
Optimal Implementation of the Weakest Failure Detector for Solving Consensus �

Mikel Larrea
Universidad Pública de Navarra

31006 Pamplona, Spain
mikel.larrea@unavarra.es

Antonio Fernández
Universidad Rey Juan Carlos

28933 Móstoles, Spain
afernandez@acm.org

Sergio Arévalo
Universidad Rey Juan Carlos

28933 Móstoles, Spain
s.arevalo@escet.urjc.es

Abstract

The concept of unreliable failure detectorwas introduced
by Chandra and Toueg [2] as a mechanism that provides in-
formation about process failures. Depending on the proper-
ties the failure detectors guarantee, they proposed a taxon-
omy of failure detectors. It has been shown that one of the
classes of this taxonomy, namely Eventually Strong(3S), is
the weakest class allowing to solve the Consensus problem.

In this paper, we present a new algorithm implementing
3S. Our algorithm guarantees that eventually all the cor-
rect processes agree on a common correct process. This
property trivially allows us to provide the accuracy and
completeness properties required by 3S. We show, then,
that our algorithm is better than any other proposed imple-
mentation of 3S in terms of the number of messages and
the total amount of information periodically sent. In partic-
ular, previous algorithms require to periodically exchange
at least a quadratic amount of information, while ours only
requires O(n logn) (where n is the number of processes).

However, we also propose a new measure to evaluate the
efficiency of this kind of algorithms, the eventual monitor-
ing degree, which does not rely on a periodic behavior and
expresses better the degree of processing required by the
algorithms. We show that the runs of our algorithm have
optimal eventual monitoring degree.

1. Introduction

The concept ofunreliable failure detector was intro-
duced by Chandra and Toueg in [2]. They showed how un-
reliable failure detectors can be used to solve the Consensus
problem [10] in asynchronous systems. (This was shown to
be impossible in a pure asynchronous system by Fischer et
al. [4].) They also showed in [1] that one of the classes

�Research partially supported by the Spanish Research Council (CI-
CYT), under contract numbers TIC99-0280-C02-02, TEL99-0582, and
TIC98-1032-C03-01, and the Madrid Regional Research Council (CAM),
under contract number CAM-07T/00112/1998.

of failure detectors they defined, namelyEventually Strong
(3S), is the weakest class allowing to solve Consensus1.

Since then, many distributed fault-tolerant algorithms
have been designed based on Chandra-Toueg’s unreliable
failure detectors [5, 6, 9, 11]. Almost all of them consider
a system model in which the failure detector they require
is available, i.e., an asynchronous system augmented with
a failure detector, such that the algorithm is designed on
top of it. In this work we have taken a different approach,
investigating how to implement those unreliable failure de-
tectors.

From the results of Fischer et al. and those of Chandra
and Toueg, it can be derived the impossibility of imple-
menting failure detectors strong enough to solve the dis-
tributed Consensus problem in a pure asynchronous system.
In [2], Chandra and Toueg presented a timeout-based algo-
rithm implementing anEventually Perfect (3P) failure de-
tector —a class strictly stronger than3S— in models of
partial synchrony [3]. This algorithm is based on all-to-all
communication: each process periodically sends an I-AM -
ALIVE message to all processes, in order to inform them
that it has not crashed, and thus requires a quadratic number
of messages to be periodically sent. More recently, Larrea
et al. [7] proposed more efficient algorithms implementing
several classes of failure detectors, including3S and3P .
These algorithms are based on a ring arrangement of the
processes, and require only a linear number of messages to
be periodically sent.

1.1. Unreliable Failure Detectors

An unreliable failure detector is a mechanism that pro-
vides (possibly incorrect) information about faulty pro-
cesses. When it is queried, the failure detector returns a
list of processes believed to have crashed (suspected pro-
cesses). In [2], failure detectors were characterized in terms
of two properties:completeness andaccuracy. Complete-

1In fact, theEventually Weak failure detector class,3W , is presented
as the weakest one for solving Consensus. However, Chandra and Toueg
have shown in [2] that3S and3W are equivalent.

Proceedings of the 19th IEEE Symposium on Reliable Distributed Sustems (SRDS'00)
1060-9857/00 $10.00 © 2000 IEEE

ness characterizes the failure detector capability of suspect-
ing every incorrect process (processes that actually crash),
while accuracy characterizes the failure detector capability
of not suspecting correct processes. Two kinds of complete-
ness and four kinds of accuracy were defined in [2], which
combined yield eight classes of failure detectors.

In this paper, we focus on the following completeness
and accuracy properties, from those defined in [2]:

� Strong Completeness. Eventually every process that
crashes is permanently suspected byevery correct pro-
cess.

� Weak Completeness. Eventually every process that
crashes is permanently suspected bysome correct pro-
cess.

Note that completeness by itself is not very useful. We
can trivially satisfy strong completeness by forcing every
process to permanently suspect the rest of processes in the
system. Such a failure detector is clearly useless, since it
provides no information about failures.

� Eventual Strong Accuracy. There is a time after which
no correct processes is suspected by any correct pro-
cess.

� Eventual Weak Accuracy. There is a time after which
some correct process is never suspected by any correct
process.

Combining in pairs these completeness and accuracy
properties, we obtain four different failure detector classes,
which are shown in Figure 1. As we said, Chandra et
al. showed in [1] that3W is the weakest class of failure
detectors required for solving the Consensus problem, and
in [2] that3S and3W are equivalent. For this reason we
say in this paper that3S is the weakest class of failure de-
tectors for solving Consensus.

It is worth noting here that the equivalence of3S and
3W does not come for free, i.e., not all failure detectors
in 3W are in3S. Instead, it means that any failure de-
tector in3W can be extended with a simple distributed al-
gorithm to obtain a failure detector in3S. Since all the
Consensus algorithms we know of require at least a failure
detector of class3S (e.g. [2, 6, 9, 11]), if the efficiencies
of3S and3W failure detectors are similar, it is more effi-
cient to implement a failure detector of class3S instead of
implementing one of class3W and running the extension
algorithm on top of it2.

2The extension algorithm proposed in [2] requires a quadratic number
of messages to be periodically exchanged, and any such algorithm will
require at least a linear number of messages.

Eventual Strong Eventual Weak
Accuracy Accuracy

Strong Eventually Perfect Eventually Strong
Completeness 3P 3S

Weak Eventually Weak
Completeness 3Q 3W

Figure 1. Four classes of failure detectors de-
fined in terms of completeness and accuracy.

1.2. Our Results

In this paper, we present a new algorithm implementing
3S. Our algorithm guarantees that, eventually, all the cor-
rect processes agree on a common correct process. This
property allows us to provide the accuracy required by3S.
Then, by suspecting all the other processes, we trivially ob-
tain the completeness required by3S.

We have compared our algorithm with the implementa-
tions of3S proposed by Chandra and Toueg [2] and by
Larrea et al. [7] in terms of the number and size of the mes-
sages periodically sent and the total amount of information
periodically exchanged. We have found that, under the re-
alistic assumption that the probability of process failure is
low, our algorithm is clearly better in all the above perfor-
mance measures.

In general, since algorithms implementing failure detec-
tors need not necessarily be periodic, it is not always pos-
sible to evaluate their efficiency in terms of the amount of
information periodically sent. For this reason, in order to
evaluate the efficiency of this kind of algorithms indepen-
dently of the communication pattern they use, we propose
in this paper a new and (we believe) more adequate perfor-
mance measure, which we calleventual monitoring degree.
Informally, this measure counts the number of pairs of cor-
rect processes that will infinitely often communicate. We
show that the runs of the algorithm presented in this paper
are optimal, and at least as good as the runs of any algorithm
implementing a failure detector of class3W , with respect
to this measure.

It is well known that, in practice, every system goes
throughstable and unstable periods. Informally, a stable
period is a period during which no process crashes and there
are no timing failures, i.e., all messages arrive on time. On
the other hand, an unstable period is a period during which
processes may crash or there are timing failures, i.e., mes-
sages can be lost or arrive late. If we assume that the system
is most frequently in stable periods, then the eventual mon-
itoring degree is still a valid performance measure within
each of these stable periods.

The rest of the paper is organized as follows. In Sec-

Proceedings of the 19th IEEE Symposium on Reliable Distributed Sustems (SRDS'00)
1060-9857/00 $10.00 © 2000 IEEE

tion 2, we describe the system model and discuss different
approaches in order to implement failure detectors, intro-
ducing the new measure to evaluate the efficiency of this
kind of algorithms. In Section 3, we present our algorithm
implementing a failure detector of class3S. In Section 4,
we prove the correctness of our algorithm. In Section 5, we
evaluate the performance of our algorithm, and show that
its runs are optimal with respect to the eventual monitoring
degree measure. Finally, Section 6 concludes the paper.

2. The Model

2.1. System Model

We consider a distributed system consisting of a finite
set� of n processes,� = fp1; p2; : : : ; png, that communi-
cate only by sending and receiving messages. Every pair of
processes is assumed to be connected by a reliable commu-
nication channel.

Processes can fail bycrashing, that is, by prematurely
halting. Crashes are permanent, i.e., crashed processes do
not recover. In every execution of the system we identify
two complementary subsets of�: the subset of processes
that do not fail, denotedcorrect, and the subset of processes
that do fail, denotedcrashed. We useC to denote the num-
ber of correct processes in the system, which we assume is
at least one, i.e.,C = jcorrectj > 0.

We consider that processes are ordered. Without
loss of generality, processpi is preceded by processes
p1; : : : ; pi�1, and followed by processespi+1; : : : ; pn.

We consider the model ofpartial synchrony proposed by
Chandra and Toueg in [2], which is a generalization of the
models proposed by Dwork et al. in [3]. This model stip-
ulates that, in every execution, there are bounds on process
speeds and on message transmission times, but these bounds
are not knownand they hold only after some unknown time
(calledGST for Global Stabilization Time). In this model,
we will denote by�msg the maximum time, after GST, be-
tween the sending of a message and the delivery and pro-
cessing by its destination process (assuming that both the
sender and the destination have not failed). Clearly,�msg

depends on the existing bounds on process speeds and on
message transmission times. Note that the exact value of
�msg exists, but it is unknown.

2.2. Implementation of Failure Detectors

A distributed failure detector can be viewed as a set ofn
failure detection modules, each one attached to a different
process in the system. These modules cooperate to satisfy
the required properties of the failure detector. Upon request,
each module provides its attached process with a list of pro-
cesses it suspects to have crashed. These lists can differ

from one module to another at a given time. We denote
by suspectedi the list of suspected processes of the failure
detection module attached to processpi. We assume that a
process interacts only with its local failure detection module
in order to get the current list of suspected processes.

In this paper, we only describe the behavior of the failure
detection modules in order to implement a failure detector,
but not the behavior of the processes they are attached to.
For this reason, in the rest of the paper we will use the term
process instead offailure detection module. It will be clear
from the context if we are referring to the failure detection
module or the process attached to it. We consider that a
process cannot crash independently of its attached failure
detection module.

Any algorithm implementing a failure detector requires
that some processes detect whether other processes have
crashed, and take proper action if so. There are mainly two
possible ways to implement this failure detection: thepush
model and thepull model. In the push model, processes
are permanently sending I-AM -ALIVE messages to the pro-
cesses in charge of detecting their potential failure. In the
pull model, the later ask the former for such messages. In
any case, the only way a process can show it has not crashed
is by sending messages to other processes.

The algorithm presented in this paper is based on the
push model. At any time, at least one process is sending
I-AM -ALIVE messages periodically to a subset of the pro-
cesses in the system. Processes monitor each other by wait-
ing for these periodical I-AM -ALIVE messages. To monitor
a processpj , processpi uses an estimated value –timeout–
that tells how much time it has to wait for the I-AM -ALIVE

message frompj . This time value is denoted by�i;j . Then,
if after �i;j time pi did not receive the I-AM -ALIVE mes-
sage frompj , it suspects thatpj has crashed. We need to
allow these time values to vary over time in our algorithm.
We use�i;j(t) to denote the value of�i;j at timet.

It must be clear that, in general, different algorithms
can use a different period to exchange information between
processes. Furthermore, this exchange of information in a
given algorithm need not be periodic. In this set up, it is dif-
ficult to use the number of messages periodically exchanged
as the efficiency measure of this kind of algorithms. For this
reason, on top of the number and size of messages periodi-
cally sent, we will also use theeventual monitoring degree
measure to evaluate the efficiency of the algorithms, which
we define as follows.

Definition 1 The eventual monitoring degreeof a run R of
an algorithm A is the number of pairs (pi; pj) of correct
processes, such that pi sends infinitely many messages to pj
in run R.

Proceedings of the 19th IEEE Symposium on Reliable Distributed Sustems (SRDS'00)
1060-9857/00 $10.00 © 2000 IEEE

2.3. The
 Failure Detector

In their proof of3W being the weakest failure detector
for solving Consensus [1], Chandra et al. defined a new fail-
ure detector, denoted
 .3 The output of the failure detector
module of
 at a processp is asingle processq, thatp cur-
rently considers to becorrect; we say thatp trusts q. The
failure detector
 satisfies the following property:

� There is a time after which all the correct processes
always trust the same correct process.

As with 3W , the output of the failure detector module
of
 at a processp may change with time, i.e.,p may trust
different processes at different times. Furthermore, at any
given timet, two processesp andq may trust different pro-
cesses.

It is straightforward to transform
 into3W (and3S).
It can be done by forcing each process to suspect every pro-
cess in the system except its trusted process. This gives us
the completeness and accuracy properties required by3W
(and3S). As we will see, the algorithm presented in this
paper follows this strategy, and actually implements
 .

3. The Algorithm

In this section, we present our implementation of a fail-
ure detector of class3S. In Figure 2, we present the al-
gorithm that is the core of our3S failure detector imple-
mentation. This algorithm, when run by each process of the
system, guarantees that eventually all the correct processes
agree on a common correct process, denotedp leader . This
property trivially allows us to provide the eventual weak ac-
curacy property required by3S: eventually,p leader is not
suspected by any correct process. The strong completeness
property of3S is reached by simply making every process
pi suspect all processes in the system exceptpleader.

Each processpi runs an instance of the algorithm of Fig-
ure 2, in which there is a local variabletrustedi. As we
will show, eventually the value oftrustedi for each correct
processpi will be the same, andptrustedi will be the cor-
rect processpleader. In fact,trustedi = leader will be the
index of the first process2 correct in the system (follow-
ing the orderp1; :::; pn). From the value oftrustedi, it can
be derived the setsuspectedi, which will satisfy the accu-
racy and completeness properties of3S. Here we consider
two possibilities, to makesuspectedi = ��fptrustedig or
suspectedi = � � fptrustedi ; pig, depending on whether
we want to preserve the intuitive notion of a process never
suspecting itself.

3Actually, to prove their result Chandra et al. show first that
 is at
least as strong as3W , and then that any failure detectorD that can be
used to solve Consensus is at least as strong as
 (and hence at least as
strong as3W).

Every processpi; i = 1; : : : ; n executes:

trustedi 1

8j 2 f1; : : : ; i� 1g : �i;j default timeout
receivedi false

cobegin

k Task 1:
loop

if i = trustedi then
send I-AM -ALIVE to pi+1; : : : ; pn

end if
delay�HEARTBEAT

end loop

k Task 2:
loop

if trustedi < i then
delay�i;trustedi
if receivedi then

receivedi false

else
trustedi trustedi + 1

end if
end if

end loop

k Task 3:
loop

receive I-AM -ALIVE from pj
if j = trustedi then

receivedi true

else if j < trustedi then
�i;j �i;j + 1

trustedi j

receivedi true

else
discard message

end if
end loop

coend

Figure 2. Algorithm used to implement a fail-
ure detector of class 3S.

The algorithm of Figure 2 executes as follows. Initially,
each processpi starts withtrustedi = 1, which means that
p1 will be their first candidate to be the processpleader. Pro-
cessp1 starts sending I-AM -ALIVE messages periodically
to the rest of processesp2; : : : ; pn. In general, a process
pi will be sending I-AM -ALIVE messages periodically to its
successorspi+1; : : : ; pn if i = trustedi (Task 1). A pro-
cesspi such thattrustedi 6= i, just waits for periodical I-
AM -ALIVE messages from the processptrustedi . If it does
not receive an I-AM -ALIVE message on time (within some
timeout period�i;trustedi), then it suspects thatptrustedi
has crashed and chooses the next candidate to be the pro-
cesspleader by increasingtrustedi by one (Task 2).

If, later on, a processpi receives an I-AM -ALIVE mes-
sage from a processpj , such thatj < trustedi, thenpi will

Proceedings of the 19th IEEE Symposium on Reliable Distributed Sustems (SRDS'00)
1060-9857/00 $10.00 © 2000 IEEE

stop assuming thatpj has crashed, and will trustpj again
(by makingtrustedi = j). In order to prevent this from
happening an infinite number of times,p i also increases the
value of the timeout period�i;j (Task 3). Moreover, ifpi
was sending I-AM -ALIVE messages periodically, it will au-
tomatically stop sending them, since nowi 6= trustedi.

4. Correctness Proof

In this section, we show that the algorithm of Fig-
ure 2, combined with either of the proposed definitions of
suspectedi (��fptrustedig or��fptrustedi ; pig), imple-
ments a failure detector of class3S. Among the processes
p1; : : : ; pn, letpleader be the correct process with the small-
est index. The key of the proof is to show that, eventually
and permanently,trustedi = leader for every correct pro-
cesspi. Thus, with either definition ofsuspectedi, even-
tually some correct process (namelypleader) is never sus-
pected by any correct process, which provides the eventual
weak accuracy property required by3S, and eventually all
crashed processes are permanently suspected by all correct
processes, which provides the strong completeness property
required by3S.

All time instants considered in the rest of this section
are assumed to be after GST (Global Stabilization Time).
We also assume that, at these instants, all messages sent be-
fore GST have already been delivered and processed. These
assumptions allow us to consider in the rest of the section
that the unknown bounds on process speeds and on mes-
sage transmission times hold. We denote bytrustedi(t)
the value oftrustedi at timet.

Lemma 1 9t0 : 8t > t0; 8pi 2 correct; trustedi(t) �
leader.

Proof: Let pi be any correct process. By definition of
pleader, eventually all its predecessors,p1; : : : ; pleader�1,
will crash. Consider a timet0 at which all the predeces-
sors ofpleader have crashed and all their messages have
already been delivered and processed (in Task 3). Then,
if trustedi(t0) < leader, eventually (at most at timet00 =
t0 +�i;trustedi(t

0)+ the time to execute the corresponding
instructions in Task 2) the variablereceivedi will take the
valuefalse (see Task 2). By Task 3,receivedi will not be-
cometrue until trustedi � leader. Since at timet0 all the
predecessors ofpleader have crashed and by the algorithm,
eventually (at most at timeti = t00 +

Pleader�1
j=1 �i;j(t

0)+
the time to execute the corresponding instructions in Task 2
leader � 1 times) the variabletrustedi will take a value
greater or equal toleader (see Task 2). Sincepi will
never receive afterti any other message from processes
p1; : : : ; pleader�1, the variabletrustedi will never take a
value belowleader (see Task 3).

Let t0 = maxfti : pi 2 correctg. From the above
reasoning,8t > t0; 8pi 2 correct; trustedi(t) � leader.

Lemma 2 8t > t0; where t0 is the same as in Lemma 1,
trustedleader(t) = leader.

Proof: Note from Task 2 that8t : trustedleader(t) �
leader. Also, from Lemma 1,8t > t0; trustedleader �
leader. Hence,8t > t0; trustedleader = leader.

Lemma 3 After t0, the process pleader will be permanently
sending I-AM -ALIVE messages periodically to all its suc-
cessors pleader+1; : : : ; pn.

Proof: It follows from Lemma 2 and Task 1.

Lemma 4 Let pi 2 correct : i 6= leader. If at time
t0 > t0; trustedi(t

0) > leader, then 9t00 : t0 < t00 �
t0 +�HEARTBEAT +�msg and trustedi(t

00) = leader.

Proof: Note that, by definition ofp leader, pi has to be
a successor ofpleader . From Lemma 3, after timet0
the processpleader is permanently sending I-AM -ALIVE

messages, with a period of�HEARTBEAT , to all its
successors, includingpi. After t0, the first I-AM -ALIVE

message will be sent bypleader at timet0+�HEARTBEAT

at the latest. Note that, since we have a partially syn-
chronous system, this message takes a maximum time of
�msg to be delivered and processed bypi. Hence, at some
time t00 � t0 + �HEARTBEAT + �msg , pi will deliver
and process an I-AM -ALIVE message fromp leader . From
Lemma 1,trustedi � leader at t00, and then from Task 3,
trustedi will take the valueleader at that time.

Lemma 5 Let pi 2 correct : i 6= leader. After t0,
trustedi will change from leader to a value different from
leader a finite number of times.

Proof: Let us assume, by the way of contradiction, that
trustedi changes fromleader to a value different from
leader an infinite number of times. From Lemma 4,
the value oftrustedi will be leader at some time after
t0. From Task 2, trustedi changes fromleader to
leader + 1 if two I- AM -ALIVE messages are received
by pi more than�i;leader time apart. Note from Task 1
and from the fact that we have a partially synchronous
system that two consecutive I-AM -ALIVE messages sent
by pleader are received and processed bypi at most
�HEARTBEAT +�msg time apart. Also, from Lemma 4,
the value oftrustedi will becomeleader again eventually.

Proceedings of the 19th IEEE Symposium on Reliable Distributed Sustems (SRDS'00)
1060-9857/00 $10.00 © 2000 IEEE

Every time this happens, from Task 3, the value of� i;leader

is incremented by one. Hence, since this will happen an
infinite number of times, eventually�i;leader will be larger
than�HEARTBEAT +�msg . However, after that happens
trustedi will never change its value fromleader, which is
a contradiction.

Theorem 1 9t1 : 8t > t1; 8pi 2 correct; trustedi(t) =
leader.

Proof: Follows from Lemma 2 for the casei = leader,
and from Lemma 4 and Lemma 5 for the casei 6= leader.

Corollary 1 Let suspectedi be defined as either � �
fptrustedig or � � fptrustedi ; pig, 8pi 2 �. The algo-
rithm of Figure 2, combined with either of these definitions
of suspectedi, implements a failure detector of class 3S.

5. Performance Analysis

In this section, we first evaluate the performance of the
presented algorithm in terms of the number and size of the
messages periodically sent. This evaluation shows that our
algorithm compares favorably with the algorithms proposed
by Chandra and Toueg [2] and by Larrea et al. [7]. Af-
ter that, we evaluate our algorithm in terms of the even-
tual monitoring degree, as defined in Definition 1, which we
consider more suitable for algorithms implementing failure
detectors. We show that the runs of our algorithm are opti-
mal with respect to this measure.

5.1. Number and size of messages and amount of
information

Observe that failure detection is an on-going activity that
inherently requires an infinite number of messages. Further-
more, the pattern of message exchange between processes
can vary over time (and need not be periodic), and different
algorithms can have completely different patterns. For these
reasons, we have to make some assumptions in order to use
the number of messages as a meaningful performance mea-
sure. We will first assume that the algorithms execute in a
periodic4 fashion, so that we can count the number of mes-
sages sent in a period. Secondly, to be able to compare the
number of messages sent by different algorithms, we must
assume that their respective periods have the same length.

4For algorithms based on the push model, we assume that all I-AM -
ALIVE messages are sent with the same period. For algorithms based on
the pull model, we assume that there are no incorrect suspicions, and that
all the timeout values are identical. Thus, the timeout value can be viewed
as the periodicity of the algorithm.

Nb. of Size of Amount of Eventual
Algorithm msg. msg. information mon. deg.

CT nC �(logn) �(nC logn) C2

LAF 2C �(n) �(nC) 2C
Figure 2 n� 1 �(logn) �(n logn) C � 1

Figure 3. Evaluation of different algorithms
implementing failure detectors.

Under the above assumptions, the number of messages
periodically sent in our algorithm is eventually at mostn�1,
since eventually only the processpleader will be sending
I-AM -ALIVE messages periodically to its successors. In
Chandra-Toueg’s algorithm implementing3P , the number
of messages periodically sent eventually becomesnC, since
eventually only theC correct processes will be sending mes-
sages periodically to all processes. Finally, in the algo-
rithms implementing3S and3P of Larrea et al., the num-
ber of messages periodically sent is eventually2C, since
eventually each correct process communicates with its pre-
decessor and its successor in the ring formed by the correct
processes. Note that our algorithm requires less messages
than Chandra-Toueg’s. Compared with the algorithms of
Larrea et al., if the probability of process failure is low, the
value ofC will be close ton and our algorithm will also
require less messages.

However, note that onlyC � 1 messages out of then� 1
periodically sent bypleader will be actually delivered and
processed5. Similarly, the actual number of messages deliv-
ered and processed in Chandra-Toueg’s algorithm isC 2.

Concerning the size of the messages, our algorithm re-
quires messages of�(logn) bits, since each message needs
to carry the identity of its sender. This is also the case
for Chandra-Toueg’s algorithm. However, the algorithms of
Larrea et al. require messages of�(n) bits, since messages
carry a list of suspected processes.

If we look now at the total amount of information peri-
odically sent, our algorithm eventually requires�(n logn)
bits to be sent. The total amount of information peri-
odically sent by Chandra-Toueg’s algorithm is eventually
�(nC logn) bits. Finally, the algorithms of Larrea et al.
eventually require�(nC) bits to be sent.

5.2. Eventual monitoring degree

We now evaluate the algorithms in terms of theeventual
monitoring degree of their runs, as defined in Definition 1.
As pointed out in Sections 1 and 2, we consider this mea-
sure more adequate to evaluate the efficiency of algorithms

5The amount of processing is better captured with theeventual moni-
toring degree measure, considered later in this section.

Proceedings of the 19th IEEE Symposium on Reliable Distributed Sustems (SRDS'00)
1060-9857/00 $10.00 © 2000 IEEE

implementing failure detectors, since it is independent of
the communication pattern they use, in particular of their
potential periodicity. Moreover, in practice, this measure is
close to the number of messages exchanged during a stable
period.

It is easy to observe that the eventual monitoring degree
of any run of the algorithm of Figure 2 isC � 1, since
eventually only the correct processes different fromp leader
will receive messages, and they will receive them only from
pleader.

The eventual monitoring degree of any run of Chandra-
Toueg’s algorithm implementing3P is C 2, since eventu-
ally each correct process will receive messages from every
correct process. Similarly, the eventual monitoring degree
of any run of the algorithms implementing3S and3P of
Larrea et al. is2C, since eventually each correct process
will only receive messages from its predecessor and its suc-
cessor in the ring formed by the correct processes.

Figure 3 summarizes the evaluation of the different
algorithms implementing failure detectors; CT denotes
Chandra-Toueg’s algorithm [2], and LAF denotes the ring-
based algorithms of Larrea et al. [7].

We now show that any run of the algorithm of Figure 2
is optimal with respect to the eventual monitoring degree
measure, i.e., any run of our algorithm has the minimum
eventual monitoring degree needed to implement the weak-
est failure detector for solving Consensus. For generality,
we will consider the class3W of failure detectors, show-
ing that the eventual monitoring degree required by a run of
any algorithm implementing a failure detector of class3W
is at leastC � k, wherek is the assumed minimum number
of correct processes in the system. Observe that, by defi-
nition, C � k. Note also that in Section 2 we assumed we
have a system withk = 1. However, in other system mod-
els it is assumed a larger value ofk (for instance, a majority
of correct processes, i.e.,k > n=2). We use the parameter
k here for the generality of the lemma.

Lemma 6 Any run R of an algorithm A implementing a
failure detector of class 3W has an eventual monitoring
degree of at least CR�k, where CR is the number of correct
processes in R, and k is the assumed minimum number of
correct processes in the system.

Proof: The claim trivially holds whenCR = k. Let us
assume now thatCR > k. We will prove the claim by con-
tradiction, showing that ifR does not satisfy the claim (i.e.,
its eventual monitoring degree is less thanCR� k), then we
can find another runR 0 of algorithmA that violates some
property of3W .

By the way of contradiction, let us assume that the even-
tual monitoring degree of the runR is at mostCR � k � 1.
Hence, there is some timet and there are at leastk +1 cor-
rect processes such that these processes do not receive mes-

sages from any other process after timet. From the fact that
A implements a failure detector of class3W , the eventual
weak accuracy property is satisfied inR. Therefore, there
is a timet0 and a correct processpj such thatpj is never
suspected by any correct process aftert 0.

Let us consider now another runR 0 of A, which behaves
exactly the same asR up to a time instantt00 > max(t; t0).
Let p1; : : : ; pk be k correct processes distinct frompj
which do not receive messages from any other process
after timet. Let us assume that inR0 all processes except
p1; : : : ; pk crash at timet00, and p1; : : : ; pk are correct.
Clearly, processpj crashes inR0 and, by the weak com-
pleteness property ofA, pj should be suspected by at least
one of the correct processesp1; : : : ; pk. Note that inR0,
after time t00 no message is received byp1; : : : ; pk from
any other process, as it happened inR. Hence, from the
point of view of processesp1; : : : ; pk, both runsR andR0

are indistinguishable. Therefore, processesp1; : : : ; pk take
the same decisions in both runs. In particular, after timet 0

none ofp1; : : : ; pk will suspect processpj in R0, as they do
in R. This violates the weak completeness property inR 0

and, thus,A does not implement a failure detector of class
3W , which is a contradiction.

Theorem 2 For k = 1, where k is the assumed minimum
number of correct processes in the system, any run of the
algorithm of Figure 2 has an optimal eventual monitoring
degree of C � 1.

Proof: Follows from Lemma 6 and the observation made
at the beginning of this subsection.

6. Conclusions and Future Work

In this paper, we have presented a new algorithm imple-
menting3S, the weakest failure detector for solving Con-
sensus. Our algorithm compares favorably with the algo-
rithms proposed by Chandra and Toueg [2] and by Larrea et
al. [7] in terms of the number and size of the messages peri-
odically sent. We have also proposed a more suitable mea-
sure to evaluate the efficiency of algorithms implementing
failure detectors, which we calleventual monitoring degree,
and have shown that the runs of the algorithm presented in
this paper are optimal with respect to this measure.

Comparing to other algorithms, it may seem that our al-
gorithm has a big loss of accuracy, because all processes ex-
cept one are systematically suspected. In fact, it may some-
times work worse than others in algorithms like Chandra
and Toueg’s Consensus algorithm [2]. However, we believe
this aspect, rather than being a problem, can be a benefit,
since the fact that eventually all the lists of suspected pro-
cesses are identical can be very helpful. In [8], we propose

Proceedings of the 19th IEEE Symposium on Reliable Distributed Sustems (SRDS'00)
1060-9857/00 $10.00 © 2000 IEEE

a Consensus algorithm that successfully exploits this prop-
erty to solve Consensus more efficiently, i.e., in less rounds,
than existing previous algorithms for3S.

In the algorithm of Figure 2, the timeout values of each
process,�ij , never decrease. So, in a network with possible
transient communication failures, the�ij values may even-
tually become too large. We are studying how these timeout
values can be decreased. Clearly, this cannot be made inde-
pendently of the applications using the failure detector. For
instance, it would be possible to decrease the timeout val-
ues when no distributed algorithm using the failure detector,
e.g. Consensus, is being executed.

Another line of future work is to improve the algorithm
of Figure 2 for the casek > 1, wherek is the assumed
minimum number of correct processes in the system.

Acknowledgements

We are grateful to André Schiper for his valuable com-
ments on earlier drafts of this paper.

References

[1] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest
failure detector for solving consensus.Journal of the ACM,
43(4):685–722, July 1996.

[2] T. D. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems.Journal of the ACM, 43(2):225–
267, March 1996.

[3] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in
the presence of partial synchrony.Journal of the ACM,
35(2):288–323, April 1988.

[4] M. Fischer, N. Lynch, and M. Paterson. Impossibility of
distributed consensus with one faulty process.Journal of
the ACM, 32(2):374–382, April 1985.

[5] R. Guerraoui, M. Larrea, , and A. Schiper. Non-blocking
atomic commitment with an unreliable failure detector. In
Proceedings of the 14th Symposium on Reliable Distributed
Systems (SRDS’95), pages 41–51, September 1995.

[6] M. Hurfin and M. Raynal. A simple and fast asynchronous
consensus protocol based on a weak failure detector.Dis-
tributed Computing, 12(4):209–223, 1999.

[7] M. Larrea, S. Arévalo, and A. Fernández. Efficient algo-
rithms to implement unreliable failure detectors in partially
synchronous systems. InProceedings of the 13th Inter-
national Symposium on DIstributed Computing (DISC’99),
pages 34–48. LNCS, Springer-Verlag, September 1999.

[8] M. Larrea, A. Fernández, and S. Arévalo. Eventually consis-
tent failure detectors. Technical Report, Universidad Pública
de Navarra, April 2000. Brief Announcement, 14th Interna-
tional Symposium on Distributed Computing (DISC’2000),
Toledo, Spain.

[9] A. Mostefaoui and M. Raynal. Solving consensus us-
ing Chandra-Toueg’s unreliable failure detectors: a general
quorum-based approach. InProceedings of the 13th Inter-
national Symposium on DIstributed Computing (DISC’99),
pages 49–63. LNCS, Springer-Verlag, September 1999.

[10] M. Pease, R. Shostak, and L. Lamport. Reaching agreement
in the presence of faults.Journal of the ACM, 27(2):228–
234, April 1980.

[11] A. Schiper. Early consensus in an asynchronous system with
a weak failure detector.Distributed Computing, 10(3):149–
157, April 1997.

Proceedings of the 19th IEEE Symposium on Reliable Distributed Sustems (SRDS'00)
1060-9857/00 $10.00 © 2000 IEEE

