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Abstract mechanisms. Such mechanisms are particularly valuable

for transaction management, replication, load balancing,

One of the fundamental differences between a central-distributed garbage collection, as well as for specific moni-
ized system and a distributed one is the notiopaftial fail- toring applications like supervision and control systems.
ures The ability to efficiently and accurately detect failures
is a key element underlying reliable distributed computing.
In current distributed systems however, failure detection is .
either left to the application developer or hidden from the 1.1 ~Current Practices
programmer and provided in an ad hoc manner behind the
scene. We plead for an intermediate approach where failure
detectors ardirst class objectaWe view failure detection as
an abstraction, the complexity of which is encapsulated be-
hind well defined interfaces. The various roles of a failure
detection service are all represented as first class objects.
Following our approach, one can reuse existing failure de-
tection protocols as they are or, through composition or re-
finement, define new protocols that match the application

reoqs?;ifmﬁgisrﬁix\ées dﬁzﬁrff darlllllr}:[ﬁfélzqgo;?'fsc) L::;Ofa?];\?v?itors [2]) provide support for failure detection through the
P P P 9 use of timeouts. Nevertheless, the specific code that han-

show how scalability issues may be addressed by using a hi-

erarchical failure detection configuration. We also discuss dies timeouts is usually mixed with the code of the dis-
. . . L . ri r Is(e.g., gr membership an mi m-
the implementation of our failure service both in CORBA tributed protocols (€.g., group membership and atomic co

and in Java m?tment). It is_ very difficu_lt, if not impossible, to adapt the
' failure detection mechanism to the network topology with-
out modifying the application or the underlying distributed
protocols. The only parameters that are usually left to the
1 Introduction developer are timeout values. These are indeed fundamental
parameters that enable the developer/user to trade latency

The notion ofpartial failuresis a fundamental character-  (Shorttimeouts) with accuracy (long timeouts). She/he can-
istic of a distributed system: at a given time, some compo- not however parametrize the failure detection protocol it-
nents of the system might have failed whereas others mightSelf- This can be viewed as a serious drawback of existing
be operational. The ability to hide partial failures from ap- distributed systems and can seriously reduce their scalabil-
plications is usually considered a crucial way to measure'® @nd more generally their applicability in various con-
the reliability of the system. All reliability schemes that t€Xts. For example, according to the network topology and

we know about rely, to some extend, ailure detection the communication pattern of the application, the ch_oice be-
tween apush(heartbea} or apull (are-you-alivgé monitor-
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In most distributed systems, failure detection is left to
the application developer (e.g., in DCE and PVM). Fail-
ures are handled through mechanisms like exceptions and
it is up to the programmer to distinguish a physical failure
from a logical failure specific to the application’s seman-
tics. Some reliable distributed programming toolkits how-
ever (e.g., group oriented systems [3] or transaction mon-




1.2 Failure Detectors as First Class Objects service is a part of a family of services that address the de-
pendability requirements of distributed applications [7, 8]:
It is until very recently that the idea of considering fail- these also include abbject Group Servicand aConsensus

ure detection as a first class distributed service has emerged>ervice[9]. We experimented the portability of our failure
Axiomatic properties of failure detectors have been exhib- detection service on three ORBs: ORBIX [10], VisiBro-
ited and it was shown that even unreliable failure detec- Ker [15], and ORBacus [6]. As we point out in the paper,
tors can help circumventing known impossibility results in OUr experiments revealed some fundamental variations in
distributed computing [5, 4]. Roughly speaking, a fail- the way these ORBs handle timeouts on remote invocations.
ure detector is viewed as a distributed oracle that providesOUr work in the context of CORBA, and particularly our
hints about failures in the system. One can prove the failure detector model, has significantly influenced many of
correctness of distributed agreement protocols (e.g., conihe proposals that have recently been made to the OMG in
sensus, atomic broadcast, or non-blocking atomic commit-the context of its undergoing standardization effort towards
ment) simply by relying on abstract axiomatic failure detec- fault-tolerant CORBA [13]. _ _
tor properties. Following that theoretical work, researchers ~ More recently, we also implemented our failure monitor-
at Cornell University suggested to consider the failure de- N9 architecturg in the form of a Java component. We pack-
tection as an operating system service that sits among es@ded our service as a programmatic general purpose API
tablished services such as naming, authentication, and fileiseful for distributed enterprise computing. We used for
management [16, 14]. In this paper, we go a step further bythat several interfaces defined in the Enterprise Java plat-
considering failure detectors fisst class citizensRoughly ~ form [1].
speaking, failure detection is not transparent to the devel-
oper but rather hidden behind abstract, yet accessible, firsi.-4 Roadmap
classobject interfaces

On the one hand, we decouple failure detection mecha- The rest of this paper is organized as follows. Section 2
nisms from other mechanisms in the system, thus enhancPresents our generic failure detection architecture, recalls
ing modularity and extensibility. In fact, we even decouple the two well known failure monitoring models, namelysh
the various roles of failure detection components: namely, andpull, and then introduces our generic dual monitoring
monitor, monitorable and notifiable objects. The failure ~ scheme that combines the properties of those two models.
detection service is viewed as a hierarchy of well defined Section 3 discusses the interactions between the compo-
interfaces and one can reuse existing mechanisms or buildients of the failure detection service. Section 4 describes
new ones through composition or refinement. We presenthow our architecture helps the configuration of failure de-

a simple example of composition wherashandpull fail- tgction to scale gccordi_ng to the undgrlying network. Sec-
ure monitoring models are mixed insidelaal monitoring ~ tion 5 and Section 6 discuss some issues we faced when
scheme implementing our architecture as a CORBA service and as

On the other hand, we consider the entities being mon-& Java component, respectively. Finally, Section 7 presents
itored as abstract objects in the system and we eliminateSOme concluding remarks.
the mismatch between (1) the need for failure detection at
the level of application objects and (2) the support provided 2 A Generic Failure Detection Architecture
by some operating systems to detect host failures. One can
configure the failure detection service in such away thatthe  Roughly speaking, a failure detection service is a dis-
monitored units can range from specific application objects, ributed oracle (anonitor) aiming at providing some dis-

to threads, processes, machines, or even subnets. We giv@ibuted objects rfotifiable objects) with hints about the
an example of a scalable hierarchical configuration and Wecyash of other objectsronitorableobjects).

discuss how the randomized gossiping scheme of [14] can  Thjs section presents the architecture of our object mon-

be developed with our infrastructure. itoring service. The service is generic in the sense that it
supports several interaction styles and may be configured in
1.3 Current Status various ways. The interfaces of the monitoring service are

arranged in a hierarchy that provides different views of the

We developed our failure detection service in the context Service and different interaction paradigms for failure de-
of the European ESPRIT project OpenDREAMShich tection (F|gure 1). In particular, the hierarchy mcludes spe-
aims at providing a CORBA compliant reliable framework cialized interfaces for thpushand thepull execution styles.

for supervision and control systems. The failure detection A dual monitoring model is defined in a clean way by sim-
ply inheriting from the push and pull models. For simplicity

IProjects 20843 and 25262. of presentation, the interfaces have been intentionally kept




minimal. In particular, management operations used to con-2.2  Service-Oriented Interfaces
figure the failure detectors have been partially omitted.

In contrast to the monitorable and notifiable interfaces,
monitors are implemented by the service and do not need to
be instantiated by the application. More precisely, the in-
terfaces deriving fronMonitor are service objects (Fig-
ure 1), the implementation of which is provided by the ser-
vice. These interfaces abstract the behavior of monitoring

notify_suspicion() start_monitoring()
stop_monitoring()
is_it_alive()
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T ) ] [ o] protocols and the way the information about component
X failures is propagated in the system, i.e., floav policy.
There are two basic forms of unidirectional flopyshand
Igl pull, plus sgveral vari:_;mts [11]. These flow poligies corre-
[ ] spond to simple monitoring protocols. We outline below
these protocols and we describe a new one that results from
Figure 1. Class Diagram of the Object Monitoring Service a combination opushandpull monitoring schemes.

Interfaces

The Push Model

o ) In thepushmodel, the direction of control flow matches the
2.1 Application-Oriented Interfaces direction of information flow. With this model, monitorable
objects are active. They periodically seinelartbeatmes-
Client applications that use the service for monitoring sages to inform other objects that they are still alive. If a
remote objects have limited viewof the service, restricted monitor does not receive the heartbeat from a monitorable
to the three topmost interfaces of Figure 1. These interfacesobject within specific time bounds, it starts suspecting the
abstract the flow model used for object monitoring. As a object. This method is efficient since ontyie-waymes-
consequence, applications that use the serviceadoeed sages are sent in the system, and it may be implemented
to care about the interaction paradigms used for monitoringwith hardware multicast facilities if several monitors are
objects. In particular, this makes it possible to mix several monitoring the same objects.
monitoring models in the same distributed application with

no impact on the clients. Monitorable

i . . Client Monitor Objects
These three interfaces abstract the roles of objects in-
volved in a monitoring system: OT‘TO
("t is alive!") (" am alive!")

e Monitors (or failure detectorsare the objects that col-
lect information about component failures. In this pa-
per, we focus orailure monitoring and we consider
the terms “monitor” and “failure detector” as equiva-  Figure 2 illustrates how the push model is used for mon-
lent. itoring objects. Note that the messages exchanged between

) ) ) ~ the monitor and the client are different from the heartbeat

* Monitorable objectsare objects that may be moni-  messages sent by monitorable objects. The monitor gen-
tored, i.e., the failure of which may be detected by the gra|ly notifies the clienbnly when a monitorable object
failure detection system. changes its status (i.e., becomes suspected or is no longer

suspected), while heartbeat messages are sent continuously.

Figure 2. The Push Model for Object Monitoring

o Notifiable objectare objects that can be registered by
the monitoring service, and that are asynchronously

Timeout T

SUSPECT
M1

notified about object failures. D E et SRR PP g R
Monitor
Monitorable and notifiable objects are generally Lam Lam Lam
application-specific. In other words, the interfaces deriving M alive! alvel ave SNV
from Monitorable and Notifiable are interfaces oy
that the application must support for the service to call back
to the application. Default implementations of monitorable Figure 3. Monitoring Messages in the Push Model

objects are provided by our service. However, these objects
must be instantiated by the application. The messages exchanged between the monitor and the



monitorable object with a push-style protocol are shown in several monitors are listening to the heartbéa@sth mod-
Figure 3. The monitorable object periodically sends heart- els are thus complementary, and the type of interaction to
beat messages to the monitor. Upon message reception, these depends on the nature of the application.

monitor sets a timer that triggers a suspicion if it expires  Therefore, we introduce a model resulting from the com-
before the reception of a new heartbeat message from théination of the two models, called tieial model, in which

same object. the push and pull models can be used at the same time with
the same set of objects. Informally, the dual monitoring pro-
The Pull Model tocol works as follows. The protocol is split in two distinct

) ) ) o phases. During the first phase, all the monitored objects
In the pull model, information flows in the opposite direc- 56 assumed to use the push model, and hence tdisend
tiqn of gontrol flow, i.e._, only wh_en requested t_>y CONSUMETS. ness messagéseartbeats). After some delay, the monitors
With this model, monitored objects are passive. The mon-gyjitch to the second phase, in which they assume that all
itors periodically sendiveness request® monitored ob-  monjtored objects that did not send a heartbeat during the
jects. If a monitored object replies, it means that it is alive. st phase use the pull model. In this phase, the monitors
This model may be less efficient than the push model sincegenq aliveness requedb each monitored object, and ex-
two-waymessages are sent to monitored opjects, but it i? pect aliveness messagsimilar to the push model) from
easier to use for the application developer since the moni-he |atter. If the monitored object does not send this mes-
torable objegts are passive, and do not need to have any tlmgage within some specific time bounds, it gets suspected by
knowledge (i.e., they do not have to know the frequency at ihe monitor.
which the monitor expects to receive messages). Figure 4il-  o,r qual model is not a new failure detection protocol
lustrates how the pull model is used for monitoring objects. per se. It should rather be viewed as a way to mix differ-

Monitorable ent styles of monitoringvithout requiring the monitor to

Client Monitor Objects know which model is supported by every single monitorable
Yes Yes object It hence provides more flexibility by letting moni-
O—’puu ’—’puu torable objects use the best suited interaction style.
("Is it alive?") ("Are you alive?")
SUSPECT
Timeout T1 Timeout T2 Timeout T1 Timeout T2 I_Ml
F=-————— F=-——— -————— e
Figure 4. The Pull Model for Object Monitoring Monitor e you e you
alive? alive?
. am Fail
The messages exchanged between the monitor and the .. ... auare a'..ve/ \ / ol
monitorable object with a pull-style protocol are shown in Monitorable \ /'aﬁvme, lam
M2: Push-Unaware - :

Figure 5. The monitor sends periodically a liveness request ~ Monitorabie
to the monitorable objects, and waits for a reply. If it does

not get the reply, a timeout triggers a suspicion. Figure 6. Monitoring Messages in the Dual Model

_ _ _ SUSPECT Figure 6 illustrates object monitoring with a dual-style
o M o I o _l.““_ ; protocol. In this example, two objects are being monitored.
Monitor Are you Are you Are you The fil’st ObjeCt,Ml, iS push'aWare, i.e., |t iS aCtiVe and
alive? alive? alive? . . .
periodically sends liveness messages (heartbeats). The sec-
ML: Yes ves WM ond one,M2, is not push-aware, i.e., it only sends live-

Monitorable

ness messages when it is asked to. The monitor uses two
timeout periods/'1 and 72 for phases 1 and 2. It expects
liveness messages of push-aware monitorable objects dur-
ing phase 1. Aftefl’1, the monitor switches to phase 2 and
sends a liveness request to each monitorable object from
2.3 The Dual Scheme which it did not receive a liveness message, expecting a re-
ply duringT'2. After T2, the monitor suspects every process
In the pu“ model, the monitor parameters (e.g_, time- from which it did not receive a message. In this example,
outs, which may need dynamical adjustment) need only re-}1 sends a liveness message durifigin the first phase,
side in the monitor and are not distributed in all the moni- and crashes soon after. In the second phase, the monitor
torable objects. However, using push style communicationSends a liveness requestitl, but does not get a liveness
between monitor and monitorable objects is more efficient N .
ote that heartbeat messages generated by a large number of moni-

an_d may reduce the_ number _O_f messages genera_ted W_h%rable objects may also inadvertently flood the network, while this situa-
using hardware multicast facilities (such as IP multicast) if tion is easier to detect and avoid if the messages are sent from less sources.

Failure

Figure 5. Monitoring Messages in the Pull Model




message before the end B6R. Thus, it starts suspecting and the monitorable objects should react by invoking the
M1 to have crashed. i _amalive() operation of the monitor that originally
issued the liveness request. When using the dual execu-
3 Basic Interactions of Failure Detection tion style, these interfaces allow to marry the push and the
Components pull models. During the first pha_se of the d_ual protoco_l,
the monitor assumes that all monitorable objects are using

the push execution style, and expects heartbeat messages.

This section describes the interface and semantics of theDuring the second phase, the monitor assumes that all mon-
failure detection components by presenting the interactionsitorable objects from which it did not receive a heartbeat

{J_etwier: these corlr_lpcinent?. T:\ere ar(_at two typz_efz_s 8|f mtera(;:ére using the pull execution style. Thus, it sends liveness
ions between application clients, monitors, notifiables, an requests to these objects.

monitorable objects: The default way for a monitor to keep track of the sta-

1. Monitor « client and monitor < notifiable: this in- tus of the components in the system is to periodically check
teraction allows the application to obtain information Whether they are alive or not. This informationis stored in a
about object failures. local table, and given to clients when they ask about the sta-

tus of a particular object. Liveness information is typically
2. Monitor < monitorable:this interaction is performed  associated with ime-to-livevalue (which may change on
by the monitoring service to keep track of the status of a per-object basis) telling when to invalidate and re-evaluate
monitorable objects. the suspicion information. Another way to obtain informa-
tion about the status of monitored objects is to do it on
Monitorable client's demand (lazy evaluation). With this scheme, the
Client Objects monitorable object is checked on client demand (i.e., when
O s it alive the client asks the monitor for the status of an object). This
&Momtor‘/ makes the system less reactive since the client has to wait
’ for the liveness request to return before it knows the ob-
ject’s status. However, monitoring objects solely on client’s
@% demand may significantly reduce the number of monitoring
Crash messages exchanged in the system.

notify_failure
(M2)

Notifiable
Object

M1: ALIVE
M2: SUSPECTED

Figure 7. Components and Interactions of an Object Mon-
itoring System

3.2 Monitor < Client and Monitor — Notifiable

A client can ask the monitor to start and stop monitoring
an object by invoking thestart _monitoring() and
Figure 7 illustrates the components and interactions of anstop _monitoring() operations, and obtain the status

object monitoring system. This sample configuration com- of an object by invoking thés _it _alive()  operation.
prises a client, a notifiable object, a monitor, and two mon- From a monitor’s point of view, a monitored object can have
itorable objects\M/1 and M2. The monitor keeps track of one of three states:
component failures. The client explicitly asks the monitor
about the status of monitorable objects. Upon the crash ofa o SUSPECTEDneans that the object is suspected by the
monitored object, the monitor asynchronously informs the monitor.
notifiable object of the failure.

e ALIVE means that the object is considered as alive by
3.1 Monitor «— Monitorable the monitor.

The basic interaction paradigm of the monitoring service ¢ DONT.KNOWmeans that the object is not being mon-
consists in having monitors and monitorable objects com- itored.
municate with each other using remote method invocations.
When using the push execution style, monitorable objects Although most applications need to invoke the monitor
periodically invoke thei _am.alive() operation of the  synchronously at specific points during protocol execution,
monitors they are registered with, in order to advertise the it may sometimes be useful to receive asynchronous notifi-
fact that they are alive. When using the pull execution style, cations when the state of an object changes. In particular,
monitors periodically invoke thare _you _alive() op- when protocols are implemented using a state machine ap-
eration of monitorable objects; this operation is one-way, proach, a suspicion can be seen as an event that triggers



some specific action. In this situation, asynchronous suspi-4.1 A Hierarchical Configuration
cion notifications greatly reduce the complexity of the pro-

tocol’'s implementation. The interfaces of our monitoring service make it easy to
A parameter of thetart _monitoring() operation configure the monitoring system in a hierarchy, as shown

allows us to register an object with tiNotifiable in- in Figure 9. In a LAN, one or several failure detectors

terface. The monitor invokes tletify  _suspicion() can keep track of the state of all local monitorable objects,

operation of each registered notifiable object when the sta-and transmit status information to remote monitors in other
tus of a monitored object changes (if an object becomesLANs, thus reducing the number of costly inter-LAN re-
suspected, or if an object that was previously suspected iqjuests. Similarly, the developer may choose to install one
discovered to be alive). The client may still pass a null monitorable object per host, per process, or per thread, de-
reference as notifiable object if it is not interested in asyn- pending on the kinds of failures that she/he considers. These

chronous notifications. configuration choices may be taken at runtime, and do not
require modifications in the interfaces of the service.
4 Putting Failure Detectors to Work A monitor may receive liveness information about a spe-

cific monitorable object from another monitor rather than

This section describes how our generic failure detection directly from the monitorable object. This second-hand in-
architecture can be applied to various system configura-formation may be obtained in two ways:
tions. We consider the sample network topology of Fig-
ure 8, where several clients, monitors, and monitorable
objects are split over three differebbcal Area Networks
(LANs). We present how these monitors can be configured 2. By transmitting complete tables of suspicion infor-
in a hierarchy, and how they can use gossip-style protocols mations, thus reducing the communication overhead.
to reduce the number of messages exchanged in the net-  This solution requires an extension to the service’s in-
work. terfaces of Section 2 in order to transmit these tables.

1. By asking the other monitors about the status of each
individual object;

DL cr The hierarchical configuration is independent of the
(P model used for monitoring objects (push, pull, or dual
@ c2 CANT model). It permits a better adaptation of monitor param-
ﬁ (P (5 eters (such as timeouts) to the topology of the network or
o to the location of monitored objects, and reduces the num-
‘ HANZ ber of messages exchanged in the system between distant
M P hosts. A monitor located in a LAN can adapt to the network
Fo2 ‘| ‘ characteristics and provide a specific quality of service. The
_ ’ \ﬁ ﬁ reduction of network traffic, especially when a lot of moni-
Ok TANG torable objects and clients are involved, is the main reason
: Montoratie objet ‘ for the good scalability of this hierarchical approach.
Failure detector
FD3'

WAN

O Client

. Monitorable object
. Failure detector
\ Monitoring msg.

Figure 8. A Sample Network Topology

entity participating in a distributed protocol with a local
monitor that provides it with suspicion information. How-
ever, this architecture raises efficiency and scalability prob-
lems with complex distributed applications, in which a large
number of participants are involved. In fact, if each partic-

ipant monitors the others using point-to-point communica- | the hierarchical configuration of Figure 9, two groups

tion, the complexity of the number of message®ig:”) of objects (/3 and M 3’) are both being monitored by two
for n participants. Wide area communication is especially
3A simple extension consists in subclassing the interfaces to add

costly and increases the latency of the whole system. It is . . ,

. n operation to get the status of several objects from a list (e.g.,
thus very |mp0rtant to reduce the amount of data eXChange(ire they _alive() ), and an operation to inform about the status of
between distant hosts. multiple objects (e.gthey _are _alive() ).

Figure 9. A Typical Hierarchical Configuration




distinct monitors (or failure detectorsy'(©3 and F' D3’) in each member. This protocol has been extended to scale well
a LAN (LAN3). Two clients C1 andC1’) are located in  in the Internet, by using the network topology and handling
another LAN L AN1), and monitor the former objects in- gossiping in a different ways in LANs and across LANSs.
directly through a local failure detectoF'(D1). There are

two distinct paths betweeA D1 and the monitorable ob- AT~~~ "~~~ AE T T T T T T W T 0 cen
jects, making the failure of D3 or F D3’ transparenttothe | cv Vontorab abect
clients. However, there is no redundancylii N1, andthe | O \ © ot detecor
failure of D1 would prevent clients from getting liveness | : ® vontorg s
information aboutM3 and M3'. This configuration ex- | & N '
ample reduces inter-LAN communication, when compared LQ 7777777777777777777777 N &P

to a traditional approach with one local monitor per client, | LAN2
and messages exchanged between each failure detector aqd@
monitorable object. e~ ¥ = J
An interesting extension of the hierarchical configuration
consists in viewing a monitorable objectasonitor object
that only monitors itself, and that never suspects itsAlf
call to mon->are _you _alive() would be replaced by

mon->is _it _alive(mon) . The new interfaces would

—_—————— e = — — — — = — — —

would provide a clean and orthogonal design of hierarchical | ,

object monitoring. O

N —

Since alink may break anywhere in the hierarchy, asetof 77—/ X"

simple rules for hierarchical invocations helps determining | c2

if a particular object is suspected to have crashed or not: | O

o If a failure detector says that a monitorable object is

. . . . . Figure 10. Two Typical Dynamic Configurations
alive, this object was actually alive some time before.

e If an invocation to a failure detector fails when ask- ~ One can easily build this protocol with our generic archi-
ing for the status of a monitorable object, the invoker tecture, by having specific implementations of failure de-

must assume that the object is suspected by the failurd€ctors that occasionally send their suspicion information to
detector. other failure detectors. The interaction between failure de-

tectors and clients/monitorable objects is not affected. Un-

o If there is more than one path leading to a monitorable like the hierarchical configuration presented in Section 4.1,

object, and this object is not suspected by the failure sending information to randomly chooses failure detectors
detectors of at least one path, it must be considered agreates an invocations graph that evolves in time dg-a

alive. namic hierarchy
Figure 10 presents two dynamic configurations of fail-
4.2 A Gossip-Style Protocol ure detectors that use a gossip-style protocol. Thick arrows

denote gossip messages exchanged between failure detec-
In gossip protocols, unlike in traditional protocols, a tors. One can see in the bottom invocation graph that

member forwards new information tandomly chosen broadcasts its list to all members instead of sending it to a
members. Gossip protocols tend to combine the flexibility randomly chosen member.
of hierarchical dissemination with the robustness of flood-
ing protocols (in which a member diffuses the information
to all its neighbors or to all other members). In [14], a
simple, yet powerful, gossip style protocol is proposed for
detecting remote component failures in a distributed envi- Our CORBA implementation of failure detection has
ronment. In this protocol, each member maintains a list been written in C++ and tested with three different ORBs:
of values that indicates for each member a strictly increas-Orbix [10], VisiBroker [15], and ORBacus [6]. In this sec-
ing heartbeat counter. Members occasionally send their listtion, we first point out some issues related to timeout-based
to randomly chosen members, or broadcast it to all mem-failure detection in these ORBs. Then, we describe the IDL
bers. Upon reception of a list, a member merges the old andnterfaces of our failure detection service and we discuss
the new lists by keeping the maximum heartbeat counter ofsome of its configuration characteristics.

5 Failure Detection as a CORBA Service



5.1 Onthe Use of Timeouts in CORBA

Ultimately, any failure detection implementation is
based on timeouts or time events. Associating a timeout
value to a remote invocation specifies how long one has
to wait for a reply from a potentially failed object. The
CORBA 2.x specification [12] leaves open how request
timeouts should be handled. This is an important concern

/1 1DL

module mMonitoring {

/1 Client interfaces for all flow models
enum Status { SUSPECTED, ALIVE, DONKNOW };

interface Monitorable {
interface Notifiable {

void notify_suspicion (n Monitorable mon,
in boolean suspected)

when using two-way invocations for object monitoring and 2ok
H H i H 14 interface Monitor
leads to proprietary and incompatible ways to handle time- u void Stmmomtgrmg (in Monitorable mon,
outs. In particular, the three ORBs that we have used differ 1 ) . in Notifiable not);
A . 17 void stop-monitoring (in Monitorable mon,
by the following properties: 18 < sitalive (i in Notifiable not)):
19 tatus isit_alive (in onitorable mon);
e Timeout resolutionmillisecond or second. o
22 /1 Interfaces for all models
: ; ; . .. 23 interface HeartbeatMonitor : Monitor
b EXCGptIOﬂ raised upon timeout: CORBA:: 24 oneway void i_am_alive (in Monitoragle mon);
NQRESPONSEr CORBA::COMMFAILURE. s ;
o . . o 27 /1" Pull model ) )
o Lifetime of timeout setting®©ne request or lifetime of 28 interface PullMonitor : HeartbeatMonitor{};
. 29
the connection. 30 interface PudIIMonitorabIIe :( Monit|c|>rable{ )
31 oneway void are.you.alive (in PullMonitor mon);
e Semantics of timeoutstimeout occurs ifany block- 2z
i i ifi i 34 /1 Push model
mg pe”o_d (requeSt_or reply) exceeds speC|f|ed tlmeOUt’ 35 interface PushMonitor : HeartbeatMonitor };
timeout is the maximal time the caller has to wait for 36
. ipe . 37 interface PushMonitorable : Monitorablg
the reply, or two timeouts must be specified indepen- 38 void sendheartbeatsip PushMonitor mon,
dently for the request and for the reply. O in long frequency);
41
i it diffi 42 /! Dual model
~ These differences make it difficult to developartable 4 interface DualMonitor : PullMonitor
implementation of the monitoring service. Therefore, we po PushMonitor{};
have chosen to handle timeouts on top of CORBA using 46 interface DualMonitorable : PuIrI]Moni_torag:e,
one-way invocations (without timeout) for interactions be- w 1 PushMonitorable{ };

tween failure detectors and monitorable objéctEhe re-
guest invoking party uses its own notion of time to provide
the timeout semantics it needs.

Figure 11. IDL Interfaces for the Object Monitoring Ser-
vice
5.2 Monitoring Service IDL Interfaces

Figure 11 presents excerptsf the IDL interfaces of our
CORBA object monitoring service. These interfaces corre-
spond to the class diagram of Figure 1 in Section 2.

An alternative approach to object monitoring would con-
sistin reusing portions of the CORBA event and notification
services, which provide the two basic push and pull interac-
tion models and asynchronous notification facilities. Failure
detectors would be specific implementations of event chan-
nels, and monitorable objects would be consumers or sup-
pliers depending on the monitoring model. Although some
mechanisms of these services may be reused, this approacﬂ
requires important modifications to their interface to match
the failure detection problem (e.g., to start monitoring an
object, or to inquire about the status of monitored object).

5.3 System Management and Configuration

Besides the object monitoring interfaces previously de-
scribed, the monitoring service defines interfaces for man-
aging the configuration of the hierarchical system. These
interfaces define administrative operations for tasks such as
linking failure detectors together, exchanging suspicion ta-
bles, or finding invocation paths to monitored objects. De-
scribing these interfaces is not in the scope of this paper
nce they are not explicitely used by the clients of the ser-
vice. However, some aspects of system configuration are of
direct interest for clients. In particular, clients need to dis-
cover the failure detectors currently running in the system,
and get hints about their relative proximity. In our imple-

“Note that CORBA one-way invocations provide only best effort se- mentation, this information is given to clients through the
mantics. A better solution would be to use OMG's forthcoming messaging CORBA Naming Service
service, which provides various qualities of service such as asynchronous
reliable communication.

5Management operations have been omitted.

The naming service maintains name-to-object mappings
in a federated architecture. These name-to-object associ-



ations are callechame bindings A name binding is de-
fined relative to amaming contextwhich is a CORBA object
responsible for maintaining a set of bindings with unique
names. Different names can be bound to an object in the
same or in different contexts at the same time. Because a
context is like any other object, it can also be bound to a
name in a haming context. Binding contexts in other con-
texts creates a naming graph. We use this naming graph
to describe the hierarchical architecture of our monitoring
service.

Although CORBA aims at providing location trans-
parency, we need to have some knowledge of the network
topology in order to take advantage of it in the monitor-
ing service. Therefore, we map topological domains (e.g.,
LANS) to naming contexts in a hierarchical fashion. Each
failure detector has an entry in its domain, and is tagged
with an attribute that identifies it as a failure detector. Mon-
itorable objects can (but are not obliged to) register them-
selves in the naming service, in the context corresponding to
their local domain. The clients can thus know which failure
detectors are local to their domain, and can take advantage
of this information. When invoking a failure detector lo-
cated in a different naming graph than the current domain,
it is likely to involve wide area communication. Although
this approach based on the naming service has some obvi-
ous limitations, it has the advantage of being simple to use
and maintain, and of being based on standard interfaces.

The CORBATrading Object Servicprovides an alter-
nate way for a client to locate a nearby failure detector.
The trading object service is similar to the naming service,
but maintains (typed) properties-to-object mappings rather
than name-to-object mappings. The trading object service
is built as a federation of traders. In short, the trading object
service provides the functionality géllow pagesvhere the
naming service acts aghite pages

With the trading object service, a client contacts a trader
requesting a monitor that corresponds to some properties,

sembled into working application systems. The Java moni-
toring services uses the following Java enterprise APIs:

e The Java Remote Method InvocatigRMI) API for
communications bewteen remote objects. This API
provides native Java support for invocations between
remote components. RMI is used for synchronous in-
vocations in the monitoring service, such as querying
a failure detector.

e The Java Messaging Servic€IMS) API for op-
tional efficient support of the push model through
publish/subscribe technology. This APl supports
asynchronous communication in the Java platform
through mechanisms such as reliable queues and
publish/subscribe services. Several implementa-
tions of the JMS specifications already provide pub-
lish/subscribe communication through lightweight and
efficient mechanisms based on hardware multicast fa-
cilities. Such facilities greatly improve the scalability
of the system when using a push monitoring model.

e TheJava Naming and Directory InterfagdNDI) API
to access the naming services that maintain the infor-
mation about the failure detector and the objects they
are monitoring in the system. This API provides uni-
fied access to several types of naming and directory
services, such as DNS, NDS, NIS+, LDAP, and COS
Naming.

e Although not supported in the currentimplementation,
the service will use thdava IDLAPI for reusing por-
tions of the current CORBA implementation, and in-
teroperating with it through 11IOP. This API creates re-
motes interfaces to support CORBA communicationin
the Java platform.

While our Java implementation is less mature than our

e.g., physical proximity. The trader then hands back a refer-CORBA implementation, it has several advantages on its
ence to the monitor that best satisfies the requirements. Wecounterpart. Being implemented completely in Java, it ben-
did not however implement this solution, since there still efits from Java’s “write once run everywhere” property.
exist only few implementations of the trading object service Since Java objects can be transmitted by value, it is possible
when compared to the naming service. to migrate objects (such as failure detectors) from one loca-
tion to another one. This can be also useful for uploading
specialized implementations of monitorable objects to sites
that must be monitored. Finally, by using the Java Enter-
prise APIs, it relies on standard interfaces widely accepted

The secor_ld |rr:1plfementr;1t|orj] of our monitoring agchltec—l by the industry, while benefiting from advanced facilities
ture comes in the form of a Java component. Our goal ¢ eficient asynchronous communication.

with this Java component is to provide a general purpose

API useful for distributed enterprise computing. We make .

use of several interfaces defined in the Java Enterprise plat/ ~ Concluding Remarks

form [1]. This technology defines a model for the develop-

ment and deployment of reusable Java server components, Middleware systems usually provide a set of services for
i.e., pre-developed pieces of application code that can be asnaming, trading and management, or higher level business

6 Failure Detection as a Java Component
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