
Non Blocking Atomic Commitment

with an Unreliable Failure Detector �

Rachid Guerraoui Mikel Larrea Andr�e Schiper

D�epartement d'Informatique

Ecole Polytechnique F�ed�erale de Lausanne

1015 Lausanne, Switzerland

Abstract

In a transactional system, an atomic commitment protocol ensures that for any trans-

action, all Data Manager processes agree on the same outcome (commit or abort). A

non-blocking atomic commitment protocol enables an outcome to be decided at every

correct process despite the failure of others. In this paper we apply, for the �rst time,

the fundamental result of Chandra and Toueg on solving the abstract consensus problem,

to non-blocking atomic commitment. More precisely, we present a non-blocking atomic

commitment protocol in an asynchronous system augmented with an unreliable failure

detector that can make an in�nity of false failure suspicions. If no process is suspected

to have failed, then our protocol is similar to a three phase commit protocol. In the case

where processes are suspected, our protocol does not require any additionnal termination

protocol: failure scenarios are handled within our regular protocol and are thus much

simpler to manage.

1 Introduction

A transaction can be viewed as an atomic group of invocations on data objects. Transaction

atomicity implies concurrency atomicity and failure atomicity [2]. Concurrency atomicity

(also called isolation or serializability) means that the intermediate e�ects of a transaction on

shared data objects are invisible to other transactions. Failure atomicity (also called all-or-

nothing property) means that either a transaction completes successfully and is committed,

or is aborted and has no e�ect on data objects. To ensure the failure atomicity property,

termination of a transaction that updates distributed data objects has to be coordinated

among Data Manager processes according to some atomic commitment protocol. The aim of

this protocol is to bring the processes to agree on an outcome for the transaction: commit or

abort.

Several atomic commitment protocols have been proposed in the literature. The simplest

and the best known protocol is the two phase commit protocol (2PC) [10]. This protocol is

easy to implement but can be blocking. For example, if the coordinator fails while all Data

�Paper appears in the 14th IEEE Symposium on Reliable Distributed Systems, 13-15 Sept. 95, Bad Neue-

nahr, Germany. Research supported by the \Fonds national suisse" and OFES under contract number 21-

32210.91, as part of the ESPRIT Basic Research Project BROADCAST (number 6360), and by PPR-IF under

contract number 5003-34344.



Manager processes are waiting for a decision message, then none of these processes can ter-

minate the transaction. A process must wait for the coordinator to recover before deciding

on an outcome. During this period, the process will be prevented from relinquishing valuable

resources that it may have acquired for exclusive use on behalf of the transaction, e.g locks on

shared data objects. Assuming a synchronous system (where there is a known upper bound

on process relative speeds and communication delays), many authors have proposed non-

blocking atomic commitment protocols [13, 14, 1, 12]. Assuming a semi-asynchronous system

(where messages are usually delivered within some known time bound, but sometimes come

late), Coan and Welch have presented in [4] a randomized non-blocking atomic commitment

protocol. A non-blocking protocol enables an outcome to be decided at every correct process

despite the failure of others. Non-blocking protocols are desirable since they limit the time

intervals during which transactions may be holding valuable resources.

In this paper, we are interested in deterministic non-blocking atomic commitment proto-

cols in asynchronous systems (where no assumption is made about process relative speeds

or communication delays). In such systems, the three phase commit (3PC) protocol of [13]

may lead processes to decide on di�erent outcomes for a transaction and thus may violate

the failure atomicity property. The protocols in [14, 1, 12] guarantee that, even in an asyn-

chronous system, two processes can never decide on di�erent outcomes. However, there is no

rigorous characterization of the conditions under which these protocols are non-blocking in

asynchronous systems.

Di�culty in designing non-blocking atomic commitment protocols in asynchronous systems is

not surprising because of the so called FLP impossibility result [7]. This result states that, in

an asynchronous system, no agreement among processes can be solved in a deterministic and

fault-tolerant way (i.e non blocking). As atomic commitment is a typical agreement problem,

the FLP impossibility result also applies for non-blocking atomic commitment [11]. Recently,

Chandra and Toueg have shown that by adding a failure detector to an asynchronous system,

the consensus problem (an abstract form of agreement) becomes solvable if a majority of pro-

cesses are correct. They have given in [3] a protocol that solves the consensus problem based

on an unreliable failure detector, named Eventually Strong, and noted 3S. Roughly speaking,

the failure detector 3S ensures that (1) eventually every process that fails is permanently

suspected (to have failed) by every correct (that do not fail) process, and (2) eventually some

correct process is never suspected by any correct process. The failure detector 3S can make

an in�nity of false failure suspicions.

We present an adaptation of the Chandra-Toueg consensus protocol to the non-blocking

atomic commitment problem. Our de�nition of the non-blocking atomic commitment prob-

lem is slightly di�erent from previous de�nitions given in the literature (in the context of

synchronous systems). Our protocol solves the non-blocking atomic commitment problem,

assuming the failure detector 3S and a majority of correct processes 1. If these assumptions

are not satis�ed, our protocol will not terminate, but it guarantees that no two processes

can decide on di�erent outcomes. If no process is suspected, then our protocol is similar to

existing three phase commit protocols (3PC) [13, 14, 12]. In the case where failures occur,

1As shown in [3], a protocol that is correct with 3S can easily be transformed to be correct with a failure
detector 3W. We will briey discuss this issue in Section 4 of this paper.

2



the termination protocols generally associated to 3PC protocols become extremely compli-

cated [2]. In comparison, all possible failure cases are handled within our regular protocol.

Hence, besides a rigorous characterization of its liveness (i.e properties of 3S and a majority

of processes are correct), our protocol provides a simpler way to handle failure scenarios.

The rest of the paper is organized as follows. The next Section describes our model of an

asynchronous system augmented with a failure detector. In Section 3, we present an abstract

de�nition of the non-blocking atomic commitment problem. Then we point out the main

di�erences between non-blocking atomic commitment and consensus problems. Section 4

�rst presents our protocol in an intuitive way, and then in a formal way. Finally, Section 5

summarizes the main contributions of this paper.

2 Model

2.1 System Model

We consider a distributed system composed of a �nite set of processes S = fp1; p2; : : : ; png

completely connected through a set of channels. Communication is by message passing, asyn-

chronous and reliable. Asynchrony means that there is no bound on communication delays.

A reliable channel ensures that a message sent by a process pi to a process pj is eventually

received by pj , if pi and pj are correct (i.e. do not fail)2. A reliable channel can be imple-

mented by retransmitting lost or corrupted messages. Processes fail by crashing; we do not

consider Byzantine failures. A process pi 2 S may (1) send a message to another process, (2)

receive a message sent by another process, (3) perform some local computation, or (4) fail.

Failure is modeled by the local event crashi. The process history of pi 2 S is a sequence of

events hi = e0
i
� e1

i
� � �ek

i
. Histories of correct processes are in�nite. If not in�nite, the process

history of pi terminates with event crashi.

The absence of a bound on communication delays makes it di�cult to handle crash failures.

Chandra and Toueg [3] propose to augment an asynchronous system, with a failure detector

which gives hints on crashed processes. We follow their approach and assume that our asyn-

chronous system is augmented with a failure detector. A failure detector can be viewed as a

distributed oracle. Each process has access to a local failure detector module. This module

maintains a list of processes that it currently suspects to have failed. We do not make any

assumption on how a failure detector is implemented. For example, the local failure detector

module of a process could query other processes, and suspect those that do not respond in a

timely fashion. In order to reduce the number of false suspicions, the local failure detector

module can also consult other failure detector modules before suspecting a process.

Failure detectors can be abstractly characterized by their completeness and accuracy proper-

ties. Completeness requires that the failure detector eventually suspects every process that

actually fails, while accuracy restricts the mistakes that a failure detector can make. In the

following, we will consider the Eventually Strong failure detector, noted 3S. The failure

detector 3S guarantees (1) strong completeness, i.e. eventually every process that fails is

permanently suspected by every correct process, and (2) eventual weak accuracy, i.e. there is

2This assumption does not exclude link failures, if we require that any link failure is eventually repaired.

3



/* The transaction manager executes: */

1 send (start,transaction,operations,participants) to all participants ;

/* All participants (including the transaction manager) execute: */

2 when receive(start,transaction,operations,participants)

3 /* Perform operations requested by transaction */

4 if (able to make updates permanent) then

5 vote := yes ;

6 else

7 vote := no ;

/* Start the atomic commitment protocol */

8 atomicCommitment(transaction,participants) /* see Figure 3 */

Figure 1: Transaction Execution Model

a time after which some correct process is never suspected by any correct process. The failure

detector 3S can thus make an in�nity of mistakes (false failure suspicions).

2.2 Distributed Transactions

For each transaction, the processes that perform updates on its behalf are called participants.

Each participant updates data objects that are local to it. We consider the transaction

execution model explained in [1], and described in Figure 1. The transaction originates from

a single participant called the Transaction Manager. The transaction manager distributes the

transaction to the participants by sending them start messages containing a description of

the transaction operations and the full list of participants. After a participant performs the

operations requested by the transaction, the participant uses a variable vote which denotes

its ability to locally install the updates. A yes vote indicates that the participant is able to

make the updates permanent. A no vote indicates that the participant is unable to make the

updates permanent. We do not make any assumption on how the vote is determined by a

participant. For example :

� In a pessimistic approach, where a lock has been acquired by the transaction manager [6],

a participant votes yes if and only if the participant has written the updates on stable

storage. Otherwise, the participant votes no, e.g if the disk is full.

� In an optimistic approach (without locking) [2], a participant votes yes if and only if no

concurrency control conict has been locally detected, and the participant has written

the updates on stable storage. Otherwise, the participant votes no.

Finally, the participants start an atomic commitment protocol (i.e by executing the procedure

atomicCommitment(transaction, participants) at line 8 of Figure 1). The aim of this protocol

is to bring the participants to agree on an outcome for the transaction (either commit or

abort). The transaction failure atomicity property lies on this agreement.

3 The Non-Blocking Atomic Commitment Problem

In this section we de�ne the non-blocking atomic commitment problem in our distributed

system model.

4



3.1 Overview

Each participant must decide on an outcome for the transaction among two possible values:

commit or abort. The participants must agree on the same outcome despite failures. The

outcome can be commit only if the votes of all participants are yes. In order to exclude trivial

situations where participants always decide abort, it is generally required [1] that commit must

be decided if (1) all votes are yes and (2) no process fails. This strong Non-Triviality condition

is not adequate in an asynchronous system, since it requires precise knowledge about failures.

A characteristic of an asynchronous system is that a failed process cannot be distinguished

from a process that is just very slow. We consider a weaker Non-Triviality condition where

commit must be decided if (1) all votes are yes and (2) no process has ever been suspected
3.

3.2 De�nition

We de�ne the non-blocking atomic commitment problem by the following conditions:

� AC-Uniform-Agreement: If two participants decide, they decide on the same out-

come.

� AC-Uniform-Validity: The outcome is commit only if all participants have voted yes.

� AC-Termination: Every correct participant eventually decides.

� AC-Non-Triviality: If all participants vote yes, and no participant has ever been

suspected, the outcome must be commit.

The AC-Agreement and the AC-Validity conditions are safety conditions. They ensure the

failure atomicity property of transactions. The AC-Termination condition is a liveness condi-

tion which guarantees the non-blocking property. The AC-Non-Triviality condition excludes

trivial solutions to the problem where participants always decide to abort transactions. This

condition can be viewed as a liveness condition from the application point of view since it

ensures progress (i.e transaction commit) whenever possible (i.e when no suspicion and no no

vote).

3.3 Atomic Commitment vs Consensus

As it has been pointed out in [11], the non-blocking atomic commitment problem is very sim-

ilar to the abstract consensus problem. In the latter problem, every participant starts with

an initial value, and the participants must agree on a common �nal value. The consensus

problem is de�ned by the following three conditions4: C-Uniform-Agreement: if two partici-

pants decide, they decide on the same �nal value; C-Uniform-Validity: the �nal value must

be the initial value of some participant; C-Termination: every correct participant eventually

decides. The so called FLP impossibility result [7] states that in an asynchronous system,

there is no deterministic and fault-tolerant protocol that solves the consensus problem even

if only one participant can fail. Hadzilacos has proved in [11] that this impossibility result

3We discuss this issue in more details in [8].
4We consider actually here the uniform consensus problem. However, we show in [8] that in asynchronous

systems with unreliable failure detectors, consensus and uniform consensus are equivalent.

5



applies also to the non-blocking atomic commitment problem.

However, Chandra-Toueg have shown that, by adding a failure detector to an asynchronous

system, consensus becomes solvable [3]. They have given a protocol that solves the consensus

problem based on the failure detector 3S. In Section 4, we present an adaptation of their

protocol to the non-blocking atomic commitment problem. It is worthwhile, at this stage,

to point out the main di�erences between the non-blocking atomic commitment problem, as

de�ned in Section 3.2, and the consensus problem:

� In the non-blocking atomic commitment problem, a participant can decide abort as soon

as it learns that at least one participant has voted no. Hence, a participant that votes

no can unilateraly decide abort. No such unilateral decision is possible in a consensus

protocol.

� In the non-blocking atomic commitment problem, a participant can decide commit only

if it knows that all participants have voted yes. No decision in the consensus problem

requires full knowledge about all initial values.

4 A Non-Blocking Atomic Commitment Protocol

In this section, we present our non-blocking atomic commitment protocol. We �rst give

an intuitive idea of the protocol, then we present it in a more precise way and prove its

correctness. We consider n participant processes, p1; p2; ::; pn, and we note f the maximum

number of participants that may fail. Furthermore, we consider the commitment of one single

transaction5.

4.1 Overview of the protocol

Any participant p which votes no immediatly decides abort and sends this decision to all par-

ticipants. If p is correct, all participants will learn the decision. If p fails, it will eventually be

suspected by 3S. This is because 3S satis�es strong completeness: eventually every process

that fails is permanently suspected by every correct process.

The participants that do not perform unilateral aborts (i.e the participants that vote yes)

take part in the main protocol with multiple asynchronous rounds. This protocol is based

on the rotating coordinator paradigm [5]. In this protocol, all participants execute the same

sequence of rounds. At any given round, one single participant is the coordinator. All par-

ticipants have a priori knowledge that during round r, the coordinator is the participant pc,

where c = (r mod n) + 1. For example, at round 0 the coordinator is p1. At a given time,

two participants may be in two di�erent rounds and thus may have di�erent coordinators. A

coordinator tries to decide on an outcome by executing an algorithm similar to a three phase

commit [13] (Figure 2). The coordinator �rst waits for information of votes, or noti�cation

of failure suspicions, about all participants. Depending on the votes or on the suspicions,

the coordinator suggests an outcome by sending an estimate (pre-commit or pre-abort) to

all participants (step C.1 in Figure 2). If enough (actually n � f) participants agree with

5Messages concerning di�erent transactions are assumed to be clearly distinguished.

6



p1

p
2

p
3

p4

p
5

step P.1

estimates

step C.1

pre−abort or
pre−commit

step P.2

ack or nack

step C.2

decision

Figure 2: The steps in a round where p1 is the coordinator

the estimate, the coordinator succeeds in deciding an outcome and sends it to all partici-

pants (step C.2 in Figure 2). A coordinator that is suspected may not reach a decision, and

moves to another round.

We will show that if we assume f < n=2, our protocol guarantees that no two participants

can decide di�erently. The assumption that less than f participants may fail and the strong

completeness property of the failure detector 3S, ensure that no participant remains blocked

forever waiting for messages from other participants. The eventual weak accuracy property

of 3S (i.e eventually some correct process is never suspected by any correct process), ensures

that at least one coordinator eventually decides, and sends its decision to all participants.

Our protocol is an adaptation of the Chandra-Toueg consensus protocol with 3S [3]. The

main di�erences between the protocols reect the asymmetry in the commit-abort decision

(Section 3.3):

1. In our protocol, any participant which votes no immediatly decides abort and sends

this decision to all participants. In the Chandra-Toueg consensus protocol, only a

coordinator can decide.

2. In our protocol, a coordinator can decide commit only if it knows that all participants

have voted yes. In the Chandra-Toueg consensus protocol, a coordinator never has to

get information from all participants.

4.2 The Protocol

Each participant p maintains a variable estp (estimate) denoting its estimate of the decision,

and a variable tsp (timestamp) representing the round where the estimate was last modi�ed.

The procedure executed by participant p is described in Figure 3. If p's vote is no, p decides

abort (line 7 in Figure 3) and sends the decision to all participants (line 8 in Figure 3). In

this case, either p is correct and all participants will learn the decision, or p fails and will

eventually be suspected by 3S.

If p's vote is yes, p executes two concurrent tasks (line 10 in Figure 3). The �rst task

(Task 1) is described in Figure 4. It consists in waiting for a decision message, deciding upon

the reception of the message (line 3 of Task 1), and transmitting the decision to the other

participants (line 4 of Task 1).

7



procedure atomicCommitment(transaction,participants):

outcome : f commit, abort g ; /* Data structure */

statep : f decided, undecided g ;

estp : f pre-abort, pre-commit g ; /* Estimate */

rp : integer; /* Round */

tsp : integer; /* Timestamp */

1 statep := undecided ; /* Initialisation */

2 estp := pre-abort ;

3 rp := �1 ;

4 tsp := 0 ;

5 if vote = no then /* Unilateral abort */

6 statep := decided ;

7 decide(transaction; abort) ;

8 send(p; rp; abort; decide) to all participants ;

9 else

10 cobegin Task 1 k Task 2 coend ; /* Concurrent Tasks */

Figure 3: The atomic commitment procedure

The second task (Task 2) is described in Figure 5. In contains the main protocol with asyn-

chronous rounds based on the rotating coordinator paradigm. In each round (denoted rp for

participant p), a participant p, which is not the coordinator, executes sequentially the steps

P.1, P.2. The coordinator executes sequentially the steps P.1, C.1, P.2, C.2. During steps P.1,

C.1, P.2, or C.2, p either (1) sends a message, (2) waits for a message or for an information

about a suspicion (i.e by consulting its failure detector module, noted 3Sp), (3) receives a

message, or (4) performs some local computation.

The steps P.1, C.1, P.2, C.2. of Task 2 are described in Figure 5, and detailed below.

Step P.1: The participant sends its estimate to the coordinator (line 4 of Task 2). Recall that

a participant performs Task 2 (and thus sends its estimate in step P.1), only if it has voted yes.

Step C.1: The coordinator waits to receive estimates from n � f participants (line 6 of

Task 2), and either to suspect or to receive an estimate from each of the rest of the f partici-

pants (line 7 of Task 2). If n estimates have been received (which means that all participants

have voted yes), the coordinator adopts pre-commit as its estimate (line 10 of Task 2), and

proposes it to all participants (line 14 of Task 2)6. If the coordinator does not receive n

estimates, it adopts the estimate with the largest timestamp (line 13 of Task 2), and proposes

it to all participants (line 14 of Task 2).

Step P.2: The participant waits either to receive an estimate from the coordinator or to

suspect the coordinator (line 15 of Task 2). If the participant receives an estimate, it adopts

the coordinator's estimate and sends an ack to the coordinator (line 19 of Task 2). Otherwise,

6This is a subtle di�erence with the Chandra-Toueg protocol.

8



the participant sends a nack to the coordinator (line 21 of Task 2). Then the participant

moves to the next round.

Step C.2: The coordinator waits to receive answers (ack or nack) from n � f partici-

pants (line 23 of Task 2). If n � f answers are ack, the coordinator decides on its estimate,

and sends it to all the participants. Otherwise, the coordinator moves to the next round.

Task 1:

1 wait until receive(�;�; outcome; decide) ;

2 statep := decided ;

3 decide(transaction; outcome) ;

4 send(�;�; outcome; decide) to all participants ;

Figure 4: Task 1

4.3 Correctness

We show in the following that our protocol solves the non-blocking atomic commitment prob-

lem assuming the failure detector 3S and f < n=2. We �rst prove AC-Agreement (Lemma 1)

and AC-Termination (Lemma 2).

Lemma 1. If f < n=2, no two participants decide di�erently.

Proof.

Case 1: Unilateral abort (at least one participant votes no).

We show by contradiction that no participant can decide commit. For a process to decide

commit, at least one coordinator must have adopted the estimate pre-commit in step C.1

(line 10 of Task 2 ) because initially all estimates are pre-abort. This means that all partic-

ipants have sent their estimate to the coordinator, which implies that all participants have

voted yes: a contradiction.

Case 2: No unilateral abort (all participants vote yes).

Assume that one participant p decides (commit or abort). This means that p has received a

message (�;�; outcome; decide) from a coordinator (line 1 of Task 1). Let r be the smallest

round number in which a coordinator pc (where c = (r mod n) + 1) has sent the message

(�;�; outcome; decide) to the participants. We show by induction that, for all rounds r0 � r,

any coordinator pc0 (where c0 = (r0 mod n) + 1) which sends a decision message, sends the

same outcome. This trivially holds for r0 = r. Consider r0 = r + 1.

(1) Assume the outcome is commit: in round r, pc has sent the message (pc; r; commit; decide)

in step C.2 (line 27 of Task 2). This implies that in round r, at least n� f participants have

adopted the estimate pre-commit in step P.2 (line 17 of Task 2) and no participant has adopted

the estimate pre-abort. In round r + 1, if the coordinator pc0 adopts an estimate (line 13 of

Task 2), it must adopt pre-commit since f < n=2 and pc0 must have received at least one

estimate pre-commit with timestamp r (the largest one in round r + 1).

(2) Assume the outcome is abort: in round r, pc has sent the message (pc; r; abort; decide) in

step C.2. This implies that in round r, at least n� f participants have adopted the estimate

pre-abort in step P.2 (line 17 of Task 2) and no participant has adopted the estimate pre-

9



Task 2:

1 while statep = undecided

2 rp := rp + 1 ;

3 coord := p(rp mod n)+1 ;

4 send (p; rp; estp; tsp) to coord ; /* Step P.1 */

5 if p = coord then /* Step C.1 */

6 wait until [(for n� f participants q: received (q; rp; estq; tsq) from q)

7 and (for n participants q: received (q; rp; estq; tsq) from q or q 2 3Sp)] ;

8 msgsp[rp] = f(q; rp; estq ; tsq) such that p received (q; rp; estq; tsq) from qg ;

9 if jmsgsp [rp]j = n then

10 estp := pre-commit ;

11 else

12 t := largest tsq such that (q; rp; estq ; tsq) 2 msgsp [rp] ;

13 estp := select one estq such that (q; rp; estq ; t) 2 msgsp [rp] ;

14 send (p; rp; estp) to all participants ;

15 wait until [received (coord; rp; estcoord) from coord or coord 2 3Sp] ; /* Step P.2 */

16 if received (coord; rp; estcoord) then

17 estp := estcoord ;

18 tsp := rp ;

19 send (p; rp; ack) to coord ;

20 else

21 send (p; rp; nack) to coord ;

22 if p = coord then /* Step C.2 */

23 wait until [for n� f participants q: received (q; rp; ack) or (q; rp; nack)] ;

24 if [for n� f participants q: (received (q; rp; ack)] then

25 statep := decided ;

26 if outcome = pre-commit then

27 send (p; rp; commit; decide) to all participants ;

28 else

29 send (p; rp; abort; decide) to all participants ;

Figure 5: Task 2

commit. In round r + 1, if the coordinator pc0 adopts an estimate, it must adopt pre-abort

since f < n=2 and pc0 must have received at least one estimate pre-abort with timestamp r

(the largest one in round r + 1). 2

Lemma 2. If f < n=2 and assuming the failure detector 3S, every correct participant even-

tually decides.

Proof.

Case 1: Unilateral abort for a correct participant (at least one correct participant votes no).

Consider p a correct participant that votes no. Participant p decides abort (in a unilateral

way) and sends message (p; rp; abort; decide) to all participants (line 8 in Figure 3). Since

p is correct and channels are reliable, every correct participant eventually receives message

(p; rp; abort; decide) and decides.

10



Case 2: No unilateral abort for a correct participant (all correct participants vote yes).

Every correct participant starts Task 1 and Task 2 (line 10 in Figure 3). If some correct

participant decides in Task 1 (line 3 of Task 1), it retransmits the decision message to all

participants (line 4 of Task 1). Every correct participant eventually receives the message and

decides.

Assume now that every correct participant starts Task 1 and Task 2, and no correct partic-

ipant decides. We �rst show (1) that no correct participant remains blocked forever at one

of the wait statement of Task 2 (lines 6 or 7 in step C.1, line 15 in step P.2, or line 23 in

step C.2). Then we show (2) that no correct participant remains blocked forever at the wait

statement of Task 1 (i.e every correct participant eventually decides).

1. No correct participant remains blocked forever in Task 2.

The proof is by contradiction. Let r be the smallest round number in which some correct par-

ticipant blocks forever at one of the wait statement of Task 2. As all correct participants (they

are at least n � f) have started Task 2 and none has already decided, they all have reached

step P.1 (line 4 of Task 2) in round r: they all have sent a message (�; r; estimate;�) to the

coordinator. We note pc this coordinator (where c = (r mod n) + 1). If pc crashes, every cor-

rect participant eventually suspects pc (line 15 of Task 2), thanks to strong completeness
7

property of 3S. Hence, no correct participant remains blocked unde�nitely in step P.2

(line 15 of Task 2). Assume pc is correct. Coordinator pc eventually receives n � f mes-

sages (�; r; estimate;�) and cannot remain blocked forever in step C.1 (line 6 of Task 2). In

addition, the strong completeness property of 3S ensures that pc eventually receives a mes-

sage (�; r; estimate;�) from each of the rest of the f participants or suspects it. Hence, pc
cannot remain blocked forever in step C.1 (line 7 of Task 2). A correct participant that does

not suspect pc, eventually receives message (pc; r; estpc) and cannot remain blocked forever

in step P.2 (line 15 of Task 2). Therefore, every correct participant eventually sends to pc
either a message (�; r; ack) (line 19 of Task 2), or a message (�; r; nack) (line 21 of Task 2).

This implies that pc eventually receives n� f (�; r; ack) or (�; r; nack) messages and cannot

remain blocked forever in step C.2 (line 23 of Task 2). As a consequence, all correct partici-

pants complete round r: a contradiction.

2. No correct participant remains blocked forever in Task 1.

Since 3S satis�es weak accuracy
8, eventually some correct participant p is not suspected by

at least n � f participants. Assume p becomes the coordinator of some round r. From the

above (1), at least n � f participants reach step P.2 of round r, adopt the estimate of p

(line 17 of Task 2), and send (�; r; ack) to p (line 19 of Task 2). The coordinator p eventu-

ally receives n � f messages (�; r; ack), and sends a decision message to all participants. As

p is correct, its decision is eventually received by every correct participant that also decides. 2

Proposition 1. With the failure detector 3S and if f < n=2, our protocol solves the non-

blocking atomic commitment problem.

Proof.

AC-Agreement: by Lemma 1.

AC-Validity: As initially all estimates are pre-abort, a participant decides commit only if

some coordinator has changed its estimate from pre-abort to pre-commit in step C.1 (line 10

of Task 2). In order to do so, this coordinator must have received n estimates, which means

7Every process that crashes is eventually suspected by every correct process.
8Eventually some correct process is never suspected by any correct process.

11



that all participants have voted yes.

AC-Termination: by Lemma 2.

AC-Non-Triviality: If no process is ever suspected and all participants vote yes, then the �rst

coordinator (in round 0) will receive n estimates. The coordinator will propose pre-commit

to the participants (in step C.1) and later will decide commit and will send its decision after

receiving n � f messages (�;�; ack) from the participants (in step C.2). Every participant

will thus receive this decision message, and decides commit. 2

4.4 Discussion

Blocking vs. inconsistency: It is important to notice that the AC-Agreement condition

(Lemma 1) only requires to assume f < n=2. If more than a majority of participants fail

(i.e more than f participants fail) or if the properties of 3S (strong completeness or eventual

weak accuracy) are not satis�ed, our protocol will not terminate, but never allows di�erent

participants to reach di�erent decisions.

Solving non-blocking atomic commitment with 3W: Chandra and Toueg have also shown

in [3] that a failure detector, noted 3W and named Eventually Weak, can be transformed

into 3S and can thus solve consensus. The failure detector 3W satis�es (1) weak complete-

ness: eventually every process that fails is permanently suspected by some correct process,

and (2) eventual weak accuracy(As 3S). It is obvious that the transformation of 3W to 3S

implies that the non-blocking atomic commitment problem (as de�ned in our paper) can be

solved with 3W .

5 Concluding Remarks

The aim of an atomic commitment protocol is to ensure agreement among a set of processes

(Data Managers) on an outcome for a transaction. A non-blocking atomic commitment pro-

tocol enables an outcome to be decided by correct processes despite the failure of others. The

di�culty in designing such protocols in asynchronous systems is not surprising, considering

the FLP impossibility result [7]. Chandra and Toueg have shown in [3] that consensus can

be solved in an asynchronous system augmented with an unreliable failure detector. They

have proposed a protocol that solves the consensus problem, based on the failure detector 3S

which can make an in�nity of false failure suspicions.

In this paper, we have given a de�nition of the non-blocking atomic commitment protocol that

is adequate in an asynchronous system augmented with a failure detector. Then we have de-

scribed a non-blocking atomic commitment protocol inspired by the Chandra-Toueg protocol.

To our knowldge, it is the �rst time that the fundamental result of Chandra and Toueg, on

solving consensus in asynchronous systems, is adapted to non-blocking atomic commitment.

Our protocol can be viewed as an adaptation of the Chandra-Toueg protocol to the character-

istics of the non-blocking atomic commitment problem. These characteristics concern mainly

the asymmetry in the commit-abort decision. Moreover, unlike atomic commitment protocols

presented in [13, 14, 12], our protocol does not require any additional termination protocol

to handle failure scenarios. Also, the assumptions of a failure detector 3S and a majority

12



of processes are correct, provide a rigorous characterization of the liveness of our protocol.

If these assumptions are not satis�ed, our protocol does not terminate, but never leads two

processes to decide di�erently.

Acknowledgements

Thanks to Tushar Deepak Chandra for interesting discussion about unreliable failure detec-

tors.

References

[1] O. Babaoglu and S. Toueg. Non-Blocking Atomic Commitment. In Sape Mullender, editor,

Distributed Systems, pages 147-166. ACM Press, 1993.

[2] P.A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in

Database Systems. Addison Wesley, 1987.

[3] T. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.

Technical Report 93-1374, Department of Computer Science, Cornell Univ, 1993. A pre-

liminary version appeared in the Proceedings of the 10th ACM Symposium on Principles

of Distributed Computing, pages 325-340. ACM Press, 1991.

[4] B. Coan and J. Welch. Transaction commit in a realistic timing model. Distributed Com-

puting, 4(2), pages 87-103. 1990.

[5] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony.

Journal of the ACM, 35 (2), pages 288-323. 1988.

[6] K. Eswaren, J. Gray, R. Lorie and I. Traiger. The Notion of Consistency and Predicate

Locks in a Database System. Communications of the ACM, 19 (11), pages 624-633. 1976.

[7] M. Fischer, N. Lynch, and M. Paterson. Impossibility of Distributed Consensus with One

Faulty Process. Journal of the ACM (32), pages 374-382. 1985.

[8] R. Guerraoui. Revisiting the relationship between Non Blocking Atomic Commitment and

Consensus problems. In Proceedings of the 9th International Workshop on Distributed

Algorithms. J.M Helary and M. Raynal editors, LNCS, Springer Verlag. 1995.

[9] R. Guerraoui and A. Schiper. Transaction model vs Virtual Synchrony model: bridging

the gap. In Distributed Systems: from Theory to Practice. K. Birman, F. Mattern and A.

Schiper editors, LNCS 938, Springer Verlag, pages 121-132. 1995.

[10] J. Gray. Notes on Database Operating Systems. In Operating Systems: An Advanced

Course. R. Bayer, R.M. Graham and G Seegmuller editors, LNCS 60, Springer Verlag,

pages 393-481. 1978.

[11] V. Hadzilacos. On the relationship between the atomic commitment and consensus prob-

lems. In Fault-Tolerant Distributed Computing. B. Simons and A. Spector editors, LNCS

448, Springer Verlag, pages 201-209. 1990.

13



[12] I. Keidar and D. Dolev. Increasing the Resilience of Atomic Commit at No Additional

Cost. Technical Report CS94-18. Institute of Computer Science, The Hebrew University

of Jerusalem. 1994.

[13] D. Skeen. NonBlocking Commit Protocols. In Proceedings of the ACM SIGMOD Inter-

national Conference on Management of Data, pages 133-142. ACM Press, 1981.

[14] D. Skeen. A Quorum-Based Commit Protocol. In Proceedings of the 6th Berkeley Work-

shop on Distributed Data Management and Computer Networks, pages 69-80. 1982.

14


