
Understanding Partitions and the \No Partition" Assumption

Aleta Ricciardi1, Andr�e Schiper2, Kenneth Birman1

Department of Computer Science, Upson Hall

Cornell University

Ithaca, NY 14853-7501

Abstract

The paper discusses partitions in asynchronous

message-passing systems. In such systems slow pro-

cesses and slow links can lead to virtual partitions that

are indistinguishable from real ones. This raises the

following question: what is a \partition" in an asyn-

chronous system? To overcome the impossibility of de-

tecting crashed processes in an asynchronous system,

our system model incorporates a failure suspector to

detect (possibly erroneously) process failures. Based on

failure suspicions we give a de�nition of partitions that

accounts for real partitions as well as virtual ones. We

show that under certain assumptions about the pro-

cess behavior, any incorrect failure suspicion inevitably

partitions the system. We then show how to interpret

the \absence of partition" assumption.

1 Introduction

The paper considers message-passing asynchronous
systems in which processes fail by crashing. These
systems are necessarily concerned with network parti-
tions, and as systems grow to larger and larger num-
bers of nodes, handling partitions becomes more press-
ing. Despite this, researchers commonly assume net-
works will not partition because this greatly simpli�es
protocol development. Since protocols based on the
\absence of partitions" assumption are correct only to
the extent that the assumption is valid, it is vital to

1Research supported by DARPA/ONR Grant N00014-92-J-

1866, and by grants from IBM, HP, Siemens, and GTE.
2On leave from Ecole Polytechnique F�ed�erale de Lausanne,

Switzerland. Research supported by the \Fonds national su-

isse" and OFEB under contract number 21-32210.9, as part of

the European ESPRIT Basic Research Project Number 6360

(BROADCAST).

know whether the assumption is justi�ed, and what
the consequences are when it is not.

Unfortunately \absence of partitions" is a very impre-
cise speci�cation. It is usually understood to be either

(1) the absence of link failures, or (2) that any two
operational processes p and q can always communi-
cate. In asynchronous systems communication delays
are unbounded, and local clock rates may drift arbi-
trarily making it impossible to determine whether a
process's lack of response is caused by a link problem
(failed or heavily loaded) or the process itself (crashed
or very slow). In this way, slow processes and links can
lead to virtual partitions, which are indistinguishable
from real partitions. A protocol assuming the \ab-
sence of partitions" must exclude these virtual parti-
tions as well as physical ones. This paper gives a pre-
cise de�nition of partition, accounting for the nature
of asynchronous systems by covering virtual partitions
as well as physical ones.

We are concerned with distributed fault-tolerant ap-
plications. Fault-tolerance can be understood in two
ways, meaning either (1) that failures will not cause
the application to take unsafe actions, or (2) that

the application is able to make safe progress even if
(some) processes crash. The �rst interpretation con-
siders fault tolerance as a safety issue only; the second
adds a liveness requirement to the safety issue. We
consider the latter. To illustrate the liveness issue,
consider mutual exclusion implemented using a token.
If the token holder process crashes, liveness requires
that the token be regenerated.

In these contexts, satisfying the liveness requirement
raises the issue of detecting process failures, and leads
us to introduce a mechanism for suspecting failures.
This mechanism, associated to each process p, is called
the failure suspector FS(p). The liveness requirement
just described translates to a liveness requirement for

1

our failure suspector: FS(p) is required to eventually
detect each real crash. Unfortunately the price of live-
ness is accuracy: in requiring bounded-time detection
of true crashes we necessarily risk erroneously suspect-
ing non-crashed processes. While a discussion of han-
dling inaccurate failure suspicions is beyond the scope
of the paper, understanding one key issue will help in
understanding the process behavior considered in Sec-
tion 2. There are two ways to handle the possibility of
inaccurate failure suspicions. Consider two processes
p and q, and assume that p has been noti�ed by FS(p)
that q has crashed. One alternative for p is to even-
tually adopt the failure belief as being correct. This
allows p to take any actions required by q's failure (for
example to regenerate the token if q was the token
holder). In this model, failure beliefs become stable.
The other choice is for p to be permitted to \change

its mind" regarding q's failure. In this second model
failure beliefs are not stable, hence it is inappropri-
ate to take actions that would be unsafe if the failure
is not real. For example, in this model, p could not
safely regenerate a token held by q after suspecting q's
failure, because the suspicion could later prove to be
incorrect.

The \stable failure" model has, for example, been
adopted by the Isis system [1], whereas the \non-stable
failure" model is considered in [3, 2]. The \stable fail-
ure" model is often necessary in building live, fault-
tolerant applications. We saw this above in the case
of token regeneration, but the same issues arise in
many problems, such as primary-backup computing,
and replicated data management. To achieve both
liveness and safety, we must overcome the inaccuracy
of failure beliefs with some form of group-wise consis-

tency: if p incorrectly suspects q to have failed, and
yet wants to take a safe action related to q's failure, p
must be ensure that its belief in q's faultiness will be
shared by other processes with which it subsequently
interacts. In particular, if p observes the failure of
q and then communicates with r, a consistency goal
might be that r will also observe the failure of q before
it delivers this message.

To summarize, the stable-failure belief model achieves
liveness (in a probabilistic sense); safety is ensured
by requiring some form of consistency among failure
beliefs.

Further implications of failure belief stability on
processes behavior is discussed in Section 2, which
presents the system model and introduces our failure

suspector. Section 3 de�nes partitions and proves that
a single incorrect failure suspicion leads, inevitably, to

a partition. This result makes the \no partition" as-
sumption questionable. Section 4 discusses how weak-
ening the system model while strengthening the failure
suspector can prevent partitions. Unfortunately, the
the stronger failure suspectors are not implementable,
in even the barest model of asynchrony. Section 5
concludes the paper by relating this back to the no-
partition assumption.

2 System model and Failure

Suspector

The system model consists of a name space of pro-

cess identi�ers, Proc = fp1; p2; : : :g. The name space
is in�nite to model in�nite executions in which pro-

cesses continually fail and recover, though at any point
in time there are only a �nite number of executing
processes. For the processes in this set, we assume a
completely-connected network of channels. Processes
communicate only by passing messages over these
channels. The system has no global clock and mes-
sage transmission delays are unbounded. Processes
fail by crashing, which we model by the distinct event
crash; we model the recovery of a process by assigning
it a new identi�er. Any process p may send a message
m to any process q, sendp(q;m), deliver a message m0

sent by some process r, dlvrp(r;m
0), and perform local

computation. A process history is a linear sequence of
events with a unique start event, in which e

x

p
denotes

the x
th event p executes. A system run is a tuple of

in�nite process histories,1 one for each process that
executes. A cut is a �nite pre�x of a run.

As in [5], event eq of process q directly precedes event

ep of process p in run � (written eq
1
!� ep) if either

(1) eq = sendq(p;m) and ep = dlvrp(q;m) in �, or
(2) p = q, eq = e

x

p
, and ep = e

x+1
p

in p's execution
history in �. Event eq precedes event ep in � (written
eq !� ep) if they are the beginning and end of a chain

of
1
!�-related events. Hereafter, we do not note the

run explicitly, unless necessary. The logical formula

1-before(ep ; eq) holds if and only if ep
1
!eq , whereas

the formula before(ep ; eq) holds if ep ! eq . When
ep is an event in cut c and before(eq ; ep) holds on c,
then c is causally consistent if and only if eq is also an
event in c.

1We make histories of crashed processes in�nite by append-

ing in�nitely many crash events.

2.1 The Failure Suspector

Crash failures are surprisingly di�cult to handle in
asynchronous systems. Fischer et al. [4] show that, be-
cause it is impossible to distinguish a crashed process
from one that is just very slow, any problem requir-
ing \all correct processes" to take some action cannot
be solved deterministically. One way around this is
for asynchronous systems to incorporate a mechanism
for suspecting failures and a policy for handling failure
suspicions [7]. We consider a failure suspector associ-
ated to each process p, denoted FS(p). When FS(p)
suspects process q, it causes p to execute the event
faultyp(q). The following formulas will be useful 2:

� alivep(q) holds once p is aware of q's existence
3

and until FS(p) suspects q.

� faultyp (q) holds once p executes faultyp(q).

� crashedp holds as soon as p has executed the
local event crashp. It is a stable formula.

To ensure fault-tolerant applications are live, we need
only require that failure suspectors eventually suspect
true crashes. In asynchronous systems this takes the
following form: if there is some point in p's execution
after which q does not directly a�ect p, then FS(p)
will suspect q faulty, or p will eventually crash. Note
that FS(p) is easily implemented, for example with
local time-outs. Note also, that since FS(p) operates
along with p it can only guess whether q will ever
directly a�ect p; it may use sophisticated techniques,
but it can only approximate with probability whether
q is crashed. As a result FS(p) will make erroneous
suspicions.

FS(p) Liveness. For all executions and all processes
q, unless there are an in�nite number of event-pairs

satisfying eq
1
!ep, eventually FS(p) suspects process q.

2Formulas are evaluated on consistent cuts to better model

asynchronous systems. The basic formulas are propositional.

Given formula ', and consistent cut c the tense logic formulas

are

� 2': ' is true on c and all future cuts,

� 3': in every run that includes c, ' holds at some future

cut.

To distinguish logical formulas from events, formulas are

written in small caps. For example the formula sendp(q;m)

holds along c if and only if the last event p executed in c was

sendp(q;m).
3We do not discuss process creation and incorporation into

the set of operational processes.

Formally, de�ne the set of directly-related event pairs
between q and p as :

Causesp(q; �) =

�
(eq; ep) j eq

1
!� ep

�

If this set is �nite, eventually p suspects q or p crashes:

j Causesp(q; �) j <1)

3faultyp(q) _3crashedp

end

We are not concerned with how FS(p) is implemented,
only that it be live.

2.2 Other System Model Properties

Processes in our system model are also subject to cer-
tain constraints. As discussed in Section 1 these arise
from the liveness requirements of the applications and
the impossibility of accurately detecting a process-
crash. The liveness requirement led us to adopt the
\stable failure" model. Stability of failure beliefs is
our �rst process property.

Failure Belief Stability. A failure belief once
adopted is true forever: faultyp(q)) 2faultyp(q).

This has an immediate consequence for channel be-
havior: once p believes q faulty, it neither accepts
further messages from q, nor sends further messages
to q. Is this reasonable? Recall the liveness require-
ment put on the applications we consider. Assume
that faultyp(q) holds. This might lead p to take some
actions A in order to recover from q's suspected failure.

Consider now a message m from q, received by p once
faultyp (q) holds. Accepting m might lead p to exe-

cute an action A
0 inconsistent with action A. To avoid

this type of inconsistency (without forcing p to crash
or inspect messages' contents before delivering them)
p rejects any further messages from q once faultyp (q)
holds. That p acts symmetrically in not sending to q

further messages upon believing q faulty is reasonable.
This lead to the second process property.

Channel Disconnect:

faultyp (q))

�
2:dlvrp(q;m)^2:sendp(q;m)

�
:

Toward achieving failure belief consistency, we intro-
duce a third process property. We motivated the need

for failure belief consistency as a consequence of the in-
accuracy of any live failure detection mechanism. Dif-
fering failure beliefs could easily result in unsafe (i.e.
inconsistent) actions. Safety can be regained if some
form of consistency among failure beliefs is achieved.
This is precisely the role of the gossip property.

Gossip. Failure beliefs propagate along causal chains
of events. For processes p; q, and r:

before(faultyp(q); ep) ^ 1-before(ep ; er))

before(faultyr(q); er) _ 1-before(er ; faultyr(q))

In summary the liveness and safety requirements put
on the fault-tolerant distributed applications we have
in mind, led to three system process requirements: sta-
bility of failure beliefs, channel disconnect, and gossip
of failure beliefs.

3 From Incorrect Failure Noti�cations

to Partitions

We now show that given the system model and failure
suspector just described, partitions are unavoidable.
We introduce the isolated() property, de�ne parti-
tions, and then prove the result.

De�nition [isolated(S)] Given S a subset of
Proc(c), isolated(S) holds on c if and only if every
process considered alive by some p 2 S, is also in S:

isolated(S)
def
=

^
p2S

^
q2Proc(c)

�
alivep(q)) q 2 S

�
:

end

If isolated(S) holds, the processes in S believe them-
selves to be the only live processes in the system. With
this de�nition, it is natural to declare a system par-
titioned exactly when there are at least two disjoint
subsets that each believe themselves to be the only
live processes in the system.

De�nition [Partition] A partition exists along consis-
tent cut c if at least two non-null, disjoint subsets of
Proc(c) are isolated. end

We now show that a single incorrect failure belief par-
titions the system.

Proposition 3.1 [Failure Belief Propagation] If p be-

lieves q faulty then eventually every other process r

either believes q faulty, believes p faulty, or crashes:

faultyp(q))

3

�
faultyr (q) _ faultyr (p) _ crashedr

�
:

Proof Let ep be the event faultyp(q). Let er 6=
crashr , not be causally dependent on ep (that is,
:before(ep ; er)). Then either (1) there is some fu-
ture event e

0

r
such that ep ! e

0

r
or, (2) there will

never be a causal relation between ep and any future
event on r.

Clause (1) is the Gossip premise, in which case
faultyr (q) holds immediately after e

0

r
, while clause

(2) is the premise of FS(r) liveness. Thus faultyr (p)

eventually holds, or r crashes. qed

Proposition 3.2 [Failure Reciprocity] If p believes q

faulty, then eventually either q believes p faulty, or q

crashes:

faultyp(q)) 3

�
faultyq (p) _ crashedq

�
:

Proof Let ep be the event faultyp(q). To prove reci-
procity (via FS(q) Liveness) we must show that no
p-event on p after ep directly precedes an event on
q. Clearly, this cannot happen without p violating
Channel Disconnect by sending to q once it believes q
faulty. qed

In other words, failure reciprocity is inevitable if any
failure suspicion is incorrect. The following proposi-

tion shows that such a mistake partitions the system.

Proposition 3.3 If p erroneously suspects q faulty,

but neither q nor p ever crashes, then eventually there

are at least two disjoint subsets, S and T, such that

p 2 S; q 2 T, isolated(S) and isolated(T).

Proof Rename q � q0 and let c be the consistent
cut along which faultyp (q0) initially holds, and de�ne
A-Setp(c) to be all processes p believes alive at c.

Once faultyp(q0) holds, Gossip means that eventu-
ally every r 2 A-Setp(c) either adopts faultyr (q0),
crashes, or believes faultyr (p). Without loss of gen-
erality, assume only p gossips faulty(q0), and let c1

be the consistent cut at which faulty(q0) is gossiped

(as far as possible) to the members of A-Setp(c). Let
S1 (along c1) be the subset of A-Setp(c) that adopted
faulty(q0), with the others having either crashed or
adopted faulty(p):

S1 =
n
r j faultyr (q0)^:faultyr (p)^:crashedr

o
:

If S1 is not isolated then there is some r 2 S1, such that
aliver(q1) holds at c1, but q1 =2 S1. Since faulty(q0)
is fully gossiped, the only reasons this q1 would not
have adopted faultyq1 (q0) are (1) it already believed
faultyq1 (p), or (2) q1 had crashed. In either case
faultyp(q1) eventually holds { in the �rst case by
reciprocity, and in the second by FS(p) liveness.

Now, p must gossip faulty(q1), so let c2 and S2 be c1

and S1 after having gossiped q1's faultiness. We can
continue in this way: any process qi that did not adopt
p's belief in the faultiness of process qi�1 must either
be crashed or believe p faulty. Eventually, some Sk

is isolated; in the worst case Sk is the singleton fpg.
Take S = Sk.

Analogously, reciprocity means that faultyq0 (p)
eventually holds, and we can construct T, as we did
for S, from A-Setq0().

To see that the two isolated sets are disjoint note
that r 2 S) faultyr (q0). Reciprocity means
that faultyq0 (r) eventually holds, and construction
of T ensures r =2 T. qed

Since we can never guarantee the failure suspectors
will not make mistakes, the \no partition" assumption
is invalid in the system model considered.

4 Understanding the No Partition

Assumption

Given Proposition 3.3 it is important to know how an
incorrect failure suspicion partitions the system, and
whether we can alter our model to prevent partitions
given the inevitability of incorrect suspicions.

From the de�nition of isolated(), partitions oc-
cur when failures are reciprocated. So assuming
faultyp(q) holds erroneously, how can q be prevented
from believing faultyq (p)? Since we cannot sacri�ce
FS(q) liveness, we are left with three choices:

1. Force q to crash before it believes and is able
to propagate faulty(p). Lacking an omniscient

observer, only p can attempt to cause q to crash
because only p knows it executed faultyp(q).
Unfortunately, the absence of synchronization
mechanisms means p can never ensure that any
command telling q to crash itself will arrive at
q before q reciprocates with (and propagates)
faultyq(p).

4

2. Force failure suspectors to attain a quorum-
style agreement on suspicions before actually
emitting the faulty() suspicion. This is done
in [6, 7] where the quorum is a simple major-
ity. Processes in a majority subset can take fur-
ther actions, while those in the minority cannot.
Whether a majority can be obtained determines
whether the system can progress. This is further
discussed in Section 4.1.

3. Concede failure belief stability at the expense of
guaranteeing system progress. We explore this
option in Section 4.2.

4.1 The Primary Partition Model

The \primary partition" model is one in which the
system is allowed to partition, but one assumes that
there is always an identi�ed primary partition that is
unique, in being the only partition so designated, and

in which decisions can be made on behalf of the system
as a whole, without risk that contradictory decisions
will be made in other partitions. The primary par-
tition model is often considered weaker than the \no
partition" model: the former allows progress in the
primary partition, while the latter would not allow
progress if any partition were ever to form.

Speci�cally, neither the no-partitions model nor the
primary-partition model can guarantee progress (of
the type of distributed problems we are concerned
with) in situations where consensus cannot be solved.
Since the primary-partition model ensures liveness in
situations where the no-partitions model would not,
we recommend that the primary partition model be
assumed in most algorithms that make assumptions
about partitioning.

4.2 Conceding Failure Belief Stability

In conceding failure belief stability we no longer need
the Channel Disconnect and Gossip properties. Chan-

4This strategy will not preclude permanent partitions that

arise from temporary link failures.

nel Disconnect was introduced as a consistent conse-
quence of failure belief stability. Gossiping is used to
bring about consistency of failure beliefs, but lacking
stability a process may change its belief immediately
after being gossiped another's failure: consistency of
failure beliefs is no longer an issue.

In this section, we assume neither stability, disconnect,
nor gossip and derive additional requirements on the
system's failure suspectors that would preclude parti-
tions. In particular, partitions cannot exist if for all
cuts, c, some process is believed alive by every process
in Proc(c).

Proposition 4.1 If on all cuts c, all failure suspec-

tors agree on some subset of non-faulty processes, then

partitions will never occur.

Proof (By contradiction)
Let F-Setp(c) = A-Setp(c); then Proc(c) = A-Setp(c) [
F-Setp(c). A partition on a cut c means that there are
(at least) two disjoint sets that are both isolated on c.
Call them S andT.

By de�nition

S =
[
p2S

A-Setp(c) and T =
[
q2T

A-Setq(c):

De Morgan's Law give

S [T = Proc(c) ,
\
p2S

F-Setp(c) [
\
q2T

F-Setq(c) = Proc(c):

Thus, Proc() is partitioned at c if and only if every pro-
cess in the system is believed faulty by every member
of some isolated set. qed

In summary, preventing partitions requires that some
process in the system is not believed faulty by some
member of every isolated set. The implications of this
are stated in Propositions 4.2 and 4.3.

Proposition 4.2 The intersection of isolated sets is

isolated.

Proof Let S andT be isolated and consider p 2 S\T,
and r 2 A-Setp(c). Because S is isolated and p 2 S, r
must also be in S. Similarly, isolated(T) and p 2 T

give r 2 T. qed

Now consider three isolated sets S, T, and U such that
S \ T 6= ;, and T \ U 6= ;. Unless these intersections

S

T

U

Figure 1: Intersecting Isolated Sets Must Form a `Star'

also intersect a partition exists. In other words, a
partition will not exist as long as isolated sets form a
`star', as depicted in Figure 1.

Proposition 4.3 Let S1, S2, ..., Sn enumerate the

isolated sets along cut c. Then no partition exists if

and only if one of them is the center of a `star'. That

is, 91 � x � n : Sx = S1 \ S2 \ � � � \ Sn:

Proof Follows easily from the de�nition of partition
and Proposition 4.2. qed

We say Proc(c) is degraded if Proc(c) is carved into
isolated subsets but is not partitioned. It is fully-

degraded if j Proc(c) j = n, there are n isolated sub-
sets such that n� 1 isolated subsets are process pairs,
and one isolated subset is a singleton. This represents
the worst-case, non-partitioned separation (or, equiv-
alently, belief consistency) between all process pairs.

4.3 Interpreting Partitions and
Distributed Consensus

The star formation is exactly analogous to Chandra
et.al.'s work on Weak Failure Suspectors [3, 2]. This
work proves that if some functional process is not sus-
pected (for a su�ciently long period of time) by every
other functional process, Distributed Consensus can
be solved. This corresponds, in our terminology, to
the absence of a partition. Essentially, the failure sus-
pector 3W requires eventual absence of partitions for
a critical period of time (i.e. long enough to run their
protocol). Note that the results of [3, 2] also hold in
the primary partition of a primary partition model.

5 Conclusion

The paper has given a precise de�nition of partition,
accounting for the nature of asynchronous systems by
covering virtual partitions as well as physical ones.
The paper has further considered two classes of fault-
tolerant distributed applications, characterized by the
stability vs. non-stability of failure beliefs. The stable-
failure system model has been completed by process
properties that follow logically from the stability re-
quirement. They lead to the following result: a single
incorrect failure suspicion already leads to partition
the system. The only safe way to avoid partitions
is to require the failure suspectors to attain a quo-
rum agreement on suspicions before actually emitting
the faulty() suspicion. As any so called membership

service assumes the stable-failure system model, any
membership service has to include such a quorum con-

dition.

The paper has also shown that absence of partition
is obtained by requiring that every failure suspector
`agree' on a subset of non-faulty processes. This is
a valid \no partition" assumption in the \non-stable
failure" system model. Finally, the paper suggests
that the \no-partition" assumption be related to a
\primary-partition" assumption when possible. Al-
though a system that takes this approach will still be
unable to make progress in runs for which consensus
could not also be solved, such an assumption is less
restrictive, more practical, and hence preferable to a
no-partitions one.

References

[1] K. P. Birman. The Process Group Approach to Reli-
able Distributed Computing. Technical Report TR-91-
1216, Cornell University, July 1991. To appear in the
Communications of the ACM.

[2] T. D. Chandra and V. Hadzilacos and S. Toueg. The
Weakest Failure Detector for Solving Consensus. In
Proceedings of the 11th Annual A.C.M. Symposium on

Principles of Distributed Computing, pages 147{158.
ACM, August 1992.

[3] T. D. Chandra and S. Toueg. Unreliable Failure De-
tectors for Asynchronous Systems. In Proceedings of

the Tenth Annual A.C.M. Symposium on Principles of

Distributed Computing, pages 325{340. ACM, August
1991.

[4] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Im-
possibility of Distributed Consensus with One Faulty
Process. Journal of the Association for Computing Ma-

chinery, 32(2):374{382, April 1985.

[5] L. Lamport. Time, Clocks and the Ordering of Events
in a Distributed System. Communications of the

A.C.M., 21(7):558{565, 1978.

[6] A. Ricciardi and K. Birman. Using Process Groups
to Implement Failure Detection in Asynchronous En-
vironments. In Procedings of the Tenth Annual A.C.M.

Symposium on Principles of Distributed Computing,
pages 341{351. A.C.M., August 1991.

[7] A. M. Ricciardi. The Asynchronous Membership Prob-

lem. PhD thesis, Cornell University, January 1993.

