
Consensus in Asynchronous Distributed Systems:

a Concise Guided Tour

R. Guerraoui�, M. Hur�ny, A. Mostefaouiy, R. Oliveira�, M. Raynaly and A. Schiper�

� EPFL, D�epartement d'Informatique, 1015 Lausanne, Suisse
y IRISA, Campus de Beaulieu, 35042 Rennes-cedex, France

Abstract

It is now recognized that the Consensus problem is a fundamental problem when one has to

design and implement reliable asynchronous distributed systems. This chapter is on the Con-

sensus problem. It studies Consensus in two failure models, namely, the Crash/no Recovery

model and the Crash/Recovery model. The assumptions related to the detection of failures that

are required to solve Consensus in a given model are particularly emphasized.

Keywords: Asynchronous Distributed Systems, Atomic Broadcast, Atomic Commitment, Con-

sensus, Crash/no Recovery, Crash/Recovery.

1 Introduction

Distributed applications are pervading many aspects of everyday life. Booking-reservations, bank-

ing, electronic and point-of-sale commerce are noticeable examples of such applications. Those

applications are built on top of distributed systems. When building such systems, system designers

have to cope with two main issues: asynchrony and failure occurrence. Asynchrony means that it is

impossible to de�ne an upper bound on process scheduling delays and on message transfer delays.

This is due to the fact that neither the input load from users nor the precise load of the underlying

network can be accurately predicted. This means that whatever is the value used by a process to set

a timer, this value can not be trusted by the process when it has to take a system-wide consistent

decision. Similarly, failure occurrences can not be predicted. The net e�ect of asynchrony and

failure occurrences actually create an uncertainty on the state of the application (as perceived by

a process) that can make very di�cult or even impossible to determine a system view shared by

all non-faulty processes. The mastering of such an uncertainty is one of the main problems that

designers of asynchronous systems have to solve.

As a particular example, let us consider the case of a service whose state has been distributed

on several nodes. To maintain a consistent copy of the service state, each node must apply to its

copy the same sequence of the updates that have been issued to modify the service state. So, there

are two problems to solve. (1) Disseminate the updates to the nodes that have a copy of the service

state. And (2), apply the updates in the same order to each copy. The �rst problem can be solved

by using a reliable multicast primitive [18]. The second problem is more di�cult to solve. The

nodes have to agree on a common value, namely, the order in which they will apply the updates.

This well known problem (namely, the Atomic Broadcast problem) is actually a classical Agreement

problem.

1

It appears that any agreement problem can be seen as a particular instance of a more general

problem, namely, the Consensus problem. In the Consensus problem, each process proposes a

value, and all non-faulty processes have to agree on a single decision which has to be one of the

proposed values. This chapter presents a few results associated with the Consensus problem. It is

composed of seven sections. Section 2 de�nes the Consensus problem. Section 3 studies Consensus

in the Crash/no Recovery model. Section 4 discusses issues related to the communication channel

semantics. Section 5 introduces the di�erences between two main distributed computing models:

(1) the Crash/no Recovery model, and (2) the Crash/Recovery model. Section 6 studies Consensus

in the Crash/Recovery model, and Section 7 concludes the chapter.

2 The Consensus Problem

2.1 General Model

A distributed system is composed of a �nite set of n sites interconnected through a communication

network. Each site has a local memory (and possibly a stable storage according to the needs

of applications) and executes one or more processes. To simplify and without loss of generality,

we assume that there is only one process per site. Processes synchronize and communicate by

exchanging messages through channels of the underlying network.

We consider asynchronous distributed systems: there are bounds neither on communication

delays, nor on process speeds. The interest of the asynchronous model comes from its practicability.

Open distributed systems such as systems covering large geographic areas, or systems subject to

unpredictable loads that may be imposed by their users, are basically asynchronous due to the

unpredictability of message transfer delays and process scheduling delays in those systems [2]. This

makes the asynchronous model a very general model.

A process is either a good process or a bad process. What determines a process as being good

or bad depends on the failure model. Section 3 and Section 6 provide instantiations of what is a

good/bad process, in the Crash/no Recovery model and in the Crash/Recovery model, respectively.

Roughly speaking, a good process is a process that behaves as expected. A bad process is a process

that is not good. In both cases, a process is fail-silent: (1) until it crashes, a process behaves

according to its speci�cation, and (2) when crashed, it does nothing.

2.2 What is the Consensus Problem?

In the Consensus problem, de�ned over a set fp1; p2; : : : ; png of processes, each process pi proposes

initially a value vi, and all good processes have to decide on some common value v that is equal to

one of the proposed values vi [3].

Formally, the Consensus problem is de�ned in terms of two primitives: propose and decide.

When a process pi invokes propose(vi), where vi is its proposal to the Consensus problem, we say

that pi \proposes" vi. When pi invokes decide() and gets v as a result, we say that pi \decides" v.

The semantics of propose() and decide() is de�ned by the following properties:

� C-Termination. Every good process eventually decides.

� C-Agreement. No two good processes decide di�erently.

� C-Validity. If a process decides v, then v was proposed by some process.

2

While C-Termination de�nes the liveness property associated with the Consensus problem, C-

Agreement and C-Validity de�ne its safety properties.

The C-Agreement property allows bad processes to decide di�erently from good processes. This

fact can be sometimes undesirable as it does not prevent a bad process to propagate a di�erent

decision throughout the system before crashing. In the Uniform Consensus problem, agreement is

de�ned by the following property:

� C-Uniform-Agreement. No two processes (good or bad) decide di�erently.

which enforces the same decision on any process that decides.

Actually, all Consensus algorithms discussed in this chapter solve the Uniform Consensus algo-

rithm.

2.3 From an Agreement Problem to Consensus

When practical agreement problems have to be solved in real systems, a transformation is needed

to bring them to the Consensus problem speci�ed in the previous section. We illustrate below

such a transformation on the Atomic Commitment problem. Transformation of other agreement

problems to Consensus (e.g., Group Membership to Consensus, View Synchronous Communication

to Consensus, Atomic Broadcast to Consensus, Atomic Multicast to Consensus) can be found in

[3, 15, 17, 9, 21]. So Consensus can be viewed the common denominator of the di�erent agree-

ment problems. This explains the importance of Consensus, and justi�es the large interest in the

literature for this problem.

The Atomic Commitment Problem

As an example of agreement problem let us consider the Non-Blocking Atomic Commitment Prob-

lem. At the end of a computation, processes are required to enter a commitment protocol in order

to commit their local computations (when things went well) or to abort them (when things went

wrong). So, when it terminates its local computation each process has to vote yes or no. If for any

reason (deadlock, storage problem, concurrency control conict, local failure, etc) a process can not

locally commit its local computation, it votes no. Otherwise a vote yes means that the process

commits locally to make its updates permanent if it is required to do so. Based on these votes,

the decision to commit or to abort is taken. The decision must be commit if things went well (all

process are good and voted yes). It must be abort if things went wrong [10]. We consider here

that a good process is a process that does not crash.

More formally, nbac in an asynchronous distributed system can be de�ned by the following

properties:

� NBAC-Termination. Every good process eventually decides.

� NBAC-Agreement. No two processes decide di�erently.

� NBAC-Validity. This property gives its meaning to the decided value. It is composed of three

parts.

{ Decision Domain. The decision value is commit or abort.

{ Justi�cation. If a process decides commit, then all processes have voted yes.

{ Obligation. If all participants vote yes and none of them is perceived as bad, then the

decision value must be commit.

3

The justi�cation property states that the \positive" outcome, namely commit, has to be justi�ed:

if the result is commit, it is because, for sure, things went well (i.e., all processes voted yes).

Finally, the obligation property eliminates the trivial solution where the decision value would be

abort even when the situation is satisfactory to commit.

Reducing Atomic Commit to Consensus

Actually the nbac is a particular instance of the Consensus problem. Figure 1 describes a simple

protocol that reduces nbac to Consensus.

(1) 8 pj do send(vote) to pj end do;

(2.1) wait ((delivery of a vote no)

(2.2) or (9 pj: pi perceives pj as a bad process)

(2.3) or (from each pj: delivery of a vote yes from pj)

(2.4));

(3.1) case

(3.2) a vote no has been delivered ! vi := abort

(3.3) a process is perceived as bad ! vi := abort

(3.4) all votes are yes ! vi := commit

(3.5) end case;

(4) propose(vi); decision:=decide(); % Consensus execution %

Figure 1: From Consensus to nbac in Asynchronous Systems (code of process pi)

The behavior of every process pi is made of 4 steps. First (line 1), pi disseminates its vote to

all processes. Then (lines 2.*), pi waits until either it has received a no vote (line 2.1), or it has

received a yes vote from each process (line 2.3), or it perceives a process as being (crashed) bad

(line 2.2). Then (lines 3.*), pi builds its own view vi of the global state: vi is commit if from its

point of view everything went well (line 3.4), and abort if from its point of view something went

wrong (lines 3.2 and 3.3). Finally (line 4), pi participates in a Consensus. After having proposed

vi, pi waits for the result of the Consensus (invocation of decide) and saves it in the local variable

decision. It can be easily shown that this reduction protocol satis�es the nbac-Termination, the

nbac-Agreement and the nbac-Validity properties. More information on the relations between the

nbac problem and the Consensus problem can be found in [11, 14, 24, 25].

3 The Crash/no Recovery Model

3.1 Good and Bad Processes

We consider here the Crash/no Recovery model. When a process crashes, it de�nitely stops working.

So, a good process is a process that never crashes. From a practical point of view, this means that

a good process does not crash during the execution of the Consensus algorithm. A process that

crashes is a bad process. Moreover, this section assumes that each pair of processes is connected by a

reliable channel. Roughly speaking, a reliable channel ensures that no message is created, corrupted

or duplicated by the channel, and that any good process eventually receives every message sent to

it.

4

3.2 A Fundamental Impossibility Result

A fundamental result on the Consensus problem has been proved by Fischer, Lynch and Pater-

son [8]. This result states that it is impossible to design a deterministic Consensus algorithm in an

asynchronous distributed system subject to (even) a single process crash failure.

The intuition that underlies this impossibility result lies in the impossibility, in an asynchronous

distributed system, to safely distinguish between a crashed process and a very slow process or a

process with which communications are very slow.

This impossibility result has been misunderstood by a large community of system implemen-

tors [16], but has challenged other researchers to �nd a set of minimal assumptions that, when

satis�ed by an asynchronous distributed system, makes the Consensus problem solvable in this sys-

tem. Minimal synchronism [5], partial synchrony [7] and unreliable failure detectors [3] constitute

answers to this challenge. In this chapter, we consider the unreliable failure detectors formalism.

3.3 Unreliable Failure Detectors

The unreliable failure detectors formalism, introduced by Chandra and Toueg in [3], is a powerful

abstraction for designing and building reliable distributed applications. Conceptually, a failure

detector is a distributed oracle which provide processes with an approximate view of the process

crashes occurring during the execution of the system. With respect to its structure, a failure

detector is usually seen and used as a set of n, one per process, failure detectors modules. These

modules are responsible for providing their associated processes with the set of processes they

currently suspect to have crashed. When the failure detector module of process pi suspects pj to

have crashed, we say that pi suspects pj.

Due to asynchrony, and consistently with the impossibility result of Section 3.2, is natural

to expect the failure detector to make mistakes: it may not suspect a bad (crashed) process or,

erroneously suspect a good one. However, to be useful, failure detectors have to eventually provide

some correct information about process crashes during the execution and thus, their mistakes

are typically bounded by a completeness and an accuracy properties. The completeness property

requires bad processes to be eventually suspected, and accuracy restricts the erroneous suspicions

of good processes. Combining di�erent de�nitions for the completeness and accuracy properties,

several classes of failure detectors can be de�ned [3]. In the following we consider the class of

Eventual Strong failure detectors, which is denoted by 3S and de�ned by:

� Strong completeness: Eventually every bad process is permanently suspected by every good

process.

� Eventual weak accuracy: Eventually some good process is never suspected by any good process.

Note that, in practice, strong completeness can be easily satis�ed using \I am alive" messages

and timeouts. On the other hand, even if eventual weak accuracy is satis�ed by some system

executions, there is no way to guarantee that it will be satis�ed by all system executions. This

observation shows the limit of asynchronous systems subject to process crashes, as far as crash

detection is concerned: there is no mean to ensure safe process crash detection. Ultimately, such a

detection can be at best approximate.

3.4 Consensus Algorithms Based on Unreliable Failure Detectors

The �rst Consensus algorithm designed to work with a failure detector belonging the class 3S
was proposed by Chandra and Toueg [3]. Since then, other algorithms based on 3S have been

5

proposed: one of them has been proposed by Schiper [26], another one by Hur�n and Raynal [19].

All these algorithms share the following design principles:

� The algorithm is based on the rotating coordinator paradigm and proceeds in consecutive

asynchronous rounds. Each round is coordinated by a process. The coordinator of round r,

process pc, is a predetermined (eg., using c = (r mod n) + 1) process.

� Each process pi manages a local variable esti that represents pi's current estimate of the

decision value (initially, esti is the value vi proposed by pi). This value is updated as the

algorithm progresses and converges to the decision value.

� During a round r, the coordinator proposes its estimate estc as the decision value. To this

end processes have to cooperate:

{ Processes that do not suspect pc to have crashed, eventually receive its proposal and

champion it, adopting estc as their own estimate of the decision. The proposal of the

coordinator becomes the decision value as soon as a majority of processes champion

it. The termination of the algorithms directly depends on the accuracy property of 3S

which ensures that, eventually, there is a round during which the coordinator is not

suspected by any good process.

{ The crash of the coordinator is dealt by moving to the next round (and coordinator). By

the completeness property of 3S, if the coordinator crashes, every good process even-

tually suspects the coordinator. When this happens, processes detract the coordinator's

proposal and proceed to the next round.

It is possible that not all processes decide in the same round, depending on the pattern of process

crashes and on the pattern of failure suspicions that occur during the execution. One important

point which di�erentiates the algorithms is the way they solve this issue, while ensuring that there

is a single decision value (i.e., without violating the agreement property of Consensus).

Other di�erences between these Consensus algorithms lie in the message exchange pattern they

generate and in the way they use the information provided by the failure detectors. Chandra-

Toueg's algorithm is based on a centralized scheme: during a round all messages are from (to)

the current round coordinator to (from) the other processes. In Schiper's and Hur�n-Raynal's

algorithms, the message exchange pattern is decentralized: the current coordinator broadcasts its

current estimate to all processes, and then those cooperate in a decentralized way to establish a

decision value. An important di�erence between Schiper's algorithm and Hur�n-Raynal's algorithm

is the way each algorithm behaves with respect to failure suspicions. Basically, a design principle

of Schiper's algorithm is not to trust the failure detector: a majority of processes must suspect

the current coordinator to allow a process to proceed to the next round, and to consider another

coordinator. Di�erently, a basic design principle of Hur�n-Raynal's algorithm is to trust the failure

detector. Consequently, Hur�n-Raynal's algorithm is particularly e�cient when the failure detector

is reliable. Schiper's algorithm resists in a better way to failure detectors' mistakes.

What makes these algorithms far from being trivial is the fact that they can tolerate an un-

bounded number of incorrect failure suspicions, while ensuring the agreement property of the Con-

sensus problem. This is particularly important from a practical point of view, as it allows to de�ne

aggressive time-out values, that might be met only whenever the system is stable, without having

the risk of violating the agreement property during unstable periods of the system.

6

Finally, the algorithms satisfy the validity and agreement properties of Consensus despite the

number of bad processes in the system, and satisfy termination whenever a majority of processes

are good and the failure detector is of class 3S.

3.5 Other Fundamental Results

Three important results are associated with the class 3S of failure detectors:

� Chandra, Hadzilacos and Toueg [4] showed that the 3S class is the weakest class of failure

detectors allowing to solve Consensus. This indicates that, as far as the detection of process

crashes is concerned, the properties de�ned by 3S constitute the borderline beyond which

the Consensus problem can not be solved.

� Chandra and Toueg [3] proved that a majority of processes must be good (i.e., must not

crash) to solve Consensus using failure detectors of the 3S class.

� Guerraoui [11] proved that any algorithm that solves Consensus using failure detectors of the

class 3S, also solves Uniform Consensus.

4 About Channel Semantics

The algorithms mentioned in Section 3 assume reliable channels [3, 26, 19]. However, a reliable

channel is an abstraction whose implementation is problematic. Consider for example a reliable

channel between processes pi and pj. If pi sends message m to pj, and crashes immediately after

having executed the send primitive, then pj eventually receives m if pj is good (i.e., does not

crash). This means that the channel is not allowed to lose m because retransmission of m is not

possible since pi has crashed. Indeed, the reliable channel abstraction assumes that the underlying

communication medium does not lose a single message, which is an unreasonable assumption given

the lossy communication channels o�ered by existing network layers.

It turns out that the algorithms in [3, 26, 19] are correct with a weaker channel semantics, which

is sometimes called eventual reliable channel1. An eventual reliable channel is reliable only if both

the sender and the receiver of a message are good processes. Implementation of eventual reliable

channels is straightforward. Messages are bu�ered by the sender, and retransmitted until they are

acknowledged by the receiver. However, what happens if the destination process crashes? If the

system is equipped with a perfect failure detector (a failure detector that does not make mistakes),

then the sender stops retransmitting messages once it learns that the receiver has crashed. If the

failure detector is unreliable, the sender has to retransmit messages forever, which might require

unbounded bu�er space!

Fortunately, a weaker channel semantics, called stubborn channels, is su�cient for solving Con-

sensus [12]. Roughly speaking, a k-stubborn channel retransmits only the k most recent messages

sent through it. Contrary to reliable channels or eventual reliable channels, a stubborn channel may

lose messages if the sender is a good process. It is shown in [12] that Consensus can be solved with

1-stubborn channels and 3S failure detectors, and that the required bu�er space is logarithmically

bounded by the number of rounds of the algorithm.

Being able to solve Consensus in the Crash/no Recovery model with lossy channels is a �rst step

towards solving Consensus in the Crash/Recovery model (Section 6). Indeed, solving Consensus in

the Crash/Recovery model, among other di�culties requires to cope with the loss of messages. To

1Or correct-restricted reliable channel.

7

illustrate the problem consider a message m sent by pi to pj and that pj crashes and may afterwards

recover from the crash. If m arrives at pj while pj is crashed, then pj cannot receive m, i.e., m

is lost. If pj never recovers then the loss of m is not a problem. This is no more the case if pj
eventually recovers. Notice that in this case the loss of m is not the fault of the channel. However,

the reason for the loss of the message does not make any di�erence for the Consensus algorithm.

5 Crash/no Recovery Model vs Crash/Recovery Model

While in Section 2 we have de�ned one instance of the Consensus problem, in a real system

Consensus is a problem that has to be solved multiple times. Solving multiple instances of the

Consensus problem is called Repeated Consensus. Repeated Consensus allows us to clarify the

di�erence between the Crash/no Recovery model and the Crash/Recovery model.

In the context of Repeated Consensus, let us consider instance #k of the Consensus problem.

In the Crash/no Recovery model a process pi that crashes while solving Consensus #k is excluded

forever from Consensus #k, even if pi recovers before Consensus #k is solved2. Notice that this

does not prevent process pi from learning the decision of Consensus #k, neither does this prevent

pi from taking part in Consensus #(k + 1). In contrast, in the Crash/Recovery model a process

pi that crashes while solving Consensus #k remains allowed to take part in Consensus #k after

its recovery. Of course, this helps only if Consensus #k is not yet solved when pi recovers. This

is typically the case whenever the crash of pi prevents the other processes from solving Consensus

#k.

As an example, consider a Consensus algorithm that requires a majority of processes to take

part in the algorithm (let us call such an algorithm Maj-C-Algorithm), and the case in which

three processes (n = 3) have to solve Consensus #k. If we assume that no more than one single

process crashes during the execution of Consensus #k, a Maj-C-Algorithm based on the Crash/no

Recovery model is perfectly adequate. However, if we admit now that more than one process

crashes, Consensus #k is not solvable with a Maj-C-Algorithm based on the Crash/no Recovery

model. Such an algorithm leads the whole system to block whenever a majority of processes crash:

(1) the surviving process cannot solve Consensus alone, (2) waiting for the recovery of the crashed

processes would not help, and (3) if Consensus #k cannot be solved, none of the subsequent

instances of Consensus #(k + 1), #(k + 2), etc., will ever be launched.

To overcome the above situation, an algorithm based on the Crash/Recovery model is required.

With such an algorithm, the assumption of failure free processes can be released and processes that

recover are allowed to actively participate in the instance of Consensus being currently solved. These

advantages have certainly a price: apart from the issue of message loss (Section 4), appropriate

failure detectors have to be de�ned, and stable storage becomes necessary.

6 The Crash/Recovery Model

6.1 Good and Bad Processes

In the Crash/Recovery model, according to their crash patterns, processes can be classi�ed into

four categories:

� NC processes that never crash.

2This can easily been achieved making pi to exclude itself from actively participate in the algorithm upon recovery.

8

� ENC processes that eventually recover and no longer crash

� EO processes that crash and recover in�nitely often.

� EC processes that eventually crash and no longer recover.

Particularly di�erent from the process classi�cation in the Crash/no Recovery model is the EO

set of processes. These processes inde�nitely oscillate between up and down periods and, due to

the asynchrony of the model (which makes no assumptions regarding process speeds), one may be

tempted to consider EO processes entirely capable of contributing to the computation of a decision

value. However, because such a process is in�nitely often down, and due to the unpredictability

of the crash and communication patterns occurring during an execution, it is possible that the

process is down whenever a message is delivered to it. This scenario renders the process unable to

receive any message addressed to it and therefore incapable to contribute to the progression of the

algorithm.

From the above categories, good processes are those in the NC and ENC sets, and bad processes

those in the EO and EC sets. From a practical point of view, the good processes are the processes

that are eventually up during a long enough period of time to allow Consensus to be solved. Bad

processes are either eventually crashed forever, or are never up long enough to allow Consensus to

be solved. As in the Crash/no Recovery model, the relevant period during which process crashes

are observed spans only the execution of the Consensus algorithm.

6.2 Failure Detection

Solving Consensus in the Crash/Recovery model requires the de�nition of appropriate failure de-

tectors. From a practical point of view, it is unreasonable to assume failure detectors satisfying

strong completeness (such as those in the 3S class) in the presence of processes that crash and

recover in�nitely often (processes in the EO set)3. Recall that strong completeness requires good

processes to eventually suspect bad processes permanently which would imply to safely4 eventually

distinguish between ENC and EO processes. Since there is no bound for the number of times a

ENC process may crash and recover, this distinction would mean predicting the crash pattern of

the process.

For the Crash/Recovery model we consider the 3Sr class of failure detectors de�ned in [23]. 3Sr

di�ers from 3S in the completeness property. Any failure detector of class 3Sr satis�es Eventual

weak accuracy and

� Recurrent strong completeness: Every bad process is in�nitely often suspected by every good

process.

As with 3S failure detectors, completeness can be realized by using \I am alive" messages and

timeouts for detecting EC processes. Detecting EO processes however requires a di�erent scheme.

It can be accomplished by having each process to broadcast a \I recovered" message each time the

process recovers from a crash. It is worth to notice that these monitoring messages are handled

by each process failure detector module which is part of the process and thus subject to its crash

pattern.

3In [6], the de�ned Crash/Recovery model does not consider EO processes which allows the adoption of 3S failure

detectors.
4Without compromising the accuracy property of the failure detector.

9

Finally, it should be noted that due to the absence of an eventually stable sequence of values from

3Sr failure detectors regarding the suspicion of EO processes, the output of the failure detector

module has to be adequately de�ned so that the sequence of values perceived by the algorithm also

satis�es recurrent strong completeness.

6.3 Stable Storage

In practice, processes have their state on local volatile memory whose contents is lost in the event

of a crash. To overcome this loss and to be able to restore their state when recovering from crashes

processes need to be provided with some sort of stable storage.

Access to stable storage is usually a source of ine�ciency and should be avoided as possible.

Therefore, a pertinent question is whether can Consensus be solved in the Crash/Recovery model

without using stable storage at all? This question has been answered by Aguilera, Chen and

Toueg [1] who have proved that, Consensus can be solved without using stable storage provided

that the number of processes that never crash (jNCj) is greater than the number of bad processes

(jEO [ECj).
This result shows that, even without resorting to stable storage, it is possible to solve Consensus

in the presence of transient process crashes (with complete loss of state) which otherwise, with

algorithms designed for the Crash/no Recovery model, would not be tolerated. On the other hand,

allowing any good process to crash and recover at least once, requires processes to periodically

log critical data. When and what data needs to be logged obviously depends on each particular

algorithm. Critical process data that has invariably to be persistent to crashes is that contributing

to the a decision, that is, data which reects a championed or detracted proposed estimate of the

decision.

6.4 Algorithms

Algorithms for solving Consensus in the Crash/Recovery model without requiring stable storage

have been proposed in [1]. These algorithms are bound to the results on the requirements of stable

storage (Section 6.3) and thus, to terminate, require the number of processes that never crash to

be greater than the number of bad processes (jNCj > jEO [ECj).
Several Consensus algorithms releasing the assumption of processes that never crash (NC) have

been proposed in [22, 1, 20]. In practice, albeit the cost of using stable storage, these algorithms are

better suited for the Crash/Recovery model as they tolerate the crash and recovery of any process,

and allow any recovering process to actively take part of the computation.

These algorithms borrow their design principles from the Consensus algorithms for the Crash/no

Recovery model [3, 26, 19]. All algorithms require a majority of good processes and rely on the

semantics of stubborn communication channels. Apart from their structure, their major di�erences

lie in the failure detectors they assume and on the use processes make of stable storage. The

algorithms of Oliveira, Guerraoui and Schiper [22] and Hur�n, Mostefaoui and Raynal [20] were

designed using failure detectors satisfying strong completeness and can be proved correct with failure

detectors satisfying Recurrent strong completeness [23]. The algorithm of Aguilera, Chen and Toueg

[1] uses a hybrid failure detector which satis�es strong completeness regarding EC processes and

handles the detection of EO processes by providing an estimate count of the number of recoveries

of all processes.

With regards to stable storage, these algorithms all require each process to log critical data in

every round. The algorithm in [20] is particularly e�cient since stable storage is accessed at most

once during a round.

10

7 Conclusion

The Consensus problem is a fundamental problem one has to solve when building reliable asyn-

chronous distributed systems. This chapter has focused on the de�nition of Consensus and its

solution in two models: the Crash/no Recovery model and the more realistic Crash/Recovery

model. Theoretical results associated with Consensus have also been presented. A fundamental

point in the study of the Consensus problem lies in the Non-Blocking property. An algorithm is

non-blocking if the good (non-faulty) processes are able to terminate the algorithm execution de-

spite bad (faulty) processes. The termination property of the Consensus problem is a non-blocking

property. From a theoretical point of view, there are two main results associated with the Con-

sensus problem. The �rst is due to Fischer, Lynch and Paterson who proved that there is no

deterministic non-blocking Consensus algorithm in a fully asynchronous distributed system. The

second one is due to to Chandra, Hadzilacos and Toueg who have exhibited the minimal failure

detector properties (namely, 3S) for solving the non-blocking Consensus problem with a deter-

ministic algorithm. From a practical point of view, it is important to understand the central role

played by the Consensus problem when building reliable distributed systems.

References

[1] Aguilera M.K., Chen W. and Toueg S. Failure Detection and Consensus in the Crash-Recovery Model.

In Proc. 11th Int. Symposium on Distributed Computing (DISC'98, formerly WDAG), Springer-Verlag,

LNCS 1499, pp. 231-245, Andros, Greece, September 1998.

[2] Bollo R., Le Narzul J.-P., Raynal M. and Tronel F., Probabilistic Analysis of a Group Failure Detection

Protocol. Proc. 4th Workshop on Object-oriented Realtime Distributed Systems (WORDS'99), Santa-

Barbara, January 1999.

[3] Chandra T. and Toueg S., Unreliable Failure Detectors for Reliable Distributed Systems. Journal of

the ACM, 43(1):225{267, March 1996 (A preliminary version appeared in Proc. of the 10th ACM

Symposium on Principles of Distributed Computing, pp. 325{340, 1991).

[4] Chandra T., Hadzilacos V. and Toueg S., The Weakest Failure Detector for Solving Consensus. Journal

of the ACM, 43(4):685{722, July 1996 (A preliminary version appeared in Proc. of the 11th ACM

Symposium on Principles of Distributed Computing, pp. 147{158, 1992).

[5] Dolev D., Dwork C. and Stockmeyer L. On the Minimal Synchronism Needed for Distributed Con-

sensus. Journal of the ACM, 34(1):77{97, January 1987.

[6] Dolev D., Friedman R., Keidar I. and Malkhi D. Failure Detectors in Omission Failure Environ-

ments. Technical Report 96-1608, Department of Computer Science, Cornell University, Ithaca, NY,

September 1996.

[7] Dwork C., Lynch N. and Stockmeyer L. Consensus in the Presence of Partial Synchrony. Journal of

the ACM, 35(2):288{323, April 1988.

[8] Fischer M.J., Lynch N. and Paterson M.S., Impossibility of Distributed Consensus with One Faulty

Process. Journal of the ACM, 32(2):374{382, April 1985.

[9] Fritzke U., Ingels Ph., Mostefaoui A. and Raynal M., Fault-Tolerant Total Order Multicast to Asyn-

chronous Groups. Proc. 17th IEEE Symposium on Reliable Distributed Systems, Purdue University

(IN), pp.228-234, October 1998.

[10] Gray J.N. and Reuter A., Transaction Processing: Concepts and Techniques, Morgan Kaufmann, 1070

pages, 1993.

11

[11] Guerraoui R., Revisiting the Relationship between Non-Blocking Atomic Commitment and Consensus.

Proc. 9th Int. Workshop on Distributed Algorithms (WDAG95), Springer-Verlag LNCS 972 (J.M.

H�elary and M. Raynal Eds), Sept. 1995, pp. 87-100.

[12] Guerraoui R., Oliveira R. and Schiper A., Stubborn Communication Channels. Research Report,

D�epartement d'informatique, EPFL, Lausanne, Switzerland, July 1997.

[13] Guerraoui R., Raynal M. and Schiper A., Atomic Commit And Consensus: a Uni�ed View. (In French)

Technique et Science Informatiques, 17(3):279-298, 1998.

[14] Guerraoui R. and Schiper A., The Decentralized Non-Blocking Atomic Commitment Protocol. Proc.

of the 7th IEEE Symposium on Parallel and Distributed Systems, San Antonio, TX, 1995, pp. 2-9.

[15] Guerraoui R. and Schiper A., Total Order Multicast to Multiple Groups. Proc. 17th IEEE Int. Conf.

on Distributed Computing Systems (ICDSC-17), Baltimore, MD, 1997, pp. 578-585.

[16] Guerraoui R. and Schiper A., Consensus: the Big Misunderstanding. Proc of the Sixth IEEE Workshop

on Future Trends of Distributed Computing Systems, Tunis, 1997, pp. 183-186.

[17] Guerraoui R. and Schiper A., The Generic Consensus Service. Research Report 98-282, EPFL, Lau-

sanne, Suisse, 1998. A previous version appeared in Proc. IEEE 26th Int Symp on Fault-Tolerant

Computing (FTCS-26), June 1996, pp.168-177.

[18] Hadzilacos V. and Toueg S., Reliable Broadcast and Related Problems. In Distributed Systems (Second

Edition), acm Press (S. Mullender Ed.), New-York, 1993, pp. 97-145.

[19] Hur�n M. and Raynal M., A Simple and Fast Asynchronous Consensus Based on a Weak Failure

Detector. Research Report 1118, IRISA, Rennes, (July 1997), 19 pages.

[20] Hur�n M., Mostefaoui A. and Raynal M., Consensus in Asynchronous Systems Where Processes Can

Crash and Recover. Proc. 17th IEEE Symposium on Reliable Distributed Systems, Purdue University

(IN), pp. 280-286, October 1998.

[21] Hur�n M., Macedo R., Raynal M. and Tronel F., A General Framework to Solve Agreement Problems.

Research Report, IRISA, Rennes, January 1999.

[22] Oliveira R., Guerraoui R. and Schiper A., Consensus in the Crash/Recovery Model. Research Report

97-239, EPFL, Lausanne, Suisse, 1997.

[23] Oliveira R., Solving Asynchronous Consensus with the Crash and Recovery of Processes. PhD Thesis,

EPFL D�epartement d'Informatique, 1999 (to appear).

[24] Raynal M., Consensus-Based Management of Distributed and Replicated Data. IEEE Bulletin of the

TC on Data Engineering, 21(4):31-37, December 1998.

[25] Raynal M., Non-Blocking Atomic Commitment in Distributed Systems: A Tutorial Based on a Generic

Protocol. To appear in Journal of Computer Systems Science and Engineering, Vol.14, 1999.

[26] Schiper A. Early Consensus in an Asynchronous System with a Weak Failure Detector. Distributed

Computing, 10:149-157, 1997.

12

