il Il Il Il Il Il Il 0 1 Il Il Il Il Il Il Il
2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
n
(a) Latency ,,, (A) (n, \) (b) Thput,,, (A)(n, A) (6) Thputy,, (A)(n,)

Figure 4. Comparison of Atomic Broadcast algorithms (A > A’ means A “better than” A’).

5.4 Latency and Throughput in Broadcast Net- Unlike the results obtained withatency,,(.A)(n, A), there
works is only one single zone with a broadcast network. This
zone corresponds to zone | depicted on Figure 4(a) but, in

The analyses in modeWy, (n, \) are not much different. ~ ModelMi,.(n, 1), the algorithms are not ordered differently

In fact, there are less messages and less conténflable 3 ~ @S7 increases. This is easily explained by the fact that Lam-
port is quadratic in modeM,,,(n, A) while it is linear in

model My, (n, A). The latency of the three other algorithms

Table 3. Latencyyp,(A)(n,A): evaluation of is not so different because they are linear in both models.
Atomic Broadcast algorithms. Similarly, Thput,, (A)(n,) yields simpler results than
: Thput,,(A)(n,A). As shown in Figure 4(c), the pa-
| Algorithm A | Latencyy, (A)(n, A) | rameter space is cut into two zones (instead of three for
Lamport AN+ n Thput,,(A)(n, A), as shown on Fig. 4(b)). The difference
Skeen 6A + 3 + (n — 2) - max(1, \) between the two zones is the relative performance (through-
Token (32 — 1)(2XA + 1) + max(1, \) put) of Sequencer and Token. This yields that Token is better
Sequencer AN+ 2 than Sequencer when the CPU is a limiting factor. In fact,

Sequencer is limited by the sequencer process which becomes
a clear bottleneck. Conversely, Token spreads the load evenly
among all processes, and so none becomes a bottleneck. Once
Table 4. Thput, (A)(n, A): evaluation of Atomic again, both classical metrics (time and message complexity)
Broadcast algorithms. fail to capture this aspect.

| Algorithm A | (Thputy, (A)(n, \))~' | Msg complexity | 6 Conclusion

Lamport max(1, \) 1
Skeen max(n + 1, %k) n+1 i i
T T The paper proposes two metrics to predict the latency and
oken max(2, 2= X) 2 s . . 2
S T the throughput of distributed algorithms. Unlike other existing
Sequencer =2 max(1,\) 2— = . .
n n metrics, the two complementary metrics that we present here

take account of both network and CPU contention. This al-
and Table 4 show the results of the two metrics in a broad- |ows for more precise predictions and a finer grained analysis
cast networkLatencyy,, (A)(n, A) andThput,, (A)(n, A)). of algorithms than what time complexity and message com-
Apart from the fact that these results are simpler than in a plexity permit. In addition, our metrics make it possible to find
model with point-to-point communication, there are interest- out whether the bottleneck is the network or the CPU of one

ing differences. specific process.
According to the latency metric, for any “realistic” vafue The problem of resource contention is commonly recog-
of XA andn, the algorithms are always ordered as follows: nized as having a major impact on the performance of dis-
tributed algorithms. Because other metrics do not take ac-
Sequencer > Lamport > Skeen > Token count of contention to the same extent as ours, our metrics
TThe full description of the analysis in mod@Hy, (n, \) is given fill a gap that exists between simple. complex!ty measures and
in [30]. more complex performance evaluation technigues.
8Realistic values for the parametersaindn are: A > 0 andn > 2. The system model for the metrics presented here can be

588

extended in a variety of ways. Modeling a separate network [13] R. Guerraoui and A. Schiper. Total order multicast to mul-

processor beside the CPUs would bring it closer to the architec-

ture of current networks. Also, the simple bus-based network
could be replaced by more complex topologie€areful ex-

perimentation is needed to decide which extensions result in

more realistic models, without making the computation of the
metrics unnecessarily difficult.

Acknowledgments

We would like to thank Jean-Yves Le Boudec for his nu-
merous comments and advice on early versions of this work.
We would also like to thank the anonymous reviewers for their
comments, especially their ideas on how to develop our metrics[18]
further.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]

[10]

[11]

[12]

M. K. Aguilera, W. Chen, and S. Toueg. Failure detection
and consensus in the crash-recovery modelProc. 12th
Int’l Symp. on Distributed Computing (DISQ)ages 231-
245, Sept. 1998.

M. Ajtai, J. Aspnes, C. Dwork, and O. Waarts. A theory of
competitive analysis for distributed algorithms. In S. Gold-
wasser, editorProc. 35th Annual Symp. on Foundations of
Computer Sciencgages 401-411, Nov. 1994.

J. Aspnes and O. Waarts. A modular measure of com-
petitiveness for distributed algorithms (abstract). Pliroc.
14th ACM Symp. on Principles of Distributed Computing
(PODC) page 252, Aug. 1995.

J. Aspnes and O. Waarts. Modular competitiveness for dis-
tributed algorithms. IrProc. 28th ACM Symp. on Theory of
Computing (STOGC)pages 237-246, May 1996.

B. Awerbuch, S. Kutten, and D. Peleg. Competitive dis-
tributed job scheduling. IRroc. 24th ACM Symp. on Theory
of Computing (STOCpages 571-580, May 1992.

Y. Bartal, A. Fiat, and Y. Rabani. Competitive algorithms
for distributed data management. Pnoc. 24th ACM Symp.
on Theory of Computing (STOQ)ages 39-50, May 1992.

K. Birman, A. Schiper, and P. Stephenson. Lightweight
causal and atomic group multicasACM Trans. Comput.
Syst, 9(3):272-314, Aug. 1991.

K. P. Birman and T. A. Joseph. Reliable communication in
presence of failureACM Trans. Comput. Sysb(1):47-76,
Feb. 1987.

D. E. Culler, R. M. Karp, D. Patterson, A. Sahay, E. E. San-
tos, K. E. Schauser, R. Subramonian, and T. von Eicken.
LogP: A practical model of parallel computatioGommun.
ACM, 39(11):78-85, Nov. 1996.

S. E. Deering. RFC 1112: Host extensions for IP multicast-
ing, Aug. 1989.

X. Défago. Agreement-Related Problems: From Semi-
Passive Replication to Totally Ordered BroadcaBhD the-
sis,Ecole Polytechniquedtrale de Lausanne, Switzerland,
Aug. 2000. Number 2229.

C. Dwork, M. Herlihy, and O. Waarts. Contention in shared
memory algorithmsJ. ACM 44(6):779-805, Nov. 1997.

9We primarily see the bus-based network of the model as the simplest
mechanism we could think of to introduce network contention.

589

[14]

[15]

[16]

[17

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

tiple groups. InProc. 17th Int'l Conf. on Distributed Com-
puting Systems (ICDC3)ages 578-585, May 1997.

V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and
related problems. In S. Mullender, edit®istributed Sys-
tems chapter 5, pages 97-146. Second edition, 1993.

A. Heddaya and K. Park. Congestion control for asyn-
chronous parallel computing on workstation networRar-
allel Computing 23(13):1855-1875, Dec. 1997.

J.-H. Huang, C.-C. Yang, and N.-C. Fang. A novel conges-
tion control mechanism for multicast real-time connections.
Computer Communication®2:56—72, 1999.

] M. F. Kaashoek and A. S. Tanenbaum. Fault tolerance us-

ing group communicationACM Operating Systems Review
25(2):71-74, Apr. 1991.

E. V. Krishnamurthy. Complexity issues in parallel and dis-
tributed computing. In A. Y. H. Zomaya, editdparallel &
Distributed Computing Handbopkages 89—-126. 1996.

L. I. Kronsj6. PRAM models. In A. Y. H. Zomaya, editor,
Parallel & Distributed Computing Handbookpages 163—
191. McGraw-Hill, 1996.

L. Lamport. Time, clocks, and the ordering of events in a dis-
tributed systemCommun. ACM21(7):558-565, July 1978.
C.-C. Lim, L.-J. Yao, and W. Zhao. A comparative study
of three token ring protocols for real-time communications.
In Proc. 11th Int'l Conf. on Distributed Computing Systems
(ICDCS) pages 308-317, May 1991.

N. A. Lynch. Distributed Algorithms Morgan Kaufmann,
1996.

B. Rajagopalan and P. McKinley. A token-based protocol
for reliable, ordered multicast communication. Rroc. 8th
Symp. on Reliable Distributed Systems (SRP&yes 84—
93, Oct. 1989.

M. Raynal. Networks and Distributed ComputatiorMIT
Press, 1988.

L. Rodrigues, R. Guerraoui, and A. Schiper. Scalable atomic
multicast. InProc. 7th IEEE Int'l Conf. on Computer Com-
munications and Networks (IC3N'98)ages 840-847, Oct.
1998.

A. Schiper. Early consensus in an asynchronous system with
a weak failure detectoDistributed Computing10(3):149—
157, 1997.

N. SergentSoft Real-Time Analysis of Asynchronous Agree-
ment Algorithms Using Petri Net$?hD thesisEcole Poly-
technique Etérale de Lausanne, Switzerland, 1998.

D. D. Sleator and R. E. Tarjan. Amortised efficiency of list
update and paging rulesCommun. ACM28(2):202—-208,
Feb. 1985.

K. Tindell, A. Burns, and A. J. Wellings. Analysis of hard
real-time communications.Real-Time System$(2):147—
171, Sept. 1995.

P. Urtdn, X. Défago, and A. Schiper. Contention-aware met-
rics: Analysis of distributed algorithms. Technical Report
DSC/2000/012Ecole Polytechnique éeérale de Lausanne,
Switzerland, Feb. 2000.

L. G. Valiant. A bridging model for parallel architectures.
Commun. ACM33(8):103-111, Aug. 1990.

