
I
 R

 I
 S

 A
IN

S
T
IT

U
T
 D

E
 R

E
C

H
E
R

C
H

E
 E

N
 IN

FO

R
M

ATIQ
UE E

T S
YSTÈMES ALÉATOIRES

P U B L I C A T I O N
I N T E R N E
No

I R I S A
CAMPUS UNIVERSITAIRE DE BEAULIEU - 35042 RENNES CEDEX - FRANCEIS

S
N

 1
16

6-
86

87

1356

QUIESCENT UNIFORM RELIABLE BROADCAST
AS AN INTRODUCTORY SURVEY TO FAILURE DETECTOR

ORACLES

MICHEL RAYNAL

http://www.irisa.fr

Quiescent Uniform Reliable Broadcast

as an Introductory Survey to Failure Detector Oracles

Michel Raynal

Th�eme 1 | R�eseaux et syst�emes

Projet Adp

Publication interne n�1356 | Octobre 2000 | 13 pages

Abstract: This paper is a short and informal introduction to failure detector oracles for

asynchronous distributed systems prone to process crashes and fair lossy channels. A distributed

coordination problem (namely, the implementation of Uniform Reliable Broadcast with a quiescent

protocol) is used as a paradigm to visit two types of such oracles. One of them is a \guessing"

oracle in the sense that it provides a process with information that the processes could only ap-

proximate if they had to compute it. The other is a \hiding" oracle in the sense that it allows to

isolate and encapsulate the part of a protocol that has not the required behavioral properties. A

quiescent uniform reliable broadcast protocol is described. The guessing oracle is used to ensure

the \uniformity" requirement stated in the problem speci�cation. The \hiding" oracle is used to

ensure the \quiescence" property required for the protocol behavior.

Key-words: Asynchronous Distributed Systems, Failure Detectors, Fair Lossy Channels, Fault-

Tolerance, Oracles, Process Crashes, Quiescent Protocol, Uniform Reliable Broadcast.

(R�esum�e : tsvp)

email: raynal@irisa.fr

Centre National de la Recherche Scientifique Institut National de Recherche en Informatique
(UPRESSA 6074) Université de Rennes 1 – Insa de Rennes et en Automatique – unité de recherche de Rennes

Une introduction aux d�etecteurs de d�efaillances

�a l'aide du probl�eme de la di�usion �able

R�esum�e : Ce rapport constitue une introduction au concept de d�etecteurs de d�efaillances

introduit par S. Toueg et son �equipe. La construction d'un protocole qui ne requiert qu'un nombre

�ni de messages pour r�esoudre le probl�eme de la di�usion �able uniforme sert de �l conducteur et

d'illustration �a cette introduction.

Mots cl�es : Canaux �equitables, d�etecteur de d�efaillances, di�usion �able, oracles, panne franche,

protocole �nalement silencieux, syst�eme r�eparti asynchrone, tol�erance aux d�efaillances.

1 Introduction

One of the most striking and disturbing fact of the fault-tolerant asynchronous distributed comput-

ing �eld is the number of impossibility results that have been stated and proved in the past years

[16, 17]. One of the most outstanding of those results is related to the Consensus problem. This

problem is de�ned as follows: each process proposes a value and the processes that do not crash

have to agree (termination) on the same value which has to be one of the proposed values (safety).

It has been shown by Fischer, Lynch and Paterson that this apparently simple problem actually

has no deterministic solution as soon as even only one process can crash [10]. This is the famous

FLP impossibility result. On the other side, it is also important to note that a characterization of

the problems that can be solved in presence of at most one process crash has also been proposed [6].

When a problem cannot be solved in a given model (representing a particular context) several

attitudes are possible. One consists in modifying the problem statement in order to get solutions

to a close (but \modi�ed") problem. For the consensus problem, this approach has consisted in

weakening the termination property and designing probabilistic protocols that solve this modi-

�ed problem [5]. Another attitude consists in enriching the underlying fault-prone asynchronous

distributed system with appropriate oracles in order that the problem becomes solvable in the

augmented system.

The oracle notion has �rst been introduced as a language whose words can be recognized in one

step from a particular state of a Turing machine [11, 15]. The main characteristic of such oracles is

to hide a sequence of computation steps in a single step, or to guess the result of a non-computable

function. They have been used to de�ne equivalence classes of problems and hierarchies of problems

when they are considered with respect to the assumptions they require to be solved. In our case,

the oracle notion is related to the detection of failures. These oracles do not change the pattern of

failures that a�ect the execution in which they are used. Their main characteristic is not related

to the number of computation steps they hide, but to the guess they provide about failures. Such

oracles have been proposed and investigated in the past years. Following their designers (mainly S.

Toueg) they are usually called failure detectors [3, 2, 7]. A given failure detector oracle is related

to a problem (or a class of related problems). Of course, it has to be strong enough to allow to

solve the concerned problem, but, maybe more important, it has to be as weak as possible in order

to �x the \failure detector" borderline beyond which the problem cannot be solved.

When we consider the consensus problem, several failure detector classes have been de�ned to

solve it [7]. It has also been shown that one of these classes is the weakest that can be used to

solve consensus [8]. A failure detector belongs to this class if it satis�es the following two proper-

ties. Completeness: Eventually, every process that crashes is suspected by every correct process.

Eventual Weak Accuracy: Eventually, there is a correct process that is not suspected by the correct

processes. As we can see, the completeness is on the actual detection of crashes, while the accuracy

limits the mistakes a failure detector can make. Several consensus protocols based on this weakest

failure detector oracle have been designed [7, 18]. It is important to note that a failure detector

satisfying the previous properties cannot be implemented in an asynchronous distributed system

prone to process crashes (if it was, it would contradict the FLP impossibility result!). However, a

failure detector that does its best to approximate these properties can be built. When the behavior

of the underlying system allows it to satisfy the completeness and the eventual accuracy properties

during long enough time, the current execution of the consensus protocol can terminate, and con-

sequently the current instance of the consensus problem can be solved.

PI n�1356

This paper is an introductory visit to failure detector oracles for asynchronous distributed

systems where processes can fail by crashing and links can fail by dropping messages. To do this

visit, we consider a distributed computing problem related to distributed coordination, namely the

Uniform Reliable Broadcast (URB) problem [12]. This is an important problem as it constitutes a

basic distributed computing building block. Informally, URB is de�ned by two primitives (Broadcast

and Deliver), such that (1) if a process delivers a message m then all processes that do not crash

eventually deliver m, and (2) each process that does not crash eventually delivers at least the

messages it broadcasts. By interpreting the pair Broadcast/Deliver as This is an order/Execute it, it

is easy to see that URB abstracts a family of distributed coordination problems [3, 13].

Furthermore, in order to fully bene�t from the visit, we are interested in solving the URB

problem with a quiescent protocol. This means that, for each application message m that is

broadcast by a process, the protocol eventually stops sending protocol messages. This is a very

important property: it guarantees that the network load generated by the calls to the Broadcast

primitive remains �nite despite process and links failures.

The paper is made up of seven sections. Section2 introduces the underlying system layer and

Section 3 reminds a few results related to the net e�ect of process and links failures. Then, Section

4 de�nes the URB problem. Section 5 presents a \guessing" and a \hiding" failure detector oracles

(that have been introduced for the �rst time in [3] and [2], respectively). These oracles are then

used in Section 6 as underlying building blocks to de�ne a quiescent URB protocol. Section 7

concludes the paper.

2 Asynchronous Distributed System Model

The system model consists of a �nite set � of processes (namely, � = fp1; : : : ; png). They commu-

nicate and synchronize by sending and receiving messages through channels. Every pair of processes

pi and pj is connected by a channel which is denoted (pi; pj).

Processes with crash failures. A process can fail by crashing, i.e., by prematurely halting. A

crashed process does not recover. A process behaves correctly (i.e., according to its speci�cation)

until it (possibly) crashes. By de�nition, a correct process is a process that never crash. A faulty

process is a process that is not correct. In the following, f denotes the maximum number of processes

that may be faulty (f � n� 1). There is no assumption on the relative speed of processes.

Fair lossy channels. In addition to process crashes, we consider that channels can fail by drop-

ping messages. Nevertheless, they are assumed to be fair lossy. This means that for each channel

(pi; pj) we have the following properties:

� FLC-Fairness (Termination): If pi sends a message m to pj an in�nite number of times and pj

is correct, then eventually pj receives m.

� FLC-Validity: If pj receives a message m from pi, then pi previously sent m to pj .

� FLC-Integrity: If pj receives a message m in�nitely often from pi, then pi sends m in�nitely

often to pj.

It is important to note that (1) there is no a priori assumption on the message transfer delays,

and (2) a message can be duplicated a �nite number of times. The basic communication primitives

used by a process pi are: send () to pj, and receive () from pj .

Irisa

3 A Few Results

The case of a single channel. When we consider a system as simple as one made up of two

processes connected by a channel, there are some impossibility results related to the e�ect of process

crashes, channel unreliability, or the constraint to use only bounded sequence numbers (see [17]

-chapter 22- for an in-depth presentation of these results). Let a reliable channel crel be a channel

such that there is no loss, no duplication, no creation, and no reordering. Let us consider two

processors connected by a channel c. The aim is to design on top of c a protocol o�ering a reliable

channel crel.

- Let us assume that c is reliable, each processor can crash and recover but has not access to a

non-volatile memory. There is no protocol that builds a reliable channel crel and that tolerates the

crash/recovery of the processors [9]. To tolerate it, a non-volatile memory is necessary in order

that the processor state can survive crashes.

- Let us assume that the processors cannot crash, and the underlying channel c can duplicate

or reorder messages (but it does not create or lose messages). Moreover, only bounded sequence

numbers are allowed. It is impossible to design a protocol that implements a reliable channel crel
on top of c [21].

- Let us assume that the underlying channel c can lose and reorder messages but cannot duplicate

them. Moreover, the processors do not crash, and only bounded sequence numbers are allowed.

There is a protocol that builds crel on top of c, but this protocol is highly ine�cient [1].

Simulation of reliable channels in presence of process crashes. The e�ect of lossy channels

on the solvability of problems in general is discussed in [4]. Two main results are stated.

- The �rst concerns a speci�c class of problems, namely those whose speci�cation does not refer

to faulty processes. This is the class of correct-restricted problems. An algorithm is provided that

transforms any protocol solving a correct-restricted problem and working with process crashes and

reliable channels into a protocol working with process crashes and fair lossy links.

- The second result is more general in the sense that it does not consider a particular class of

problems. It presents a protocol that, given a system with fair lossy channels and a majority of

correct processes, simulates a system with reliable channels. Informally, this shows that a majority

of correct processes is powerful enough to cope with message losses when channels are fair.

The two proposed transformations do not provide quiescent protocols.

4 Uniform Reliable Broadcast

De�nition. The Uniform Reliable Broadcast problem (URB) is de�ned in terms of two commu-

nication primitives: Broadcast() and Deliver(). When a process issues Broadcast(m), we say that

it \broadcasts" m. Similarly, when a process issues Deliver(m), we say that it \delivers" m. Every

broadcast message is unique1. This means that if an application process invokes Broadcast(m1)

and Broadcast(m2) with m1 and m2 having the same content, m1 and m2 are considered as two

di�erent messages by the underlying layer.

Uniform Reliable Broadcast is formally de�ned by the following set of properties [12]:

� URB-Termination: If a correct process broadcasts m, then any correct process delivers m (no

messages from correct processes are lost).

1This can easily be realized, at the underlying level, by associating with each application message m a pair made

up of its sender identity, plus a sequence number.

PI n�1356

� URB-Validity: If a process delivers m, then m has been broadcast by some process (no spurious

message).

� URB-Integrity: A process delivers a message m at most once (no duplication).

� URB-Agreement: If a (correct or not) process delivers m, then any correct process delivers m

(no message UR delivered by a process is missed by a correct process).

The last property is sometimes called \Uniform Agreement". Its non-uniform counterpart

would be: \If a correct process delivers m, then any correct process delivers m". The Uniformity

requirement obliges to also consider the messages delivered by faulty processes. The Reliable

Broadcast problem is similar to URB except for the Agreement property that is non-uniform.

Let us remark that, di�erently from the other properties, the URB-Termination property does

not apply to faulty processes. This means that the correct processes deliver the same set of messages

S, and that the set of messages delivered by a faulty process is always a subset of S.

URB with reliable channels. Figure 1 describes a simple quiescent protocol (de�ned in [12])

that solves the URB problem in asynchronous distributed systems made up of processes that (1)

can crash, and (2) are fully connected by reliable channels (no loss, no duplication, and no creation

of messages). To broadcast a message m, a process pi sends it to itself. Then, when a process

receives a message m for the �rst time, it forwards it before delivering it. Consequently, due to

channel reliability, it follows that the four URB properties are satis�ed.

(1) Procedure Broadcast(m):
(2) send msg(m) to pi

(3) when msg(m) received from pk:
(4) if (�rst reception of m) then

(5) 8j 6= i; k do send msg(m) to pj enddo;
(6) Deliver(m)
(7) endif

Figure 1: A Quiescent URB Protocol for Reliable Channels

5 Enriching the System Model with Appropriate Oracles

A main di�culty in solving the URB problem in presence of fair lossy links lies in ensuring the

URB-Agreement property which states: \If a process delivers a message m, then any correct process

delivers m". This means that a process can deliver a message only when it is sure that this message

will eventually be received by each correct process. It has been shown that failure detector oracles

are required to overcome this problem [3, 13]. The failure detector (called �) described in the next

paragraph is an answer to this problem. It has been introduced in [3].

Although � is the weakest failure detector that can be used to ensure the URB-Agreement

property [3], its only use is not su�cient to get a quiescent protocol: the broadcast of an application

message can still generate an in�nite number of network messages. Actually, ensuring the quiescence

property requires that a process pi be able to know if another process pj is still alive: if pj is not, pi
can stop sending messages to pj even if the last message it sent to it has not yet been acknowledged.

Irisa

Several failure detectors can be designed to allow a process pi to get this information. Some (as �)

provide outputs with bounded size. Others provide outputs whose size is not bounded. It has been

shown that the failure detector oracles of the �rst category cannot be implemented [7], while some

of the second category can be. Hence, in the following we present an oracle of the second category

called Heartbeat that can be implemented. This oracle has been introduced in [2].

5.1 A Guessing Failure Detector Oracle: �

This failure detector is de�ned by the following properties [3]. Each process pi is endowed with a

local variable trustedi whose aim is to contain identities of processes that are currently perceived

as non-crashed by pi (this variable is updated by � and read by pi). The failure detector � ensures

that these variables satisfy the following properties:

� �-Completeness: There is a time after which, for any process pi, trustedi does not include

faulty processes.

� �-Accuracy: At every time, for any process pi, trustedi includes at least one correct process.

(Note that the correct process trusted by pi is allowed to change over time.)

In the general case (f < n), the � oracle cannot be implemented in an asynchronous distributed

system. That is why we place it in the family of \guessing" failure detector oracles. Di�erently,

when the system satis�es the additional assumption f < n=2, it can be implemented (such an

implementation is described in [3]).

5.2 A Hiding Failure Detector Oracle: Heartbeat

The Heartbeat failure detector oracle provides each process pi with an array of counters hbi[1::n]

(initialized to [0; : : : ; 0]) such that:

� HB-Completeness: For each process pi, hbi[j] stops increasing if pj is faulty.

� HB-Accuracy: hbi[j] never decreases, and hbi[j] never stops increasing if pi and pj are correct.

A Hearbeat failure detector can be easily implemented, e.g., by requiring each process to periodically

send \I am alive" messages. This implementation entails the sending of an in�nite number of

messages by each correct process: it is not quiescent. That is the reason why we place it in the

family of \hiding" failure detector oracles. A set of modules (one per process) realizing a Hearbeat

oracle can be used to encapsulate and isolate the non-quiescent part of a protocol and thereby hides

its undesirable behaviors.

6 A Protocol

6.1 Description of the Protocol

A quiescent URB protocol is described in Figure 2 for a process pi. It is based on the previously

described failure detectors and the classical acknowledgement mechanism. An important local data

managed by a process pi is rec byi[m] which records the processes that, to pi's knowledge, have

received a copy of the application message m. The protocol uses two types of messages, tagged

\msg" and \ack", respectively. They are called protocol messages, to distinguish them from the

PI n�1356

messages broadcast by the application. Each protocol message tagged \msg" carries an application

message, while one tagged \ack" carries only the identity of an application message.

To broadcast an application message m, a process pi sends a protocol message tagged \msg"

and including m to itself (line 2). When, it receives a protocol message carrying an application

message m for the �rst time (line 12), a process pi activates the task Di�use(m) which repeatedly

(lines 5-10) sends m to the processes that, from pi's point of view, have no copy of m and are alive.

The Heartbeat failure detector is used by pi to know which processes are locally perceived as being

alive. It is important to note that, as soon as the test at line 7 remains permanently false for all j,

then pi stops sending messages (but does not necessarily terminate as it can keep on executing the

loop if the condition of line 10 remains false2). Each time pi receives a protocol message tagged

\msg", it sends back an \ack" message to inform the sender that it has got a copy of m (line 16).

When a process receives an \ack" message, it updates accordingly the local data rec byi[m] (line

18).

Finally, if pi has not yet delivered an application message m, it does it as soon as it knows that

at least one correct process got it (condition trustedi � rec byi[m] at line 19).

(1) Procedure Broadcast(m):
(2) send msg(m) to pi

(3) Task Di�use(m):
(4) prev hbi[m] [�1; : : : ;�1];

(5) repeat periodically

(6) cur hbi hbi;
(7) 8j 6= i: if ((prev hbi[m][j] < cur hbi[j]) ^ (j 62 rec byi[m]))
(8) then send msg(m) to pj endif;

(9) prev hbi[m] cur hbi;
(10) until (8j 2 [1::n] : (j 2 rec byi[m])) endrepeat

(11) when msg(m) is received from pk:
(12) if (�rst reception of m)
(13) then rec byi[m] fi; kg;

(14) activate task Di�use(m)
(15) else rec byi[m] rec byi[m] [fkg endif;
(16) send ack(m) to pk

(17) when ack(m) is received from pk:
(18) rec byi[m] rec byi[m] [fkg

(19) when ((pi has not yet delivered m) ^ (trustedi � rec byi[m]))
(20) do Deliver(m) enddo

Figure 2: A Quiescent Uniform Reliable Broadcast Protocol

2It is important not to confuse a quiescent protocol and a terminating protocol. Ensuring termination requires
stronger failure detector oracles, namely, oracles that allow to know exactly which processes have crashed and which

have not [14].

Irisa

6.2 Proof

The proof that the protocol described in Figure 2 satis�es URB-Integrity (no duplication of a

broadcast message) and URB-Validity (no creation of application messages) are left to the reader.

The proof has the same structure as the proof given in [3].

Lemma 1 If a correct process starts Di�use(m), eventually all correct processes start Di�use(m).

Proof Let us �rst observe that if the identity k belongs to rec byi[m], this is because pi received

msg(m) or ack(m) from pk and updated consequently rec byi[m] at line 13, 15 or 18, from which

we conclude that pk has a copy of m.

Let us consider a correct process pi that starts Di�use(m). It launches this task at line 14

when it receives m for the �rst time. Let pj be a correct process. As pj is correct, hbi[j] keeps on

increasing and the subcondition (prev hbi[m][j] < cur hbi[j]) is in�nitely often true. We consider

two cases:

- Case (j 2 rec byi[m]). In that case, due to the previous observation, pj has a copy of m. We

conclude from the protocol text, that pj started Di�use(m) when it received m for the �rst time.

- Case (j 62 rec byi[m]). In that case pi keeps on sending copies of m to pj (at line 8). Due to the

FLC-Fairness property of the channel (pi; pj), pj eventually receives m from pi and, if not yet done,

starts Di�use(m). 2Lemma 1

Lemma 2 If all correct processes start Di�use(m), they eventually execute Deliver(m).

Proof Let us assume that all the correct processes execute Di�use(m) and let pi and pj be two

correct processes. So, pi sends m to pj until it knows that m has been received by pj (i.e., until

j 2 rec byi[m]). Due to the acknowledgment mechanism and the FLC-Fairness property of the

underlying channels, this eventually occurs. It follows that, for each correct process pi, rec byi[m]

eventually includes all correct processes.

Let us now consider the set trustedi. Due to the HB-Completeness property of the Heartbeat

failure detector, trustedi eventually does not include faulty processes. It follows that the condition

(trustedi � rec byi[m]) eventually becomes true, and then pi executes Deliver(m). 2Lemma 2

Theorem 1 URB-Termination. If a correct process executes Broadcast(m), then all correct pro-

cesses execute Deliver(m).

Proof If a correct process pi executes Broadcast(m), it sends msg(m) to itself (line 2) and conse-

quently starts the task Di�use(m) (lines 12-14). Then, due to Lemma 1, all correct processes start

Di�use(m), and due to Lemma 2, they all execute Deliver(m). 2Theorem 1

Theorem 2 URB-Agreement. If a process executes Deliver(m), then all correct processes execute

Deliver(m).

Proof If a (correct or not) process pi executes Deliver(m), then the condition (trustedi �
rec byi[m]) was satis�ed just before it executes it. Due to the HB-Accuracy property of the Heart-

beat failure detector, trustedi includes at least one correct process pj. Hence, pj 2 rec byi[m],

from which we conclude that there is at least one correct process that received m (at line 11). As

pj is correct, it started the task Di�use(m) when it received m for the �rst time. It then follows

from Lemmas 1 and 2 that each correct process executes Deliver(m). 2Theorem 2

PI n�1356

Theorem 3 Quiescence. Each invocation of Broadcast(m) gives rise to a �nite number of protocol

messages.

Proof Let us observe that the reception of an \ack" protocol message never entails the sending

of a protocol message. It follows that we only have to show that, for any application message m,

eventually no process sends protocol messages of the form msg(m).

A msg(m) protocol message is sent at line 8 by the task Di�use(m). So, we have to show that

any process pi eventually stops executing line 8. This is trivial if pi crashes. So, let us consider

that pi is correct. There are two cases according to the destination process pj :

- Case 1: pj is faulty. Then due to the HB-Completeness, hbi[j] eventually stops increasing, and

from then on we permanently have prev hbi[m][j] = cur hbi[j] =hbi[j], from which we conclude

that pi stops sending messages to pj.

- Case 2: pj is correct. In that case the subcondition (prev hbi[m][j] < cur hbi[j]) is in�nitely often

true. So, let us consider the second subcondition, namely, (j 62 rec byi[m]). Let us assume that the

subcondition (j 2 rec byi[m]) is never satis�ed. We show a contradiction.

If (j 2 rec byi[m]) is never satis�ed, it follows that pi sends an in�nite number of protocol messages

msg(m) to pj. Due to the FLC-Fairness property of the channel (pi; pj), pj eventually receives an

in�nite number of copies of m. Each time it receives msg(m), pj sent back ack(m) to pi (line 16). It

then follows that, due to FLC-Fairness property of the channel (pj; pi), pi receives an ack(m) pro-

tocol message from pj. At the �rst reception of such a protocol message, pi includes j in rec byi[m]

(line 18). Finally, let us note that a process identity is never removed from rec byi[m]. So from

now on, the condition (j 2 rec byi[m]) remains permanently true. A contradiction. 2Theorem 3

6.3 Favoring Early Quiescence

This guideline in the design of the protocol described in Figure 2 was simplicity. It is possible to

improve the protocol by allowing early quiescence (in some cases, this can also reduce the number

of protocol messages that are exchanged). To favor early quiescence, the variable rec byi[m] of each

process has to be updated as soon as possible. This can be done in the following way:

- (1) add the current content of rec byi[m] to each protocol message sent by a process pi;

- (2) add to each \ack" message the corresponding application message (instead of only its identity);

- (3) send \ack" messages to all the processes (instead of only the sender of the corresponding \msg"

message).

The resulting protocol is described in Figure 3. Its improved behavior is obtained at the price of

bigger protocol messages. Its proof is similar to the proof of Section 6.2. The main di�erence lies

in the way it is proved that j 2 rec byi[m] means that pj has got a copy of m.

6.4 Strong Uniform Reliable Broadcast

The URB-Termination property of the URB problem is only on the correct processes. Said another

way, a message broadcast by a process that crashes (either during the broadcast or even later) is

not required to be delivered. Its actual delivery depends on the system behavior. This can be a

drawback for some applications. So, let us de�ne Strong Uniform Reliable Broadcast (S URB). We

de�ne this communication service as being similar to URB except for the termination property

which is:

Irisa

(1) Procedure Broadcast(m):

(2) send msg(m; ;) to pi

(3) Task Di�use(m):

(4) prev hbi[m] [�1; : : : ;�1];
(5) repeat periodically

(6) cur hbi hbi;

(7) 8j 6= i: if ((prev hbi[m][j] < cur hbi[j]) ^ (j 62 rec byi[m]))
(8) then send msg(m; rec byi[m]) to pj endif;
(9) prev hbi[m] cur hbi;

(10) until (8j 2 [1::n] : (j 2 rec byi[m])) endrepeat

(11) when type(m;rec by) is received from pk:

(12) if (�rst reception of m)
(13) then rec byi[m] fig [rec by;
(14) activate task Di�use(m)

(15) else rec byi[m] rec byi[m] [rec by endif;
(16) if ((type 6= ack) _ (�rst reception of m)) ^(k 6= i))
(17) then 8j 6= i do send ack(m; rec byi[m]) to pj enddo endif

(18) when ((pi has not yet delivered m) ^ (trustedi � rec byi[m]))
(19) do Deliver(m) enddo

Figure 3: An Improved Quiescent URB Protocol

� S URB-Termination: If a process completes the execution of Broadcast(m), then a correct

process delivers m. (This means that, whatever the future behavior of its sender, no message

that has been broadcast is lost).

We conclude from the combination of the URB-Agreement and S URB-Termination properties that

each correct process delivers all the messages whose broadcasts have been completed.

The S URB-Termination property can easily be implemented. When we consider Figure 2, only

a very simple modi�cation of the procedure Broadcast(m) is required. Namely, the only statement

wait (trustedi � rec byi[m]) has to be added at the end of this procedure. It ensures that when

a broadcast completes, the corresponding application message is known by at least one correct

process (that will disseminate it in its Di�use task).

7 Conclusion

Failure detector oracles are becoming a fundamental issue in the design of fault-tolerant distributed

applications designed to run on fault-prone distributed systems. The aim of this paper was to

provide a simple introduction to their philosophy and to illustrate it with some of them, namely, a

\guessing" and a \hiding" failure detector oracles.

The design of a quiescent protocol solving the Uniform Reliable Broadcast problem has been

used as a paradigm to show why failure detector oracles are required and how they can be used.

The guideline for the design of this protocol was simplicity (as we have seen, more e�cient protocols

can be designed).

The reader interested in more details on the concept of failure detector oracles, the problems

they can help to solve, and their uses, can consult [2, 3, 7, 8, 13, 14, 18, 19, 20, 22].

PI n�1356

References

[1] Afek Y., Attiya H., Fekete A.D., Fischer M., Lynch N., Mansour Y., Wang D. and Zuck L., Reliable
Communication over Unreliable Channels. Journal of the ACM, 41(6):1267-1297, 1994.

[2] Aguilera M.K., Chen W. and Toueg S., On Quiescent Reliable Communication. SIAM Journal of

Computing, 29(6):2040-2073, 2000.

[3] Aguilera M.K., Toueg S. and Deianov B., Revisiting the Weakest Failure Detector for Uniform Reliable
Broadcast. Proc. 13th Int. Symposium on DIStributed Computing (DISC'99), Springer -Verlag LNCS
#1693, pp. 21-34, Bratislava (Slovaquia), 1999.

[4] Basu A., Charron-Bost B. and Toueg S., Simulating Reliable Links with Unreliable Links in the Presence
of Process Crashes. Proc. 10th Int. Workshop on Distributed Algorithms (now, DISC), Springer -Verlag
LNCS #1051, pp. 105-121, , Bologna (Italy), 1996.

[5] Ben-Or M., Another Advantage of Free Choice: Completely Asynchronous Agreement Protocols. Proc.
2nd ACM Symposium on Principles of Distributed Computing (PODC'83), ACM Press, pp. 27-30,
Montr�eal (Canada), 1983.

[6] Biran O., Moran S. and Zaks S., A Combinatorial Characterization of the Distributed 1-Solvable Tasks.
Journal of Algorithms, 11:420-440, 1990.

[7] Chandra T. and Toueg S., Unreliable Failure Detectors for Reliable Distributed Systems. Journal of
the ACM, 43(2):225-267, 1996.

[8] Chandra T., Hadzilacos V. and Toueg S., The Weakest Failure Detector for Solving Consensus. Journal
of the ACM, 43(4):685{722, July 1996.

[9] Fekete A.D., Lynch N., Mansour Y. and Spinelli J., The Impossibility of Implementing Reliable Com-
munication in Face of Crashes. Journal of the ACM, 40(5):1087-1107, 1993.

[10] Fischer M.J., Lynch N. and Paterson M.S., Impossibility of Distributed Consensus with One Faulty
Process. Journal of the ACM, 32(2):374{382, 1985.

[11] Garey M.R. and Johnson D.S., Computers and Intractability: A Guide to the Theory of NP-

Completeness. Freeman W.H. & Co, New York, 340 pages, 1979.

[12] Hadzilacos V. and Toueg S., Reliable Broadcast and Related Problems. In Distributed Systems, acm
Press (S. Mullender Ed.), New-York, pp. 97-145, 1993.

[13] Halpern J.Y. and Ricciardi A., A Knowledge-Theoretic Analysis of Uniform Distributed Coordination
and Failure Detectors. Proc. 18th ACM Symposium on Principles of Distributed Computing (PODC'99),
pp. 73-82, Atlanta (GA), 1999.

[14] H�elary J.-M., Hur�n M., Mostefaoui A., Raynal M. and Tronel F., Computing Global Functions in
Asynchronous Distributed Systems with Perfect Failure Detectors. IEEE Transactions on Parallel and

Distributed Systems, 11(9), 2000.

[15] Hopcroft J.E. and Ullman J.D. Introduction to Automata Theory, Languages and Computation. Addison
Wesley, Reading (MA), 418 pages, 1979.

[16] Lynch N., A Hundred Impossibility Proofs for Distributed Computing. Invited Talk, Proc. 8th ACM

Symposium on Principles of Distributed Computing (PODC'89), ACM Press, pp. 1-27, Edmonton
(Canada), 1989.

[17] Lynch N., Distributed Algorithms. Morgan Kaufmann Pub., San Francisco (CA), 872 pages, 1996.

Irisa

[18] Mostefaoui A. and Raynal M., Solving Consensus Using Chandra-Toueg's Unreliable Failure Detec-
tors: a General Quorum-Based Approach. Proc. 13th Symposium on DIstributed Computing (DISC'99),
Springer Verlag LNCS #1693, Bratislava (Slovakia), pp. 49-63, 1999.

[19] Mostefaoui A. and Raynal M., k-Set Agreement with Limited Accuracy Failure Detectors. Proc. 19th
ACM Symposium on Principles of Distributed Computing (PODC'00), Portland (OR), pp. 143-152,
2000.

[20] Raynal M. and Tronel F., Restricted Failure Detectors: De�nition and Reduction Protocols. Information

Processing Letters, 72:9197, 1999.

[21] Wang D.-W. and Zuck L.D., Tight Bounds for the Sequence Transmission Problem. Proc. 8th ACM

Symposium on Principles of Distributed Computing (PODC'89), ACM Press, pp. 73-83, Edmonton
(Canada), 1989.

[22] Yang J., Neiger G. and Gafni E., Structured Derivations of Consensus Algorithms for Failure Detec-
tors. Proc. 17th ACM Symposium on Principles of Distributed Computing (PODC'98), Puerto Vallarta
(Mexico), pp.297-308, 1998.

PI n�1356

