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Abstract. The knowledge about failures needed to solve distributed
agreement problems can be expressed in terms of completeness and ac-

curacy properties of failure detectors introduced by Chandra and Toueg.

The accuracy properties they have considered restrict the false suspicions
that can be made by all the processes in the system. In this paper, we

de�ne \��accurate" failure detectors, whose accuracy properties (only)

restrict the false suspicions that can be made by a subset � of the pro-
cesses. We discuss the relations between the classes of ��accurate fail-

ure detectors, and the classes of failure detectors de�ned by Chandra and

Toueg. Then we point out the impact of these relations on the solvability
of agreement problems.

1 Introduction

1.1 Restricting accuracy

Chandra and Toueg have expressed the knowledge about failures needed to solve

distributed agreement problems in terms of completeness and accuracy properties

of failure detectors [4]. Completeness properties require that every process that

crashes is eventually permanently suspected, while accuracy properties restrict

the mistakes (false suspicions) that can be made by all the processes in the

system. We extend these accuracy properties, by considering properties that

only restrict the false suspicions that can be made by a subset � of the processes.

The new properties are called \� -accuracy" properties. Given a subset � of the

processes in the system:

{ strong � -accuracy is satis�ed if no process p in � is suspected by any process

in � before p crashes, and

{ weak � -accuracy is satis�ed if some correct process (not necessarily in � ) is

not suspected by any process in � .

1.2 Motivation

Our work is motivated by the observation that, because the accuracy properties

de�ned in [4] span the whole system, the formalism does not apply to systems

that can be subject to network partitions. Indeed, as failure suspicions are usually

implemented with time-outs, the probability that any accuracy property holds



(even weak accuracy) during a partition of the system, can be considered to be

zero. For instance, in a system partitioned into �1 and �2, processes in �1 most

probably suspect processes in �2, and processes in �2 most probably suspect

processes in �1, i.e. there is no correct process not suspected by any process.

Even the weak accuracy property does not hold while the system is partitioned.

By restricting the accuracy properties to subsets � of the system, the � -accurate

failure detectors address these concerns.

1.3 Reliable vs eventually reliable channels

Failure detectors of [4] have been considered in a system model with reliable

channels. A reliable channel ensures that if a message m is sent by a process p

to a process q, and q is correct, then m is eventually received by q. A reliable

channel does not loose messages. The reliable channel assumption is however

incompatible with network partitions, that are considered in the paper. Therefore

we consider in the paper channels with a weaker reliability property that is called

eventually reliable channels: if a message m is sent by a process p to a process q,

and both p and q are correct, then m is eventually received by q. An eventually

reliable channel can loose messages. The de�nition is close to the one considered

in [1].

In the paper, we prove both possibility results (i.e. equivalence of failure de-

tectors), and impossibility results (i.e non-equivalence results). In order for these

results to be more general, we consider the eventually reliable channel assump-

tion to prove possibility results, and the stronger reliable channel assumption to

prove impossibility results.

1.4 Results

We use P(� ) to denote the class of failure detectors that satisfy strong complete-

ness and strong � -accuracy, S(� ) to denote the class of failure detectors that

satisfy strong completeness and weak � -accuracy, andW(� ) to denote the class

of failure detectors that satisfy weak completeness and weak � -accuracy. The

failure detectors 3P(� ), 3S(� ) and 3W(� ) are similarly de�ned by requiring,

roughly speaking, the corresponding � -accuracy property to eventually hold.

Consider a set 
 of processes. Among others, this paper establishes the fol-

lowing interesting relations between the � -accurate failure detector classes and

the Chandra-Toueg classes:

1. Let f be the maximumnumber of processes of 
 that can crash. For any � �


, and with eventually reliable channels, if j� j > j
j=2 and f < j
j=2, then

any failure detector of 3S(� ) can be transformed into some failure detector

of 3S (which implies 3S(� ) �= 3S 1). Hence, given that j� j > j
j=2 and

f < j
j=2, every problem that can be solved with 3S, (e.g consensus [4],

uniform consensus [4], atomic broadcast [4], and non-blocking weak atomic

1 This result has been informally stated in [3] for reliable channels.



commitment [6]) can also be solved with 3S(� ) 2. These problems can hence

be solved whenever some correct process is, roughly speaking, eventually

never suspected by a majority of correct processes.

2. For any � � 
, and with reliable channels, we cannot transform any fail-

ure detector of 3W(� ) into some failure detector of 3W (which implies

3W(� ) � 3W). Hence, for any � � 
, problems that need 3W (e.g con-

sensus, uniform consensus, atomic broadcast, and non-blocking weak atomic

commitment [3]) cannot be solved with 3W(� ).

3. For any � � 
, and with reliable channels, we cannot transform any failure

detector of P(� ) into some failure detector of P (which implies P(� ) � P).

Hence, for any � � 
, problems that need P (e.g election [10], genuine

atomic multicast [7], and non-blocking atomic commitment [6]) cannot be

solved with P(� ).

The rest of the paper is organized as follows. Section 2 de�nes the system

model. Section 3 de�nes \� -accurate" failure detectors. Section 4, where we con-

sider eventually reliable channels, establishes the above result 1. In Sections 5, 6

and 7, we assume reliable channels. Section 5 establishes the result 2, and Sec-

tion 6 establishes the result 3. Section 7 compares � -accurate failure detector

classes. Finally, Section 8 uses the results established in the paper to compare

the resilience of various atomic commitment protocols.

2 Model

Our model of asynchronous computation with failure detection is similar to the

one described in [3].

2.1 Failures

A discrete global clock is assumed, and �, the range of the clock's ticks, is the

set of natural numbers. Processes do not have access to the global clock. The

distributed system consists of a set 
 of processes. Processes fail by crashing,

and failures are permanent. A correct process is a process that does not crash.

A failure pattern is a function F from � to 2
, where F (t) denotes the set of

processes that have crashed through time t. We assume, as in [4], that in any

failure pattern, there is at least one correct process. A failure detector history

is a function from 
 � � to 2
, where H(p; t) denotes the set of processes

suspected by process p at time t. A failure detector is a function D that maps

each failure pattern F to a set of failure detector histories. The processes are

connected through asynchronous, either (1) reliable, or (2) eventually reliable

channels, represented by a message bu�er (see Sect. 2.2):

2 It has been shown that these problems are solvable with the speci�ed failure detec-

tors, and reliable channels. It can be shown that these problems are also solvable

with eventually reliable channels, see [1].



{ a reliable channel ensures that every message sent by a process p to a process

q is eventually received by q, if q is correct.

{ an eventually reliable channel ensures that every message sent by a process

p to a process q is eventually received by q, if q and p are both correct.

The eventually reliable channel provides a weaker model than the reliable

channel: an eventually reliable channel can loose messages. 3

2.2 Algorithms

An algorithm is a collection A of n deterministic automataA(p) (one per process

p). Computation proceeds in steps of the algorithm. In each step of an algorithm

A, a process p performs atomically the following phases: (1) p receives a message

from q, or a \null" message �; (2) p queries and receives a value d from its

failure detector module (d is said to be seen by p); (3) p changes its state and

sends a message (possibly null) to some process. This third phase is performed

according to (a) the automaton A(p), (b) the state of p at the beginning of

the step, (c) the message received in phase 1, and (d) the value d seen by p

in phase 2. The message received by a process is chosen non-deterministically

among the messages in the message bu�er destined to p, and the null message

�. A con�guration is a pair (I;M ) where I is a function mapping each process p

to its local state, and M is a set of messages currently in the message bu�er. A

con�guration (I;M ) is an initial con�guration if M = ;. A step of an algorithm

A is a tuple e = (p;m; d;A), uniquely de�ned by the algorithmA, the identity of

the process p that takes the step, the message m received by p, and the failure

detector value d seen by p during the step. A step e = (p;m; d;A) is applicable

to a con�guration (I;M ) if and only if m 2M [ f�g. The unique con�guration

that results from applying e to C = (I;M ), is noted e(C).

2.3 Schedules and runs

A schedule of an algorithmA is a (possibly in�nite) sequence of steps of A, noted

S = S[1];S[2]; : : :S[k]; : : :. A schedule is applicable to a con�guration C if (1) S

is the empty schedule, or (2) S[1] is applicable to C, S[2] is applicable to S[1](C),

etc. Given any schedule S, we note P (S) the set of the processes that have at

least one step in S.

A partial run of A using a failure detector D, is a tuple R =< F;H;C; S; T >

where, F is a failure pattern, H is a failure detector history and H 2 D(F ), C

is an initial con�guration of A, T is a �nite sequence of increasing time values,

and S is a �nite schedule of A such that: (1) jSj = jT j, (2) S is applicable to

3 The rational behind the de�nition is the following. To ensure eventual reception of

the message m sent by p to q, the communication library linked to p will have to

retransmit the message m, until m is eventually received by q. If p crashes, retrans-

mission will stop, and q might never receive m. Therefore eventually reliable channels

ensure reception only if the sender and the receiver are both correct.



C, and (3) for all i � jSj where S[i] = (p;m; d;A), we have p 62 F (T [i]) and

d = H(p; T [i]).

A run of an algorithm A using a failure detector D, is a tuple

R =< F;H;C; S; T > where F is a failure pattern, H is a failure detector history

and H 2 D(F ), C is an initial con�guration of A, S is an in�nite schedule of

A, T is an in�nite sequence of increasing time values, and in addition to the

conditions above of a partial run ((1), (2) and (3) above), the two following con-

ditions are satis�ed: (4) every correct process takes an in�nite number of steps,

(5) under the reliable channel assumption, every message sent by a process to

a correct process is eventually received, and under the eventually reliable chan-

nel assumption, every message sent by a correct process to a correct process is

eventually received.

Let R =< F;H;C; S; T > be a partial run of some algorithm A. We say that

R0 =< F 0;H0; C0; S0; T 0 > is an extension of R, if R0 is either a run or a partial

run of A, and F 0 = F , H0 = H, C0 = C, 8i s.t. T [1] � i � T [jT j]: S0[i] = S[i]

and T 0[i] = T [i].

3 From accurate to \� -accurate" failure detectors

3.1 Accurate failure detectors

Failure detectors are abstractly characterized by completeness and accuracy

properties. Completeness properties determine the degree to which crashed pro-

cesses are suspected. Accuracy properties restrict the mistakes (false suspi-

cions) that a process can make. Two completeness properties are de�ned in [4]:

(1) strong completeness: eventually every process that crashes is permanently

suspected by every correct process, and (2) weak completeness: eventually ev-

ery process that crashes is permanently suspected by some correct process. The

following accuracy properties are de�ned in [4]: (1) strong accuracy: no process

is suspected before it crashes; (2) weak accuracy: some correct process is never

suspected; (3) eventual strong accuracy: eventually correct processes are not sus-

pected by any correct process, and (4) eventual weak accuracy: eventually some

correct process is not suspected by any correct process.

A failure detector class is a set of failure detectors de�ned by some accu-

racy and some completeness property. Figure 1 shows the notations introduced

in [4]. For example, the class 3S contains failure detectors that satisfy strong

completeness and eventual weak accuracy.

3.2 � -accuracy properties

The accuracy properties de�ned by Chandra and Toueg restrict the mistakes

made by all the processes in the system. We extend these properties, by consid-

ering properties that only restrict the mistakes of a subset � of the processes.

Given � � 
, we de�ne the � -accuracy properties as follows:
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Fig. 1. Accurate failure detector classes

{ Strong � -accuracy is satis�ed if no process p in � is suspected by any process

in � , before p crashes.

{ Weak � -accuracy is satis�ed if some correct process (not necessarily in � )

is never suspected by any process in � .

{ Eventual strong � -accuracy is satis�ed if eventually no correct process in �

is suspected by any correct process in � .

{ Eventual weak � -accuracy is satis�ed if eventually some correct process (not

necessarily in � ) is never suspected by any correct process in � .

These accuracy properties can be viewed as generalizations of the accuracy prop-

erties de�ned in [4]. The latters correspond to the case where � = 
. The asym-

metry of the de�nitions of � -accuracy properties (\p in �" in the de�nition of

strong � -accuracy, \some correct process not necessarily in �" in the de�nition

of weak � -accuracy) is because we want the � -accuracy properties to satisfy the

inclusion property: given �1 � �2, if strong (respt. weak) �2-accuracy holds, then

strong (respt. weak) �1-accuracy also holds. We comment on this in Section 3.4.

3.3 � -accurate failure detectors

A � -accurate failure detector is a failure detector de�ned by some completeness

and some � -accuracy property. Figure 2 introduces the notations for � -accurate

failure detector classes. For example, the class 3S(� ) gathers failure detectors

that satisfy strong completeness and eventual weak � -accuracy.

Accuracy

P( ) S ( ) P ( ) S ( )

Q( ) ( )W Q ( ) W ( )

Completeness

Strong

Weak

Strong Weak Strong Weak

Fig. 2. � -accurate failure detector classes



3.4 Simple relations between failure detector classes

Given two failure detectors D1 and D2, if there is an algorithm that transforms

D1 into D2, then D2 is said to be reducible to D1, written D2 � D1 [4]. If every

failure detector of a class C2 is reducible to some failure detector of a class C1,

then C2 is said to be weaker than C1, written C2 � C1. The relation � is an

equivalence relation. If C2 � C1 and C1 � C2, then C1 and C2 are said to be

equivalent, written C1 �= C2. Finally, if C2 � C1 and :(C1� C2), then C2 is said to

be strictly weaker than C1, written C2 � C1.

The inclusionproperty: The � -accuracy properties satisfy the inclusion prop-

erty: given �1 � �2, if �2-accuracy holds (strong, weak, eventually strong, or

eventually weak), then �1-accuracy also holds (strong, weak, eventually strong,

or eventually weak). Roughly speaking, the inclusion property re
ects the intu-

ition that reducing the set � should not invalidate the accuracy property.

Note that the inclusion property would not hold if weak (respt. eventual

weak) � -accuracy had been de�ned as follows: (eventually) some correct process

\ in � " is never suspected by any process (correct process) in � . Take this

de�nition, and consider �1 � �2. If weak �2-accuracy holds, then there is some

process p 2 �2 that is never suspected by any process in �2. However, p 2 �2
does not imply p 2 �1, i.e weak �1-accuracy does not necessarily hold.

The following lemma state simple relations between the classes of accurate failure

detectors, and the classes of ��accurate failure detectors.

Lemma 3.1 Let C stand for P;Q;S;W;3P;3Q;3S, or 3W. For any � � 
,

and with both reliable and eventually reliable channels, we have C(� ) � C.

Proof. Follows directly from the de�nition and the inclusion property. For any

� � 
, any failure detector of class C satis�es the properties of class C(� ). We

thus trivially have C � C(� ), which implies C(� ) � C. 2

From strong � -accuracy to weak � -accuracy: For any � � 
, even-

tual strong � -accuracy implies eventual weak � -accuracy. However, strong � -

accuracy implies weak � -accuracy only if f < j� j (i.e. if there is at least some

correct process in � ) (see Lemma 3.2). Indeed, assume the processes of � do not

suspect each others, but suspect all the processes outside � and then crash. In

this case, strong � -accuracy is satis�ed whereas weak � -accuracy is not.

The following lemma states simple relation between the classes of ��accurate

failure detectors.

Lemma 3.2 For any � � 
, and with both reliable and eventually reliable chan-

nels, we have (1) Q(� ) � P(� ), W(� ) � S(� ), 3Q(� ) � 3P(� ),

3W(� ) � 3S(� ), (2) 3S(� ) � 3P(� ), 3W(� ) � 3Q(� ), and (3) if f < j� j,

we also have S(� ) � P(� ) and W(� ) � Q(� ).



Proof. As strong completeness implies weak completeness then we obviously

have results (1). Consider now results (2). Let D be any failure detector of class

3P(� ) (respt. of class 3Q(� )). D satis�es strong completeness (respt. weak

completeness) and eventual strong ��accuracy. Hence, for every failure pattern,

eventually no correct process in � suspects any correct process in � . If there is

some correct process in � , then D trivially satis�es eventual weak ��accuracy.

Altogether, D is of class 3S(� ) (respt. of class 3W(� )), which implies3S(� ) �

3P(� ) (respt. 3W(� ) � 3Q(� )).

Consider now results (3). Let D0 be a failure detector of class P(� ) (respt.

of class Q(� )). D0 satis�es strong completeness (respt. weak completeness) and

strong ��accuracy. As f < j� j, then for every failure pattern, there is some

correct process in � , and this process is never suspected by any process in � .

Hence, D satis�es weak ��accuracy. Altogether, D is of class S(� ) (respt. of

class W(� )), which implies S(� ) � P(� ) (respt. W(� ) � Q(� )). 2

4 About weak accuracy and strong completeness

In this section, we present an algorithm that transforms any failure detector of

class 3S(� ) (respt. S(� )) into some failure detector of class 3S (respt. S). Our

transformation algorithm is correct under the assumptions (1) � is a majority

of 
 (j� j > j
j=2), (2) there is a majority of correct processes in 
 (f <

j
j=2), and (3) channels are eventually reliable. Under these assumptions, we

have S �= S(� ) and 3S �= 3S(� ).

4.1 The transformation algorithm

Let � be a majority of 
 (j� j > j
j=2), and assume a majority of correct

processes (f < j
j=2) and eventual reliable channels. With these assumptions,

the algorithm in Figure 3 transforms any failure detector of S(� ) (respt. of

3S(� )) into some failure detector of S (respt. of 3S). The algorithm uses any

failure detector, say D1, of S(� ) (respt. of 3S(� )) to emulate the output of a

failure detector D2 of S (respt. of 3S). The emulation is done in a distributed

variable, output(D2). Each process p has a local copy of output(D2), denoted

output(D2)p, which provides the information that should be given by the local

failure detector module of D2 at process p (noted D2p). The value of output(D2)p
at time t is denoted output(D2; t)p. Informally, the algorithm works as follows.

{ Every process p periodically sends the message (p; suspectedp) to all pro-

cesses (line 3), where suspectedp denotes the set of processes that p suspects

according to its local failure detector module D1p .

{ When p receives a message of the form (q; suspectedq) (line 4), it executes

the following:

(1) for each r in suspectedq , p adds q to suspecting(r)p (line 7), where

suspecting(r)p denotes the set of processes p thinks are currently suspect-

ing r. If suspecting(r)p contains a majority of processes, then p adds r to



output(D2)p (line 8);

(2) for each r not in suspectedq , p removes q from suspecting(r)p and re-

moves r from output(D2)p (lines 10-11).
4

/* Every process p executes the following */

/* Initialisation */
suspectedp  ;; /* The set of processes suspected by p */

output(D2)p  ;;

/* The local variable emulating the failure detector module D2p */
for each r in 
: suspecting(r)p  ;;

/* The set of processes p thinks are currently suspecting r */

cobegin /* two concurrent tasks */

k /* Task 1: */

1 repeat forever

2 suspectedp  D1p /* p queries its failure detector module D1p */

3 send (p; suspectedp) to all ;

k /* Task 2: */

4 when (q; suspectedq) received from some q

5 for each r in 


6 if r in suspectedq then

7 suspecting(r)p  (suspecting(r)p
S
fqg) ;

8 if jsuspecting(r)pj > j
j=2
then output(D2)p  (output(D2)p

S
frg) ;

9 else

10 suspecting(r)p  (suspecting(r)p � fqg) ;
11 output(D2)p  (output(D2)p � frg) ;

coend

Fig. 3. From S(� ) (respt. 3S(� )) to S (respt. 3S)

4.2 Correctness of the transformation

By Lemma 4.1 below, if j� j > j
j=2, the algorithm in Figure 3 transforms

weak � -accuracy into weak accuracy. The proof is by contradiction. Similarly,

by Lemma 4.2, if j� j > j
j=2, the algorithm also transforms eventual weak

� -accuracy into eventual weak accuracy (proof also by contradiction). Finally,

by Lemma 4.3, if f < j
j=2, the transformation of Figure 3 preserves strong

4 The \correction phase" (lines 10-11) is needed to transform eventual weak � -

accuracy into eventual weak accuracy, but is not needed to transform weak � -
accuracy into weak accuracy.



completeness. Altogether, if j� j > j
j=2 and f < j
j=2, we get: S �= S(� ) and

3S �= 3S(� ) (Proposition 4.4).

If f < j
j=2, the consensus [4], uniform consensus [4], atomic broadcast [4],

and non-blocking weak atomic commitment [6] problems can be solved with any

failure detector of the class 3S(� ) and reliable channels. It can be shown that

these problems are also solvable with any failure detector of the class 3S(� )

and eventual reliable channels [1]. Thus from Proposition 4.4, 8� � 
 such that

j� j > j
j=2, if f < j
j=2, the consensus, uniform consensus, atomic broadcast

and non-blocking weak atomic commitment problems can be solved with any

failure detector of the class 3S(� ).

Lemma 4.1 (from weak � -accuracy to weak accuracy) Let D1 be a fail-

ure detector that satis�es weak � -accuracy. If j� j > j
j=2 and with eventual

reliable channels, the algorithm of Figure 3 transforms D1 into a failure detector

D2 that satis�es weak accuracy.

Proof. As D1 satis�es � -weak accuracy, there is a correct process r such that

no process in � suspects r. Assume (by contradiction) that there is a process

p such that r is in output(D2)p. This means that a majority of processes have

suspected r (Fig. 2, line 8). As � contains a majority of processes, then some

process in � must have suspected r: a contradiction. 2

Lemma 4.2 (from 3 weak � -accuracy to 3 weak accuracy) Let D1 be a

failure detector that satis�es eventual weak � -accuracy. If j� j> j
j=2, f < j
j=2

and with eventual reliable channels, then the algorithm of Figure 3 transforms

D1 into a failure detector D2 that satis�es eventual weak accuracy.

Proof. (By contradiction). As D1 satis�es eventual weak � -accuracy, there is

a correct process r, and a time t1 after which no process in � suspects r. Hence,

there is a time t2 > t1, from which no process receives a message (q; suspectedq)

from a process q in � , such that suspectedq contains r.

As � contains at least one correct process (by the assumption j� j > j
j=2

and f < j
j=2), there is a process p 2 
 and a time t3 > t2, at which p receives a

message (q; suspectedq) from a correct process q in � , and r 62 suspectedq . Thus

at t3, we have r 62 output(D2)p (Fig. 2, line 11). Assume (by contradiction) that

there is a time t4 > t3 at which r is (again) in output(D2)p (Fig. 2, line 8). This

means that p has received, from a majority of processes, messages (q; suspectedq)

such that r 2 suspectedq . As j� j > j
j=2, some process in � must have suspected

r after time t1: a contradiction. 2

Lemma 4.3 (preserving strong completeness) Let D1 be a failure detector

that satis�es strong completeness. If f < j
j=2 and with eventual reliable chan-

nels, the algorithm of Figure 3 transforms D1 into a failure detector D2 that also

satis�es strong completeness.



Proof. Consider time t1 at which all processes that are not correct have crashed.

After t1, let r be a process that has crashed. As D1 satis�es strong completeness,

there is a time t2 > t1 after which every correct process p suspects r forever,

and sends its suspicion message (p; suspectedp), where r 2 suspectedp, to all

(Fig. 2, line 3). These suspicions are thus sent by correct processes. As there

is a majority of correct processes, and channels are eventually reliable, every

correct process p eventually receives such a suspicion message from a majority

of processes, and puts r into output(D2)p forever (Fig. 2, line 8). 2

Proposition 4.4 Let � � 
 be such that j� j > j
j=2, and consider S, S(� ),

3S and 3S(� ). If f < j
j=2 and with eventual reliable channels, we have

S �= S(� ) and 3S �= 3S(� ).

Proof. By Lemma 3.1, we have S(� ) � S and 3S(� ) � 3S. By Lemma 4.1 and

Lemma 4.3, we have S � S(� ). Thus S �= S(� ). By Lemma 4.2 and Lemma 4.3,

we have 3S � 3S(� ). Thus 3S �= 3S(� ). 2

5 About weak completeness

This section compares the class 3W(� ) (respt. W(� )) of � -accurate failure

detectors with the class 3W (respt.W) of accurate failure detectors. We assume

j
j > 2 and we show that, for any subset � � 
 and even with reliable channels,

we have: 3W(� ) � 3W and W(� ) � W 5.

It has been shown that 3W is the weakest failure detector class that enables to

solve consensus, atomic broadcast, uniform consensus [3, 4], and non-blocking

weak atomic commitment [6]. A consequence of 3W(� ) � 3W is that neither

consensus, atomic broadcast, uniform consensus, nor non-blocking weak atomic

commitment is solvable with 3W(� ) (for any subset � � 
).

Failure detector D(�; r). The proofs of the above results (3W(� ) � 3W and

W(� ) � W) use a speci�c failure detector, noted D(�; r). The speci�cation

of D(�; r) is based on a failure pattern that we call 1-pattern: we say that a

failure pattern F is a 1-pattern if at most one process crashes in F . Similarly,

we say that a failure pattern F is a 0-pattern if no process crashes in F .

Consider a subset � � 
 and r 2 
 � � . We de�ne D(�; r) such that (a)

in any 1-pattern F , D(�; r)(F ) is the set of histories such that: (a.1) as long

as r does not crash, r permanently suspects every other process, and (a.2)

8r0 6= r, as long as r0 does not crash, r0 permanently suspects r, but r0 never

suspects any other process, and (b) in any pattern F 0 that is not a 1-pattern,

D(�; r)(F 0) is the set of histories that satisfy strong completeness and strong

5 The assumption j
j > 2 is only needed for W(� ) � W (for j
j= 2, we have W(� )
�= W). 3W(� ) � 3W holds for j
j > 1 (for j
j � 1 all failure detector classes

are equivalent). However, for presentation uniformity, we assume in this section that

j
j> 2.



accuracy (i.e. in any pattern that is not a 1-pattern, D(�; r) behaves like a

failure detector of the class P).

We show that D(�; r) is of class W(� ) (and also of class Q(� ), see Lemma 5.1),

and no algorithm can transform D(�; r) into some failure detector of class 3W.

More precisely, we show that if there exists an algorithm AD(�;r)!� that trans-

forms D(�; r) into some failure detector � that satis�es weak completeness, then

� cannot satisfy eventual weak accuracy (Lemma 5.2 and Lemma 5.3).

Lemma 5.1 D(�; r) is of the classes W(� ) and Q(� ).

Proof. In any run of which failure pattern is not a 1-pattern, D(�; r) satis�es

strong completeness and strong accuracy. Let R =< F;HD(�;r); C; S; T > be

any run with F a 1-pattern. If r is correct, then every process that crashes is

permanently suspected by r. If r crashes, then all other processes are correct,

and they all suspect r. Hence D(�; r) satis�es weak completeness in R. Consider

now accuracy. As j
j > 2, then there is at least some correct process in R

that is never suspected by any process of � . Thus D(�; r) satis�es weak � -

accuracy. As no process suspects any other process in � then D(�; r) satis�es

strong � -accuracy. Hence, D(�; r) satis�es weak completeness, weak � -accuracy,

and strong � -accuracy in R. 2

Lemma 5.2 Let AD(�;r)!� be any algorithm that transforms D(�; r) into some

failure detector�. Let R =< F;HD(�;r); C; S; T > be any partial run of AD(�;r)!�

where F is a 0-pattern. If � satis�es weak completeness, then there is an ex-

tension R
 =< F;HD(�;r); C; S
; T
 > of R, where for every correct process p,

there is a correct process q, and a time t, T [jT j] � t � T
[jT
j], such that

p 2 output(�; t)q in R
.

Proof: Consider the partial run R =< F;HD(�;r); C; S; T > where F is a

0�pattern, and let p be any process in 
. Let R0 =< F 0;HD(�;r); C; S; T >

be a partial run such that F 0 is a 1�pattern, similar to F , except that in F 0,

p crashes at time T [jT j + 1] (immediately after T [jT j]). A process such as p

does exist as 
 contains at least two processes. As D(�; r) provides the same

values both for F and F 0, and S is applicable to C, then R0 is a partial run

of AD(�;r)!�. By the weak completeness property of �, there is an extension

R0p =< F 0;HD(�;r); C; Sp; Tp > of R0, and a correct process q 2 
, such that

p 2 output(�;Tp[jTpj])q. Let SSusp(p) be the schedule of AD(�;r)!� such that

Sp(C) = SSusp(p)(S(C)). The schedule SSusp(p) can be viewed as the schedule

needed to put p into the output(�)q of process q.

Consider now the run R =< F;HD(�;r); C; S; T >. As D(�; r) provides the

same values both for F and F 0, and Sp is applicable to C, then

Rp =< F;HD(�;r); C; Sp; Tp > is an extension of R, and there is a correct process

q, such that p 2 output(�;Tp[jTpj])q. By iteratively applying the construction of

the partial run Rp to every process p 2 
, the partial run R can be extended



to a partial run R
 =< F;HD(�;r); C; S
; T
 > where every process p is put in

output(�)q for some process q. 2

Lemma 5.3 Let AD(�;r)!� be any algorithm that transforms the failure detec-

tor D(�; r) into some failure detector �. If � satis�es weak completeness, then

there is a run of AD(�;r)!�, where � does not satisfy eventual weak accuracy.

Proof: Consider the partial runR =< F;HD(�;r); C; S; T > with F a 0�pattern.

By Lemma 5.2, there is an extension of R, R
 =< F;HD(�;r); C; S
; T
 >, such

that for every process p 2 
, there is a time t, T [jT j] � t � T
 [jT
j], and a

correct process q, such that p 2 output(�; t)q. Let (I;M ) be the con�guration

S
(C). Consider now a schedule SMess, of which steps are de�ned by: the recep-

tion by the processes of all messages in M not received in S
 , then the reception

by every process of the null message �. The schedule SMess is by construction

applicable to S(C), and we write S�(C) = SMess(S
(C)). There is a sequence

of increasing time values T�, such that R� =< F;HDr
; C; S�; T� > is an ex-

tension of R. In R�, all messages sent to p before time T [jT j] are received by p

before T� [jT�j], and p takes at least one step between T [jT j] and T�[jT�j].

Therefore, given any partial run R of AD(�;r)!�, with F a 0�pattern, we

can extend R to a partial run R� where every process is suspected at some

process by �. We note R0
� = R�, R

1
� an extension of R obtained by applying

the construction above to R0
�, R

i
� an extension of R obtained by applying the

construction above to Ri�1
� , etc., and R1� = limi!1R

i
�.

In R1� , the properties of a partial run are satis�ed and, every process takes

an in�nite number of steps, and every message sent to a process is eventually

received. Hence R1� is a run of ADr!�. Furthermore, for any time t and any

process p, there is a time t0 � t and a process q, such that p 2 output(�; t0)q.

Hence � does not satisfy eventual weak accuracy in R1� . 2

Proposition 5.4 Let � � 
, and consider 3W and 3W(� ). We have

3W(� ) � 3W and W(� ) � W .

Proof. By Lemma 5.1 and Lemma 5.3, no algorithm can transform any failure

detector of W(� ), into some failure detector of 3W. In other words,

:(3W � W(� )). As 3W � W and 3W(� ) � W(� ), then :(3W � 3W(� ))

and :(W � W(� )). By Lemma 3.1, we have 3W(� ) � 3W and W(� ) � W.

Altogether, we have 3W(� ) � 3W and W(� ) � W . 2

6 About Strong Accuracy

This section compares the classes of � -accurate failure detectors P(� ), Q(� ),

3P(� ), and 3Q(� ), with the classes of accurate failure detectors P, Q, 3P,

and 3Q. We assume in this section that j
j > 1, and we show in the following

(Proposition 6.4) that, for any subset � � 
 and even with reliable channels,



no algorithm can transform any failure detector of P(� ) into some failure de-

tector of 3Q. Hence, we have: P(� ) � P, Q(� ) � Q, 3P(� ) � 3P, and

3Q(� ) � 3Q.

A consequence of P(� ) � P is that problems requiring P (e.g election [10],

genuine atomic multicast [7], and non-blocking atomic commitment [6]) cannot

be solved with P(� ).

The proof of P(� ) � P, Q(� ) � Q, 3P(� ) � 3P and 3Q(� ) � 3Q, is similar

to the proof of the previous section. We introduce a speci�c failure detector

D0(�; r) of class P(� ), and we show that D0(�; r) cannot be transformed into

some failure detector of 3Q. More precisely, we show that if some algorithm

AD0(�;r)!� transforms D0(�; r) into some failure detector � that satis�es weak

completeness, then � cannot satisfy eventual strong accuracy.

Failure detector D0(�; r). Let r be any process in 
. We de�ne the failure

detector D0(�; r) using the notion of frg�pattern. We say that a failure

pattern F is a frg�pattern if only r can crash in F . Using this notion, we

de�ne D0(�; r) as follows. Consider � � 
 and r 2 
�� . We de�ne D0(�; r)

such that (1) in any frg�pattern F , D(�; r)(F ) is the set of histories such

that (a) r is permanently suspected by every process that has not crashed,

and (b) 8r0 6= r, r0 is never suspected by any process, and (2) in any pattern

F 0 that is not a frg�pattern, D(�; r)(F 0) is the set of histories such that

D0(�; r) satis�es strong completeness and strong accuracy.

Lemma 6.1 D0k is of class P(� ).

Proof: In any frg�pattern, D0(�; r) satis�es strong � -accuracy and strong

completeness. In any run that is not a frg�pattern, D0(�; r) satis�es strong

accuracy and strong completeness. Altogether, D0(�; r) is thus of class P(� ). 2

Lemma 6.2 Let AD0(�;r)!� be any algorithm that transforms the failure de-

tector D0(�; r) into some failure detector �. Let R =< F;HD0(�;r); C; S; T >

be any partial run of AD0(�;r)!� where F is a 0�pattern. If � satis�es weak

completeness, then there is an extension R
 =< F;HD0(�;r); C; S
; T
 > of R,

a process q, and a time t, T [jT j] � t � T
[jT
j], such that r 2 output�(q; t).

Proof: (similar to the proof of Lemma 5.2) Consider the partial run R =<

F;HD0(�;r); C; S; T > where F is a 0�pattern. Let R0 =< F 0;HD0(�;r); C; S; T >

be a partial run where F 0 is a 1�pattern, similar to F , except that in F 0, r

crashes at time T [jT j + 1] (immediately after T [jT j]). The process r can in-

deed crash as 
 contains at least two processes. As D0(�; r) provides the same

values both for F and F 0, and S is applicable to C, then R0 is a partial run

of AD0(�;r)!�. By the weak completeness property of �, there is an exten-

sion R0q =< F 0;HD0(�;r); C; Sq; Tq > of R0, and a correct process q, such that

r 2 output(�;Tq[jTqj])q. Let SSusp(q) be the schedule of AD(�;r)!� such that



Sp(C) = SSusp(q)(S(C)). Consider now the run R =< F;HD0(�;r); C; S; T >. As

D0(�; r) provides the same values for both F 0 and F , and Sq is applicable to C,

then

R
 =< F;HD(�;r); C; Sq; Tq > is an extension ofR, and there is a correct process

q, such that r 2 output(�;Tq[jTqj])q. 2

Lemma 6.3 Let AD0(�;r)!� be any algorithm that transforms the failure detec-

tor D0(�; r) into some failure detector �. If � satis�es weak completeness, then

there is a run of AD0(�;r)!�, where � does not satisfy eventual strong accuracy.

Proof: (similar to the proof of Lemma 5.3) Consider the partial run

R =< F;HD0(�;r); C; S; T > with F a 0�pattern. By Lemma 6.2, there is an

extension of R, R
 =< F;HD0(�;r); C; S
; T
 >, a correct process q, and a time

t, T [jT j]� t � T
[jT
j], such that r 2 output(�; t)q. As in proof of Lemma 5.3,

we build a partial run R�, that is an extension of R where all messages sent to

every process p before time T [jT j] are received by p in R�, and p takes at least

one step after T [jT j] in R�. We note R0
� = R�, R

1
� an extension of R obtained

by applying the construction above to R0
�, R

i
� an extension of R obtained by

applying the construction above to Ri�1
� , etc., and R1� = limi!1R

i
�.

In R1� , the properties of a partial run are satis�ed, every process takes an

in�nite number of steps, and every message sent to a process is eventually re-

ceived. Hence R1� is a run of AD0
r!�. Furthermore, for any time t , there is a

correct process q, and a time t0 � t, such that r 2 output(�; t0)q . Hence � does

not satisfy eventual strong accuracy in R1� . 2

Proposition 6.4 Let � � 
, and consider P(� ), P, 3P(� ), 3P, Q(� ) , Q,

3Q(� ), and 3Q. We have P(� ) � P, 3P(� ) � 3P, Q(� ) � Q, and

3Q(� ) � 3Q.

Proof: By Lemma 6.1 and Lemma 6.3, no algorithm can transform any failure

detector of P(� ) into some failure detector of 3Q. In other words,

:(3Q � P(� )). As P � 3Q, 3P � 3Q, 3Q � Q, 3Q(� ) � P(� ),

3P(� ) � P(� ), Q(� ) � P(� ), then :(P � P(� )), :(3P � 3P(� )),

:(Q � Q(� )), :(3Q � 3Q(� )).

By Lemma 3.1, we have P(� ) � P , 3P(� ) � 3P, Q(� ) � Q, and

3Q(� ) � 3Q. Altogether, we have P(� ) � P, 3P(� ) � 3P , Q(� ) � Q, and

3Q(� ) � 3Q. 2

7 Comparing \� -accurate" failure detectors

Chandra and Toueg have shown that, for accurate failure detectors, weak com-

pleteness can be transformed into strong completeness while preserving accuracy

properties [4]. In other words, Q �= P, 3Q �= 3P,W �= S, and 3W �= 3S. This



section shows that these results do not hold anymore for � -accurate failure de-

tectors. More precisely, we show that given j
j > 2, for any � � 
, and even

with reliable channels, we have Q(� ) � P(� ), 3Q(� ) � 3P(� ),W(� ) � S(� ),

and 3W(� ) � 3S(� ) 6.

Our proof is based on the failure detector D(�; r), de�ned in Section 5, which

was shown to be of the classes Q(� ) and W(� ). We show that D(�; r) cannot

be transformed into some failure detector of class 3S(� ). More precisely, we

show that if an algorithm AD(�;r)!� transforms the failure detector D(�; r)

into some failure detector � that satis�es strong completeness, then � cannot

satisfy eventual weak ��accuracy. The proof is similar to those of Sections 5

and 6.

Lemma 7.1 Let AD(�;r)!� be any algorithm that transforms the failure detec-

tor D(�; r) into some failure detector �. Let R =< F;HD(�;r); I; S; T > be any

partial run of AD(�;r)!� where F is a 0�pattern. If � satis�es strong complete-

ness, then there is an extension R
 =< F;HD(�;r); I; S
; T
 > of R, where for

every process p and every process q in 
, there is a time t, T [jT j] � t � T
[jT
j],

such that p 2 output�(q; t).

Proof: (similar to the proof of Lemma 5.2). Let R =< F;HD(�;r); I; S; T > be

any partial run of AD(�;r)!�, where F is a 0�pattern. Let

R0 =< F 0;HD(�;r); C; S; T > be a partial run where F 0 is a 1�pattern, sim-

ilar to F , except that in F 0, p crashes at time T [jT j + 1] (immediately after

T [jT j]). The process p can indeed crash as 
 contains at least two processes. As

D(�; r) provides the same values both for F and F 0, and S is applicable to C,

then R0 is a partial run of AD(�;r)!�. By the strong completeness property of�,

there is an extension R0p =< F 0;HD(�;r); C; Sp; Tp > of R0, such that for every

process q, p 2 output(�;Tq[jTqj])q. As D(�; r) provides the same values for both

F 0 and F , and Sp is applicable to C, then Rp =< F;HD(�;r); C; Sp; Tp > is also

an extension of R.

By iteratively applying the construction of the partial run Rp to every process

p 2 
, the partial run R can be extended to a partial run R
 where every process

p is put in output(�)q for every process q. 2

Lemma 7.2 Let AD(�;r)!� be any algorithm that transforms the failure detec-

tor D(�; r) into some failure detector �. If � satis�es strong completeness, then

there is a run ofAD(�;r)!�, where � does not satisfy eventual weak ��accuracy.

Proof: (similar to the proof of Lemma 5.3) Consider the partial run

R =< F;HD(�;r); C; S; T > with F a 0�pattern. By Lemma 7.1, there is an ex-

tension of R, R
 =< F;HD(�;r); C; S
; T
 >, where every process p is put in

output(�)q for every process q. As in proof of Lemma 5.3, we can thus build a

run R1� , that is an extension of R, where for any time t, for any pair of processes

6 The assumption j
j> 2 is only needed forW(� ) � S(� ). The other results hold for

j
j> 1. However, for presentation uniformity we assume that j
j> 2.



(p; q), there is a time t0 � t, such that p is put in output(�)q of q. Hence � does

not satisfy strong completeness. 2

Proposition 7.3 Let j
j > 2, � � 
, and consider Q(� ), P(� ), 3Q(� ),

3P(� ), W(� ), S(� ), 3W(� ), and 3S(� ). We have: Q(� ) � P(� ),

3Q(� ) � 3P(� ), W(� ) � S(� ), and 3W(� ) � 3S(� ).

Proof. By Lemma 7.1, and Lemma 7.2, no algorithm can transform any fail-

ure detector ofQ(� ), orW(� )), into some failure detector of 3S. In other words,

:(3S � Q(� )) and :(3S � W(� )). As 3S(� ) � P(� ), 3S(� ) � 3P(� ),

3Q(� ) � Q(� ), and 3W(� ) � W(� ), then :(P(� ) � Q(� )),

:(3P(� ) � 3Q(� )), :(S(� ) � W(� )), and :(3S(� ) � 3W(� )).

By Lemma 3.2, Q(� ) � P(� ), 3Q(� ) � 3P(� ), W(� ) � S(� ), and

3W(� ) � 3S(� ) Altogether, we have, Q(� ) � P(� ), 3Q(� ) � 3P(� ),

W(� ) � S(� ), and 3W(� ) � 3S(� ). 2

8 Summary and Discussion

We have de�ned a formalism to express the knowledge about crash failures in a

distributed system, in terms of ��accurate failure detectors. This formalism can

be viewed as a generalization of the formalismof accurate failure detectors intro-

duced in [4]. To reuse the results about the solvability of distributed agreement

problems stated in [4], we have stated a set of relations between accurate and

��accurate failure detector classes. These relations are summarized in Figure 4.

We assume in the �gure that � � 
 and j
j > 2. The notation A ! B means

that failure detector classes A and B are equivalent. The notation A �! B

means that A is strictly weaker than B. The notation A 7�! B means that A is

strictly weaker than B if j� j > j
j=2 and f < j
j=2.

( )PW ( ) ( )Q

( )P( )W ( )Q

P
W

Q

PW Q

( )S

S

( )S

S

Fig. 4. Relations between failure detector classes



The formalism of � -accurate failure detectors enables to characterize and

compare some well known distributed protocols designed with network parti-

tions in mind. The initial 3PC protocol (Three Phase Commit) proposed by

Skeen in 1981 [11] can be seen as requiring the failure detector class P and reli-

able channels. In 1982, Skeen proposed a variation of the 3PC protocol, Quorum

Three Phase Commit (Q3PC) [12], which solves the non-blocking weak atomic

commitment problem provided there is a \partition" � of correct processes that

constitutes a quorum. Stated in our formalism, the Q3PC protocol requires even-

tual reliable channels, the failure detector class P(� ), such that � is a majority

(i.e j� j > j
j=2), and all the processes in � correct. As P(� ) � P (Sect. 6), the

Q3PC protocol is an improvement over 3PC.

Later, Keidar and Dolev have de�ned Enhanced 3PC (E3PC) which increases

the resilience of Q3PC provided that the quorum exists \eventually" [9]. Stated

in our formalism, E3PC assumes a failure detector of the class 3P(� ), such

that � is a majority (i.e. j� j > j
j=2), and all the processes in � correct. As

3P(� ) � P(� ), E3PC is an improvement over Q3PC.

Finally,Guerraoui has shown that the non-blocking weak atomic commitment

problem can be solved with 3S [6]. By the result of Section 4, if f < j
j=2

and j� j > j
j=2, then 3S �= 3S(� ). Because 3S(� ) � 3P(� ) (Sect. 7), a

protocol requiring only 3S(� ) 7 can be seen as an improvement over E3PC.

This comparison is somehow unfair as the E3PC protocol is based on a bounded

bu�er assumption, whereas our eventual reliable channel assumption implicitly

requires unbounded bu�ers (used to store messages to be retansmitted).

The model underlying the E3PC protocol has been described in [5], and the

results concerning atomic commitment have been generalized to other consensus-

like problems. Babao�glu et al. have adopted a complementary approach, by dis-

cussing the solvability of problems that are weaker than consensus [2], such as

weak-partial group membership, in a weaker asynchronous system model where

channels are not assumed to be eventually reliable. Both models (i.e. [5] and

[2]) introduce new failure detector formalisms. Finding out a way to relate our

� -accurate failure detectors to those introduced in [5] and [2] (and hence the

associated results) is still an open issue.
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