Consensus Based on Strong Failure Detectors:
A Time and Message-Efficient Protocol

Fabiola GREVET Michel HURFIN' Raimundo MAcCEDO? Michel RaynaLf

T IRISA - Campus de Beaulieu, 35042 Rennes Cedex, France,
i LaSiD-CPD-UFBA, Campus de Ondina, CEP 40170-110 Bahia, Brazil
{fgreve|hurfin|raynal}@irisa.fr = macedo@ufba.br

Abstract. The class of strong failure detectors (denoted §) includes
all failure detectors that suspect all crashed processes and that do not
suspect some (a priori unknown) process that never crashes. So, a failure
detector that belongs to S is intrinsically unreliable as it can arbitrarily
suspect correct processes. Several S-based consensus protocols have been
designed. Some of them systematically require n computation rounds (n
being the number of processes), each round involving n? or n messages.
Others allow early decision (i.e., the number of rounds depends on the
maximal number of crashes when there are no erroneous suspicions) but
require each round to involve n? messages.

This paper presents an early deciding S-based consensus protocol each
round of which involves 3(n — 1) messages. So, the proposed protocol is
particularly time and message-efficient.

Keywords: Asynchronous Distributed System, Consensus, Crash Fail-
ure, Perpetual Accuracy Property, Unreliable Failure Detector.

1 Introduction

Several crucial practical problems (such as atomic broadcast and atomic com-
mit) encountered in the design of reliable applications built on top of unreliable
asynchronous distributed systems, actually belong to a same family: the family
of agreement problems. This family can be characterized by a single problem,
namely the Consensus problem, that is their “greatest common subproblem”.
That is why the consensus problem is considered as a fundamental problem.
This is practically and theoretically very important. From a practical point of
view, this means that any solution to consensus can be used as a building block
on top of which solutions to particular agreement problems can be designed.
From a theoretical point of view, this means that an agreement problem cannot
be solved in systems where consensus cannot be solved.

Informally, the consensus problem can be defined in the following way. Each
process proposes a value and all correct processes have to decide the same val-
ue, which has to be one of the proposed values. Solving the consensus problem
in asynchronous distributed systems where processes may crash is far from be-
ing a trivial task. It has been shown by Fischer, Lynch and Paterson [3] that

there is no deterministic solution to the consensus problem in those systems as
soon as processes (even only one) may crash. This impossibility result comes
from the fact that, due to the uncertainty created by asynchrony and failures,
it is impossible to precisely know the system state. So, to be able to solve a-
greement problems in asynchronous distributed systems, those systems have to
be “augmented” with additional assumptions that make consensus solvable in
such improved systems. A major and determining advance in this direction has
been done by Chandra and Toueg who have proposed [1] (and investigated with
Hadzilacos [2]) the Unreliable Failure Detector concept.

A failure detector can informally be seen as a set of oracles, one per process.
The failure detector module (oracle) associated with a process provides it with
a list of processes it guesses to have crashed. A failure detector can make mis-
takes by not suspecting a crashed process, or by erroneously suspecting a correct
process. In their seminal paper [1], Chandra and Toueg have defined two types
of property to characterize classes of failure detectors. A class is defined by a
Completeness property and an Accuracy property. A completeness property is
on the actual detection of crashes. The completeness property we are interested
in basically states that “every crashed process is eventually suspected by every
correct process”. An accuracy property limits the mistakes a failure detector can
make.

In this paper, we are interested in solving the consensus problem in asyn-
chronous distributed systems equipped with a failure detector of the class S. A
failure detector of this class suspects all crashed processes (completeness) and
guarantees that there is a correct process that is never suspected, but this pro-
cess is not a priori known (perpetual weak accuracy). Several S-based consensus
protocols have been proposed. They all assume f < n — 1 (where f is the max-
imal number of processes that may crash), and consequently are optimal with
respect to the number of crash failures they can tolerate. They all proceed in
asynchronous “rounds”.

The S-based consensus protocol proposed in [1] requires exactly n rounds,
each round involving n? messages (each message being composed of n values).
The S-based protocols presented in [7, 8] also require n rounds, but each round
involves only n messages carrying a single value. It is important to emphasize
that these three protocols require n rounds whatever the value of f, the number
of actual crashes and the occurrences of erroneous suspicions are.

To our knowledge, very few early deciding S-based consensus protocols have
been proposed, more precisely, we are only aware of the generic protocol present-
ed in [6]'. When instantiated with a failure detector € S, this generic protocol

! The generic dimension of the protocol introduced in [6] lies in the class of the failure
detector it relies on. This generic protocol can be instantiated with any failure de-
tector of S (provided f < n—1) or &S (provided f < n/2). A failure detector that
belongs to ©8: (1) eventually suspects permanently all crashes processes, and (2)
guarantees that there is a time after which there is a correct process that is never
suspected.

provides a S-based consensus protocol that terminates in at most (f + 1) rounds
when there are no erroneous suspicions. So, when the failure detector is tuned
to very seldom make mistakes, this protocol provides early decision. Each round
of this protocol involves n? messages (each message being made of a proposed
value plus a round number) and one or two communication steps.

This paper presents an early deciding S-based consensus protocol. When
there are no erroneous suspicions, the proposed protocol requires (f 4+ 1) rounds,
in the worst case. When there are neither crashes nor erroneous suspicions, it
requires a single round, a round being made up of two communication steps.
Each round involves 3(n — 1) messages, and each message carries at most three
values: a round number, a proposed value and a timestamp (i.e., another round
number). So, the protocol is both time and message-efficient. Moreover, a gen-
eralization of the protocol exhibits an interesting tradeoff between the number
of rounds and the number of messages per round.

The paper is made up of five sections. Section 2 introduces the asynchronous
system model, the class S of failure detectors, and the consensus problem. Then,
Section 3 presents the S-based consensus protocol. Section 4 discusses its cost.
Finally, Section 5 concludes the paper.

2 Asynchronous Distributed Systems, Failure Detectors
and the Consensus Problem

The system model is patterned after the one described in [1,3]. A formal intro-
duction to failure detectors is provided in [1].

2.1 Asynchronous Distributed System with Process Crash Failures

We consider a system consisting of a finite set II of n > 1 processes, namely, Il =
{p1,p2,.-. ,pn}- A process can fail by crashing, (i.e., by prematurely halting). It
behaves correctly (i.e., according to its specification) until it (possibly) crashes.
By definition, a correct process is a process that does not crash. Let f denote
the maximum number of processes that can crash (f <n —1).

Processes communicate and synchronize by sending and receiving messages
through channels. Every pair of processes is connected by a channel. Channels
are not required to be FIFO, they may also duplicate messages. They are only
assumed to be reliable in the following sense: they do not create, alter or lose
messages. This means that a message sent by a process p; to a process p; is
assumed to be eventually received by p;, if p; is correct?.

The multiplicity of processes and the message-passing communication make
the system distributed. There is no assumption about the relative speed of pro-

2 The “no message loss” assumption is required to ensure the Termination property
of the protocol. The “no creation and no alteration” assumptions are required to
ensure its Validity and Agreement properties.

cesses or the message transfer delays. This absence of timing assumptions makes
the distributed system asynchronous.

2.2 The Class S of Unreliable Failure Detectors

Informally, a failure detector consists of a set of modules, each attached to a pro-
cess: the module attached to p; maintains a set (named suspected;) of processes
it currently suspects to have crashed. Any failure detector module is inherent-
ly unreliable: it can make mistakes by not suspecting a crashed process or by
erroneously suspecting a correct one. Moreover, suspicions are not necessarily
stable: a process p; can be added to and removed from a set suspected; accord-
ing to whether p;’s failure detector module currently suspects p; or not. As in
[1], we say “process p; suspects process p;” at some time ¢, if at time ¢ we have
J € suspected;.

As indicated in the introduction, a failure detector class is defined by two
abstract properties, namely a Completeness property and an Accuracy property.
In this paper we are interested in the following properties [1]:

— Strong Completeness: Eventually, every crashed process is permanently sus-
pected by every correct process.
— Perpetual Weak Accuracy: Some correct process is never suspected.

The failure detectors that satisfy these properties define the class S (Strong
failure detectors). It is important to note that a failure detector € S can make
an arbitrary number of mistakes: at any time all (but one) correct processes can
be erroneously suspected. Moreover, a process can alternatively suspect and not
suspect some correct processes.

2.3 The Consensus Problem

In the consensus problem, every correct process p; proposes a value v; and all
correct processes have to decide on some value v, in relation with the set of
proposed values. More precisely, the Consensus problem is defined by the three
following properties [1, 3]:

— Termination: Every correct process eventually decides on some value.
— Validity: If a process decides v, then v was proposed by some process.
— Agreement: No two correct processes decide differently.

The agreement property applies only to correct processes. So, it is possible that
a process decides on a distinct value just before crashing. Uniform Consensus
prevents such a possibility. It has the same Termination and Validity properties
plus the following agreement property:

— Uniform Agreement: No two processes (correct or not) decide differently.

In the following we are interested in the Uniform Consensus problem.

3 The S-Based Consensus Protocol

3.1 The Protocol
3.2 Underlying Principles

As other failure detector-based consensus protocols, the proposed protocol uses
the rotating coordinator paradigm and processes proceed in asynchronous rounds
[1]. There are at most n rounds. Each round r (1 < r < n) is managed by
a predetermined coordinator, namely, p,.. Moreover, during r, the coordinator
of the next round (namely, p,+1) acts also a particular role. Each process p;
manages three local variables: the current round number (r;), its current estimate
of the decision value (est;), and a timestamp (ts;) that indicates the round
number during which it adopted its current estimate est;.

As in [6-8], during a round, the current coordinator tries to impose its current
estimate as the decision value. To attain this goal, each round r is made of two
steps (see Figure 1).

— During the first step (lines 4-6) the current coordinator p, broadcasts a
message carrying its current estimate, namely, the message PHASEL(r, est,).
When a process p; receives such a PHASEL(r,v) message, it adopts v as
its new estimate and consequently updates ts; to the current round number
(line 6). If p; suspects p,, its “state variables” est; and ts; keep their previous
values.

— During the second phase (lines 7-13), each process sends its “current state”
to the current round coordinator (p,) and the next round coordinator (py1).
This “state” is carried by a PHASE2 message (line 8). The triple (7, est;, ts;)
indicates that during r, (1) the estimate of the decision value considered by
p; is est; and (2) this value has been adopted during the round ts;.

Then, p, and p,41 follow the same behavior: each waits until it has received
PHASE2 messages from all the processes it does not suspect (let us note
that due to the completeness property of the underlying failure detector, all
crashed processes are eventually suspected).

If all the PHASE2 messages the process p, (resp. pr4+1) has received have a
timestamp equal to the current round number (r), p, (resp. p,+1) decides
on its current estimate (lines 11-12). This means that the current estimate
of p, has been imposed as decision value.

Whether the process p,+1 decides during r or proceeds to r+1, it must have a
correct estimate (in order not to violate the consensus agreement property).
This is ensured by requiring it to update its local estimate (est,11) to the
estimate it has received with the highest timestamp in a PHASE2(r,est, ts)
message (line 10).

3.3 Structure

The protocol is fully described in Figure 1. A process p; starts a consensus exe-
cution by invoking Consensus(v;), where v; is the value it proposes. The protocol

terminates for p; when it executes the statement return which provides it with
the decided value (at line 12 or 15).

It is possible that distinct processes do not decide during the same round. To
prevent a process from blocking forever (i.e., waiting for a value from a process
that has already decided), a process that decides, uses a reliable broadcast [5]
to disseminate its decision value. To this end, the Consensus function is made of
two tasks, namely, T'1 and 72. T'1 implements the previous discussion. Line 12
and T2 implement the reliable broadcast.

Function Consensus(v;)

Task T1:

(1) 7 < 0; est; < vg; ts; < 0;

(2) while r; <n do

(3) ri<—ri +1;
% pr; is the coordinator of the current round %
% pr;+1 is the coordinator of the next round %

——————— Phase 1 of round r: p,, proposes to all

4) if (¢ = r;) then Vj: send PHASEL(r;, est;) to p; endif;

(5) wait until (PHASEL(r;, v) has been received from p,; V r; € suspected;);

(6) if (PHASEL(r;,v) received from p,;) then est; < v; ts; r; endif;
——————— Phase 2 of round r: each process replies to p,;, and p,,41 —

(7) let X = {r;,r; + 1} if (r; <n), X = {r;} otherwise;

(8) Vj € X: send PHASE2(r;, est;, ts;) to pj;

(9) if (i € X) then wait until (PHASE2(r;, est, ts) messages have been

received from all non suspected processes);

(10) if i = r; + 1 then est; < est rec. with highest ¢s endif;
(11) if (all PHASE2 messages are such that ts = r;) then
(12) Vj # i : send DECISION(est;) to pj; return(est;) endif
(13) endif

(14) endwhile

Task T2:

(15) upon the reception of DECISION(est) from py:
Vj # i,k : send DECISION(est)to pj; return(est)

Fig. 1. The S-Based Consensus Protocol

3.4 Proof

The protocol satisfies the Termination, Validity, and Uniform Agreement proper-
ties defining the Consensus problem (these properties have been stated in Section
2.3). The reader interested in the proof will consult [4].

4 Cost of the Protocol

Time complexity The number of rounds of the protocol is < n. Differently
from the S-based consensus protocols described in [1,7, 8] that always require n
rounds, the actual number of rounds of the proposed protocol depends on fail-
ures occurrences and erroneous suspicions occurrences. So, to analyze the time
complexity of the protocol, we consider the length of the sequence of messages
(number of communication steps) exchanged during a round. Moreover, as we
do not master the quality of service offered by the underlying failure detector,
but as in practice failure detectors can be tuned to very seldom make mistakes,
we do this analysis considering the underlying failure detector behaves reliably.
In such a context, the time complexity of a round is characterized by a pair of
integers [6]. Considering the most favorable scenario that allows to decide during
the current round, the first integer measures its number of communication steps
(without counting the cost of the reliable broadcast implemented by the task
T2). The second integer considers the case where a decision cannot be obtained
during the current round and measures the minimal number of communication
steps required to progress to the next round. Let us consider these scenarios.

— The first scenario is when the current round coordinator is correct and is
not suspected. In that case, 2 communication steps are required to decide.
During the first step, the current coordinator broadcasts a PHASE] message
(line 4). During the second step, each process sends a PHASE2 message (line
8). So, in the most favorable scenario that allows to decide during the current
round, the round is made up of two communication steps.

— The second scenario is when the current round coordinator has crashed and
is suspected by all processes. In that case, as processes correctly suspect
the coordinator (line 5), the first communication step is actually skipped.
Processes only send PHASE2 message (line 8) and proceed to the next round.
So, in the most favorable scenario to proceed to the next round, the round
is made up of a single communication step.

So, when the underlying failure detector behaves reliably, according to the previ-
ous discussion, the time complexity of a round is characterized by the pair (2,1)
of communication steps.

Message complexity of a round During each round, the round coordinator broad-
casts a PHASE] message and each process sends two PHASE2 messages. Hence,
the message complexity of a round is bounded by 3(n — 1).

Message type and size There are three types of message: PHASE], PHASE2 and
DECISION. A DECISION message carries only a proposed value. A PHASE] message
carries a proposed value plus a round number. A PHASE2 message carries a
proposed value plus two round numbers. As the number of rounds is bounded
by n, the size of the round number is bounded by logs(n).

Let |v| be the bit size of a proposed value. According to the previous dis-
cussion, 3n(n — 1)(|v| 4+ logan) is an upper bound of the bit complexity of the
protocol.

5 Conclusion

The paper has studied the consensus problem in the setting of asynchronous
distributed system equipped with a failure detector of the class S. This class
includes all the failure detectors that suspect all crashed processes and that do
not suspect some (a priori unknown) correct process. The proposed protocol
proceeds in asynchronous rounds and allows early decision. If there are neither
failures nor false suspicions the decision is obtained in a single round. A round
is made up of two communication steps and involves 3(n — 1) messages.

The proposed protocol compares very favorably to the previous S-based con-
sensus protocols, as those require n rounds or n? messages per round.

References

1. Chandra T. and Toueg S., Unreliable Failure Detectors for Reliable Distributed
Systems. Journal of the ACM, 43(2):225-267, March 1996.

2. Chandra T., Hadzilacos V. and Toueg S., The Weakest Failure Detector for Solving
Consensus. Journal of the ACM, 43(4):685-722, July 1996.

3. Fischer M.J., Lynch N. and Paterson M.S., Impossibility of Distributed Consensus
with One Faulty Process. Journal of the ACM, 32(2):374-382, April 1985.

4. Greve F., Hurfin M., Macédo R. and Raynal M., Consensus Based on
Strong Failure Detectors: Time and Message-Efficient Protocols. Tech
Report #1290, IRISA, Université de Rennes, France, January 2000.
http://www.irisa.fr/EXTERNE/bibli/pi/1290/1290.html.

5. Hadzilacos V. and Toueg S., Reliable Broadcast and Related Problems. In Dis-
tributed Systems, ACM Press (S. Mullender Ed.), New-York, pp. 97-145, 1993.

6. Mostéfaoui A. and Raynal M., Solving Consensus Using Chandra-Toueg’s Unreli-
able Failure Detectors: a General Quorum-Based Approach. Proc. 13th Int. Sym-
posium on Distributed Computing (DISC’99) (formerly, WDAG), Springer-Verlag
LNCS 1693, pp. 49-63, (P. Jayanti Ed.), Bratislava (Slovaquia), September 1999.

7. Mostéfaoui A. and Raynal M., Consensus Based on Failure Detectors with a Per-
petual Weak Accuracy Property. Proc. Int. Parallel and Distributed Processing
Symposium (IPDPS’2k), (14th IPPS/11th SPDP), Cancun (Mexico), May 2000.

8. Yang J., Neiger G. and Gafni E., Structured Derivations of Consensus Algorithms
for Failure Detectors. Proc. 17th ACM Symposium on Principles of Distributed
Computing, Puerto Vallarta (Mexico), pp.297-308, 1998.

