Fail-Awar e Failure Detector s

Christof Fetzer and Flaviu Cristian
Department of Computer Science & Engineering
University of California, San Diego
LaJolla, CA 92093—0114*
http://www-cse.ucsd.edu/users/{ cfetzer, flaviu}
CSE96-475 (Short Version)

Abstract properties state how the crash of aprocessp hasto resultin
thesuspicion that p has crashed, and (2) accuracy properties
state when failure detectors are allowed to suspect a pro-
In existing asynchronous distributed systems itisimpossibégss to have crashed. For example, “strong completeness”
to implement failure detectors which are perfect, i.e. theyequires that each correct process will eventually suspect
only suspect crashed processes and eventually suspectafllicrashed processes, and “strong accuracy” requires that
crashed processes. Some recent research has however pwprocess is suspected before it has crashed [1]. A Per-
posed thatany “reasonable” failure detector for solving thefectfailure detector satisfies strong compl eteness and strong
election problem must be perfect. We address this problesacuracy.

by introducing two new classes tdil-aware failure de-

tectors that are 1) implementable in existing asynchronoughe (highly available leader) election problem [4] requires
distributed systems, 2) not necessarily perfect, and 3) can Bt a any point in real-time there be at most one leader
used to solve the election problem. In particular, we shownd for any time s there exists a time ¢ > s for which
that there exists a fail-aware failure detector that allows tothere isaleader. A recent article [10] provesthat a Perfect
solve the election problem and which is strictly weaker thafgilure detector is the weakest “reasonable” failure detec-

a Perfect failure detector.

1 Introduction

Failure detectors [3] are a mechanism for adding synchro-
nism to the time-freeasynchronous system model [9]. Pro-
cesses of such systems have access to local failure detector
modules which maintain a set of processes that are sus-
pected to have crashed. Failure detectors typically satisfy
certain properties that allow certain well-known problems,
such as consensus, election and atomic broadcast to be
solved. These problemsare otherwise not solvablein time-
free systems [9]. Therefore, failure detectors are in gen-
eral not implementable in the time-free model. However,
existing asynchronous systems, in particular, networks of
workstations, have enough “synchronism” to allow theim-
plementation of failure detectors which allow a determin-
istic solution of problems such as consensus, election and
atomic broadcast.

Failure detectors are typically required to satisfy at least a
completeness and an accuracy property: (1) completeness

*To appear in the Proceedings of the 15th Symposium on Reliable
Distributed Systems, October 23-25, 1996, Niagara-on-the-L ake, Canada.
Thisresearch was partially supported by agrant from the Air Force Office
of Scientific Research.

tor which alows a deterministic solution of the election
problem, where “reasonable” means a failure detector that
satisfies certain symmetry conditions. Our experience indi-
catesthat (1) a Perfect failure detector isnot implementable
in existing asynchronous systems (see Section 7), and (2)
the election problem is solvable in these systems [6]. To
clarify this apparent contradiction, we (&) introduce two
fail-awarenesgropertiesfor failure detectors, (b) use them
to define two new classes of fail-awarefailure detectors, (C)
show how afail-aware failure detector can be used to pro-
vide adeterministic solution for the election problem while
still being implementable in existing timed asynchronous
systems, i.e. asynchronous systems in which processes
have access to local hardware clocks, and (d) show that
there exists a fail-aware failure detector which is strictly
weaker than a Perfect failure detector.

The main idea of fail-aware failure detectors is that a pro-
cess p's failure detector module knows when “too many”
processes might erroneously suspect that p has crashed and
notifies p of that. This property can be used to ensure that
at any time there is at most one leader: when p isthe cur-
rent leader, and p is suspected by a majority of processes
(that could elect anew leader), p’'s failure detector module
suspects p and this “ self-suspicion” lets p know that it has
been demoted to make place for a new leader.

2 Reated Work

Fail-awarenesq8] is a genera concept to extend safety
properties of a fault-tolerant synchronous service by an
exception indicatoso that the new service becomes im-
plementable in timed asynchronous systems [5]. The idea
is that the indicator tells a server and its clients whether
a safety property currently holds or if it might be violated
because the system has suffered “too many performance
failures’. In case of failure detectors we can think of the
accuracy propertiesas safety propertieswhich could bevio-
lated when “too many performance failures’ have occurred
or the system is partitioned. For example, strong accu-
racy ensures that a non-crashed process is not suspected
by any process. The strong fail-awareness property tells
a non-crashed process p if other processes might violate
the accuracy property, i.e. it lets p know whether another
process might suspect p. We formulate two fail-awareness
properties independently of the accuracy properties. This
allows us to combine previously introduced accuracy and
completeness properties [1] with a fail-aware property to
define new fail-aware failure detector classes.

Sabel and Marzullo prove that a Perfect failure detector is
the weakest failure detector to solve the election problem
in the class of “reasonable’ failure detectors [10]. This
class contains all failure detectorswhich satisfy some given
symmetry conditionsln the newest version of their paper
they explicitly exclude the case that a process p can use its
local failure detector module to derive that other processes
might wrongly suspect p. Fail-aware failure detectors pro-
vide such a knowledge and therefore allow a solution of
the el ection problem even though some of them are strictly
weaker than a Perfect failure detector.

Failure detectors [3, 2, 1] are not the only basic distributed
service that can be used to solve the election problem
in asynchronous systems. General purpose asynchronous
group membership protocols such as the one-round and the
three-round protocols of [5] can be used to provide deter-
ministic solutionsto the election problem when the under-
lying process and communication system satisfies certain
“progress assumptions’ [6] (see also section 6.1).

3 Mod€

Failure detectors are a mechanism to introduce additional
synchronismintothe time-freemodel. Theimplementation
of afailure detector has therefore to be based on a model
with stronger properties than the time-free model. Thus, in
this paper we use two models: the time-freemodel and the
timedasynchronous system model extended by a“progress
assumption” (see Figure 1). We will define fail-aware fail-
ure detectors for the time-free model [9]. In Section 5 we
will show how to solvethe election problem in thetime-free
model using a fail-aware failure detector. In Section 6 we
will show how to implement a fail-aware failure detector
in the timed model [5] extended by a progress assumption
[6]. The main differences between the two modelsis that

thetimed model assumes local hardware clocks and defines
process and message performancefailures (see Section 6.1).
In Section 7 we use both models to show that there exists
afal-aware failure detector strictly weaker than a Perfect
failuredetector that all owsthe solution of the el ection prob-

lem.

time-free model

lication
PP + failure detector

[failure detector interface |

) : timed model
implementation of a | + progresassumption

fail-aware failure detector

Figure 1. We use the timed model to show
how to implement a fail-aware failure detec-
tor. Applications using fail-aware failure de-
tectors are designed for the time-free model.

For self-containment we give a brief overview of the time-
free model and some known failure detector properties. We
use the same notation and essentially the same terminology
as [1]. The time-free model does not bound the message
transmission delay, the time to execute one step, nor doesit
mention time, clocks or time-outs. Processes are connected
by reliable communication channels. The only failuresthat
can occur are crashes of processes. A processiscalled cor-
rect when it never crashes. Processes do not recover from
crashes. The set of processes is denoted by M. Constant n

denotes the number of processes, i.e. n £ M.

A failure detector is a distributed service implemented by

a set of local failure detector modulesone for each pro-

cess. Each module maintains a set of processes which it

currently suspects to have crashed. Processes can be added

or removed from this set. The set of suspected processesis

constrained by properties such as completenesand accu-
racy [1]. Strong completenessquires that every process

that crashes be eventually suspected in a permanent manner

by all non-crashed processes. Weak completenesequires

that every process that crashes be eventually suspected ina

permanent manner by some correct process. Strong accu-
racy requires that no process be suspected before it crashes

and weak accuracyequires that some correct process be

never suspected. Eventual strong accuracyequires the

existence of a time after which correct processes are not

suspected. Eventual weak accuraayequires the existence

of a time after which some correct process is never sus-

pected.

3.1 Failure Detector Classes

A failure detector class is a set of al failure detectors that
satisfy some given properties. The class of Perfect failure
detectorsP contains al failure detectors which satisfy the
strong completeness and the strong accuracy properties.
Theclassof Eventually Strong failure detecto€sS satisfies

the strong completeness and the eventual weak accuracy
properties.

A reduction algorithmi'p_, p transforms any implemen-
tation of a failure detector D into an implementation of a
failure detector D’. A failure detector 1’ is weakerthan
a failure detector D iff there exists a reduction agorithm
Tp_ p: that transforms D into D’. Let &Sy denote the
“weakest” failure detector in &S, i.e. OS5 satisfies the
properties of strong completeness and eventua weak ac-
curacy but no other properties. [2] shows that ¢.Sp is a
weakest failure detector that all ows a deterministic solution
of the consensus problem. By Py we denote the “weakest”
failure detector in P.

4 Fail-Awareness Properties

Weintroducetwo new propertiesfor failuredetectors: weak
and strong fail-awareness In what foIIows we use the
eXpression “process p suspects process q" tosay that “p’s
failure detector module suspects ¢”. In particular, we use
the expression “p suspects itself” to say that “p’s failure
detector module suspects p”.

A fail-awareness property requiresthat aprocess p’sfailure
detector module knows whenever p is suspected by, say, &
or more processes. The module notifiesp of the occurrence
of such an event by suspecting p itself. A fail-awareness
property impliesthat whenever p isnot suspected by itslocal

failure detector module, less than & processes do suspect p.
However, when aprocess p suspectsitself, p might or might
not be suspected by & or more failure detector modules.

Strong fail-awareness requires that a process p suspects
itself as soon as some process ¢ suspects p, i.e. k = 1. For
example, consider a system with two processes p and ¢ (see
Figure 2). When ¢ starts suspecting p at some time ¢ and
stops suspecting p at time u, then process p has to suspect
itself during interval [¢, u].

Suspecty(p) Okpfp)
p
Suspecty (p) Ok (fP)
q
S t u Vv

real-time

Figure 2. Strong fail-awareness requires that
a process p suspects itself as soon as any
other process ¢ suspects p.

Weak fail-awareness requiresthat afailure detector module
suspects its process p whenever a majority of processes
suspect p, i.e. k = [2F1]. Consider a system with three

processes p, ¢ and r (see Figure 3). Let s,¢,u, and v be
four pointsin real-time such that s < ¢t < v < v. When
7 suspects p in interval [s, u] and ¢ suspects p in interval
[, v], then p has to suspect itself at least in interval [¢, u]
when both ¢ and » suspect p. However, p isnot required to
suspect itself inintervals[s, t] and [u, v].

Suspect,(p) Okp(p)

p
Suspecty (p) Ok(P)
q
r Suspect; (p) Okr (p)
S t u v
real-time

Figure 3. Weak fail-awareness requires that a
process p suspects itself when a majority of
processes suspect p.

Note that the two fail-awareness properties do not require
that some process eventually does not suspect itself. How-
ever, the combination of a fail-awareness property with an
accuracy property enforces that not all processes do suspect
themselves al thetime.

Formally, we can define the two fail-awareness properties
as follows. A failure detector D satisfies the weak fail-
awarenessroperty iff for any time ¢ and any process p
that is not crashed at ¢, if p is suspected by a magjority of
failure detectors at time ¢, then p’sfailure detector suspects
p att. Intheterminology of [1] this property can be stated
as follows. For any failure pattern F, for any time ¢, any
valid failure detector history H for F', and any process p
not crashed at ¢, if the non-crashed processes that suspect p
at ¢ form amajority, then p also suspectsitself at ¢:

Vi, YVHe DF), Vpern-Frt):
|{q:qe -F(t)

A peHat)} >n2 = peHpt)

A failure detector D satisfies the strong fail-awareness
property iff for any time ¢ and for any two processes p
and ¢ that are not crashed at ¢, when ¢ suspects p at ¢, then
p suspectsitself at ¢:

VF Vt, YHe DF), V p,q € N-F(t):
p € Hagt) = p e Hp,t)

1

4.1 Fail-Aware Failure Detectors

We call afailure detector fail-awareif it satisfies the weak
or the strong fail-awareness property. In this paper we are
particularly interested in two new failure detector classes:
OSWEand 05T, Class ©S"¥ contains all failure de-
tectors that satisfy strong completeness, eventual weak ac-
curacy, and weak fail-awareness. Class ©.5°% contains all
failure detectors that satisfy strong completeness, eventua
weak accuracy, and strong fail-awareness. Each failure
detector in OGS or ©.5°F guarantees that there exists a
process p which is eventually never suspected by any pro-
cess, and thus, p eventually never suspects itself. We show
in Section 5 that any failure detector in &.S" ¥ can solvethe
election problem when a majority of processes are correct.
All failure detectorsin ©.5°F alow adeterministic solution
of the election problem when at |east one processis correct.

Chandra et al. [1] proposed a transformation algorithm
that transforms a failure detector /"Dy that satisfies the
weak completeness property into a failure detector F'Dg
that satisfies the strong completeness property. However,
thistransformation does not preserve the weak or the strong
fail-awareness property. We therefore only consider failure
detector classes ©.5° 'and OSW Fthat satisfy the strong
completeness instead of the weak completeness property.

5 Election

The election problem requires that

(S) atany timet there exists at most one leader, and

(L) foranytimes thereexistsatimet > sfor whichthere
exists aleader.

We show how thefailure detectorsin ©.S" ¥ and ©.S°F can
be used to solve the election problem. The two election
protocols that we provide are preemptivein the sense that
they can demote a “non-performant” leader to replace it by
anew leader. A leader is demoted whenever it is suspected
by its failure detector. However, the two protocols guar-
antee that eventually one process stays leader permanently
because the eventual weak accuracy property guarantees
that eventually one process is never suspected. Note that
election protocols based on group membership services [5]
are also preemptive because they can demote a “slow” or
“disconnected” leader.

Like the authors of [10], we do require that a process can
detect any change in the output of its failure detector mod-
ule. We therefore assume that the failure detector module
of process ¢ maintainsfor each process p aflag s,(p) and a
version humber v, (p) (see Figure 4):

o flag s,(p) = true represents the fact that process p is
suspected by process ¢, and

suspect
Vg g 1 2
s(p) —— ok
V. (r) Suspect
q
sq(r) i 1 2 3 ok
real-time

S t

Figure 4. The fail-aware failure detector mod-
ule of a process ¢ provides for each process
p a suspicion flag s,(p) and a version num-
ber v,(p) that is incremented every time s,(p)
changes its value.

e version number v,(p) is incremented whenever the
valueof s,(p) changes, that is, whenever p isincluded
or excluded from ¢'s set of suspected processes.

Version numbersenable aclient ¢ of afailuredetector mod-
ule to determine if a process p was continuously suspected
between two of ¢'s samplings of the failure detector mod-
ule. For example, when process ¢ samples its module for
some processp at times s and ¢ (see Figure4) and if v, (p) at
t isgreater than v, (p) at s, then ¢ has changed it suspicion
of p at least once between s and ¢. Note that [10] assumes
instead of version numbers an event oriented mechanism
that allows a process to detect any change in the output of
its failure detector module.

5.1 Election with ©osWTF

Any failure detector in &.S™ ¥ can be used to solve the el ec-
tion problem provided a mgjority of processes are correct.
The proposed election protocol has a similar structure like
the consensus protocol for &S described in[1]. Both proto-
cols are round based and for each round there is an a priori
defined “ coordinator”. Because the rounds seen by differ-
ent processes can overlap, there can exist two coordinators
at the same time. However, a coordinator can use the weak
fail-awareness property to detect when there might be more
than one coordinator at atime. The eventual weak accuracy
and strong compl eteness property can be used to guarantee
that theroundsare eventually in“synch” inthe sense that all
non-crashed processes are in the same round and therefore
thereis only one coordinator. When a coordinator has suc-
cessfully verified that it is the only coordinator it becomes
theleader and staysleader until it crashes or suspectsitself.

Our protocol achieves the safety property (S) in the follow-
ing manner (see Figure5). Foraprocess p to becomeleader,
it is necessary that p's election is supported by a majority
of processes. A process ¢ which has supported p’s election
will not participate in a new election unless (1) p sends ¢ a
“GiveUp”-message indicating that it was demoted, or (2) ¢
learns that a majority of processes suspect p. To guarantee

(9), it is therefore sufficient that p is demoted as soon as
a mgjority of processes might suspect p, that is, p begins
to suspect itself. When p does not suspect itself (that is,
at most a minority of processes suspect p) and p has not
sent its GiveUp-message, no new leader » can be elected.
Indeed, if another leader » could be elected before p is de-
moted (and since any two majorities must have at least one
process ¢ in common), there would exist a process ¢ which
participated in the elections of both p and » while at the
same time knowing that a majority of processes suspect p.
This isin contradiction with the fact that p is demoted as
soon as a majority of processes suspect p.

Electy, Demote, .
I
:<—p |eader— [
| | | Electq
a | <> 0> -2 0
I 1 1 I
majorit '
|eaderFlagy, Crashy gi&ectdp Ieidte;rlfelagq
=true or or

sends
Suspecty(p) R0 o

Figure 5. A process p becomes the
leader (Elect,) whenever it sets its variable
leaderFlag, to true. It stays leader until it
suspects itself or it crashes.

The implementation of the liveness property (L) is based
on the following ideas. Processes try to elect aleader in a
round based fashion. Only the “coordinator” p of around
R is dligible to become the leader. We therefore call p the
eligible leader(in R). A process ¢ which has supported p's
election in R starts a new round R + 1 when either (1) ¢
has received a GiveUp-message from p, or (2) ¢ learns that
amajority of processes suspect p. By using a sequence of
“consistent snapshots’, each non-crashed process eventu-
aly learns that a crashed leader is suspected by a majority
of processes. From the above “new round start rule”, it can
therefore be derived that when p has crashed or has been
demoted, all non-crashed processes eventually start a new
round R + 1. Therefore, some process r different from p
becomes the eligible leader in R + 1. The eventual weak
accuracy property ensures that, eventualy, there exists at
least some correct process ! which is not suspected by any
process. This property ensures that, when no other process
happens to become leader permanently (before /), [will
succeed in becoming leader permanently.

5.2 Protocol

The pseudo-code of the proposed protocol WE isgiven in
[7] and cannot begivenin thispaper dueto space restriction.
The digible leader is a priori determined in a round robin
fashion. Let p be the eligible leader for round R. When
process p starts round R and p does not suspect itself, p
broadcasts an “election” -message to let all processes know
that p wantsto become leader. Incase p suspectsitselfin R,

p broadcasts a “ GiveUp”-message instead of the election-
message tol et the other processes know that it does not want
to become leader. By broadcastingve mean that p sends
the same message to all processes. The GiveUp-message
allows the processes to start a new round knowing that p is
not the leader.

Let us assume that two processes p and ¢ are in round R
and p isthe eligibleleader in R. If ¢ receives an election-
message from p and ¢ suspects p, then ¢ replies with a
“no-support”-message to let p know that it does not sup-
port p's election. If ¢ does not suspect p, ¢ replies with a
“support” -message that supports p's election. As soon as
p has received replies from at least a majority of processes
(i.e. (”—Jzﬂ), and all these messages are support-messages,
p becomes the leader and stays leader as long as p does hot
suspect itself and p does not crash. When process p sus-
pects itself or when it has received a no-support-message
amongst the first [232] replies to its election message, p
broadcasts a GiveUp-message to allow the other processes
to start the next round.

A process ¢ which has supported the election of p at time s
has to wait until either (C1) ¢ receives a GiveUp-message
from p, or (C2) ¢ learns that there exists atimet > s
for which a majority of processes suspect p. Note that
whenever condition (C2) is true, p cannot be the leader
because either p has crashed, or p has suspected itself at ¢.
The protocol uses a sequence of “consistent snapshots’ to
implement (C2) . When p is demoted and does not crash,
it is guaranteed that every correct process will eventually
receive p's GiveUp-message. It is therefore sufficient, to
ensure (C2) in case p has crashed.

Process ¢ sends“ snapshot” -messages inaround based fash-
ion to query all failure detector modules if they suspect the
eligibleleader p. When aprocess receivessuch amessage,
it queriesitsfailure detector module about p and returnsthe
result in a “state”-message. |n particular, a state-message
contains the current suspicion flag s, (p) and the version
number v,(p) of »'s failure detector module. After re-
ceiving [241] repliesto asnapshot-message, ¢ startsanew
snapshot-round unlessit has determined that condition (C2)
holds. Theintuitionbehindthe determination of (C2) isthat
when the same majority M of processes p in two successive
rounds (i.e. there exists atime ¢ such that the first round
finishes before ¢t and the second round is started after ¢),
and their failure detector modules have not changed their
output for p between these two rounds, then all processes
in M suspect p at ¢.

Since a process ¢ starts a hew snapshot-round as soon as
it has received a reply from [241] processes and more
than (”—Jzﬂ processes can reply to a snapshot message, itis
possible that the sets of thefirst [23] processes that reply
to successive snapshot-messages differ. Moreover, when
a reply m for snapshot-round SR arrives after snapshot-
round S R+1 has started, it is possible that m was sent after
SR + 1 was dready started. In other words, there exists
not necessarily atime ¢ for which a majority of processes
suspect the eligible leader p. The solution to this problem
isto “merge’ snapshot-rounds (see Figure 6).

suspect

o

0 N ; \ ok
7 ‘ i suspect

SO \ \ | \ \ok
0 : suspect

AL e
CocooN Y Y\ Snapshot
r 1237 45,6 7 8§ 9 round

= —
snapshot message state-message

Figure 6. The snapshot algorithm queries all
failure detector modules until it finds a ma-
jority M = {p,q,r} of processes and a time
t such that each process in M has sent two
state-messages saying that it has constantly
suspected the eligible leader { in an interval
that includes t. Therefore, [has to suspect
itself at ¢.

L et astate-message al so contain the snapshot-round number
during which the requesting snapshot-message was sent.
Each process r keeps for each process ¢ that suspects the
eligibleleader /:

e The snapshot-round number, denoted MinRec-
Stamp[qg] when » has received the first state-message
m with the highest failure detector version number
m.vg(l) fromg¢ sofar (i.e. all state-messages ' that »
has received before m from ¢ contain asmaller failure
detector version number for i: m’.v, (1) < m.vg(1)).

e The highest snapshot round number, denoted
MaxSendStamp[gjncluded in a state message with
failure detector version number m.v,({) that » has re-
ceived so far from ¢, i.e. » sent the snapshot message
(that requested this state message) in snapshot round
MaxSendStamp[q]

When MinRecStamp[qis smaller than MaxSendStamp[q]
then we know that ¢’s failure detector module output for
the eligible leader [has not changed between the end of
7's snapshot-round M in RecStamp(q] and the start of »'s
snapshot-round M axSendStamp[q]. Process r performs
a search to find a snapshot-round number threshold such
that there exists a mgjority of processes which suspect the
eligibleleader [at the time snapshot-round threshold was
started. When the eligible leader [has crashed, eventualy
all processes will permanently suspect p. Hence, all failure
detector version numbersfor process ! will eventually stop
changing. Array M in RecStamp will therefore eventually
stop changing while the entries for all correct processes in
array M axSendStamp will continue to increase. There-
fore, eventually process r will succeed to find a majority of
processes that suspects! at the start of some snapshot-round
threshold.

The protocol exports a function Leader? that determines
iff the calling process is the current leader. The function
returns a tuple (leaderFlag,version) The version number

returned by Leader?isincremented every time the process
becomes leader or is demoted. It lets a caller determine
iff it was continuously the leader between any two calls of

function Leader? Before process p can become leader it
queriesitsfailure detector module to make sure that it does
not suspect itself. Function Leader?a so queriesthe loca

failure detector moduleto check if the calling process p has
suspected itself since it became leader. In case p has not
suspected itself since it became leader, function Leader?
returns leaderFlag = true Otherwise, p has been demoted
and Leader?returnsleaderFlag = false

Theorem T2Protocol WE is a correct election protocol.

Proof: see [7].
5.3 Solving Election with ¢557

Any failure detector in <.5° ¥ can be used to solve election
as long as at least one process survives. We propose an
election protocol SE which is similar to the protocol for
OSWE: wemodify protocol WE to correctly handlerunsin
which amajority of processes are crashed. In particular, (1)
an eligibleleader cannot expect that amajority of processes
reply to itselection message, and (2) aprocess ¢ supporting
the election of the eligible leader p cannot expect that after
p crashes it can find a mgjority of processes that suspect
p. The strong fail-awareness properties however allows to
modify the protocol such that processes do not need to rely
on replies from a majority of processes.

5.4 Protocol

A process p can stay leader as long as p does not suspect
itself. The strong fail-awareness property ensuresthat p is
demoted as soon as one process suspects p. When aprocess
q has supported the election of p, ¢ can therefore start anew
round as soon as ¢ suspects p because it knows that at that
point p has already been demoted.

In round R the eligible leader p broadcasts an election-
message provided it does not suspect itself. Process p has
only to wait for support-messages from processes which p
does not suspect because (1) any process ¢ suspected by p
cannot be leader, and (2.1) before ¢ can become leader, p
has to stop suspecting ¢, and (2.2) ¢ has either to suspect
p which implicitly demotes p, or (2.3) ¢ has to receive a
support-message from p, however, p does not send support-
messages while being leader.

Theorem T3Protocol SE isa correct election protocol.

Proof: see [7].

6 Weak Fail-Awareness

The goa of this section is to show how to implement
a fail-aware failure detector in a timed system. Let
OSEVE denote the weakest failure detector in OGS that
is, let O.Sy¥ ' satisfy the properties of strong completeness,
eventual weak accuracy, and weak fail-awareness but no
other properties. In this section we sketch how ©.S§ ¥ can
be implemented in timed asynchronous systems [5] pro-
vided they satisfy a certain “ progress assumption” [6]. The
protocol depends upon fail-aware datagranand fail-aware
clock synchronizatioservices [8]. For self-containment,
before we describe our protocol for ©.S§"#, we give a
brief overview of the timed asynchronous system model
and these two services.

6.1 Timed Systems and Progress As-

sumptions

The timed asynchronous system model does not guaran-
tee an upper bound on message transmission and process
scheduling delays. Nevertheless, it defines two time-out
delays: é for message transmission delays and o for pro-
cess scheduling delays. The time-outs are introduced to
define performance failures These occur when the trans-
mission delay of a message or a process scheduling delay
(i.e. the time a process takes to react to a trigger event) is
greater than the associated time-out delay. Processes have
access to hardware clocks. Since the drift rate of hardware
clocks is bounded by a very small constant (typicaly of
the order of 10~* to 10~°), an upper bound on the error
made in measuring real-time intervalsis computable. The
failure semantics of processes and communication services
are crash/performance and omission/performance, respec-
tively. For consistency with [1], in this paper we will
assume that crashed processes do not recover.

OSE¥Fis not implementable in timed asynchronous sys-
tems without making some additional assumptions. The
reason for thisisthat the timed asynchronous system model
allows the existence of a run R in which no process is
crashed and all processes form singleton partitions. In
other terms, in R processes cannot communi cate with each
other. If there would exist a process p that is eventually
not suspected by any non-crashed process, we could find a
run R’ in which p is crashed, and R’ is for all processes
(except p) indistinguishable from R. Therefore, in the
timed asynchronous system model it is not possible to sat-
isfy both eventual weak accuracy and strong compl eteness.
We therefore have to introduce an additional assumption to
make .S ¥ implementable.

Progress assumptiotstroduce additional synchronism by
asserting that the systemwill eventually show “ synchronous
behavior” for asufficiently longtime[6]. Such synchronous
behavior is described by a stability predicate In this paper
we introduce a new stability predicate (m ™ -stable) which
isastrengthened version of the majority-stabilitypredicate
[6]. We say that the system is m* -stablein a time inter-

val I = [s,u] iff there exists a mgjority of non-crashed
processes M such that

1. none of the processes in M suffers afailure during 7,

2. amessage sent at atimet € [s,u — é] between two
processes in M is delivered in time at its destination,
i.e. a or beforetimet + 6, and

3. every message sent during / between two processes p
and q iseventualy delivered unless p or ¢ are crashed
at some pointin [.

We have shown in [6] that the first two conditions (which
characterize the mgjority-stability predicate) are sufficient
to solve the election problem. However, these two condi-
tions are not sufficient to implement a failure detector that
satisfies the eventual weak accuracy and strong compl ete-
ness properties. Thisfact can be proveninaway similar to
the above sketched proof that ©.5§" #'is not implementable
in timed asynchronous systems because these two condi-
tionsstill allow some non-crashed process to be partitioned
from the remaining processes. To address this problem,
we could define a weaker majority completenessroperty
whichwouldstill allow to solvethe election problem and its
implementation would not require condition (3): a crashed
process is eventually suspected by a majority of processes.
An analysisof the election protocol for &.S™ £ (see Section
5) shows that it is correct even for failure detectors that
only satisfy the majority instead of the strong completeness
property. Below we will propose afailure detector protocol
that satisfies the strong completeness property in case the
system is eventually always m™-stable. We will sketch a
dight modified version of that protocol that guarantees ma-
jority completeness in case the system is eventually always
majority-stable’. In this paper we emphasize the proto-
col for strong completeness and hence, will use the m™-
stability predicate instead of the weaker majority-stability
predicate.

Inthe definition of m -stable no uniqueness of themajority
M isassumed: itispossiblethatinaninterval / thereexists
two mgjorities My and M, that satisfy the requirements
of mT-stable. For simplicity, we describe the protocol
assumingaunique M , i.e. weselect oneset M and describe
the behavior of the protocol for that set M. However, the
protocol is correct even when there are multiple majorities
that satisfy the requirements of m T -stable. Processesin M
are called m™ -stable while processes in M-A are called
non-stable

To implement <.S§¥# we assume the following progress
assumption (PA): the system of processes I eventually be-
comes permanently mt -stable, that is, there existsatime s
such that the system is m*-gtablein [s, oc]2. In what fol-

INotethat the even though themajority-stability predicatewould allow
usto solvetheelection problem, it doesnot allow ustoimplement areliable
unicast service required by the time-free model because even when the
system is magjority-stable there can exist two non-crashed processes that
cannot communicatewith each other.

2Thisisnot realistic for existing asynchronousdistributed systemswith

lowsweareonly interestedin oneinterval Io 2 [s+IT, 0],
where constant /7" is sufficiently long to alow the fail-
aware clock synchronization and datagram services to be
initidlized. Henceforth, we use “stable”’ to mean “m™-
stable” and implicitly assume 7o whenever we talk about
stability in our fail-aware failure detector protocol.

6.2 Fail-Aware Services

The essentia property of afail-aware datagram service [8]
is that messages delivered to a process are tagged as either
“standard” (timely) or “exceptional” (slow). Exceptional
messages are slow messages that may contain out-of-date
information. A fail-aware datagram service defines a con-
stant A > 6 such that when the transmission delay of a
message m is a most 4, it delivers m as a standard mes-
sage When the transmission delay of m is greater than A,
m isdelivered as an exceptional messagé message with
atransmissiondelay within]é, A] may be delivered aseither
exceptional or standard. In this section we implicitly as-
sume that all messages are sent by the fail-aware datagram
service.

A fail-aware clock synchronization service [8] provides
each process p with an indicator .5, which, when true, tells
p that its clock €, is synchronized. A fail-aware clock
synchronization service is required to satisfy the following
properties: 1) when the indicators of processes p and ¢ are
true, the deviation between the clocks of p and ¢ is at most
(N

Sp(t) A Sq(t) — [Gy(t) - Gy(t)] <o

2) theindicator of each stableprocessistrue, 3) thedrift rate
of synchronized clocksisbounded by avery small constant,
and 4) clocksaremonotonically increasing. Fromtheabove
properties, it follows that the deviation between the clock
of anon-stable process p and the clock of another process
might be greater than «». However, inthiscase p’sindicator
isfase.

6.3 Overview of Protocol

The goa of our protocol is to ensure that (1) eventually
no process will suspect any stable process, and (2) each
crashed process is eventually suspected by all non-crashed
processes. |n particular, our first requirement implies that

respect to the requirement that the systemwill be permanently m T -stable.
We nevertheless introduce it, as was done in [1], to avoid talking about
time constants abovethe failure detector abstraction layer, yet to be able
to expressthat the interval is“sufficiently long”. Realistically, one could
assumethat for any time s thereexistsatimet¢ > s suchthat thesystemis
stableininterval [¢, t + L], where L isatime constant that is“ sufficiently
long” to elect anew leader. The election protocols proposed in this paper
wouldstill becorrect under such aweaker progress assumption, that makes
sensein atimed asynchronoussystem model, but doesnot in the time-free
model, where one cannot talk about time constants.

eventually even any non-stable process stops suspecting
stable processes. A non-crashed, non-stable process might
or might not be suspected by other processes. Requirement
(1) and progress assumption (PA) imply that there exists at
least one stable processwhich iseventually never suspected
by any other process.

: suspect

: ok

: suspect
ok
suspect
ok

—= standard alive message

Se((0)

A

Sr (@)

(7]
—_ - =

Figure 7. When process ¢ receives astandard
alive message at s from a process p such that
q is in the message’s alive set, then ¢ knows
that p will not suspect ¢ for at least d time
units after s. Hence, ¢ can stop suspecting
itself as long as a majority of processes have
guaranteed that they do not suspect 4.

Theweak fail-awareness property isimplemented using pe-
riodic broadcasts of alive-messages. By broadcastve mean
in this section that p sends the same message to al pro-
cesses using the fail-aware datagram service. Each process
¢ maintainsa set Alive, which contains all processes from
which ¢ has “recently” received a standard alive-message.
The set Alive, is piggy-backed on any alive-message that
q sends. Because a stable process p receives periodically
standard alive-messages from all stable processes, Alive,

contains at least all stable processes. The protocol ensures
that any stable process ¢ receives a standard alive-message
from any other stable process p at least every d time units.
When ¢ receives such a message (see Figure 7), it knows
that 1) p isalive, and 2) p will (by convention) not suspect

any process in Alive, for at least d 4+ A time units. The
broadcast of alive messages is coordinated using the fail-
aware clock synchronization service. Each stable process
q will therefore always know that all stable processes will

not suspect ¢, and hence, ¢ will not suspect itself.

An important requirement in the proposed election proto-
colsisthat a process can detect any change in the output of
itsfailure detector module. The fail-aware failure detector
module of a process ¢ therefore provides for each process
p aflag s,(p) and aversion number v,(p). (see Section 5
for more details).

6.4 Protocol Details

The pseudo-code of the proposed protocol WF is given
in [7] and cannot be given in this paper due to space
restrictions. The protocol is based on the broadcast of

alive-messages in a round based fashion. The fail-aware
datagram service is used to discard out-dated information
in alive-messages. The start of a round is determined by
the fail-aware clock synchronization service. Only when
the clock of a process p is synchronized, it sends aive-

Messages.

The protocol has to ensure that no process ¢ can suspect a
stable process p even when p and ¢ cannot communicate
in atimely fashion with each other (otherwise the eventual

weak accuracy property could be violated). To ensure this,
process q is alowed to suspect a process p only when ¢
knows that a majority of processes do not include p in
their alive-messages. Because all stable processes include
all stable processes in their alive-messages, eventually no
process can suspect a stable process.

Animportant implementation detail ishow protocol WF can
guarantee the fail-awareness property even when process
performance failures occur during the execution of WF. In
particular, consider that p’s failure detector module knows
that a majority of processes will not suspect p in the current

round (represented by variable round) which lasts at least
as long as p's hardware clock shows a value of at most,
say, nextU pdate. When protocol WF cannot collect aive-
message from amajority saying that they will not suspect p

during round + 1, p hasto suspect itself during round + 1.

When process p asks if itsfailure detector modul e suspects
p, then the module reads p's hardware clock to see if it
already shows a value greater than neatUpdate. In case
thisis true, a performance failure must have occurred and
the module will therefore suspect p.

A dlight modified version of this protocol can ensure the
eventually wesak accuracy, thewesk fail-awareness, and the
majority completeness property in case the system is even-
tually aways majority-stable. In this version, a process
which suspects itself does not suspect any other process.
Since eventualy all majority-stable processes do not sus-
pect themselves, these processes will eventually suspect
all crashed processes permanently. In other words, the
majority completeness property is satisfied. However, this
version doesnot necessarily satisfy the strong completeness
property.

Theorem T1: Protocol WF satisfies the weak fail-
awareness, eventual weak accuracy, and the strong com-
pleteness properties.

Proof. The proof isgivenin [7].

7 PyversusOSyt

In this section we show that &SV #'is strictly weaker than
any Perfect failure detector: <.S3¥ % can be reduced to P,
but P, cannot bereduced to<.SYY £, Failuredetector Py sat-
isfies all properties of O.S§V#": Py only suspects processes
that have crashed and hence, a process has never to suspect
itself. We can thereforerestrict oursel vesto show that there
exists no reduction algorithm that transforms &5 #'into a
Perfect failure detector.

The fact that O.Sy ¥'is strictly weaker than Py can be ex-
plained as follows. Py hasto be able to decide correctly if
aprocess isjust “siow” or crashed. <S8 does not have
to make this decision: it just suspects a“slow” or crashed
process p because a“slow” process p can detect when it is
“dow” and then suspect itsdlf. In particular, .5 can be
implemented in some systems that do not allow to distin-
guish betweenacrashed anda“sow” processwhile P isnot
implementable in these systems. When there would exist
a reduction algorithm that transforms ©.5§" #'into Py, this
algorithm would allow to implement P in such systems. In
other terms, when we show that there exists a system that
allows the implementation of ©.5§# but not Po, we can
prove by contradiction that ©.5§"¥'is strictly weaker than
Po.

In the timed asynchronous system model we can give
“slow” a precise meaning: a process is “dow” when it
is not stable. We first show that in eventually stable timed
asynchronous systems a process cannot correctly decide if
a remote process is just slow or crashed. In other words,
we show that Py isnot implementableinthese systems. We
aready know that ©.S3¥*'is implementable in eventually
stable timed asynchronous systems. Second, we show by
contradiction that &SV ¥'is strictly weaker than Po: when
there would exist a reduction algorithm that transforms
OSE 1o Py, this agorithm could be used to implement
Py ineventualy stable timed asynchronous systems.

Thereasonwhy Py isnotimplementableineventually stable
systems is the following. We can select arun R in which
there existsa process p which isnot stable. In particular, in
run R we can delay all messages between p and any other
process for an arbitrarily long time. Eventually all other,
non-crashed processes have to suspect p to ensurethe strong
completeness property. Otherwise, we could find a from
‘R indistinguishable run R’ in which p is crashed but not
suspected by some non-crashed process. |n other words, in
an eventually stable system one can implement the strong
completeness or the strong accuracy property, but not both.

7.1 Impossibility Proof

We first show that in eventualy stable timed systems a
process cannot always correctly decide if another process
is crashed or just slow.

Theorem T4 No Perfect failure detector isimplementable
in eventually stable timed systems.

Informal Proof We prove this theorem by contradiction.
L et us assume that P, would be implementablein all even-
tually stable systems. We consider a system which contains
at least 3 processes, i.e. we can select runsinwhich at least
onenon-crashed process p can benon-stable. Weiteratively
construct a run such that either the strong completeness or
the strong accuracy property isviolated. The ideaisto se-
lect arun R inwhich all messages sent from p to any other
process are delayed until at least one non-crashed process
suspects p. Let us first consider the case that in run R no
process would ever suspect p. Thisimplies that in run R
these delayed messages suffer omission failures and R is

therefore not valid because the progress assumption (PA)
requiresthat eventually all messages sent between two non-
crashed processes are delivered. However, we can select a
valid run R’ whichisindistinguishablefrom R for al pro-
cesses (except p) and in R’ process p iscrashed. Therefore,
inrunR’ the strong completeness conditionis not satisfied.

Second, we consider the case that some process ¢ eventually
suspects p in R. After ¢ suspects p, we deliver all delayed
messages to make R valid. Thus, inrun R the strong accu-
racy conditionisviolated. Both cases are a contradictionto
our initial assumption that Py would be implementable in
all eventualy stable systems, hence theorem T4 holds. O

We can use theorem T4 to show that a Perfect failure de-
tector is not reducible to OS¢V 4 because ¢S5V Fis imple-
mentable in eventually stable systems but not Py. Let us
first show the following lemma.

Lemma L1 Any reduction agorithm implementable in a
time-free system is implementable in an eventualy stable
timed system.

Informal Proof It is sufficient to show that a reliable uni-
cast service isimplementable in an eventually stable sys-
tem, i.e. a service which guarantees that a message sent
by a process p to a process ¢ is eventually delivered to q
unless p or ¢ eventually crashes. The progress assumption
PA ensures that eventually all non-crashed processes can
communicate using the basic datagram service without the
occurrence of omission failures. Thus, a simple positive
acknowledgement based protocol can implement areliable
unicast service using the basic datagram service (in case
progress assumption PA holds). O

Theorem T5 P, isnot reducibleto O.S§V .

Informal Proof We prove this theorem by contradiction.
Let us assume that there would exist a reduction algorithm
T that transform ©.S§"#'to Py. We have shown in Lemma
L1 that 7" isimplementable in eventually stable timed sys-
tems. Hence, Fp is implementable in eventualy timed
systems because we have shownin Section 6 that .53 *'is
implementable in such systems. Thisis a contradiction to
theorem T4. O

8 Conclusion

This paper has addressed the problem that (1) the weakest
“reasonable” failure detector to solve election seems to be
a Perfect failure detector [10], (2) our experience indicates
that a Perfect failure detector is not implementablein exist-
ing asynchronous systems, and (3) the election problemis
solvable in such systems [6]. We resolve the above prob-
lem by introducing two fail-aware failure detector classes
that contain failure detectors which are strictly weaker than
the weakest Perfect failure detector and we show how fail-
aware failure detectors can be used to providedeterministic
solutionsto the election problem.

For compatibility with [1], we considered a stronger com-
pleteness property (strong completeness instead of major-
ity completeness) for our failure detectors than necessary

10

to solve election. This forced us to use a stronger than
necessary progress assumption to implement a fail-aware
failure detector that allows to solve the election problem.
However, the proposed election protocol WE that uses the
fail-aware failure detector ©.S§¥ ¥ still works for majority
completeness. We also sketched a version of the failure
detector protocol WF that works for the weaker progress
assumption that the system is eventually majority-stable
for a“sufficiently long” time.

References

[1] T. Chandra, V. Hadzilacos, and S. Toueg. Un-
reliable failure detectors for reliable distributed
systems. Journal of the ACM to ap-
pear; aso avalable at ftp.cs.cornell.edu as
/pub/chandra/failure.detectors.algorithms.ps.Z.

[2] T.Chandra, V. Hadzilacos, and S. Toueg. Theweskest
failure detector for solving consensus. In Proceedings
of the 11th ACM Symposium on Principles of Dis-
tributed Computingpages 147-158, Aug 1992.

[3] T. Chandra and S. Toueg. Unreliable failure detec-
tors for asynchronous systems. In Proceedings of the
10th ACM Symposium on Principles of Distributed
Computingpages 325-340, Aug 1991.

[4] F. Cristian. Reaching agreement on processor-group
membership in synchronousdistributed systems. Dis-
tributed Computingd:175-187,1991. An earlier ver-
sionin FTCS-181988, Kyoto.

[5] F. Cristian and F. Schmuck. Agreeing on processor-
group membership in aynchronous distributed sys-
tems. Technical Report CSE95-428, UCSD, 1995.
Available via anonymous ftp at cs.ucsd.edu as
/pub/team/asyncmembership.ps.Z.

[6] C. Fetzer and F. Cristian. On the possibility of con-
sensus in asynchronous systems. In Proceedings of
the 1995 Pacific Rim Int'l Symp. on Fault-Tolerant
SystemaNewport Beach, CA, Dec 1995.

[7] C. Fetzer and F. Cristian. Fail-aware failure detec-
tors. Technical Report CSE96-475, UCSD, 1996.
Available via anonymous ftp at cs.ucsd.edu as
/publ/team/fail AwareFD. ps.Z.

[8] C. Fetzer and F. Cristian. Fail-awareness in timed
asynchronous systems. In Proceedings of the 15th
ACM Symposium on Principles of Distributed Com-
puting Philadel phia, May 1996.

[9] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Im-
possibility of distributed consensus with one faulty
process. Journal of the ACM 32(2):374-382, Apr
1985.

[10] L. Sabel and K. Marzullo. Election vs. consensus in
asynchronous systems. Technical Report TR95-1488,
Cornell University, Feb 1995.

