
Consensus Based on Failure Detectors
with a Perpetual Accuracy Property

Achour MOSTEFAOUI and Michel RAYNAL

IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France
Tel: (+33) 2 99 84 71 88 Fax: (+33) 2 99 84 25 33

fmostefaoui,raynalg@irisa.fr

Abstract

This paper is on the Consensus problem, in the context of asyn-
chronous distributed systems made ofn processes, at mostf of
them may crash. A family of failure detector classes satisfying a
Perpetual Accuracy property is first defined. This family includes
the failure detector classS (the class of Strong failure detectors
defined by Chandra and Toueg) central to the definition of a class
(Sx) where x is the minimum number (x � 1) of correct processes
that can never be suspected to have crashed.

Then, a protocol that solves the Consensus problem is given.
This protocol works with any failure detector class (Sx) of this
family. It is particularly simple and uses a Reliable Broadcast
protocol as a skeleton. It requiresn�x+1 communication steps,
and its communication bit complexity is(n � x + 1)(n � 1)jvj

(where jvj is the maximal size of an initial value a process can
propose).

Keywords: Asynchronous Distributed System, Consen-
sus, Crash Failure, Perpetual Accuracy Property, Reliable
Broadcast, Unreliable Failure Detector.

1 Introduction

The Consensusproblem is now recognized as a funda-
mental problem when one has to design or implement reli-
able asynchronous distributed systems in presence of pro-
cess crashes. Informally, the Consensus problem can be de-
fined in the following way: each process proposes a value
and all non-crashed processes have to agree on a common
value, which has to be one of the proposed values. It has
been shown that practical agreement problems can be re-
duced to the Consensus problem. As an example, let us
consider theAtomic Broadcastproblem: all processes have
to agree on the same message delivery order. This is a typ-
ical agreement problem that can be solved by reducing it to
the Consensus problem [1].

Unfortunately, solving the Consensus problem in an
asynchronous distributed system where processes may

crash is not a trivial task. It has been proved by Fischer,
Lynch and Paterson that the Consensus problem has no de-
terministic solution in those systems as soon as processes
(even only one) may crash [2]. The intuition that underlies
this impossibility result lies in the inherent difficulty of safe-
ly distinguishing a process that has crashed from a process
that is “very slow”, or from a process with which commu-
nications are “very slow”. To circumvent this impossibil-
ity result, in a seminal work [1], Chandra and Toueg have
introduced theUnreliable Failure Detectorconcept, and s-
tudied how unreliable failure detectors can be used to solve
the Consensus problem in asynchronous distributed systems
with process crash failures.

A failure detector can be seen as an oracle that provides
each process with a list of processes it suspects to have
crashed. A failure detector can make mistakes by not sus-
pecting a crashed process or by erroneously suspecting a
non-crashed process. Chandra and Toueg have studied sev-
eral classes of unreliable failure detectors. A class is defined
by aCompletenessproperty and anAccuracyproperty. The
Completeness property is on the actual detection of crashes.
The aim of an Accuracy property is to restrict the mistakes
a failure detector module can make. Furthermore, an Accu-
racy property can beEventualor Perpetual. An Accuracy
property isEventualwhen it is allowed to be satisfied on-
ly after some time by the failure detector. It isPerpetual
when it has to be satisfied from the beginning by the failure
detector [1].

In this paper, we are interested in solving the Consen-
sus problem in asynchronous distributed systems prone to
process crashes augmented with unreliable failure detectors
satisfying a Perpetual Accuracy property. More precisely,
we consider a family of unreliable failure detector classes
whose Perpetual Accuracy property is parameterized by the
minimum number (x) of correct processes that can not be
suspected to have crashed. (The failure detector class de-
notedS [1] belongs to this family. It corresponds to the
case where all but one process may be suspected). The pro-
posed Consensus protocol is particularly simple, namely, it

0-7695-0574-0/2000 $10.00 � 2000 IEEE

uses aReliable Broadcastprotocol as a skeleton. Due to its
intrinsic simplicity, the protocol reveals itself to be efficien-
t. It requires(n � x + 1) communication steps and costs
(n � x + 1)(n � 1) messages (wheren is the number of
processes), each message carrying a single value (namely,
a value proposed by a process, the size of this value being
jvj).

The paper is composed of 6 sections. Section 2 presents
the asynchronous distributed system model augmented with
unreliable failure detectors providing a Perpetual Accuracy
property. Section 3 defines the Consensus problem. Then,
Section 4 presents the Consensus protocol: its underlying
principles (Section 4.1) and its formal description (Section
4.2). Its proof constitutes Section 5. Finally, Section 6 pro-
vides a few concluding remarks.

2 System Model

The system model is patterned after the one described in
[1, 2]. A formal introduction to failure detectors is provided
in [1].

2.1 Asynchronous Distributed System

We consider a system consisting of a finite set ofn > 1
processes, namely,fp1; p2; : : : ; png. A process can fail by
crashing, i.e., by prematurely halting. It behaves correctly
(i.e., according to its specification) until it (possibly) crash-
es. By definition, acorrect process is a process that does
not crash. Letf denote the maximum number of processes
that can crash. Processes communicate and synchronize by
sending and receiving messages through channels. Chan-
nels are not required to beFIFO. They can duplicate mes-
sages, but they cannot loss, alter or create messages. So,
a message sent by a processpi to a processpj is eventu-
ally received bypj , if pj is correct. It is the multiplicity
of processes and the communication by message-passing
that make the systemdistributed. There is no assumption
about the relative speed of processes or the message trans-
fer delays. This absence of timing assumptions makes the
distributed systemasynchronous.

Given a system ofn processes, we assume that at least
one of them is correct, sof � n � 1. In the following
S(n; f) denotes any distributed system made ofn processes,
at mostf of them may crash.

2.2 Unreliable Failure Detectors

Let us consider a system S(n; f). Informally, a failure
detector consists of a set of modules, each one attached
to a process: the module attached topi maintains a set
(namedsuspectedi) of processes it currently suspects to

have crashed. Any failure detector module is inherently un-
reliable: it can make mistakes by not suspecting a crashed
process or by erroneously suspecting a correct one. More-
over, suspicions are not necessarily stable: a processpj can
be added to and removed from a setsuspectedi according
to whetherpi’s failure detector module currently suspects
pj or not. As in [1], we say “processpi suspects process
pj” at some timet, if at timet we havepj 2 suspectedi.

As indicated in the introduction, a failure detector class
is defined by two abstract properties, namely aComplete-
nessproperty and anAccuracyproperty. In this paper we
consider the following Completeness property [1]:

� Completeness: Eventually, every crashed process is
permanently suspected by every correct process.

Chandra and Toueg have defined four Accuracy proper-
ties [1]: two Perpetual Accuracy properties and two Eventu-
al Accuracy properties. The Perpetual Accuracy properties
are:

� Strong Accuracy: No process is suspected before it
crashes.

� Weak Accuracy: Some correct process is never sus-
pected.

Combined with the Completeness property, these Perpet-
ual Accuracy properties define the following two classes of
failure detectors [1]:

� P : The class ofPerfectfailure detectors. This class
contains all the failure detectors that satisfy the Com-
pleteness property and the Strong Accuracy property.
A failure detector of this class never makes mistakes.

� S: The class ofStrong failure detectors. This class
contains all the failure detectors that satisfy the Com-
pleteness property and the Weak Accuracy property.
A failure detector of this class can make an arbitrary
number of mistakes.

2.3 The ClassSx

As far as failure detectors for a system S(n; f) are con-
cerned, let us consider the following Perpetual Accuracy
property, where1 � x � n� f :

� Bounded Accuracy: There arex correct processes
that are never suspected1.

We defineSx as the class of unreliable failure detectors
for S(n; f) that satisfy the Completeness property and the
Bounded Accuracy property parameterized withx. Note

1Of course there is no a priori knowledge on which are thesex process-
es.

0-7695-0574-0/2000 $10.00 � 2000 IEEE

that a failure detector of a classSx can make an arbitrary
number of mistakes. Moreover, givenn andf , we have the
following inclusions:

P � Sn�f � � � � � S2 � S1 = S

The classSn�f includesP because a failure detector of
Sn�f may suspect a process before it crashes, while a fail-
ure detector ofP can not.

3 The Consensus Problem

In the Consensus problem, every correct processpi pro-
posesa valuevi and all correct processes have todecideon
some valuev, in relation with the set of proposed values.
More precisely, theConsensusproblem is defined by the
three following properties [1, 2]:

� Termination: Every correct process eventually de-
cides on some value.

� Validity: If a process decidesv, thenv was proposed
by some process.

� Agreement: No two correct processes decide differ-
ently.

The agreement property applies only to correct processes.
So, it is possible that a process decides on a distinct value
just before crashing.Uniform Consensusprevents such a
possibility. It has the same Termination and Validity prop-
erties plus the following agreement property:

� Uniform Agreement: No two processes (correct or
not) decide differently.

In the following we are interested in theUniform Consensus
problem.

4 The Protocol

This section defines a Consensus protocol for an asyn-
chronous distributed systemS(n; f), augmented with a fail-
ure detector of a classSx (with 1 � x � n� f).

4.1 Underlying Principle

An instance of theUniform Reliable Broadcastproblem
[5] allows a processpi to send a message to all the pro-
cesses, in such a way that (1) ifpi is correct the message is
delivered to all correct processes, and (2) otherwise, if the
message is delivered to any process, then it is delivered to
all correct processes.

Actually, the Consensus problem can be seen as a “com-
bination” ofn instances of the Reliable Broadcast problem

(one instance per process), such that asingle message (tak-
en from the set of messages that have been sent) is delivered
to processes. This simple observation suggests to use a Re-
liable Broadcast protocol as a skeleton to build a Consensus
protocol. By broadcasting its initial value, a given process
(e.g., p1) tries to impose this value as the decision value.
As this process may crash during the broadcast, the other
processes have to forward its value when they receive it,
in order to overcome this possible crash [5]. Moreover, as
the process that is supposed to initiate the Reliable Broad-
cast (here,p1) may crash before launching it, the Reliable
Broadcast protocol is modified to allow a process that has
not received a value, to participate in the Reliable Broadcast
by “forwarding” its own initial value that then replaces the
“not received” value. This constitutes the design principle
that underlies the proposed protocol: it is a Uniform Reli-
able Broadcast protocol where the value initially sent can be
changed during the execution, according to process crashes
and (possibly erroneous) suspicions.

4.2 The Consensus Protocol

The Consensus protocol is described in Figure 1. A pro-
cesspi participates in a Consensus execution2 by invoking
the functionConsensus(vi). The local variableesti rep-
resents the current local estimate of the decision value, it
is initialized to vi (line 1). The statementreturn (esti)
terminates the participation ofpi in the Consensus, and
provides it with the decision valueesti (line 12). As de-
fined in Section 2.2,suspectedi is the set of processes cur-
rently suspected bypi. From the definition ofx (namely,
1 � x � n � f), we conclude that any set ofn � x + 1
processes contains at least one correct process that is never
suspected.

The protocol works in the following way.

� It first tries to realize a Reliable Broadcast of the initial
value ofp1. To this end, without previously waiting
for values from other processes (lines 2-4),p1 sends
its initial value to all the processes (line 6).

� Whenp2 receives the value ofp1, it adopts this value
as current estimate (line 4) and participates in its Re-
liable Broadcast by forwarding it to all processespj
with j > 2 (line 6). In that way,p2 overcomes a pos-
sible crash ofp1 that would occur after it has sentv1
to p2 and before it has sent it to other processes. If
p2 (maybe erroneously) suspectsp1 before receiving
its initial valuev1 (line 3), thenp2 participates in the
Reliable Broadcast by forwarding its own initial value

2As we will see, the protocol uses process identities. In order to balance
the load when there are several Consensus executions, each Consensus
execution can have its own assignment of process identities.

0-7695-0574-0/2000 $10.00 � 2000 IEEE

Function Consensus(vi)
(1) esti vi;
(2) for j from 1 to min(i� 1; n� x+ 1) do
(3) wait until ((pj 2 suspectedi) _ (est fromj is received frompj));
(4) if (est fromj has been received frompj) then esti est fromj endif enddo;
(5) if (i � n� x+ 1) then
(6) forall j such that i+ 1 � j � n do send(esti) to pj enddo;
Broadcast % (7)forall j such that1 � j � i� 1 do send(esti) to pj enddo;
Agreement % (8)for j from i+ 1 to n� x+ 1 do
(9) wait until ((pj 2 suspectedi) _ (est fromj is received frompj));
(10) if (est fromj has been received frompj) then esti est fromj endif enddo;
(11) endif;
(12) return (esti)

Figure 1. The Consensus Protocol

v2 instead ofv1 (line 6). Preventing the protocol from
blocking, this guarantees its termination.

� More generally, a processpi sequentially considers all
processespj such that1 � j < i. With respect to
each of them,pi behaves asp2 behaved with respect
to p1 (lines 2-4). After all these waitings have been
completed,pi has inesti the last value it has received
or vi if it has received no value (lines 3-4). Then it
participates in the Reliable Broadcast by forwarding
its current value ofesti to all the processespj with
j > i (line 6).

� Due to erroneous suspicions concerningpj by other
processes, the value forwarded (and currently adopt-
ed) bypj is not necessarily the last value received by
a correct processpi (i > j). To ensure thatpj will de-
cide on the same value as the other processes, a process
pi is required to forward its current estimate also to all
processespj such thatj < i (line 7). Hence, in order
to take into account the values sent to it at line 7 by the
other processes, a processpj executes lines 8-10: it se-
quentially waits values from processespi (i > j), and
updates its current local estimate to the last of these
values (if any) it receives.

� As indicated previously, due to the definition ofx, any
set ofn�x+1 processes contains at least one correct
process that is never suspected. The protocol exploits
this property in the following way: the subset3 made
of the processesp1; : : : ; pn�x+1 defines the decision
value and imposes it to the subset of processespj such
thatj > n� x+ 1. More precisely:

– The set of processespi such that1 � i �
n � x + 1 realizes the modified Uniform Reli-
able Broadcast as described previously. The up-

3This subset is only one of the possible subsets satisfying the property.
Its advantage lies in its easy management by the protocol.

per bounds of thefor loops of lines 2 and 8, and
the test done at line 5 guarantee that all processes
of this subset and only them participate “active-
ly” in the modified Reliable Broadcast whose aim
is to establish the decision value.

– The set of processespj such thatn�x+1 < j �
n is made of “passive” processes in the following
sense. A processpj of this set does not partici-
pate in the forwarding of values required by the
Reliable Broadcast (test at line 5). Its work is
limited to the reception of forwarded values and
to the corresponding updates of its local estimate
estj (lines 2-4).

To summarize, any processpi waits for a value (or a
suspicion) from exactlyn�x+1 processes. According
to the value ofi, some of these waitings are done at
lines 2-3 while the others are done at lines 8-9.

5 Proof

5.1 Validity

Theorem 1 If a processpi decidesv, thenv was proposed
by some process.

Proof The only line at whichreturn is executed is line 12,
the returned value being an estimate value (esti). For any
processpi, initially esti = vi (line 1), and then,esti can be
modified at line 4 or at line 10. Due to the reliable channel
assumption (no alteration, no spurious messages), in both
cases the new value ofesti is the value of another estimate
sent at line 6 or at line 7. Consequently,esti always con-
tains a value proposed by some process. 2Theorem 1

0-7695-0574-0/2000 $10.00 � 2000 IEEE

5.2 Termination

Lemma 1 No 2-4) (P1). Moreover, every correct process
pj such thatj � n � x + 1 broadcasts an estimate value
(P2).

Proof The proof is by induction on the increasing sequence
of processes identities. Note that only non-crashed process-
es can block in a loop.

� Base case. Let us first consider the casei = 1, i.e., p1. As
i� 1 = 0, it follows from line 2, thatp1 has not to execute
the first loop, so it can not remain blocked forever in this
loop. Consequently, ifp1 is correct, it eventually executes
lines 6-7 and broadcastsv1.

� Induction case. Consideringi > 1, let us assume (induc-
tion hypothesis):
- P1(i � 1): 8 pk, such that1 � k � i � 1, pk does not
remain blocked forever in the first loop (either it exits from
the loop or it crashes), and
- P2(i� 1): 8 pk, such that1 � k � i � 1, if pk is correct
andk � n� x+ 1, it broadcasts an estimate value.

We first show that P1(i) is satisfied (namely,pi can not
remain blocked forever within the first loop). Ifpi crashes,
it is no longer blocked in the first loop. Ifpi is correct, then
for anypk such thatk � min(i� 1; n� x+ 1) we have:
- If pk is correct, then, due to the second part of the induc-
tion hypothesis, namely P2(i�1), pi eventually receives an
estimate frompk (note that due to an erroneous suspicion,
pi can also suspectpk before receiving this estimate).
- If pk crashes, then due to the Completeness property of
the failure detector,pi eventually suspects it.

P2(i) is trivially obtained from P1(i). If pi is correct and
if i � n� x+1, as it exits from the first loop, it eventually
executes lines 6-7, and consequently broadcasts an estimate
value. 2Lemma 1

Lemma 2 No correct process remains blocked forever in
the second loop (lines 8-10).

Proof Due to Property P1 of Lemma 1 (at least) all correct
processes enter the second loop. Moreover, due to line 5,
the lemma is trivially true for all correct processespi such
that i > n � x + 1. So, we consider in the following a
correct processpi such thati � n � x + 1. Line 8 indi-
cates thatpi waits for an estimate value or a suspicion from
pi+1; : : : ; pn�x+1. Let pj be any of these processes. There
are two cases:
- If pj crashes, then due to the Completeness property of the
failure detector,pi will suspect it.
- If pj is correct, then, due to property P2 of Lemma 1,pj
eventually broadcasts an estimate value.
So, for anyj such thati+1 � j � n�x+1, pi eventually

receives an estimate frompj or suspectspj .
It follows that no correct process blocks in the second loop.

2Lemma 2

Theorem 2 Every correct process eventually decides on
some value.

Proof The proof follows directly from the property P1 of
Lemma 1, Lemma 2 and line 12. 2Theorem 2

5.3 Uniform Agreement

Let pk be a correct process that is never suspected and
such that1 � k � n� x+ 1. Due to to the definition ofx,
such a process does exist. Moreover, due to the property P2
of Lemma 1,pk broadcasts an estimate value. Letv be this
value.

Lemma 3 8j such thatk � j � n, if pj broadcasts a value
at lines 6-7, then this value is equal tov. (Note that ifpj
crashes during this broadcast, this value may be sent only
to a subset of the processes).

Proof The proof is by induction on the sequence (starting
atk) of process identities.

� Base case:j = k. This case is trivially satisfied due to
the definition ofv.

� Induction case. Consideringj > k, let us assume (induc-
tion hypothesis) that8l : k � l � j � 1, if pl broadcasts
a value then this value is equal tov. Note that we have
k � min(j � 1; n� x+ 1).

If pj crashes before line 6, then the property is trivially
satisfied. So, we consider thatpj starts executing lines 6-
7. In the first loop (lines 2-4),pj waited for an estimate
value from (or a suspicion of)p1; p2; : : : ; pmin(j�1;n�x+1).
As, due to Lemma 1,pj exits from the first loop, for each
processph (with 1 � h � min(j � 1; n � x + 1)), either
pj has received a value fromph or has suspectedph.

As the waiting is done sequentially (first a message
from/suspicion ofp1, etc.), ask � min(j � 1; n� x + 1)
and aspk is not suspected,pj receives the valuev from pk
and updates accordingly its local estimateestj . Then, due
to the induction hypothesis, ifpj receives an estimate value
from a processpl (k < l � j � 1), this estimate value is
equal tov. So,estj remains equal tov. It follows that if
pj broadcasts a value at lines 6-7, this value is equal tov.

2Lemma 3

Theorem 3 No two processes decide differently.

0-7695-0574-0/2000 $10.00 � 2000 IEEE

Proof We show that the decision value isv. Let pi be a
(correct or not) process that decides. Before deciding, for
anypj such that1 � j � n� x + 1, pi has either received
a value frompj or suspectedpj . If i � n� x+1 these val-
ues (or suspicions) have been received during the first loop
(lines 2-4). Ifi < n � x + 1, some of them have been re-
ceived during the first loop, others during the second loop
(lines 8-10). Considering the valuespi has received before
deciding (at line 12), we have:
- First,pi has necessarily received the valuev from pk. This
is due to Theorem 2 (pk has terminated and has consequent-
ly executed lines 6-7), and to the fact thatpk is not suspect-
ed. Moreover, this value has overwritten the valuespi had
previously received from anypl such that1 � l < k. This
is due to the sequentiality of the waitings that forcespi to
wait first a value from (or a suspicion of)p1, then a value
from (or a suspicion of)p2, etc., untilpk.
- Then, due to Lemma 3, ifpi has received a value from a
pl such thatk < l � n � x + 1, this value is equal tov.

2Theorem 3

6 Concluding Remarks

Cost of the protocol Let us assume there is no crash. It
is easy to deduce from the structure of the protocol that,
in the worst case, a decision is obtained aftern � x + 1
communication steps (a single process broadcasts a value
during a communication step:p1 during the first step,p2
during the second step, etc., untilpn�x+1).

Let jvj be the maximal size (expressed in number of bits)
of an initial value. At thejth communication step (1 �
j � n � x + 1), pj sends a value to each other process.
So, the bit complexity of a step is(n � 1)jvj. As there are
n� x+1 communication steps, the message complexity is
(n�x+1)(n� 1), and consequently, the comunication bit
complexity of the protocol is(n� x+ 1)(n� 1)jvj.

As we can see, the value ofx has a direct effect on the
efficiency of the protocol. This provides an interesting in-
sight on the relation between the quality of service offered
by a failure detector and the efficiency of the protocol that
uses it.

Related work To our knowledge, the only Consensus
protocol based on a failure detector of the classS (=S1)
that has been designed so far is due to Chandra and Toueg
[1]. This protocol requiresn communication steps. More-
over, at each step, each process broadcasts an array of size
n including the new values it has learnt during the previous
step. So, the size of a message isnjvj and at each stepn2

messages are sent. It follows that the communication bit
complexity of this protocol isn3(n � 1)jvj. In the same
context (x = 1), the proposed protocol requires the same
number of communication steps, but has a lower communi-
cation bit complexity, namely,n(n� 1)jvj.

Guerraoui has proposed a Consensus protocol that as-
sumes a failure detector of the classP (the class of Perfect
failure detectors) [3]. This protocol is based on a principle
close to the one that underlies the proposed protocol. This
protocol does not work with a failure detector of a classSx
(x � 1), and does not ensure Uniform Agreement (it en-
sures the Agreementonly among correct processes).

Early decision Let us consider the casex = 1. Whatever
the value off and the erroneous process crash suspiscions,
the proposed protocol always requiresn rounds. The inter-
ested reader will find in [6] aS-based Consensus protocol
that allows early decision. More specifically, if there are no
erroneous suspiscions the protocol described in [6] termi-
nates in2(f + 1) rounds in the worst case.

Consensus with eventual accuracy Finally, the reader
interested in Consensus protocols based on failure detec-
tors providing only eventual weak accuracy will consult
[1, 4, 6, 7, 8].

References

[1] Chandra T. and Toueg S., Unreliable Failure Detectors
for Reliable Distributed Systems.Journal of the ACM,
43(2):225-267, March 1996.

[2] Fischer M.J., Lynch N. and Paterson M.S., Impossibility of
Distributed Consensus with One Faulty Process.Journal of
the ACM, 32(2):374–382, April 1985.

[3] Guerraoui R., Revisiting the Relationship between Non-
Blocking Atomic Commitment and Consensus.Proc. 9th In-
t. Workshop on Distributed Algorithms (WDAG95), LNCS
972, pp. 87-100, September 1995.

[4] Hurfin M. and Raynal M., A Simple and Fast Asynchronous
Consensus Protocol Based on a Weak Failure Detector.Dis-
tributed Computing, 12(4):209-223, 1999.

[5] Hadzilacos V. and Toueg S., Reliable Broadcast and Related
Problems. InDistributed Systems, ACM Press (S. Mullender
Ed.), New-York, pp. 97-145, 1993.

[6] Mostefaoui A. and Raynal M., Solving Consensus Using
Chandra-Toueg’s Unreliable Failure Detectors: a Generic
Quorum-Based Approach.Proc. 13th Int. Symposium on
Distributed Computing (DISC’99), (Formerly WDAG), L-
NCS 1693, pp. 49-64, Bratislava, 1999.

[7] Mostefaoui A. and Raynal M., Unreliable Failure Detec-
tors with Limited Scope Accuracy and an Application to
Consensus.Proc. 19th Int. Conf. on Foundations of Soft-
ware Technology and Theoretical Computer Science (F-
ST&TCS’99), LNCS 1738, pp. 329-340, Chennai, Decem-
ber 1999.

[8] Schiper A., Early Consensus in an Asynchronous Sys-
tem with a Weak Failure Detector.Distributed Computing,
10:149-157, 1997.

0-7695-0574-0/2000 $10.00 � 2000 IEEE

