Optimal mplementation of the Weakest Failure Detector for Solving Consensus *

Mikel Larrea Antonio Fernandez Sergio Arévalo
Universidad Plblica de Navarra Universidad Rey Juan Carlos Universidad Rey Juan Carlos
31006 Pamplona, Spain 28933 Mostoles, Spain 28933 Mostoles, Spain
mikel.larrea@unavarra.es afernandez@acm.org s.arevalo@escet.urjc.es
Abstract of failure detectors they defined, namé¥tually Srong
(©8), is the weakest class allowing to solve Consehsus

The concept of unreliable failure detectavasintroduced Since then, many distributed fault-tolerant algorithms
by Chandra and Toueg [2] asa mechanismthat providesin- have been designed based on Chandra-Toueg’s unreliable
formation about process failures. Depending on the proper- failure detectors [5, 6, 9, 11]. Almost all of them consider
ties the failure detectors guarantee, they proposed a taxon- a system model in which the failure detector they require
omy of failure detectors. It has been shown that one of the is available, i.e., an asynchronous system augmented with
classes of thistaxonomy, namely Eventually Strond<S), is a failure detector, such that the algorithm is designed on
the weakest class allowing to solve the Consensus problem. top of it. In this work we have taken a different approach,

In this paper, we present a new algorithm implementing investigating how to implement those unreliable failure de-
OS. Our algorithm guarantees that eventually all the cor- tectors.
rect processes agree on a common correct process. This From the results of Fischer et al. and those of Chandra
property trivially allows us to provide the accuracy and and Toueg, it can be derived the impossibility of imple-
completeness properties required by ¢S. We show, then, menting failure detectors strong enough to solve the dis-
that our algorithmis better than any other proposed imple- tributed Consensus problem in a pure asynchronous system.
mentation of ©S in terms of the number of messages and In [2], Chandra and Toueg presented a timeout-based algo-
the total amount of information periodically sent. In partic- rithm implementing arEventually Perfect (&P) failure de-
ular, previous algorithms require to periodically exchange tector —a class strictly stronger th&nS— in models of
at least a quadratic amount of information, while ours only partial synchrony [3]. This algorithm is based on all-to-all
requires O(n logn) (wheren isthe number of processes). communication: each process periodically sends am -

However, we also propose a new measure to evaluate the ALIVE message to all processes, in order to inform them
efficiency of this kind of algorithms, the eventual monitor- that it has not crashed, and thus requires a quadratic number
ing degreewhich does not rely on a periodic behavior and of messages to be periodically sent. More recently, Larrea
expresses better the degree of processing required by the et al. [7] proposed more efficient algorithms implementing
algorithms. We show that the runs of our algorithm have several classes of failure detectors, including andoP.
optimal eventual monitoring degree. These algorithms are based on a ring arrangement of the

processes, and require only a linear number of messages to
be periodically sent.

1. Introduction _
1.1. Unreliable Failure Detector s

The concept ofunreliable failure detector was intro-))) _
duced by Chandra and Toueg in [2]. They showed how un- An unreliable failure detector is a mechanism that pro-
reliable failure detectors can be used to solve the Consensu¥ides (possibly incorrect) information about faulty pro-
problem [10] in asynchronous systems. (This was shown to CESSES. When it is _querled, the failure detector returns a
be impossible in a pure asynchronous system by Fischer efiSt Of processes believed to have crashed (suspected pro-
al. [4].) They also showed in [1] that one of the classes C€SSes). In[2], failure detectors were characterized in terms
of two properties:completeness andaccuracy. Complete-

*Research partially supported by the Spanish Research Council (Cl-
CYT), under contract numbers TIC99-0280-C02-02, TEL99-0582, and 1n fact, theEventually Weak failure detector classpW, is presented

TIC98-1032-C03-01, and the Madrid Regional Research Council (CAM), as the weakest one for solving Consensus. However, Chandra and Toueg
under contract number CAM-07T/00112/1998. have shown in [2] tha®S and W are equivalent.

Proceedin%s of the 19th IEEE S}/mEPosium on Reliable Distributed Sustems (SRDS'00)
1060-9857/00 $10.00 © 2000 [EEE

ness characterizes the failure detector capability of suspect Eventual Strong | Eventual Weak
ing every incorrect process (processes that actually crash) Accuracy Accuracy
while accuracy characterizes the failure detector capability Strong Eventually Perfect | Eventually Srong
of not suspecting correct processes. Two kinds of complete-| Completeness OP oS
ness and four kinds of accuracy were defined in [2], which Weak Eventually Weak
combined yield eight classes of failure detectors. Completeness Yo OW

In this paper, we focus on the following completeness
and accuracy properties, from those defined in [2]: Figure 1. Four classes of failure detectors de-

fined in terms of completeness and accuracy.
e Srong Completeness. Eventually every process that
crashes is permanently suspected@yy correct pro-
cess.
e Weak Completeness. Eventually every process that 12. Our Results
crashes is permanently suspecteddnye correct pro-

cess In this paper, we present a new algorithm implementing

&S, Our algorithm guarantees that, eventually, all the cor-
rect processes agree on a common correct process. This

N(t)t'e'tr;lat cc;mplet;aness by |ts|eif IS nott:/ e:cy u_seful. We property allows us to provide the accuracy requirecidy.
can trivially satisfy strong completeness by forcing every Then, by suspecting all the other processes, we trivially ob-

process to permanently suspect the rest of processes in th?ain the completeness required &y

systt_am. Su_ch a faill_Jre detector_ is clearly useless, since it We have compared our algorithm with the implementa-
provides no information about failures. tions of &S proposed by Chandra and Toueg [2] and by
))) Larrea et al. [7] in terms of the number and size of the mes-
* Eventual Strong Accuracy. There is a time after which o5 505 periodically sent and the total amount of information
no correct processes is suspected by any correct projeriggically exchanged. We have found that, under the re-
cess. alistic assumption that the probability of process failure is

low, our algorithm is clearly better in all the above perfor-

{nance measures.

In general, since algorithms implementing failure detec-
tors need not necessarily be periodic, it is not always pos-

L . sible to evaluate their efficiency in terms of the amount of
Combining in pairs these completeness and accuraCyjnsormation periodically sent. For this reason, in order to

properties, we obtain four different failure detector classes, o, o ate the efficiency of this kind of algorithms indepen-

which are shown in Figure 1. As we said, Chandra et dently of the communication pattern they use, we propose

al. showed in [1] that>w i_s the weakest class of failure ;s paper a new and (we believe) more adequate perfor-
detectors required for solving the Consensus problem, andmance measure, which we ca¥ientual monitoring degree.

in [2] that ©S and ©)V are equivalent. For this reason We normajly: this measure counts the number of pairs of cor-
say in this paper thabsS is the weakest class of failure de- o0t hrocesses that will infinitely often communicate. We

tectoirs for SO'V‘”Q Consensus.) show that the runs of the algorithm presented in this paper
It is worth noting here that the equivalence®S and re optimal, and at least as good as the runs of any algorithm

_<>W does n_ot come for free_, i.e., not all failure c_ietectors implementing a failure detector of clags/V, with respect
in & are in®S. Instead, it means that any failure de- 4 this measure.

tector inGW can be extended with a simple distributed al- It is well known that, in practice, every system goes

gorithm to obtain. a failure detector iﬁS_. Since all the_ throughstable and unstable periods. Informally, a stable
Consensus algorithms we know of require at least a failure perjnd is a period during which no process crashes and there
detector of clas®>S (e.9. [2, 6, 9, 11]), if the efficiencies 516 g timing failures, i.e., all messages arrive on time. On
o_f oS and<>W failure d_etectors are similar, it IS more effi- the other hand, an unstable period is a period during which
cient to implement a failure detector of clags instead of 1, 4cesses may crash or there are timing failures, i.e., mes-
implementing one of clas®)V and running the extension ga4es can be lost or arrive late. If we assume that the system
algorithm on top of it. is most frequently in stable periods, then the eventual mon-
2The extension algorithm proposed in [2] requires a quadratic numberltormg degree is still a valid performance measure within

of messages to be periodically exchanged, and any such algorithm wil€ach of these stable periqu. _
require at least a linear number of messages. The rest of the paper is organized as follows. In Sec-

e Eventual Weak Accuracy. There is a time after which
some correct process is never suspected by any correc
process.

Proceedin%s of the 19th IEEE S}/mEPosium on Reliable Distributed Sustems (SRDS'00)
1060-9857/00 $10.00 © 2000 [EEE

tion 2, we describe the system model and discuss differentfrom one module to another at a given time. We denote
approaches in order to implement failure detectors, intro- by suspected; the list of suspected processes of the failure
ducing the new measure to evaluate the efficiency of this detection module attached to process We assume that a
kind of algorithms. In Section 3, we present our algorithm process interacts only with its local failure detection module
implementing a failure detector of classS. In Section 4, in order to get the current list of suspected processes.

we prove the correctness of our algorithm. In Section 5, we |, this paper, we only describe the behavior of the failure
evaluate the performance of our algorithm, and show that getection modules in order to implement a failure detector,

its runs are optimal with respect to the eventual monitoring ;1 not the behavior of the processes they are attached to.
degree measure. Finally, Section 6 concludes the paper. ko this reason, in the rest of the paper we will use the term

process instead offailure detection module. It will be clear

2. The Mod€ from the context if we are referring to the failure detection
module or the process attached to it. We consider that a
2.1. System Model process cannot crash independently of its attached failure

detection module.

We consider a distributed system consisting of a finite Any algorithm implementing a failure detector requires
setll of n processed] = {pi,p2,...,pn}, thatcommuni- that some processes detect whether other processes have
cate only by sending and receiving messages. Every pair ofcrashed, and take proper action if so. There are mainly two
processes is assumed to be connected by a reliable commuypossible ways to implement this failure detection: posh
nication channel. model and thepull model. In the push model, processes

Processes can fail byrashing, that is, by prematurely are permanently sendingam -ALIVE messages to the pro-
halting. Crashes are permanent, i.e., crashed processes dgesses in charge of detecting their potential failure. In the
not recover. In every execution of the system we identify pull model, the later ask the former for such messages. In
two complementary subsets Bf the subset of processes any case, the only way a process can show it has not crashed
thatdo not fail, denotecbrrect, and the subset of processes is by sending messages to other processes.
that do fail, denotedrashed. We useC to denote the num-
ber of correct processes in the system, which we assume i
at least one, i.eG = |correct| > 0.

We consider that processes are ordered. Without
loss of generality, procesg; is preceded by processes
p1,-..,pi—1, and followed by processes, 1, ..., pn.

We consider the model ghrtial synchrony proposed by
Chandra and Toueg in [2], which is a generalization of the
models proposed by Dwork et al. in [3]. This model stip-
ulates that, in every execution, there are bounds on proces
speeds and on message transmission times, but these boun
are not knowrand they hold only after some unknown time
(calledGST for Global Stabilization Time). In this model,) .)
we will denote byA,,,, the maximum time, after GST, be- It must pe clear th_at, in general, cyfferent .algonthms
tween the sending of a message and the delivery and pro-£an use a different period tolexchange mforma’uon bgtwgen
cessing by its destination process (assuming that both theProcesses. Furthermore, this exchange of information in a
sender and the destination have not failed). Cleaxly,s, given algorithm need not be periodic. In t_hls_set up, itis dif-
depends on the existing bounds on process speeds and oficult to use the number of messages periodically exchanged
message transmission times. Note that the exact value ofiS the efficiency measure of this kind of algorithms. For this

The algorithm presented in this paper is based on the
Spush model. At any time, at least one process is sending
I-AM-ALIVE messages periodically to a subset of the pro-
cesses in the system. Processes monitor each other by wait-
ing for these periodical kM-ALIVE messages. To monitor
a procesg;, procesp; uses an estimated value —timeout—
that tells how much time it has to wait for theam -ALIVE
message frorp;. This time value is denoted by; ;. Then,
if after A; ; time p; did not receive the kM-ALIVE mes-

age fromp;, it suspects thap; has crashed. We need to
fow these time values to vary over time in our algorithm.
We useA,; ;(t) to denote the value ak; ; at timet.

A s €Xists, but it is unknown. reason, on top of the number and size of messages periodi-
cally sent, we will also use theventual monitoring degree
2.2. Implementation of Failure Detectors measure to evaluate the efficiency of the algorithms, which

we define as follows.

A distributed failure detector can be viewed as a set of
failure detection modules, each one attached to a different
process in the system. These modules cooperate to satisfDefinition 1 The eventual monitoring degres a run R of
the required properties of the failure detector. Upon request,an algorithm A is the number of pairs (p;,p;) of correct
each module provides its attached process with a list of pro- processes, such that p; sendsinfinitely many messagesto p;
cesses it suspects to have crashed. These lists can diffein run R.

Proceedin%s of the 19th IEEE S}/mEPosium on Reliable Distributed Sustems (SRDS'00)
1060-9857/00 $10.00 © 2000 [EEE

2.3. The 2 Failure Detector Every proces®;,i = 1,...,n executes:
trusted; < 1
In their proof of &W being the weakest failure detector vj € {1,...,i — 1} : A; ; « default timeout
for solving Consensus [1], Chandra et al. defined a new fail- eceived; « false
ure detector, denoted.® The output of the failure detector

. . cobegin
module off? at a procesg is asingle processy, thatp cur-
rently considers to beorrect; we say thap trusts q. The || Task 1:
failure detector? satisfies the following property: loop
if i = trusted; then
e There is a time after which all the correct processes enfﬁf”d IAM-ALIVE 10 pit1,- -+ Pn
always trust the same correct process. delay Ay 5 ART BEAT
. . end loop
As with GW, the output of the failure detector module |
Task 2:

of 2 at a procesp may change with time, i.ep may trust

different processes at different times. Furthermore, at any Iooi?tmstedi < ithen
given timet, two processesg andg may trust different pro- delayA; rysted;
cesses. if received; then
It is straightforward to transfornf2 into W (and<S). yonceetvedi < Jalse
It can be done by forcing each process to suspect every pro- trusted; « trusted; + 1
cess in the system except its trusted process. This gives us end if
the completeness and accuracy properties requirety end if
(and©S). As we will see, the algorithm presented in this 9100
paper follows this strategy, and actually implemefits I Tlask 3
00
. rFe):ceive |AM-ALIVE from p;
3. The Algorithm if j = trusted; then

received; < true

. elseif j < trusted; then
In this section, we present our implementation of a fail- M < trusted;
Ajj+— A +1

ure detector of clas®S. In Figure 2, we present the al- trusted; « j

gorithm that is the core of oudS failure detector imple- received; + true

mentation. This algorithm, when run by each process of the else
discard message

system, guarantees that eventually all the correct processes 4

agree on a common correct process, dengiggh... This end loop

property trivially allows us to provide the eventual weak ac-

curacy property required b9 S: eventually,p;cqqer iS NOt

suspected by any correct process. The strong completeness Figyre 2. Algorithm used to implement a fail-

property of®S is reached by simply making every process jre detector of class OS.

p; suspect all processes in the system expeple.

Each procesp; runs an instance of the algorithm of Fig-

ure 2, in which there is a local variabteusted;. As we)) N

will show, eventually the value af-usted; for each correct The algorithm of Figure 2 executes as follows. Initially,

process; will be the same, angy, .4, Will be the cor- each procesgi _starts W|t_htrustedi = 1, which means that

rect proces®yeader. In fact, trusted; = leader will be the P Will be their first candidate to be the process, ... Pro-

index of the first process correct in the system (follow- ~ C€sSp: starts sending kM-ALIVE messages periodically

ing the ordempy, ..., p,). From the value ofrusted;, it can to the rest of processgs, ..., pn. In genergl, a process

be derived the setuspected;, which will satisfy the accu- P Will be sending |AM-ALIVE messages periodically to its

racy and completeness propertiesoa. Here we consider ~ SUCCESSOr®i 1, ..., Py if i = trusted; (Task 1)_. A pro-

two possibilities, to makeuspected; = IL — {pyrusted, } OF cessp; such thatrusted; # i, just waits for perlo_dlcal |-

suspected; = I — {pirusted;, pi}, depending on whether AM-ALIV.E messages from the procqstsu_stedi. I_f |t_does

we want to preserve the intuitive notion of a process never N0t receive an lAM-ALIVE message on time (within some

suspecting itself. timeout periodA; ;rysteq;), then it suspects that,ysted,

has crashed and chooses the next candidate to be the pro-

3 ;] . .
Actually, to prove their result Chandra 9t al. show first thats at CeSPeader Dy increasingrusted; by one (Task 2).

least as strong a&)V, and then that any failure detect®r that can be .

used to solve Consensus is at least as stron§ &nd hence at least as If, later on, a procesp; receives an |aM-ALIVE mes-

strong asoW). sage from a procegg, such thayj < trusted;, thenp; will

coend

Proceedin%s of the 19th IEEE S}/mEPosium on Reliable Distributed Sustems (SRDS'00)
1060-9857/00 $10.00 © 2000 [EEE

stop assuming that; has crashed, and will trugt; again Let toc = max{t; : p; € correct}. From the above

(by makingtrusted; = j). In order to prevent this from reasoningyt > to, Vp; € correct, trusted;(t) > leader.

happening an infinite number of times;, also increasesthe m

value of the timeout periodh; ; (Task 3). Moreover, ip;

was sending laM-ALIVE messages periodically, it will au-

tomatically stop sending them, since now trusted;. Lemma2 Vvt > to, where ¢, is the same as in Lemma 1,
trustedjeqder (t) = leader.

4. Correctness Proof Proof: Note from Task 2 thawt : trustediecqger(t)
leader. Also, from Lemma 1Vt > tg, trustedeqger
In this section, we show that the algorithm of Fig- leader. Hencey¥t > tg, trustedcqqer = leader.
ure 2, combined with either of the proposed definitions of
suspected; (H - {ptrustedi} orIl— {ptrustedi :pi})1 imple'
ments a failure detector of classS. Among the processes Lemma3 After ¢y, the process pjeqqe- Will be permanently
D1, P, € Deader bE the correct process with the small- sending I-AM-ALIVE messages periodically to all its suc-

uIVIA

est index. The key of the proof is to show that, eventually CESSOI'S pieader+1;- - -5 Pn-
and permanentlyyusted; = leader for every correct pro- _
cessp;. Thus, with either definition ofuspected;, even- Proof: Itfollows from Lemma 2 and Task 1. .

tually some correct process (namely.,q4.-) IS hever sus-
e o o emy L™ Le € corret < / e, I a e
y property req ' y ' > to, trusted;(t') > leader, then 3" : ¢/ < ¢ <

crashed processes are permanently suspected by all correct e
processes, which provides the strong completeness propertg + AupARTBEAT + Amsg a0 trusted;(t") = leader.

required by®S. _ _ _ ~ Proof: Note that, by definition ofp/cqqer, p; has to be
All time instants considered in the rest of this section 5 g,ccessor Obreader- From Lemma 3, after time,
are assumed to be after GST (Global Stabilization Time). e ProCesYieader is permanently sending AM-ALIVE
We also assume that, at these instants, all messages sent th'essages, with a period @& ypairrepar, to all its
fore GST have already been delivered and processed. Thes%uccessors, including;. After ¢/, the first I-AM-ALIVE
assumptions allow us to consider in the rest of the section message will be Sent By, e, at imet’ + Ay A RrBEAT
that the unknown bounds on process speeds and on mesy; he [atest. Note that, since we have a partially syn-
sage transmission times hold. We denotethysted,(t) chronous system, this message takes a maximum time of
the value ofirusted; at timet. A, to be delivered and processed by Hence, at some
timet" < t' + AgparTBEAT + Amsg, p; will deliver
and process an AM-ALIVE message fromp;cqqe-. From
Lemma 1trusted; > leader att”, and then from Task 3,
trusted; will take the valudeader at that time. [|

Lemmal 3ty : Vt > to, Vp; € correct, trusted;(t) >
leader.

Proof: Let p; be any correct process. By definition of
Dieader,» €vVentually all its predecessons,, - - ., Dicader—1,
will crash. Consider a time¢’ at which all the predeces- | emma5 Let p; € correct : i # leader. After to,
Sors Ofpieqaer have crashed and all their messages have y.,;sted; will change from leader to a value different from
already been delivered and processed (in Task 3). Then, ., der a finite number of times.

if trusted;(t') < leader, eventually (at most at tim&' =

t' 4+ A trusted; (t')+ the time to execute the corresponding Proof: Let us assume, by the way of contradiction, that
instructions in Task 2) the variableceived; will take the trusted; changes fromeader to a value different from
value false (see Task 2). By Task 3¢ceived; will not be- leader an infinite number of times. From Lemma 4,
cometrue until trusted; > leader. Since at time' all the the value oftrusted; will be leader at some time after
predecessors gf;..q.- have crashed and by the algorithm, ¢,. From Task 2,trusted; changes fromleader to
eventually (at most at timg = ¢ + Zg‘;"fe”’l A () + leader + 1 if two |-AM-ALIVE messages are received
the time to execute the corresponding instructions in Task 2by p; more thanA; jcqq4.- time apart. Note from Task 1
leader — 1 times) the variablérusted; will take a value and from the fact that we have a partially synchronous
greater or equal tdeader (see Task 2). Since; will system that two consecutiveAM-ALIVE messages sent
never receive aftet; any other message from processes by pi..qer are received and processed py at most
P1,- - Pleader—1, the variabletrusted; will never take a AnearTBEAT + Amsg time apart. Also, from Lemma 4,
value belowleader (see Task 3). the value oftrusted; will becomeleader again eventually.

Proceedin%s of the 19th IEEE S}/mEPosium on Reliable Distributed Sustems (SRDS'00)
1060-9857/00 $10.00 © 2000 [EEE

Every time this happens, from Task 3, the valu&Qfic,der Nb. of | Size of | Amountof | Eventual
is incremented by one. Hence, since this will happen an| Algorithm || msg. msg. information | mon. deg.
infinite number of times, eventuallY; ;cqq., Will be larger CT nC ©(ogn) | ©(nClogn) C2
thanAgparrBEAT + AYse. HOwever, after that happens LAE 20 o(n) O(nC) 20
trusted; will never change its value froteader, which is Figure2 || n—1 | ©(logn) | ©(nlogn) C_1

a contradiction.]

Figure 3. Evaluation of different algorithms
implementing failure detectors.

Theorem 1 3¢ : Vt > t1, Vp; € correct, trusted;(t) =

leader.

Proof: Follows from Lemma 2 for the case= leader,

Under the above assumptions, the number of messages
and from Lemma 4 and Lemma 5 for the casé leader. ® P g

periodically sent in our algorithm is eventually at mast1,

since eventually only the procegs..q. will be sending

I-AM-ALIVE messages periodically to its successors. In

Chandra-Toueg’s algorithm implementi®gP, the number

of messages periodically sent eventually becontgsince

eventually only the correct processes will be sending mes-

sages periodically to all processes. Finally, in the algo-

rithms implementingdS and$P of Larrea et al., the num-

5. Performance Analysis ber of messages periodically sent is eventually since

eventually each correct process communicates with its pre-

In this section, we first evaluate the performance of the decessor and its successor in the ring formed by the correct

presented algorithm in terms of the number and size of the Processes. Note that our algorithm requires less messages

messages periodically sent. This evaluation shows that outhan Chandra-Toueg’s. Compared with the algorithms of

algorithm compares favorably with the algorithms proposed Larrea et al., if the probability of process failure is low, the

by Chandra and Toueg [2] and by Larrea et al. [7]. Af- value ofC will be close torn and our algorithm will also

ter that, we evaluate our algorithm in terms of the even- require less messages.

tual monitoring degree, as defined in Definition 1, whichwe ~ However, note that onlg — 1 messages out of the— 1

consider more suitable for algorithms implementing failure Periodically sent byp;cqqe- Will be actually delivered and

detectors. We show that the runs of our algorithm are opti- Processed Similarly, the actual number of messages deliv-
mal with respect to this measure. ered and processed in Chandra-Toueg’s algorith@itis

Concerning the size of the messages, our algorithm re-
quires messages 6f(log n) bits, since each message needs
to carry the identity of its sender. This is also the case
for Chandra-Toueg’s algorithm. However, the algorithms of
Larrea et al. require messaged3ifn) bits, since messages

Corollary 1 Let suspected; be defined as either 11 —
{ptrusted,-} or IT — {ptrustedupi}r sz € II. The 3-|90'
rithm of Figure 2, combined with either of these definitions
of suspected;, implements a failure detector of class ¢S.

5.1. Number and size of messages and amount of
infor mation

Observe that failure detection is an on-going activity that .
. . P carry a list of suspected processes.
inherently requires an infinite number of messages. Further- . . .
If we look now at the total amount of information peri-
more, the pattern of message exchange between Processes. v sent. our algorithm eventually re Li@sn log)
can vary over time (and need not be periodic), and different y ' 9 yreq &

. . bits to be sent. The total amount of information peri-
algorithms can have completely different patterns. For these _ \ . .
. . odically sent by Chandra-Toueg’s algorithm is eventually
reasons, we have to make some assumptions in order to us

the number of messages as a meaningful performance mea%)(nc logn) bits. Finally, the algorithms of Larrea et al.

sure. We will first assume that the algorithms execute in a eventually requiré(nC) bits to be sent.
periodic* fashion, so that we can count the number of mes- 52 Eventual itoring d

sages sent in a period. Secondly, to be able to compare the ™ ventual monitoring degree
number of messages sent by different algorithms, we must

assume that their respective periods have the same length. We now evaluate the algorithms in terms of #ventual

monitoring degree of their runs, as defined in Definition 1.
4For algorithms based on the push model, we assume thataali-I- AS pointed out in Sections 1 and 2, we consider this mea-

ALIVE messages are sent with the same period. For algorithms based ogure more adequate to evaluate the efficiency of algorithms
the pull model, we assume that there are no incorrect suspicions, and that
all the timeout values are identical. Thus, the timeout value can be viewed 5The amount of processing is better captured witheesitual moni-
as the periodicity of the algorithm. toring degree measure, considered later in this section.

Proceedin%s of the 19th IEEE S}/mEPosium on Reliable Distributed Sustems (SRDS'00)
1060-9857/00 $10.00 © 2000 [EEE

implementing failure detectors, since it is independent of sages from any other process after timerom the fact that
the communication pattern they use, in particular of their A implements a failure detector of clas3/V, the eventual
potential periodicity. Moreover, in practice, this measure is weak accuracy property is satisfiedfih Therefore, there
close to the number of messages exchanged during a stablés a time¢’ and a correct procegs; such thatp; is never
period. suspected by any correct process after

It is easy to observe that the eventual monitoring degree Let us consider now another ritl of A, which behaves
of any run of the algorithm of Figure 2 i§ — 1, since exactly the same aB up to a time instant” > max(¢,t').

eventually only the correct processes different foem, 4e Let pi,...,pr be k correct processes distinct fromy
will receive messages, and they will receive them only from which do not receive messages from any other process
Pleader- after timet. Let us assume that iR’ all processes except

The eventual monitoring degree of any run of Chandra- p,...,p; crash at timet”, andpy,...,p; are correct.
Toueg's algorithm implementingP is CZ, since eventu- Clearly, procesg; crashes inR’ and, by the weak com-
ally each correct process will receive messages from everypleteness property of, p; should be suspected by at least
correct process. Similarly, the eventual monitoring degree one of the correct processegs, ..., p;. Note that inR/,
of any run of the algorithms implementir®S and &P of after timet” no message is received by, ..., p, from
Larrea et al. i2C, since eventually each correct process any other process, as it happenedAn Hence, from the
will only receive messages from its predecessor and its suc-point of view of processes;, .. ., px, both runsk and R’
cessor in the ring formed by the correct processes. are indistinguishable. Therefore, processes . ., p; take

Figure 3 summarizes the evaluation of the different the same decisions in both runs. In particular, after tifme
algorithms implementing failure detectors; CT denotes none ofp.,. .., py Will suspect process; in R', as they do
Chandra-Toueg’s algorithm [2], and LAF denotes the ring- in R. This violates the weak completeness propertyin
based algorithms of Larrea et al. [7]. and, thus A does not implement a failure detector of class

We now show that any run of the algorithm of Figure 2 W, which is a contradiction. []
is optimal with respect to the eventual monitoring degree
measure, i.e., any run of our algorithm has the minimum . .
eventual monitoring degree needed to implement the weak- | '€0rém 2 For & = 1, where k is the assumed minimum
est failure detector for solving Consensus. For generality, "UMPer of correct processes in the system, any run of the
we will consider the clas&W of failure detectors, show- @gorithm of Figure 2 has an optimal eventual monitoring
ing that the eventual monitoring degree required by a run of dégreeof ¢ —1.
any algorithm implementing a failure detector of Cl&88’ proof: Follows from Lemma 6 and the observation made
is at leasC — k, wherek is the assumed minimum number 4 the heginning of this subsection. -
of correct processes in the system. Observe that, by defi-
nition, C > k. Note also that in Section 2 we assumed we
have a system witk = 1. However, in other system mod-
els it is assumed a larger valueloffor instance, a majority
of correct processes, i.é,> n/2). We use the parameter
k here for the generality of the lemma.

6. Conclusions and Future Work

In this paper, we have presented a new algorithm imple-
menting<S, the weakest failure detector for solving Con-

Lemma6 Any run R of an algorithm A implementing a sensus. Our algorithm compares favorably with the algo-

failure detector of class ¢V has an eventual monitoring rithms proposed by Chandra and Toueg [2] and by Larrea et
degree of at least Cr — k, where C, isthe number of correct al. [7] in terms of the number and size of the messages peri-
processes in R, and k is the assumed minimum number of odically sent. We have also proposed a more suitable mea-
correct processes in the system. sure to evaluate the efficiency of algorithms implementing

failure detectors, which we cadentual monitoring degree,
Proof: The claim trivially holds wherCr = k. Let us and have shown that the runs of the algorithm presented in
assume now thatgy > k. We will prove the claim by con- this paper are optimal with respect to this measure.
tradiction, showing that iR does not satisfy the claim (i.e., Comparing to other algorithms, it may seem that our al-
its eventual monitoring degree is less tlign— k), then we gorithm has a big loss of accuracy, because all processes ex-
can find another ru’ of algorithm A that violates some cept one are systematically suspected. In fact, it may some-

property ofOW. times work worse than others in algorithms like Chandra
By the way of contradiction, let us assume that the even- and Toueg’s Consensus algorithm [2]. However, we believe

tual monitoring degree of the ruR is at mostCr — k — 1. this aspect, rather than being a problem, can be a benefit,

Hence, there is some timtexnd there are at least+ 1 cor- since the fact that eventually all the lists of suspected pro-

rect processes such that these processes do not receive mesesses are identical can be very helpful. In [8], we propose

Proceedin%s of the 19th IEEE S}/mEPosium on Reliable Distributed Sustems (SRDS'00)
1060-9857/00 $10.00 © 2000 [EEE

a Consensus algorithm that successfully exploits this prop- [10] M. Pease, R. Shostak, and L. Lamport. Reaching agreement
erty to solve Consensus more efficiently, i.e., in less rounds, in the presence of faultsJournal of the ACM, 27(2):228-
than existing previous algorithms forS. 234, April 1980.

In the algorithm of Figure 2, the timeout values of each [11] A. Schipe_r. Early consensus inan asynchronous system with
processA;;, never decrease. So, in a network with possible i‘E‘,’;eaAk fg:lllugg;letectoDlstrlbuted Computing, 10(3):149-
transient communication failures, the;; values may even- » APT)
tually become too large. We are studying how these timeout
values can be decreased. Clearly, this cannot be made inde-
pendently of the applications using the failure detector. For
instance, it would be possible to decrease the timeout val-
ues when no distributed algorithm using the failure detector,

e.g. Consensus, is being executed.

Another line of future work is to improve the algorithm
of Figure 2 for the casé& > 1, wherek is the assumed
minimum number of correct processes in the system.

Acknowledgements

We are grateful to André Schiper for his valuable com-
ments on earlier drafts of this paper.

References

[1] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest
failure detector for solving consensuiurnal of the ACM,
43(4):685—722, July 1996.

[2] T.D.Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systemdournal of the ACM, 43(2):225—
267, March 1996.

[3] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in
the presence of partial synchronyJournal of the ACM,
35(2):288-323, April 1988.

[4] M. Fischer, N. Lynch, and M. Paterson. Impossibility of
distributed consensus with one faulty procesleurnal of
the ACM, 32(2):374-382, April 1985.

[5] R. Guerraoui, M. Larrea, , and A. Schiper. Non-blocking
atomic commitment with an unreliable failure detector. In
Proceedings of the 14th Symposium on Reliable Distributed
Systems (SRDS 95), pages 41-51, September 1995.

[6] M. Hurfin and M. Raynal. A simple and fast asynchronous
consensus protocol based on a weak failure dete@s-
tributed Computing, 12(4):209-223, 1999.

[7] M. Larrea, S. Arévalo, and A. Fernandez. Efficient algo-
rithms to implement unreliable failure detectors in partially
synchronous systems. [IRroceedings of the 13th Inter-
national Symposium on Dlstributed Computing (DISC’'99),
pages 34-48. LNCS, Springer-Verlag, September 1999.

[8] M. Larrea, A. Fernandez, and S. Arévalo. Eventually consis-
tent failure detectors. Technical Report, Universidad Publica
de Navarra, April 2000. Brief Announcement, 14th Interna-
tional Symposium on Distributed Computing (DISC’2000),
Toledo, Spain.

[9] A. Mostefaoui and M. Raynal. Solving consensus us-
ing Chandra-Toueg’s unreliable failure detectors: a general
quorum-based approach. Rroceedings of the 13th Inter-
national Symposium on Dlstributed Computing (DISC’99),
pages 49-63. LNCS, Springer-Verlag, September 1999.

Proceedin%s of the 19th IEEE S}/mEPosium on Reliable Distributed Sustems (SRDS'00)
1060-9857/00 $10.00 © 2000 [EEE

