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Abstract: The detection of process failures is a crucial problem system designers have to cope with

in order to build fault-tolerant distributed platforms. Unfortunately, it is impossible to distinguish

with certainty a crashed process from a very slow process in a purely asynchronous distributed

system. This prevents some problems to be solved in such systems. That is why failure detector

oracles have been introduced to circumvent these impossibility results.

This paper presents a relatively simple protocol that allows a process to \monitor" another

process, and consequently to detect its crash. This protocol enjoys the nice property to rely as

much as possible on application messages to do this monitoring. Di�erently from previous process

crash detection protocols, it uses control messages only when no application messages is sent by

the monitoring process to the observed process. This protocol has noteworthy features. When the

underlying system satis�es the partial synchrony assumption, it actually implements an eventual-

ly perfect failure detector (i.e., a failure detector of the class usually denoted 3P). Moreover, if

the upper layer application terminates correctly when the failure detector it uses belongs to 3P,

then, when run with the proposed protocol, it also terminates correctly. These properties make

the protocol attractive: it is inexpensive, implementable, and powerful. The paper also describes

performance measurements of an implementation of the protocol.
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R�esum�e : La d�etection de panne est un probl�eme crucial lors de la conception d'un syst�eme

r�eparti qui doit être tol�erant au d�efaillances. Malheureusement il n'est pas possible de r�esoudre

ce probl�eme de mani�ere totalement �able sans faire d'hypoth�eses suppl�ementaires sur les temps

d'acheminement des messages au travers du r�eseau de communication, ainsi que sur la vitesse

relative des processus composant le syst�eme.

Ce papier pr�esente un protocole tr�es simple qui permet �a un processus de surveiller l'activit�e

du syst�eme et donc de d�etecter les �eventuelles pannes. Ce protocole utilise autant que possible les

messages applicatifs et n'utilise des messages de contrôle ad hoc qu'en dernier recours. Par ailleurs

lorsque le syst�eme sous-jacent satisfait certaines propri�et�es de synchronie partielle, ce protocole

exhibe un comportement qui le classe dans la cat�egorie des d�etecteurs �nalement parfait. Ceci

implique que si l'application a �et�e con�cue avec cette cat�egorie de d�etecteurs �a l'esprit, elle peut

fonctionner en utilisant ce protocole.

Toutes ces propri�et�es rendent ce protocole particuli�erement e�cace et peu coûteux. Des mesures

de performances dans diverses topologie de r�eseaux sont donn�ees.

Mots-cl�es: Syst�eme r�eparti asynchrone, D�efaillances, D�etecteur de d�efaillances �nalement par-

faits.



1 Introduction

Context of the study and related work The design of fault-tolerant middleware on top of

asynchronous distributed systems prone to process crash failures is an important problem system

designers have to cope with. Unfortunately, due to the e�ect of asynchrony and process crashes,

some problems are impossible to solve in purely asynchronous systems. One of the most famous

is the Consensus problem which cannot be solved by a deterministic protocol if (even a single)

process can crash [6].

This makes the detection of process crash failures a central problem of fault-tolerant distributed

computing. As a crashed process cannot be distinguished with certainty from a slow process or

from a process with which communication are very slow, some authors have introduced the idea of

Unreliable Failure Detector oracle [2]. Such an oracle provides each process with the list of processes

it suspects to have crashed. According to the properties their guesses have to satisfy, several classes

of failure detectors have been de�ned. One of them includes all the failure detectors that, after

some unknown but �nite time, make no mistake. Hence, these failure detectors guarantee that,

after some time, the lists of suspects include all crashed processes and no non-crashed process. This

class, denoted 3P, is called the class of Eventually Perfect Failure Detectors. (Failure detectors

with di�erent aims and properties are studied in [1, 7].)

Unfortunately, except for some very particular failure detectors [8], the major part of \reason-

able" failure detectors cannot be implemented in asynchronous distributed systems. If they were,

their implementation would contradict impossibility results (e.g. [6]). Hence, the idea to enrich the

underlying system with additional assumptions in order that a failure detector of the class required

to solve the problem we are concerned with (e.g., [2, 9]) becomes implementable. This means that

the problem can be solved when the system satis�es these assumptions.

Let us consider systems that, even if they behave in a totally asynchronous way during some

time, eventually behave in a synchronous way. More precisely, this means that there are bounds on

message transfer delays, but these bounds are not known and they hold only after some unknown

time [2, 5]. Considering such partially synchronous systems, some authors have provided imple-

mentations of 3P [2, 10] or 3S [11] (3S is the weakest failure detector class that allows to solve

the consensus problem [3]. Several 3S-based consensus protocols are designed, e.g., [2, 13].)

The protocol implementing a failure detector of the class 3P described in [2], and the protocol

implementing a failure detector of the class 3S described in [11] are based on a gossiping approach.

Repeatedly, a process (or several processes) sends \I am alive" messages to a subset or the whole

set of the processes. Di�erently, the modular suite of protocols implementing several classes of

failure detectors (among which 3P and 3S) introduced in [10] is based on a monitoring approach.

Periodically, a process sends an \Are you here" message to another process (the process it monitors)

which has to send back an \I am alive" message. Moreover, the processes are placed on a logical ring

which de�nes the monitoring and the failure information propagation pattern. When compared to

the gossiping approach, this monitoring approach reduces the cost of failure detection (expressed

in number of control messages).

Paper content This paper is on the detection of process failures. The previous (gossiping or

monitoring-based) failure detectors protocols have a major drawback: they have been designed by

taking into account properties the underlying system is assumed to satisfy, but without considering

the behavior of the upper layer protocol that uses the failure detector they implement. To be more

explicit, in any partially synchronous distributed system, they build a failure detector with the

required properties by permanently sending and processing control messages. But, proceeding that
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way, they send control messages and consume resources even when the failure detector is not used

by the upper layer protocol!

This paper proposes a new and simple approach to implement a failure detector. The novelty

comes from the fact that the cost associated with the implementation of a failure detector is

paid only when the failure detector is used (hence the name Lazy approach). More precisely, this

paper proposes a protocol that allows a process to monitor another process. If these processes are

communicating, the application messages they exchange are used to save failure detection messages.

Only when they are not communicating, failure detection messages are used. Hence, the protocol is

intimately related to communication. This basic protocol ensures that if a process queries another

process that has crashed, then it will de�nitely suspect it (completeness of the detection).

The proposed failure detection protocol (denoted FDL) is then plugged into two particular

contexts. The �rst context is de�ned by properties assumed to be satis�ed by the \lower layer"

(i.e., the underlying system); the second context is de�ned by properties assumed to be satis�ed

by the \upper layer" (i.e., the application) [1]. More speci�cally, the �rst context is de�ned by a

behavioral property the underlying system has to satisfy, namely, partial synchrony. It is shown

that, when plugged in such a system, the proposed protocol provides a failure detector of the class

3P. The second context that we consider is de�ned by a property of the application that uses

the protocol. Let a failure detector-based application be 3P-terminating if it terminates correctly

(within at most some l steps after the failure detector becomes perfect) when the failure detector

it uses belongs to 3P. It is shown that, when run with a 3P-terminating application, the protocol

actually provides the application with the same properties as 3P. Interestingly and di�erently

from the �rst context, this second context does not require an a posteriori upper bound on message

transfer delays. These two contexts shows both the theoretical interest and the wide practical

applicability of the proposed failure detection protocol. It enjoys the following nice features: it is

inexpensive, implementable and powerful.

Paper organization The paper is made up of seven sections. Section 2 de�nes the basic dis-

tributed system model. Section 3 presents the failure detection protocol and proves that it detects

crashed processes (completeness property of the detection). Then, Sections 4 and 5 present the two

contexts previously suggested and show the additional properties o�ered by the protocol in each

of them. Section 6 describes performance measurements obtained by a protocol implementation.

Finally, Section 7 concludes the paper.

2 Underlying Basic Distributed System

Processes with crash failure The basic system consists of a �nite set � of n > 1 processes,

namely, � = fp1; p2; : : : ; png. A process can fail by crashing, i.e., by prematurely halting. It

behaves correctly (i.e., according to its speci�cation) until it (possibly) crashes. By de�nition, a

correct process is a process that does not crash. Each process pi has a local hardware clock hci that

strictly monotonically increases. The local clocks are not required to be synchronized, and there is

no assumption on their possible drift.

The behavior of a process can be modeled by a �nite state automaton. We consider that each

step of a process is triggered by a message (an internal statement can be modeled as a message

sent by a process to itself). Each execution of a communication statement by a process pi de�nes

an event. The history hi of a process pi is the sequence of communication events it produces.

Let hc(e) be the value of hci when pi produces the event e. Let us consider two distinct events e1

and e2 produced by pi. It is assumed that the granularity g > 0 of hci is such jhc(e2)�hc(e1)j � g.
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Communication Processes communicate and synchronize by sending and receiving messages

through channels. Every pair of processes is connected by a channel. Channels are not required to

be fifo. They are only assumed to be reliable in the following sense: they do not create, duplicate,

alter or lose messages. This means that a message sent by a process pi to a process pj is assumed

to be eventually received by pj, if pj is correct.

The primitives \send m to pj" and \receive m from pj" are used by a process pi to communicate

with the process pj.

3 A Lazy Failure Detection Protocol FDL

3.1 Service Provided to the Upper Layer

The protocol provides the following primitives to each upper layer application process pi (see

Figure 1 where M denotes an application message, m a protocol message).

� SEND M to pj : used by pi to send an application message M to pj.

� RECEIVE M : used by pi to receive an application message M .

� QUERY(j): used to know whether pj is suspected to have crashed. This primitive returns an

answer, namely, the value suspect or no suspect.

send m to pj receive m from pj

RECEIVE M QUERY(j)SEND M to pj

Protocol Layer

Figure 1: Layered Structure

3.2 Underlying Principles

The principle that underlies the protocol is simple. As indicated in the Introduction, it consists

in using as much as possible the application messages to get information on process failures. This

requires that each message be acknowledged. Hence, if a process pi inquires about pj (by invoking

QUERY(j)), the answer depends on the round trip delays of the messages already acknowledged.

Di�erently, if a process pi inquiries about pj while it is not communicating with pj, control messages

are used to compensate the absence of application messages.

At a more operational level, the protocol uses three types of messages: \appl", \ack" and \ping".

To send an application message M to pj, a process pi invokes \send appl(m) to pj" where the

protocol message m includes M plus some control information. When, it receives such a message,

pj systematically acknowledges it by sending back ack(m). When it receives ack(m), pi computes

the round trip delay of the pair appl(m)+ack(m). In addition, for each destination process pj, pi
computes the maximum round trip delay for the messages that have been acknowledged by pj .
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As suggested previously, the answer provided by QUERY(j) when it is invoked by the upper

layer depends on the existence of \pending" messages, i.e., messages m such that appl(m) has been

sent to pj but the corresponding ack(m) has not yet been received by pi:

- If there is no such message, the answer is no suspect, but pi sends a ping message to pj in order

to verify its answer.

- If there are such \pending" messages, the answer depends on the maximum round trip delay

already experienced.

3.3 Protocol

For each process pi, the protocol manages two arrays of local variables:

� pending msg sti[j]: this set contains the sending times (determined by the local clock hci)

of the messages sent by pi to pj and whose acknowledgments has not yet been received by pi.

This set is initially empty.

When applied to the set pending msg sti[j], the function min delivers its smallest value.

(min(;) is unde�ned.)

� max rdti[j]: contains the biggest round trip time of the messages that pi has sent to pj and

that have been acknowledged. Initially, this variable has the value 0. In practice, if one

knows the value of max rdti[j] from a previous execution, one can initialize max rdti[j] to

this previous value instead.

The protocol behavior for pi is described in Figure 2. A call to SEND M is interpreted as a

message reception from the upper layer. Similarly, RECEIVE M is interpreted as a message sending

to the upper layer. As we have seen, a protocol message m has a type (appl/ack/ping). Moreover,

in addition to a content (m:content), it also carries a local sending time (m:st). More precisely,

apply(m) and ping(m) carry their local sending time. Di�erently, ack(m) carries the sending time

of the apply(m) or ping(m) message it is associated with.

3.4 Completeness Property

If from some time t, a process pi obtains the answer suspect each time it invokes QUERY(j), we

say that from that time it \permanently suspects pj" from t.

Theorem 1 Let us assume that pi is correct, while pj is faulty (i.e., it crashes). Then, FDL

ensures that eventually pi permanently suspects pj to have crashed.

Proof Let us note that after pj has crashed, it does not send \appl, ack" or \ping" messages.

Moreover, the messages it sent to pi before crashing are eventually received by pi; let t be an instant

after these messages have been received. This means that after t:

- (A0) Line 9 is never executed: consequently max rdti[j] remains equal to some value R;

- (A1) Line 10 is never executed: consequently no value is suppressed from pending msg sti[j].

We show that, after some time t0 � t, all the invocations of QUERY(j) entail the execution of the

lines 14, 19-21, and consequently, they all output suspect. We consider two cases.

Case 1: At t, there is at least one appl(m) or ping(m) message sent by pi to pj that has not been

acknowledged by pj .
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(1) when SEND M to pj is invoked:
(2) m:content M ; m:st hci;
(3) pending msg sti[j] pending msg sti[j] [ fm:stg
(4) send appl(m) to pi

(5) when type(m) is received from pj :

(6) case type=appl then transmit M = m:content to the upper layer; % RECEIVE M %
(7) send ack(m) to pj % m:st keeps its value %
(8) type=ack then rt hci;

(9) max rtdi[j] max(max rtdi[j]; rt�m:st);
(10) pending msg sti[j] pending msg sti[j] � fm:stg
(11) type=ping then send ack(m) to pj % m:st keeps its value %

(12) endcase

(13) when QUERY(j) is invoked:

(14) if pending msg sti[j] = ; then create a control message m;
(15) m:content null; m:st hci;
(16) send ping(m) to pj ;
(17) pending msg sti[j] fm:stg;
(18) return (no suspect)
(19) else rt hci;
(20) if ( (rt�min(pending msg sti[j])) > max rtdi[j] )

(21) then return (suspect)
(22) else return (no suspect)
(23) endif

(24) endif

Figure 2: Lazy Failure Detection Protocol
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In that case we have after t:

- (A2): Due to (A1) the value m:st remains permanently in the set pending msg sti[j] (this value

has been added to this set at line 3 or 17, according to the type \appl/ping" of m).

- (A3): Due to (A1) and (A2) min(pending msg sti[j]) remains forever � m:st.

Let us consider the execution of an in�nite sequence of QUERY(j) invoked by pi after t. We have:

- (A4): Due to (A2) and the test of line 14, it follows that all those invocations entail the execution

of line 19. Let rt(1); rt(2); : : : be the sequence of values obtained at that line. Due to the mono-

tonicity property of the local clocks, this sequence is monotonically increasing.

- (A5): We conclude from (A4) that there is an integer x such that the following condition

(8y � x : (rt(y) > m:st+R)) is true.

We conclude from (A0), (A3) and (A5) that there is a time instant t0 � t after which the test

of line 20 is always satis�ed when pi invokes QUERY(j). Consequently, from t0, any invocation of

QUERY(j) returns suspect.

Case 2: At t, all the appl(m) and ping(m) messages sent by pi to pj have been acknowledged.

This means that at t we have pending msg sti[j] = ;. So, let us consider the �rst QUERY(j)

invocation issued by pi after t. As pending msg sti[j] = ;, pi executes the lines 14-18: it creates a

control message m, adds m:st to pending msg sti[j], and we are now in Case 1. 2Theorem 1

3.5 Message Cost of the Protocol

Each appl() or ping() message generates at most one ack() message. Let us observe that both

appl() and ping() are due to the application layer, appl() when it sends an application message,

ping() when it invokes QUERY().

Let us consider the cost of an invocation of QUERY(j) by a process pi after pj has crashed.

According to the current state of pending msg sti[j], pi can be forced to send a ping(m) message to

pj. But from now, the condition pending msg sti[j] 6= ; remains permanently true. Consequently,

the next invocations of QUERY(j) do not send messages, and their communication cost is 0.

4 Plugging FDL in a Partially Synchronous System

This section studies the properties o�ered by the protocol when it is used in partially synchronous

systems. As the class 3P (Eventually Perfect failure detectors) is central to these properties, it is

�rst introduced. Moreover, this section assumes that the drift �i of each local clock hci is bounded.

To simplify the presentation and without loss of generality, we consider the clocks have no drift

(see the techniques presented in [4, 12, 14] to take drifts into account).

4.1 The Class of Eventually Perfect Failure Detectors

The class 3P of failure detectors has been introduced in [2]. It is de�ned by the following properties.

Completeness is on the actual detection of failures, Eventual Accuracy limits the mistakes a failure

detector can make:

� Completeness: Eventually every correct process permanently suspects every crashed process.

� Eventual Accuracy: Eventually no correct process suspects a correct process.
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Let us �rst observe that Theorem 1 proves that, when used in an asynchronous distributed

system (as de�ned in Section 2), the protocol described in Figure 2 implements the Completeness

property. In the following we show that it also implements the Eventual Accuracy property when

some additional assumptions are satis�ed.

4.2 The Protocol in Partially Synchronous Systems

Let us assume that the underlying system is partially synchronous [2, 5]. As indicated in the

Introduction, this means that there is a time (a priori unknown) after which there are upper

bounds (not known) on messages transfer delays and associated processing times.

The combination of Theorem 1 and Theorem 2 (that follows) shows that, when used in such a

context, the protocol FDL actually implements a failure detector that belongs to 3P.

Theorem 2 If the underlying system is partially synchronous, there is a time t after which FDL

ensures that no correct process is suspected by a correct process.

Proof In the following pi and pj are two correct processes. Let tub be the time after which there

are upper bounds on message transfer delays. Moreover, let t be a time such that t � tub and after

which the ack(m) messages sent by pj to pi associated with the appl(m) and ping(m) messages

sent by pi to pj before tub, have been received.

We claim (claim 1) that, 9t0 � t such that the condition (rt�min(pending msg sti[j]) >

max rtdi[j]) is never satis�ed after t0. It follows from the claim that line 21 is never executed

after t0, which proves the theorem.

Proof of claim 1. From the de�nition of t, we can conclude that after t the round trip delays

between pi and pj have an upper bound �i;j.

Let us consider the value of min(pending msg sti[j]) when line 20 is executed at or after t. Let

us �rst note that, as this line is in the else part, we have pending msg sti[j] 6= ;. Let m be such

that m:st =min(pending msg sti[j]). It corresponds to an appl(m) or ping(m) message sent by

pi to pj after t (at line 4 or 16) and not yet acknowledged. Due to (1): the bound �i;j, (2): the

fact that ack(m) is not yet received but will be received, and (3): the fact that rt is the current

time value, it follows that (rt�m:ts < RTm�m:st � �i;j) (where RTm is pi's local time at which

ack(m) will be received). We now consider two cases.

� Case 1: at t, max rtdi[j] � �i;j. In that case, we have (rt �m:st < RTm �m:st � �i;j �

max rtdi[j]), and the claim follows.

� Case 2: at t, max rtdi[j] < �i;j. We claim (claim 2) that, after some time t0 � t, max rtdi[j]

remains constant, equal to a value R � �i;j. This means that R is an upper bound for the

round trip delays between pi and pj. Hence, we have RTm � m:st � R, and the theorem

follows.

Proof of claim 2. Let us note that max rtdi[j] can only increase. By contradiction, let us

assume that max rtdi[j] never stops increasing. Due to the granularity g of hci, each time

it is increased, max rtdi[j] is increased by at least g (at line 9). The sequence of values

taken by (�i;j �max rtdi[j]) is monotonically decreasing and eventually becomes negative.

A contradiction, as �i;j is an upper bound for the round trip delays.

2Theorem 2
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5 The Case of 3P-Terminating Protocols

5.1 Lazy Failure Detectors

The behavior of a failure detector belonging to a class de�ned in [2] is actually \eager" in the sense

that a failure detector can change its output value even if it is not queried. As we have seen, the

present paper introduced the notion of \lazy" failure detector. Here \lazy" is opposed to \eager"

and means that the output of the failure detector (1) can not be observed without querying it and

(2) is restricted to the process that is queried.

The previous section has shown that when the system is partially synchronous, the \lazy" failure

detector FDL actually allows to build a failure detector of 3P. The aim of this section is to show

that the same result can be obtained when the application and the underlying system satisfy some

reasonable assumptions. More precisely, we consider the class of protocols that terminate when

there is no bound on the length of periods without erroneous suspicions, that is, eventually the

protocol will �nd a su�ciently long period to terminate during which the failure detector behaves

without making mistakes. Interestingly, this property is weaker than the properties de�ning partial

synchrony (as de�ned in the previous section), e.g., they do not require upper bounds on message

transfer delays.

We call this class of protocols 3P-Terminating protocols. We show that these protocols ter-

minate with probability 1 when using FDL instead of a protocol belonging to 3P. The proof is

by contradiction, namely it is shown that in�nite executions that exhibit a bound on the length

of periods without erroneous suspicions, occur with probability 0 (under the assumptions made on

the systems).

The content of this long section (6 pages) is basically the proof of Theorem 3. To be precise

and prevent ambiguities, this section uses some formalism, and consequently, is more formal than

the other sections. (This is the \price" that has to be paid to get a proof !).

5.2 Failure Patterns and Failure Detector Histories

The notions introduced in this section are from [2, 3]. A failure pattern is a function F : IR! P(�),

where F (t) is the set of crashed processes at time t. Since there is no process recovery F is not

decreasing, that is 8t < t0 2 IR F (t) � F (t0). We de�ne two predicates, correct(p) and faulty(p)

as follows: faulty(p) , 9t 2 IR s.t. 8t0 > t p 2 F (t0) and correct(p) = :faulty(p). Let F be the

set of failure patterns.

A failure detector history H with range V is a function H : �� IR! V. Let HV be the set of

failure detector histories with range V.

A failure detector D with range V is a function that maps a failure pattern to a set of failure

detector histories with range V. That is D : F ! P(HV).

The class 3P of eventually perfect failure detectors [2] has been informally de�ned in Section

4.1. More formally, it is the set of failure detectors D with range equal to P(�) that satisfy the

following properties:

8>><
>>:

(A) 8F 2 F 8H 2 D(F ) 8 p 2 � faulty(p)) 9 t0 2 IR 8 t > t0 2 IR

(8 q 2 � s.t. correct(q)) p 2 H(q; t);

(C) 8F 2 F 8H 2 D(F ) 8 p 2 � correct(p) ) 9 t1 2 IR 8 t > t1 2 IR

(8 q 2 � s.t. correct(q)) p 62 H(q; t):
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As we want to prove that the protocols designed with 3P in mind also terminate when using

the FDL failure detector, we have to simulate the interface provided by 3P. Two situations can

be considered. A process pi queries its 3P module either to check if a particular process namely pj
is suspected, or to know the whole set of processes that are currently suspected. In the �rst case,

the simulation is done by a simple call QUERY(j). In contrast, the second case requires to query

the lazy failure detector for each process in the system. Whatever the case, we keep on describing

the system model for protocols using a failure detector belonging to the 3P class, as this service

can be simulated by FDL.

5.3 Protocol Automaton and Protocol Histories

Each process is a state automaton (�nite or in�nite) whose transitions are triggered by the arrival

of a message1. Moreover, let M be the set of messages that can be exchanged. To each message

m 2M is associated the following control information:

- m:st is the sending time of m (already de�ned in 3.3),

- m:rt is the receive time of m,

- m:src is the identity of the process that has sent m,

- m:dst is the identity of the process to which m has been sent.

A protocol automaton using a failure detector, whose output is a set of values V, is a 4-tuple

(S; S0; Sf ; �) where S is the set of all the states that the automaton can enter, S0 � S is the set of

initial states, Sf � S is the set of �nal states.

Let k � n be a positive integer and Pk(M) be the set of all subsets that contain at most k

messages. The transition function � is formally de�ned by:

�
� : S � V �M! S �Pk(M);

�(s1; v;m) = (s2; fm1; : : : ;mlg):

It means that on the receipt of messagem, while in state s1, obtaining v as value of failure detection,

a process p enters state s2 and sends the (possibly empty) set of messages fm1;m2; : : : ;mlg (l � k).

An event e is de�ned by a 5-tuple (pi; t; s; v;m) 2 �� IR� S �V �M, where pi is the identity

of the process at which the event occurs, t is the real time at which the event occurs, v is the

value returned by the failure detector at time t, s is the state in which pi was before e and m is

the message that has triggered m. In particular this means that m:rt = t. One can deduce that

event e will trigger the transition where pi is going to enter state s0 and send the set of messages

fm1; : : : ;mlg de�ned by (s0; fm1; : : : ;mlg) = �(s; v;m). Let us note that m1:st = : : : = mk:st = t.

That means that we consider computation time to be part of the transmission time of messages.

A valid protocol history h is a sequence of events (ei)i2I such that: (H1) all the events in the

sequence are totally ordered by their time of occurrence; (H2) Either a process starts from a given

initial state and takes its �rst step in the protocol during an event triggered by a special fake

message called start, or is initially crashed and thus takes no steps in the sequence; (H3) Each

event of the history is triggered by a single message that has been sent by a given process during a

previous event of the history, or is the �rst event taken by a process; (H4) A correct process takes

an in�nite number of steps or it terminates; (H5) A process that terminates stays terminated2;

1Transitions can not be triggered by passage of time, since we consider purely time-free applications.
2We allow a terminated process to receive messages and to send messages to permit the failure detector to

acknowledge ping and application messages.
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(H6) Each message sent by a correct process to another correct process is eventually received. This

can be formally expressed as follows:

(H1) 8 i 2 I 8 j 2 I j < i ^ ei = ( ; t1; ; ; ) ^ ej = ( ; t2; ; ; )) t1 > t2;

(H2) 8 p 2 � (9 i 2 I ei = (p; ; s; ; start) ^ s 2 S0 ^ (6 9 j 2 I j < i ^ ej = (p; ; ; ; )))

_(6 9 i 2 I ei = (p; ; ; ; ));

(H3) 8 i 2 I ei = (p; ; ; ;m1)) (9 j 2 I j < i ^ (ej = (q; ; s2; v2;m2))

^(�(s2; v2;m2) = ( ;M)) ^ (m1 2M) ^ (m1:dst = p) ^ (m1:src = q))

_(m1 = start^ 6 9 j < i ej = (p; ; ; ; ));

(H4) 8 p 2 � correct(p) ) 8 i 2 I 9 j 2 I (j > i ^ ej = (p; ; ; ; ))

_(9sf 2 Sf ^ ej = (p; ; sf ; ; ));

(H5) 8 i 2 I 8 p 2 � 8 sf 2 Sf correct(p) ^ ei = (p; ; sf ; v;m)

) 9sf1 2 Sf 9M : �(sf ; v;m) = (sf1;M);

(H6) 8 p; q 2 � (correct(p) ^ correct(q)) 8 i 2 I (ei = (p; ; s; v;m)) ^ (�(s; v;m) = ( ;M))

^(m0 2M) ^ (m0:dst = q)) (9 j 2 I j > i ej = (q; ; ; ;m0)):

We say that a failure detector is perfect during a subsequence of events S i� during S the failure

detector suspects all processes that have crashed and it does not suspect any processes that have

not crashed.

De�nition 1 (Perfect
j

l failure detection predicate) Let F be a failure pattern and h =

(ei)i2I a valid protocol history for F . The subsequence S of l consecutive events of h starting at

index j (ei)j�i<j+l satis�es the Perfect
j

l
predicate if and only if:

8(p; t; s; v;m) 2 S

�
(PC) 8 q 2 � s.t. q 2 F (t)) q 2 v;

(PA) 8 q 2 � s.t. q 62 F (t)) q 62 v:

5.4 System and Application Requirements

A protocol is terminated by event ek if all processes have either terminated or crashed no later

than event ek.

De�nition 2 (Terminatedk termination predicate) Let F be a failure pattern, let h = (ei)i2I
be a valid protocol history for F . The history satis�es predicate Terminatedk, i.e., has terminated

by event ek = ( ; t; ; ; ); k 2 I if and only if 8p 2 � : (9i � k ^ 9sf 2 Sf : ei = (p; ; sf ; ; )) _ p 2

F (t).

We say that a protocol is 3P-Terminating if there exists a positive integer l such that the

protocol terminates whenever the failure detector is perfect for at least l steps.

De�nition 3 (3P-Terminating protocols) Let AP be a protocol using a failure detector with

range P(�). AP is said to be 3P-terminating if and only if for each valid protocol history h of

AP:

9 l0 2 IN 8 l > l0 8 j 2 IN Perfect
j

l
) Terminatedj+l:

In the rest of the paper we consider particular sequences of messages that are said to be over-

lapping. Informally, this means that we only consider totally ordered (by receipt time) sequences

of messages where, each time a message is received, there is at least one other message (of the

sequence) that is in transit. More formally:
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De�nition 4 (RTD(m) round-trip delay) Let m be an application message and be ack(m) the

acknowledgment of m. The round-trip delay of m is de�ned as: RTD(m) = ack(m):rt�m:st. We

de�ne RTD(ack(m)) = 0.

De�nition 5 (Sequence of overlapping messages) Let M = (mi)i2I be a sequence of mes-

sages, where I is a totally ordered countable (�nite or in�nite) set of indexes. M is said to be a

sequence of overlapping messages if :

8i 2 I

8<
:

(O1) RTD(mi) <1;

(O2) 8 j 2 I j > i mi:rt < mj:rt;

(O3) 9 j 2 I j > i mj :st � mi:rt unless i = max(I):

Let us remark that in the case of a �nite sequence, conditions (O2) and (O3) do not constraint

the last message of the sequence. Furthermore conditions (O2) and (O3) imply that 8 i 2 I 9 j 2

I j > i mj:st � mi:rt < mj:rt unless i = max(I). This means that there is at least one message

(namely mj) that is in transit by the time mi is received. (Figure 3 depicts such a sequence of

length 4.)

m1

m2 m3 = ack(m2)

m4 = ack(m1)

Figure 3: Overlapping Messages

De�nition 6 (Sequence of overlapping events) Let h be a protocol history. Let S = (ei)i2I
be a subsequence of events extracted from h. S is said to be a sequence of overlapping events if the

sequence M = (mi)i2I of triggering messages associated with S and de�ned by mi 2 M , ei =

(p; t; s; v;mi) 2 S is overlapping.

Assumption 1 (Average Round Trip Delay of Overlapping Sequences) Let S = (mi)i2I
be an overlapping sequence of messages. The average round trip delay of S is de�ned as ARTD(S) =P

i2I RTD(mi)

jIj
. We assume that every overlapping sequence of messages has a �nite mean and

variance round trip delay.

5.5 Property of FDL

Theorem 3 If the upper layer protocol is 3P-Terminating, then it terminates correctly when,

instead of using a failure detector of 3P, it uses FDL.

Lemma 1 Let A = (a1; : : : ; au) and B = (b1; : : : ; bv) be two overlapping sequences of messages

such that au = b1. Let C = (a1; : : : ; au = b1; : : : ; bv) be the concatenation of A and B. Then C is

overlapping.
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Proof We use the following notation C = (ci)1�i�u+v�1, where ci = ai if i � u and ci = bi�u+1

if u � i � u+ v � 1. It is obvious that for each i 2 [1; u+ v � 1], one has RTD(ci) <1, since this

was true for all ai and bi. The same argument applies for condition (O2). Finally, condition (O3)

is satis�ed since:

8>><
>>:

if i < u, one has ci = ai and 9j � u aj :st � ai:rt,

if u � i < u+ v � 1, one has ci = bi�u+1 and 9j � v bj :st � bi:rt

that is 9j0 u < j0 � u+ v � 1 (cj0 = bj):st � (ci = bi�u+1):rt,

if i = u+ v � 1, one has i = max(I) and hence no property to satisfy.

2Lemma 1

Lemma 2 Let A = (a1; : : : ; au) and B = (b1; bv) be two overlapping sequences of messages such

that au = bv. Let C = sort(A;B) be the sequence of messages built from A and B by sorting

messages according to their receive time. Then C is overlapping.

Proof We use the same notation as in Lemma 1. It is obvious that for each i 2 [1; u+ v� 1], one

has RTD(ci) <1, since this was true for all ai and bi. Condition (O2) is naturally satis�ed since

the sequence C is sorted by receipt time. Finally, condition (O3) is satis�ed since:

8>>>>>><
>>>>>>:

if ci = ak and i < u+ v � 1 one has 9j > k aj:st � ak:rt

that is 9j0 > i (cj0 = aj):st � (ak = ci):rt,

if ci = bk and i < u+ v � 1 one has 9j > k bj:st � bk:rt

that is 9j0 > i (cj0 = bj):st � (bk = ci):rt,

if i = u+ v � 1 since cu+v�1 = au = bv, and u+ v � 1 = max(I)

there is nothing to check.

2Lemma 2

Lemma 3 Let us assume there exists a protocol AP and a protocol history h = (ei)i2IN in which

at least one correct process does not terminate. That is 8 k :Terminatedk. Moreover let us

assume that 8 l 9 k Perfectkl . Then either 9 k Terminatedk, or 9 l 8 k :Perfectkl . That

is either the protocol terminates, or the perfectness of the failure detector is length bounded.

Proof Let us assume that (1) 8 k :Terminatedk and (2) 8 l 9 k Perfectkl . Since AP is

3P-Terminating, (2) implies, for l = l0 that there exists k such that Perfectkl , which in turn,

implies that Terminatedk+l. That is (1)^(2)) false. One can deduce that either (1), or :(2) is

satis�ed. That is either the protocol terminates, or the perfectness of the failure detector is length

bounded. 2Lemma 3

Lemma 4 Let (xi)(i2[1;n]), be n positive reals. Let x =
P

i2[1;n] xi. Then
P

i2[1;n] x
2
i �

x2

n
.

Proof The proof is by recurrence on n, and relies on the fact that the function f : x ! x2 is

convex. That is 8� 2 [0; 1]; 8x; y 2 IR; f(�x+ (1� �)y) � �f(x) + (1� �)f(y). The base case

is n = 2, where one applies the convexity inequality for � = 1=2:
x21+x22

2
�
�
x1+x2

2

�2
= x=4. Assume
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that for all m < n, one has
P

i2[1;m] x
2
i �

x2

m
. One has:

X
i2[1;n]

x2i =
X

i2[1;n�1]

x2i + x2n;

�
(x� xn)

2

n� 1
+ x2n; (by applying recursion assumption)

=
x2 � 2xxn + nx2n

n� 1
:

The previous polynome of the xn variable, is always positive and reach its minimum for xn = x=n.

That is: X
i2[1;n]

x2i �
x2 � 2x(x=n) + n(x=n)2

n� 1
;

�
x

n
:

2Lemma 4

Proof (of Theorem 3) If all processes crash, the protocol terminates and hence, the theorem is

satis�ed. Let us assume that there exists at least one correct process. By lemma 3 the perfectness

of the failure detector is length bounded. In that case, we show that there exists an overlapping

sequence with in�nite average round trip delay.

Since there is a �nite number n = j�j of processes in the system, all the processes that are

faulty will eventually crash. Thus there exists an integer t0 such that after index t0 all processes

that take steps in h are correct. This implies that after t0, all messages that are sent, are sent

by correct processes. Furthermore, there exists an index t1 > t0 such that all messages that are

delivered after t1 have been sent by a correct process (since only a �nite number of messages had

been sent before t0 and they have been either received by t1 or will never be received).

Recall that any event e is triggered by a unique message. Let us denote this message by m(e).

Furthermore recall that we are using a FDL failure detector that simulates an eager failure detector.

By theorem 1 one knows that failure detectors of class FDL are complete, that is, crashed processes

are eventually suspected by correct processes. That means that there exists an index t2 > t1, such

that all faulty processes are suspected by all correct processes. Since all faulty processes have

crashed, the only reason for the predicate Perfectk�t2l not to be satis�ed is a false suspicion.

That is, a correct process is erroneously suspected ((PA) property of the de�nition).

In the remainder, we use the previous results to build an in�nite overlapping sequence with

an average round trip delay that is unbounded. By assumption 1, the probability that such a

sequence exists is equal to 0. That implies that a valid protocol history h with a bounded length

of perfect failure detection can only exist with probability 0. Thus in turn, this allows to conclude

that 3P-terminating protocols terminate with probability 1.

We build recursively an overlapping subsequence of history h, starting at event et2+1. Let us

de�ne k0 = t2 + 1, and assume that we have build an overlapping sequence Sj up to kj . We show

how to build an extension of Sj, called Sj+1, that is still overlapping. By assumption, one knows

that predicate Perfect
kj
l

is not satis�ed. More precisely, we know that there exists a smallest

index lj with kj � lj � kj + l � 1 and at which occurs a false suspicion. Let us remark that

the sequence (ei)kj�i�lj is overlapping. Indeed ei is triggered by m(ei), whose round trip delay is

�nite (because m(ei) has been sent by a correct process, and its acknowledgment will eventually

be received). Moreover since there is no event between ei and ei�1, at least m(ei) is in transit at

the time m(ei�1) is received.
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Since there is a false suspicion at event elj = (p; t; ; ;m(elj )), there must exist a message mlj

sent by a process p to process q and p has queries the status of q at event elj and p has not received

the acknowledgment of mlj . Two cases have to be considered, either mlj has not yet been received

by q at time t, or mlj has already been received by q at time t.

Let us consider the �rst case, where mlj is received after t. There must exist an event erj
triggered by mlj , that is erj = (q; t0 > t; ; ;mlj ). Since mlj is received after t, and sent before t,

that means that mlj is in transit by the time m(elj ) is received. Hence, erj and elj are overlapping.

Moreover, there must exist an event ekj+1 triggered by the receipt of ack(mlj ) at process p, that is

ekj+1 = (p; t00 > t0; ; ; ack(mlj )). Since mlj is received at time t0, when ack(mlj ) is sent, mlj and

ack(mlj ) are overlapping. Hence, the sequence sj = (ekj ; : : : ; elj ; erj ; ekj+1) is overlapping. One can

extend the sequence Sj = (eki ; : : : ; eki+1)i�j to Sj+1 = (eki ; : : : ; eki+1)i�j+1 by Lemma 1. That

concludes the �rst case.

Let us consider the second case where mlj is received before t. There must exist an event erj
triggered by mlj , that is erj = (q; t0 < t; ; ;mlj ). Message ack(mlj ) is sent at time t0 and thus

before event elj . Moreover, there must exist an event3 ekj+1 triggered by the receipt of ack(mlj )

at process p after t, that is ekj+1 = (p; t00 > t; ; ; ack(mlj )). Thus m(elj ) is received at p while

ack(mlj ) is in transit. So events elj and ekj+1 are overlapping. This allows to conclude that the

sequence S0 = (ekj ; : : : ; elj ; ekj+1) is overlapping. Due to Lemma 1, the concatenation of Sj and

S0 is overlapping. Moreover, since mlj is received at time t0 at which ack(mlj ) is sent, mlj and

ack(mlj ) are overlapping. That implies that the sequence S00 = (erj ; ekj+1) is also overlapping. By

Lemma 2 the sequence Sj+1 = sort(Sj + S0; S00) is overlapping.

We have been able to extract from h an in�nite subsequence of overlapping messages, where

there is an unbounded number of false suspicions. Let A denote the set of pairs (i; r) such that pi
has wrongly suspected pr an in�nite number of times. This set is not empty. Indeed each of these

suspicions occurs at a given process, since there is only a �nite number of processes, there exists

at least one process pi at which occurs an in�nite number of false suspicions. Furthermore, since

there is a �nite number of processes, one can deduce that process pi has suspected in�nitely often

another process, say, pr. Hence, (i; r) belongs to A. By de�nition of A, we can deduce that for each

pair (i; r) 2 A process pi has increased its variable max rtdi[r] an in�nite number of times by at

least g. Furthermore, one can show that there exists an index a such that in each extension sk; k�a
of Sk, the false suspicion is due to pi about pj with (i; j) 2 A.

Let us de�ne the MARTD operator on overlapping sequences of messages by:

MARTD(S) =

P
m2S RTD(m)

jSj
:

Since j Sk j� (k + 1)(l + 1), one has:

MARTD(Sk) �

P
m2Sk

RTD(m)

(k + 1)(l + 1)
:

Let us consider that every message in Sk has a zero round trip delay, except messages mlk send

by pi to pj with (i; j) 2 A. Let us denote ni;j(k) the number of times pi has increased its variable

max rtdi[j] after index a and before index k. Let us remark that for all (i; j) 2 A and for all k � a,P
(i;j)2A ni;j(k) = k � a + 1. Using Lemma 4, one can deduce that for all (i; j) 2 A and for all

3Otherwise there is no false suspicion.
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k � a,
P

(i;j)2A ni;j(k)
2 �

(k�a+1)2

jAj
. Thus:

8 k � a MARTD(Sk) �

P
(i;j)2A

Pni;j(k)

z=1 zg

(k + 1)(l + 1)
;

� g

P
(i;j)2A(ni;j(k) + 1)ni;j(k)=2

(k + 1)(l + 1)
;

� g

P
(i;j)2A ni;j(k)

2 + ni;j(k)

2(k + 1)(l + 1)
;

� g
j A j +

P
(i;j)2A ni;j(k)

2

2(k + 1)(l + 1)
;

� g

�
j A j

(k + 1)(l + 1)
+

(k � a+ 1)2

j A j (k + 1)(l + 1)

�
:

One can deduce that MARTD(S) = limk!+1MARTD(Sk) = +1. One knows that:

8 c > 0 P [MARTD(S)�E(MARTD(S)) � c] �
1

(V (MARTD(S))c)2

By assumption 1, one can deduce that P [8B > 0MARTD(S)�E(MARTD(S)) > B] = 0. That is,

our initial assumption occurs with probability 0. In other words AF terminates with probability 1.

2Theorem 3

6 Experimental Results

This section describes performance measurements of an implementation of FDL in three di�erent

network settings.

Experiment Program This program consisted of a process pair (p; q) where each of the two

processes is made up of an in�nite lop where it queries the status of the other process. Between

two queries, each process waits for a minimum amount of time, namely, the currently experienced

maximum round-trip delay, i.e., max rtdp[q] for process p.

Measured values The following values have been measured for each process p:

- The number of queries between two maxima, i.e., the number of queries of p between updates of

the variable max rtdp[q], and

- The value of max rtdp[q] with respect to the number of queries.

Context of the measures The measurements have been performed in three di�erent types of

system.

� First, we measured the performance for p and q running on the same computer with the Linux

system (see Figures 4(a) and 4(b)). The total number of queries was 19 270 000 and the

maximum round-trip delay was 0:824s.

� The second measurement was performed on two computers connected via an asymmetric cable

modem and one of these computer was connected via a wireless 802.11b Ethernet interface

to the cable modem (see Figures 5(a) and 5(b)). This setup shows a substantially higher
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maximum. Former measurements indicate that this is caused by the very unreliable and

slow phone uplink of the cable modem. The total number of queries was 4 320 000 and the

maximum experienced round-trip delay was 185:890s.

� The �nal measurement was performed on two computers connected via the Internet (see

Figures 6(a) and 6(b)). One computer was located in San Diego, US while the other was

located in Rennes, France. The total number of queries was 2 050 000 and the maximum

experienced round-trip delay was 31:681s.
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Figure 5: Processes connected via a cable modem

Lesson learned The lesson learned from the experiments can be extracted from the Figures 7(a)

and 7(b). These �gures show that there is an exponential increase in queries between two con-

secutive maxima. Interestingly, even though the underlying network technologies and experienced
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Figure 6: Remote processes connected via the internet

maxima are quite di�erent, the distances between consecutive maxima are comparable (Figure

7(a)).

Hence, in order to reduce the number of wrong suspicions, it makes sense that a practical

implementation keeps track of max rtdp[q] between executions. In this way, one could avoid almost

all wrong suspicions.
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Figure 7: Summary for three di�erent network technologies

7 Conclusion

This paper presented a relatively simple protocol that allows a process to \monitor" another process,

and consequently to detect its crash. This protocol enjoys the nice property to rely as much as

possible on application messages to do this monitoring. Di�erently from previous process crash

detection protocols, it uses control messages only when no application messages is sent by the

monitoring process to the observed process.

PI n�1367



It has been shown that the proposed protocol has noteworthy features. When the underlying

system satis�es the partial synchrony assumption, it actually implements an eventually perfect

failure detector (i.e., a failure detector of the class usually denoted 3P). Moreover, if the upper

layer application terminates correctly when the failure detector it uses belongs to 3P, then, when

run with the proposed protocol, it also terminates correctly. These properties make the protocol

attractive: it is inexpensive, implementable, and powerful.

The paper also described performance measurements of several implementations of the protocol.

These measurements show that the number of wrong suspicions can be reduced by requiring each

process p to keep track max rtdp[q] between executions.
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