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Abstract

Failure detectors (or, more accurately Failure Sus-

pectors { FS) appear to be a fundamental service

upon which to build fault-tolerant, distributed ap-

plications. This paper shows that a FS with very

weak semantics (i.e. that delivers failure and recov-

ery information in no speci�c order) su�ces to im-

plement virtually-synchronous communication (VSC)

in an asynchronous system subject to process crash

failures and network partitions. The VSC paradigm

is particularly useful in asynchronous systems and

greatly simpli�es building fault-tolerant applications

that mask failures by replicating processes. We suggest

a three-component architecture to implement virtually-

synchronous communication : 1) at the lowest level,

the FS component; on top of it, 2a) a component that

de�nes new views, and 2b) a component that reliably

multicasts messages within a view.

1 Introduction

There have recently been several papers about mem-

bership services in asynchronous systems [2, 12, 16,

17, 18]. A membership service is responsible for giv-

ing each process (consistent) information about the

operational processes in the system. A process calls

this information its view of the system processes. A

membership service typically reacts to process crashes

or recoveries, leading it to de�ne a set of views. The

membership services mentioned vary according to the
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underlying failure model considered, as well as the

properties they provide with respect to the set of views

delivered to each process: (e.g. whether another view

may exist simultaneously, the degree of agreement

among members):

� [16, 17] consider processes with crash failure se-

mantics, excluding network partitions.

� [18] considers systems in which processes may

crash and the network may partition. However,

despite network partitions, this membership ser-

vice de�nes only majority views { a unique,

totally-ordered sequence of views. Such a mem-

bership service is said to have linear semantics.

� The membership services described in [1, 2, 12]

consider the same failure scenario as above, but

only de�ne a partial order on the views. That

is, if the system is partitioned in two (or more)

subnetworks then two (or more) views, one in

each subnetwork, may exist concurrently.

Concurrent views o�er an interesting extension to

membership services, and force us to consider a fur-

ther semantic distinction based on whether concurrent

views are permitted to intersect. If two concurrent

views may overlap, we say the membership service se-

mantics are weak-partial, if they may not we say the

semantics are strong-partial. Among those that per-

mit concurrent views, [2] appears to be a strong-partial

membership service. [12] considers both strong-partial

and weak-partial membership services, and [1] con-

siders only weak-partial membership service. These

variants raise a new, pertinent question: when is a

strong-partial service required, and when does a weak-

partial membership service su�ce. The objective of

this paper is to suggest an answer to this question, by

showing that a strong-partial membership service is

intimately related to virtually-synchronous communi-
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cation. We do not discuss when a linear membership

service is required.

The idea of virtually-synchronous communication

(VSC) was �rst introduced by Isis [3, 4]. VSC can

be understood as rule for ordering message deliver-

ies (reliable multicasts) with respect to view changes

(received from the membership service). We give a

precise de�nition for VSC in Section 5.4. VSC de�nes

a powerful model for building fault-tolerant processes

that mask failures by replication. It has also been ar-

gued [5] that ordering message deliveries consistently

around process failures and recoveries is a fundamental

part of any distributed computation; thus VSC is a vi-

tal primitive for inherently-distributed programming.

Relatedly, many common distributed applications are

more easily understood and solved if they can make

use of VSC [19]. Finally, if the VSC abstraction we

de�ne in this paper is augmented with a majority re-

quirement, [20] shows it is a powerful model in which

transaction commit is easily (albeit probabilistically)

implemented. Understanding that the VSC abstrac-

tion is more basic than the transaction abstraction

gives broader insight to the problem of building fault-

tolerant applications. However, we note that solving

VSC is not equivalent to solving consensus [10].

Traditionally virtually-synchronous communication

has been implemented with a two component archi-

tecture: a membership service, and on top of it, mul-

ticast component. However, understanding the rela-

tionship between a membership service and virtually-

synchronous communication has lead us to consider a

three-component architecture, with (1) a Failure Sus-

pector component FS delivering information about the

communication topology, (2) a View Component VC

de�ning views, and (3) aMulticast Component MC im-

plementing virtually-synchronous communication. We

divide the functionality of the traditional membership

service between our FS and VC components.

In addition to increasing our understanding of the

relationship between any membership service and

virtually-synchronous communication, this architec-

ture allowed us to specify precisely the FS semantics

needed to guarantee VC and MC liveness. One weak-

ness of previous work in this area has been a lack of

precise semantics for the FS part of the system.

Explicitly, the paper shows:

� that virtually-synchronous communication satis-

fying the de�nition given in Section 5.4 can be

implemented with a modular, three-component

architecture for systemmodels with both process

crash failures and network partitions (i.e. link

failures). We start with a very simple model,

and from it construct a useful communication

primitive for fault-tolerant, distributed applica-

tions.

� how to de�ne concurrent views that have empty

intersections. That is, how to implement strong-

partial membership semantics in a system that

may partition. The basic idea is to de�ne a view

as a set of pairs (proc id, proc sequence number).

� that if we remove the MC component from the

architecture (e.g. if virtually-synchronous com-

munication is not needed), then the view compo-

nent de�nes views that do not satisfy the empty

intersection condition (i.e. giving a membership

service with a weak-partial semantics).

Section 2 describes our low-level system model and the

interaction of the three components. Section 3 gives a

precise semantics for the failure suspector. Sections 4

and 5 sketch how to implement the vcp and mcp com-

ponents, and Section 6 completes the vcp and mcp

protocols. We conclude in Section 7.

2 System Model

Our low-level system model consists of an in�nite

name space of process identi�ers, Proc = fp1; p2; :::; g.

The name space is in�nite to model in�nite executions

in which processes continually fail and recover. At any

point in time, however, there are only a �nite number

of executing processes under consideration and we re-

strict our attention to these. For this �nite set of ex-

ecuting processes, we assume a completely-connected

network of FIFO channels. Processes communicate by

passing messages over these channels, though they too

may fail. The system has no global clock, and message

transmission delays are unbounded. Processes fail by

crashing, which we model by the local event crashp.

We model the recovery of a process with a new iden-

ti�er. A process p may (1) send a message to another

process, (2) deliver a message sent by another process

q, and (3) perform local computation.

A history, hp, for process p is a sequence of events

beginning with the event startp and terminating, if at

all, with the event crashp: hp = startp � e
1
p
� � �e

k

p
, for

0 � k. A cut is an n-tuple of process histories, one for

each p 2 Proc. We assume familiarity with inter-event

causality [14] and with consistent cuts [8].

Crash failures are surprisingly di�cult to handle in an

asynchronous system. Fischer, et.al [10] show that, be-
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cause it is impossible to distinguish a crashed process

from one that is just very slow, any problem requiring

\all correct processes" to agree on some value cannot

be solved deterministically; that is, no deterministic

protocol can make progress if it must also make accu-

rate process failure detections. One way around this is

for asynchronous systems to incorporate some mech-

anism for suspecting failures, as well as a means of

handling failure suspicions consistently (e.g. p may

suspect q faulty while r may not; perhaps r and/or q

even suspect p). Our system model assumes a failure

suspector that eventually suspects a crashed process,1

which su�ces to ensure our protocols make progress.

We do not require anything more of the failure sus-

pector.

Each process has three components that interact to

implement the virtually-synchronous communication

primitive for application-layer processes (Figure 1).

The Failure Suspector (fsp) is at the lowest level and

noti�es both the Multicast Component (mcp), and

the View Component (vcp) about suspected changes

in the communication topology. Such changes arise

from actual process and link failures, as well as high

processor loads and heavy network tra�c (indistin-

guishable from true failures). vcp de�nes p's cur-

rent view, Viewp(), an approximation of the set of

processes with which p can communicate, and sends

Viewp() to mcp. mcp is responsible for reliably mul-

ticasting application-layer messages until it receives

an accessibility-change noti�cation from fsp. These

noti�cations signal a suspected change in the com-

munication topology and the attendant need to alter

Viewp(). However, neither mcp nor vcp can do this

naively since virtually-synchronous communication re-

quires that members of Viewp() that also accompany p

to its next view receive the same set of messages that

were multicast within Viewp() (We make this de�nition

precise in Section 5). To ensure this, mcp delivers all

outstanding multicasts, and does not issue new mul-

ticasts except to forward those that have been only

partially delivered. Viewp() is safely terminated when

all messages multicast in it are delivered at all sites

that mcp believes non-faulty. When mcp detects this

condition (Section 4) it informs vcp, which then de-

termines a new view for mcp from the accessibility

noti�cations it received from fsp.

Section 3 describes the properties our Failure Suspec-

tor components must satisfy. These are weak yet rea-

sonable requirements, and are easily implemented in

any asynchronous system. Section 4 discusses vcp,

and Section 5 discusses mcp. These components exe-

1This can easily be implemented with time-outs.

mcp

view termination

vcp

new Viewp()

fsp

not-comm(q)

comm(r)

comm(r)

not-comm(q)

Figure 1: fsp, mcp, and vcp interaction for virtually-

synchronous communication.

cute protocols to detect global properties [8, 15].

3 The Failure Suspector

Given process p, fsp emits a sequence of not-comm(q)

and comm(r) suspicion messages to mcp and vcp. Since

the system is asynchronous we cannot guarantee the

accuracy or timeliness of these suspicions; the most

we can require is that fsp eventually suspects true

crashes and recoveries. This is not unreasonable. It

is known that fault-tolerant protocols in asynchronous

systems cannot make progress if they are required to

make accurate failure determinations. Our approach

introduces an inaccurate failure suspector to gain live-

ness. On the other hand, we cannot require fsp to sus-

pect all periods of transient inaccessibility { a network

partition may repair before it is noticed.

Since, in theory, fsp may suspect processes arbitrarily,

we have divorced fsp implementation from the prob-

lem at hand. In a real system, fsp might take cues

from the underlying communication layer, the operat-

ing system, response delays, and so forth.2

On every consistent cut c, fsp maintains two non-

intersecting sets, CommSetp(c) and NotCommSetp(c).

When fsp suspects q 2 CommSetp(c), q is removed

from CommSetp(c) and is thereafter a member of

NotCommSetp(c). Whenever these sets change, fsp
noti�es vcp and mcp by emitting the appropriate

comm() or not-comm() messages.

We have a reciprocity condition for (perceived) parti-

tions, as well. To model the nature of network parti-

2For example, to detect failures fsp could query a process,
deeming it inaccessible if it does not repond in a timely fashion
(inaccurate, but satisfying the requirement). We might put the

onus on a process to announce its recovery.
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tions, we require eventual reciprocity of inaccessibility

suspicions. That is, if fsp suspects q then eventually

either fsq suspects p or q fails.

A logical formula holds on a consistent cut. The mem-

bership of an indexical set of processes depends on

when it is considered. In our model, `when' translates

to consistent cuts, the only physically-realizable in-

stances. We use the following formulas and indexical

sets to specify the behavior of fsp.

� NotCommp(q)holds on c if q2NotCommSetp(c)

� Commp(q) holds along c if q 2 CommSetp(c)

� downq holds along c = (h1; : : : ; hq; : : : ; hn) if

crashq is the last event in hq

� upq holds along c = (h1; : : : ; hq; : : : ; hn) if crashq
is not an event in hq .

Non-triviality Conditions for fsp

Crashes If q crashes, then eventually either p crashes

or fsp suspects q is unreachable:

downq ) 3

�
NotCommp(q) _ downp

�

Recoveries If q begins executing and is reachable,

then eventually either p crashes or fsp suspects

q is reachable:

upq ) 3

�
Commp(q) _ downp

�

Reciprocity If fsp suspects q is inaccessible, then,

if q does not crash, it eventually suspects p is

inaccessible:

NotCommp(q)) 3

�
downq _NotCommq(p)

�

This is an artifact of p suspecting q: since p

ceases communicating with q, p is, in fact, in-

accessible to q.

Propagation Conditions for fsp

Finally, we require failure suspectors to gossip among

themselves.

Inaccessibility Propagation If fsp believes, on cut

c, it cannot communicate with q then it tries

to propagate this belief to every fsr for r 2

CommSetp(c):

NotCommp(q))

3

�
NotCommr(q) _NotCommr(p)

�

Accessibility Propagation If fsp believes, along

c, it can communicate with q then it tries

to propagate this belief to every fsr for r 2

CommSetp(c):

Commp(q))

3

�
Commr(q) _NotCommr(p)

�

3.1 Related work

Before discussing the other components, we discuss the

relation between this and other work. In [7], Chandra

and Toueg solve Distributed Consensus in an asyn-

chronous system using a Failure Suspector, W , that

satis�es certain (weak) requirements. [6] further shows

that W is the weakest suspector that can be used to

solve Distributed Consensus. While we do not con-

sider consensus in this paper, we said in the Introduc-

tion that adding a majority requirement to the VSC

abstraction, gives a simple, probabilistic solution to

transaction commit. Since there are no fundamen-

tal di�erences between solving consensus and atomic

commit problem, how are both approaches related (we

will not, hereafter, distinguish consensus from atomic

commit)?

First it should be clear that our Failure Suspector is

not weaker than W . More important, [7] also places

a majority requirement on processes before W can be

used to solve consensus. To relate the two approaches,

consider a generalization of consensus:

� suppose consensus is to be solved more than

once, and let consensus(i), for i > 0, be the

i
th instance of the consensus problem;

� let Proc be the initial set of processes that solve

consensus(1);

� consensus(i +1) begins only after consensus(i)

has been solved;

� for consensus(i), i > 1, the processes chose their

initial state randomly from the set f0; 1g.

In [7], consensus(i) (for each i) would be solved by

the same static set of processes Proc. The majority
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requirement to solve consensus(i) is thus similar to a

static voting scheme in the context of handling repli-

cated data [11]. This is because [7] consider that fail-

ure suspicions are never stable: a process p believing

failed(q) can always change its mind.

In contrast, in the VSC model, failure beliefs are sta-

ble each time a new view is de�ned. Thus for i 6= j,

consensus(i) and consensus(j) need not be solved by

the same set of processes. Continuing the replicated

data analogy, the majority requirement in the VSC

model is similar to the dynamic voting scheme [9],

which has been shown to lead to higher data avail-

ability than the static voting scheme.

4 The View Component

The view component operates whenever a link failure

repairs, a process begins executing, recovers after a

crash, and whenever the multicast component informs

it that the current view has terminated (Section 5).

vcp de�nes p's current view by interaction with other

vc components, and by using fsp information.

vcp de�nes a new view when it detects (or learns

about through some other vc component) agreement

on CommSetp() among the members of CommSetp().

The new view will be the largest subset of processes

(containing p) satisfying this agreement.

4.1 The View Component Algorithm

In this section we outline how vcp detects or learns

about CommSetp() agreement.

When vcp is activated, it knows a near approximation

of CommSetp() from fsp.
3 Whenever vcp receives an

comm(r) message from fsp, it updates this approxima-

tion. Along cut c, vcp uses a deterministic function,

vc-Coord(p),4 on the set CommSetp(c) which returns

a unique process identi�er, and satis�es

�
CommSetp(c) = CommSetq(c)

�
)

3There may be noti�cations from fsp that have not yet

reached vcp.
4Technically, we should name some cut explicitly since the

function's value depends p's indexical can-communicate-with
set. We omit the cut reference, but with the understanding
that vc-Coord(p) has a temporal dependence. In fact p never
knows which particular cut it is on, but at any point in its execu-
tion vcp has some set of process identi�ers that satisfy a certain
condition. It determines a coordinator by applying some rule
to this set. The presence of c would only clarify matters for the

omniscient reasoner.

�
vc-Coord(p) = vc-Coord(q)

�
:

For example, vc-Coord(p) might be \choose the `small-

est' identi�er from CommSetp(c)."

Each process also maintains a local counter, seqp,

which is incremented every time vcp considers

vc-Coord(p) to have changed (this is not necessar-

ily every time CommSetp(c) changes. For liveness,

however, vc-Coord(p) must change when vcp receives

not-comm(vc-Coord(p)) from fsp). The counter seqp
is initially zero and is essential in allowing us to de�ne

non-intersecting, concurrent views. The tuple (p; seqp)

fully describes p on any consistent cut.

Finally, the formulaCommSetEq(S) holds on c if and

only if all p 2 S have identical CommSet() sets at c.

That is,

CommSetEq(S)
def
=^

p;q2S

�
CommSetp() = CommSetq()

�

In our protocol, each p sends its current CommSetp()

and current seqp number to vc-Coord(p) every time

CommSetp() changes.

4.2 De�ning the New View

Let � = vc-Coord(p), and S = CommSet�(c) for some

cut c. Then vc� receives CommSetp() for p 2 S.

Whenever it receives a di�erent CommSetp() from

some p, vc� discards the previous one and checks

whether CommSetEq(CommSet�()) holds. If it does,

vc� sets the new view, View�(), to

View�() = V =
n
(p; seqp) j p 2 CommSet�()

o
(1)

The coordinator � then sends the new view to each

vcp (for p 2 V ) which then delivers the view to mcp.

mcp regains execution control and begins multicasting

again. Unfortunately, as CommSetEq(CommSet�())

is not a stable property (i.e. once true, forever true)

we must take care in announcing the new view. We

return to this issue in Section 6.

4.3 The Partial Order

Correctness of vcp means that the coordinator suc-

cessfully sends the new view to the vc components

of all reachable members in the new view. We will

henceforth use V to denote the (local) view that is

agreed-upon by all the members of V .
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Since process histories are linear, it makes sense to

talk about the x
th version of a process's (local) view

{ we denote this by View
x

p
.

De�nition Given two agreement views V and V
0,

V�IV
0 if and only if there is some p in V \ V

0 such

that V = Viewx

p
, and V

0 = Viewx+1
p

. The transitive

closure of �I is denoted �. 2

It is not hard to see that the views de�ned by the

collection of vcp components are partially ordered by

�. We say V and V
0 are concurrent if and only if they

are not �-related.

Proposition 4.1 trivially follows from the de�nition of

views (Equation 1) and the increment rule for seqp (all

proofs can be found in [21]).

Proposition 4.1 Let V and V
0 be concurrent views.

Then V \ V
0 = ;.

5 The Multicast Component

The Multicast Component of process p, mcp, is

responsible for implementing virtually-synchronous

communication. mcp operates in two modes. In one

mode itmulticastsmessages to the members of its cur-

rent view Viewp(). In the other mode, it ushes out-

standing multicasts to ensure they satisfy virtually-

synchronous communication semantics, then termi-

nates the current view. The transition from multi-

cast mode to termination mode is triggered by any

fsp not-comm() or comm() message. In this section, we

de�ne VSC semantics and the protocols mcp uses.

5.1 De�nitions

Informally, virtually-synchronous communication is

such that, for any view V , the processes of view V that

mutually believe each other alive deliver the same set

of multicasts.5 To make the de�nition of VSC precise

we need to de�ne formally the set of messages consid-

ered to have been multicast in V , as well as the subset

of processes that deliver them.

De�nition Given a view V , message m is a V -

multicast if it was sent by some p along a cut c such

that Viewp(c) = V . 2

5For simplicity, we omit other forms of communication. Non-
multicast communications do not introduce new problems.

De�nition (VSC) Let V �IV
0. Then communica-

tion in a system is virtually-synchronous if and only

if all processes in V and in V
0 delivered the same set

of V -multicasts. Moreover no message is delivered in

more than one view. 2

It is important to notice that process sequence num-

bers are not used in the de�nition. These are low-level

pieces of information; the application layer should

only be concerned with process identi�ers. For an

application-layer process, VSC ensures two processes

that if they progress together from one view to an-

other, then they delivered the same set of messages in

the �rst view. As a result, if process state is deter-

mined by an initial state and the set of multicasts de-

livered to the process, VSC means that if processes be-

gin executing in view V in the same state, then switch

together to view V
0, they will begin executing in V

0

in the same state.

5.2 Two Modes of Operation

The component mcp operates in two modes:

1. in normal mode mcp reliably multicasts mes-

sages issued by the application layer of p, and

delivers to the application layer multicasts it re-

ceives from other mcs;

2. in view-termination mode mcp does not multi-

cast new messages; instead it attempts to ush

outstanding multicasts to ensure the VSC se-

mantics.

After receiving a view from vcp, mcp is in normal

mode. It enters view-termination mode as soon as

it receives any (in)accessibility noti�cation from fsp.

When view-termination mode ends, mcp gives control

back to vcp. mcp is inactive until it receives a new

view from vcp, whereupon mcp begins normal mode

again.

5.3 mcp Normal Mode

Suppose vcp de�nes a view V = Viewp() and delivers

this to mcp. Recall that views are sets of tuples, which

we call process signatures:

Viewp() =
n
�q = (q; seqq)

o
:

Upon receiving Viewp(), mcp enters normal mode, in

which it multicasts and delivers messages. Each mes-

sage m issued by the application layer of process p
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is multicast by mcp to all q 2 V . Before issuing the

message, mcp adds �p to m. Let sender(m) be the

signature of the process from which m originated.

When mcp receives a message the following sequence

of events occurs:

1. mcp delivers m (to the application layer) if

sender(m) 2 V , and discards m otherwise;

2. mcp also bu�ers any message it receives and de-

livers in V until it knows all other processes in

V have received m.6 When m is received by all

processes in V we say it is stable.

By delivering only V -multicasts, the normal mode en-

sures that no multicast can be delivered in more than

one view (see the VSC de�nition).

5.4 mcp View-Termination Mode

Consider a view V = Viewp(). Component mcp

switches from normal mode to view-termination mode

after receiving from fsp either 1) not-comm(q) for

q 2 Viewp(), or 2) comm(r) for r 62 Viewp(). This

is because whenever a change in the communication

topology is detected a new view must be de�ned re-

ecting that change. However, before de�ning a new

view, mc in view-termination mode must ensure the

VSC de�nition is satis�ed.

Once mcp enters view-termination mode, it need

only consider relevant not-comm() events from fsp

to terminate V . Thus, while executing in view-

termination mode, mcp builds its own approximation

of NotCommSetp(). This means failure noti�cations

have a permanent e�ect until view-termination mode

ends: comm(q) received by mcp in view-termination

mode after not-comm(q) (for example due to a parti-

tion) cannot undo the not-comm(q) information.

Just as a new view for p is de�ned according to

agreement on CommSet()s, successfully terminating V

involves partitioning V according to NotCommSet()

agreement.

De�nition The indexical set Survivesp(V ) is V minus

the set of processes mcp believes failed in V :

Survivesp(V ) = V �

n
(q; seqq) j NotCommp(q)

o

2

6There are many standard ways of achieving this { e.g. pig-
gybacking information on messages.

Before we can explain how to ensure VSC, we need

the following data structures.

De�nition Consider V = Viewp() and consistent cut

c. The vector msgp(V; c) (of size j V j) is de�ned such

that:

� its p
th component, msgp(V; c)[p], is the number

of V -multicasts that originated from p (up to c);

� for q 2 V , q 6= p, its qth component,msgp(V; c)[q],

is the number of V -multicasts mcp delivered up

to c that originated from q. 2

De�nition (View Terminated) Consider view V

and S such that ; 6= S � Ids(V ) (where Ids(V ) is

the set of process identi�ers appearing in V ). Then

vt(V; S) holds along cut c if and only if

^
p;q2S

��
msgp(V; c) = msgq(V; c)

�
^

�
Survivesp(V; c) = Survivesq(V; c)

��

It is not hard to see S = Ids(Survivesp(V )). 2

In other words vt(V; S) is true exactly when the pro-

cesses in S agree on both the messages multicast in

V and on their respective Survives(V ) sets. For mcp,

detecting termination of V = Viewp() is thus reduced

to detecting vt(V; S) (for p 2 S � Ids(V )).

Having detected vt(V; S), whether S = Ids(V ) or S �

Ids(V ) is important in determining the new view. In

the �rst case, whatever view, V 0, vcp later de�nes,

VSC is satis�ed with respect to the pair (V; V 0). In

the second case mcp must pass Survivesp(V ) to vcp; we

will want the new view to be a subset of Survivesp(V ).

To guarantee that every non-crashed process in V

eventually detects vt(V; S) for some S, mcp behaves

as follows in view-termination mode:

� it stops multicasting new messages;7

� it rejects any message m such that sender(m) =2

Survivesp(V ).

� upon receiving not-comm(q) from mcp (for q 2

V ), mcp signs and forwards any V -multicasts

originating from q that are still in p's bu�er (Sec-

tion 5.3). mcp then removes these messages from

7If the network were a broadcast domain,mcp could continue
multicasting using a new signature (p; seqp + 1). The problem
for less general environments is that the new multicast view
(destination set) is not yet known.
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its bu�er. mcq rejects the re-issued message if

NotCommq(p) holds (i.e. if mcq has received

not-comm(p) from fsq).
8

Proposition 5.1 Consider view-termination mode as

described above. Then for each p 2 V , there exists a

set, Sp such that p 2 Sp and vt(V; Sp) holds.

5.5 An Algorithm to Detect vt(V; S)

Like the vcp algorithm detecting CommSetEq(),

the mcp algorithm detecting vt(V; Sp) relies on

a coordinator process. mcp determines its view-

termination coordinator with a deterministic function,

mc-Coord(p), on the set Survivesp(V; c). We require

that for p and q in V , with identical Survives(V ) sets,

mc-Coord(p) = mc-Coord(q).

Let � = mc-Coord(p). Then � attempts to de-

tect vt(V; Survives�(V )). mcp also increments the se-

quence number counter, seqp, whenever mcp considers

mc-Coord(p) to have changed (for liveness, the func-

tion mc-Coord(p) must change whenever mcp receives

not-comm(mc-Coord(p)) from fsp).

Process p sends msgp(V ), Survivesp(V ), and seqp to

mc-Coord(p) when mcp �rst considers mc-Coord(p)

to be its coordinator, and whenever msgp(V ) and

Survivesp(V ) are modi�ed. If� = mc-Coord(p), then:

vt(V; Survives(V )),^
p2Survives�(V )

�
msg�(V ) = msgp(V ) ^

Survives�(V ) = Survivesp(V )

�

Proposition 5.2 Consider a view V , with p 2 V

and the view-termination protocol described above.

Then eventually, either p crashes or it detects

vt(V; Survives�(V )).

Finally, the fact that vt(V; S) is not stable poses the

same problems as those posed by CommSetEq()'s in-

stability. We consider both in the next section.

6 Instability of CommSetEq() and
vt(V;S)

As described in the previous sections, once vcp

learns CommSetEq(CommSetp()) it switches control

8Duplicate messages are recognized and discarded as usual.

to mcp; switching control from mcp to vcp is based

on detecting vt(Viewp(); S). In both cases, the rel-

evant property is not stable { it may become false

after holding along some cut. Let switch(vc; V 0)

be the message announcing the new view, V
0, and

switch(mc; Survives()) be the message announcing

termination of view V .

Since neither CommSetEq(S) nor vt(V; S) are stable

properties, we can arrive at the following situation9:

� Take p; q 2 V such that p and q believe

each other accessible, and let � be their mu-

tual vc coordinator (� = vc-Coord(p) =

vc-Coord(q)). Suppose vc� determines the new

view, V
0 (�; p; q 2 V

0), sends switch(vc; V 0)

to p only, and then crashes. vcp, upon receiv-

ing switch(vc; V 0), adopts Viewp() = V
0 and

switches control to mcp in normal mode.

� Now suppose that in addition to vcq not getting

switch(vc; V 0), fsq noti�es vcq that � is inac-

cessible; q continues executing in vcq waiting for

some new coordinator �0 to inform it of the new

view. In particular, suppose �
0 = p.

� Since p and q continue to believe each other ac-

cessible, fsq gossips not-comm(�) to fsp. At

this point, mcp enters view-termination mode

for view Viewp() = V
0, and q is still executing in

vcq waiting to receive the successor view to V .

Observe that unless one of the processes crashes

or a network partition splits them, p and q need

never believe each other inaccessible.

� For vcq to make progress, its coordinator

vcp must tell it some new view. Unfortu-

nately, vcp cannot begin executing until mcp
leaves view-termination mode. mcp cannot

leave view-termination mode until it receives

Survivesq () from mcq (after all, q 2 V
0 and

q 2 CommSetp()). In other words, p and q are

deadlocked because their execution controls are

out of phase. The control discrepancy prevents

either one (vcq or mcp) from making progress

until one of them believes the other inaccessible

{ q is stuck in vcq, and p is stuck in mcp.

While processes being out of phase is not always de-

structive, and in fact is quite natural whenever parti-

tions occur, it is destructive in this case since it induces

deadlock. The following precludes deadlock.

9While we illustrate instability with CommSetEq() and the
switch from vcp to mcp, a similar situation arises for vt(V;S)

as well.
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vcp vc�

VC-alertp(�r)

VC-alertp(+s)

CommSetEq(�)

VC-alertp(�q)

CommSetp()
not-comm(r)

comm(s)

not-comm(q)

fsp

switch(vc; V 0)

Figure 2: FS-VC-Notifyp(v
0) (lightly-shaded rectan-

gle), VC-alertp(), FS-VC-Latep (darkly-shaded rect-

angle)

6.1 Component-Switch Protocol

Let � be shorthand for vc-Coord(p) when vcp is exe-

cuting. We describe the protocol only for the switch

from vcp to mcp; the situation is analogous for the

reverse switch. Let V = Viewp(). We de�ne the fol-

lowing concepts as depicted in Figure 2:

� From Section 4, each accessibility noti�cation

from fsp forces vcp to inform its coordina-

tor vc� of the change to CommSetp(). Let

VC-alertp() denote the message vcp sends to

vc� to inform vc� of the change to CommSetp().

� Let FS-VC-Notifyp(V
0) be the set

of not-comm(q) and comm(r) accessibility noti-

�cations vcp received from fsp after sending its

�rst CommSetp() to any coordinator and before

receiving switch(vc; V 0) from vc�;

So given V
0 and FS-VC-Notifyp(V

0), vcp can infer

which VC-alertp() messages reached vc� before it de-

tected CommSetEq(CommSet�()) and which did not.

Let FS-VC-Latep be the subset of FS-VC-Notifyp(V
0)

for which the corresponding VC-alertp() message did

not reach vc�.

The Component Switch protocol for vcp is:

1. The coordinator � sends the switch(vc; V 0)

message using a best e�ort reliable multicast [13]

(a process receiving the message reissues it to all

the destination processes).

2. Upon receiving switch(vc; V 0), vcp:

(a) logically reorders it to be before vcp sent

any of the messages in FS-VC-Latep (this

will be clearer after 3) ;

(b) installs V 0 as Viewp() and switches control

to mcp, in normal mode;

3. mcp handles messages in FS-VC-Latep as if the

corresponding noti�cations from fsp had just

arrived (i.e. while mcp is executing, and not

while vcp was executing). Speci�cally, mcp sim-

ulates receiving these accessibility noti�cations

in Viewp() = V
0.

Proposition 6.1 The Component-Switch Protocol

prevents deadlock.

7 Concluding Remarks

This paper has shown how to implement virtually-

synchronous communication using a three-component

architecture for systems that experiences process crash

failures and network partitions. The three-component

architecture lead us to de�ne a clear semantics for a

Failure Suspector (a necessary part of any live, asyn-

chronous system) that guarantees liveness of the VC

and MC components. Clearly de�ning these seman-

tics allows one to implement the Failure Suspector as

a modular tool { distinct from all other components {

whose implementation can take advantage of the char-

acteristics of the underlying network.

Considering a membership service in relation to

virtually-synchronous communication also lead us to

better understand the need for a strong-partial com-

pared to a weak-partial membership service. Specif-

ically, a strong-partial membership service (non-

intersecting concurrent views) is naturally related to

virtually-synchronous communication. We can under-

stand this in the following way. The mc component

must identify the sender of a message by its signature

�q to ensure that no multicast is delivered in more than

9



one view. This led us to de�ne a view as a set of pro-

cess signatures. Considering the increment conditions

of seqp, two di�erent views V and V
0 trivially have

a non-empty intersection. In other words, by requir-

ing that no multicast be delivered in more than one

view, we were led to the partial-strong membership

service. However if we remove the mc component, (i.e.

if the membership service is only de�ned by fs and vc,

without any reference to communication), then the se-

quence number seqp has no clear justi�cation. In that

case, a view is just a set of process identi�ers (or a set

of identi�ers and an incarnation number). With this

de�nition, the same vc protocol we described would

de�ne concurrent views that overlap, providing only a

weak-partial membership service.
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