
Fail-Aware Failure Detectors

Christof Fetzer and Flaviu Cristian
Department of Computer Science & Engineering

University of California, San Diego
La Jolla, CA 92093�0114�

http://www-cse.ucsd.edu/users/fcfetzer, flaviug
CSE96-475 (Short Version)

Abstract

In existing asynchronous distributed systems it is impossible
to implement failure detectors which are perfect, i.e. they
only suspect crashed processes and eventually suspect all
crashed processes. Some recent research has however pro-
posed that any “reasonable” failure detector for solving the
election problem must be perfect. We address this problem
by introducing two new classes offail-aware failure de-
tectors that are 1) implementable in existing asynchronous
distributed systems, 2) not necessarily perfect, and 3) can be
used to solve the election problem. In particular, we show
that there exists a fail-aware failure detector that allows to
solve the election problem and which is strictly weaker than
a Perfect failure detector.

1 Introduction

Failure detectors [3] are a mechanism for adding synchro-
nism to the time-freeasynchronous system model [9]. Pro-
cesses of such systems have access to local failure detector
modules which maintain a set of processes that are sus-
pected to have crashed. Failure detectors typically satisfy
certain properties that allow certain well-known problems,
such as consensus, election and atomic broadcast to be
solved. These problems are otherwise not solvable in time-
free systems [9]. Therefore, failure detectors are in gen-
eral not implementable in the time-free model. However,
existing asynchronous systems, in particular, networks of
workstations, have enough “synchronism” to allow the im-
plementation of failure detectors which allow a determin-
istic solution of problems such as consensus, election and
atomic broadcast.

Failure detectors are typically required to satisfy at least a
completeness and an accuracy property: (1) completeness

�To appear in the Proceedings of the 15th Symposium on Reliable
Distributed Systems, October 23-25, 1996, Niagara-on-the-Lake, Canada.
This research was partially supported by a grant from the Air Force Office
of Scientific Research.

properties state how the crash of a process p has to result in
the suspicion that p has crashed, and (2) accuracy properties
state when failure detectors are allowed to suspect a pro-
cess to have crashed. For example, “strong completeness”
requires that each correct process will eventually suspect
all crashed processes, and “strong accuracy” requires that
no process is suspected before it has crashed [1]. A Per-
fectfailure detector satisfies strong completeness and strong
accuracy.

The (highly available leader) election problem [4] requires
that at any point in real-time there be at most one leader
and for any time s there exists a time t > s for which
there is a leader. A recent article [10] proves that a Perfect
failure detector is the weakest “reasonable” failure detec-
tor which allows a deterministic solution of the election
problem, where “reasonable” means a failure detector that
satisfies certain symmetry conditions. Our experience indi-
cates that (1) a Perfect failure detector is not implementable
in existing asynchronous systems (see Section 7), and (2)
the election problem is solvable in these systems [6]. To
clarify this apparent contradiction, we (a) introduce two
fail-awarenessproperties for failure detectors, (b) use them
to define two new classes of fail-awarefailure detectors, (c)
show how a fail-aware failure detector can be used to pro-
vide a deterministic solution for the election problem while
still being implementable in existing timedasynchronous
systems, i.e. asynchronous systems in which processes
have access to local hardware clocks, and (d) show that
there exists a fail-aware failure detector which is strictly
weaker than a Perfect failure detector.

The main idea of fail-aware failure detectors is that a pro-
cess p’s failure detector module knows when “too many”
processes might erroneously suspect that p has crashed and
notifies p of that. This property can be used to ensure that
at any time there is at most one leader: when p is the cur-
rent leader, and p is suspected by a majority of processes
(that could elect a new leader), p’s failure detector module
suspects p and this “self-suspicion” lets p know that it has
been demoted to make place for a new leader.

1

2 Related Work

Fail-awareness[8] is a general concept to extend safety
properties of a fault-tolerant synchronous service by an
exception indicatorso that the new service becomes im-
plementable in timed asynchronous systems [5]. The idea
is that the indicator tells a server and its clients whether
a safety property currently holds or if it might be violated
because the system has suffered “too many performance
failures”. In case of failure detectors we can think of the
accuracy properties as safety properties which could be vio-
lated when “too many performance failures” have occurred
or the system is partitioned. For example, strong accu-
racy ensures that a non-crashed process is not suspected
by any process. The strong fail-awareness property tells
a non-crashed process p if other processes might violate
the accuracy property, i.e. it lets p know whether another
process might suspect p. We formulate two fail-awareness
properties independently of the accuracy properties. This
allows us to combine previously introduced accuracy and
completeness properties [1] with a fail-aware property to
define new fail-aware failure detector classes.

Sabel and Marzullo prove that a Perfect failure detector is
the weakest failure detector to solve the election problem
in the class of “reasonable” failure detectors [10]. This
class contains all failure detectors which satisfy some given
symmetry conditions. In the newest version of their paper
they explicitly exclude the case that a process p can use its
local failure detector module to derive that other processes
might wrongly suspect p. Fail-aware failure detectors pro-
vide such a knowledge and therefore allow a solution of
the election problem even though some of them are strictly
weaker than a Perfect failure detector.

Failure detectors [3, 2, 1] are not the only basic distributed
service that can be used to solve the election problem
in asynchronous systems. General purpose asynchronous
group membership protocols such as the one-round and the
three-round protocols of [5] can be used to provide deter-
ministic solutions to the election problem when the under-
lying process and communication system satisfies certain
“progress assumptions” [6] (see also section 6.1).

3 Model

Failure detectors are a mechanism to introduce additional
synchronism into the time-free model. The implementation
of a failure detector has therefore to be based on a model
with stronger properties than the time-free model. Thus, in
this paper we use two models: the time-freemodel and the
timedasynchronous system model extended by a “progress
assumption” (see Figure 1). We will define fail-aware fail-
ure detectors for the time-free model [9]. In Section 5 we
will show how to solve the election problem in the time-free
model using a fail-aware failure detector. In Section 6 we
will show how to implement a fail-aware failure detector
in the timed model [5] extended by a progress assumption
[6]. The main differences between the two models is that

the timed model assumes local hardware clocks and defines
process and message performance failures (see Section 6.1).
In Section 7 we use both models to show that there exists
a fail-aware failure detector strictly weaker than a Perfect
failure detector that allows the solution of the election prob-
lem.

timed model

+ failure detector

implementation of a

failure detector interface

fail-aware failure detector
+ progresassumption

application time-free model

Figure 1. We use the timed model to show
how to implement a fail-aware failure detec-
tor. Applications using fail-aware failure de-
tectors are designed for the time-free model.

For self-containment we give a brief overview of the time-
free model and some known failure detector properties. We
use the same notation and essentially the same terminology
as [1]. The time-free model does not bound the message
transmission delay, the time to execute one step, nor does it
mention time, clocks or time-outs. Processes are connected
by reliable communication channels. The only failures that
can occur are crashes of processes. A process is called cor-
rect when it never crashes. Processes do not recover from
crashes. The set of processes is denoted by Π. Constant n

denotes the number of processes, i.e. n
∆
= jΠj.

A failure detector is a distributed service implemented by
a set of local failure detector modules, one for each pro-
cess. Each module maintains a set of processes which it
currently suspects to have crashed. Processes can be added
or removed from this set. The set of suspected processes is
constrained by properties such as completenessand accu-
racy [1]. Strong completenessrequires that every process
that crashes be eventually suspected in a permanent manner
by all non-crashed processes. Weak completenessrequires
that every process that crashes be eventually suspected in a
permanent manner by some correct process. Strong accu-
racy requires that no process be suspected before it crashes
and weak accuracyrequires that some correct process be
never suspected. Eventual strong accuracyrequires the
existence of a time after which correct processes are not
suspected. Eventual weak accuracyrequires the existence
of a time after which some correct process is never sus-
pected.

3.1 Failure Detector Classes

A failure detector class is a set of all failure detectors that
satisfy some given properties. The class of Perfect failure
detectorsP contains all failure detectors which satisfy the
strong completeness and the strong accuracy properties.
The class of Eventually Strong failure detectors3S satisfies

2

the strong completeness and the eventual weak accuracy
properties.

A reduction algorithmTD!D0 transforms any implemen-
tation of a failure detector D into an implementation of a
failure detector D0. A failure detector D0 is weakerthan
a failure detector D iff there exists a reduction algorithm
TD!D0 that transforms D into D0. Let 3S0 denote the
“weakest” failure detector in 3S, i.e. 3S0 satisfies the
properties of strong completeness and eventual weak ac-
curacy but no other properties. [2] shows that 3S0 is a
weakest failure detector that allows a deterministic solution
of the consensus problem. By P0 we denote the “weakest”
failure detector in P .

4 Fail-Awareness Properties

We introduce two new properties for failure detectors: weak
and strong fail-awareness. In what follows, we use the
expression “process p suspects process q” to say that “p’s
failure detector module suspects q”. In particular, we use
the expression “p suspects itself” to say that “p’s failure
detector module suspects p”.

A fail-awareness property requires that a process p’s failure
detector module knows whenever p is suspected by, say, k
or more processes. The module notifies p of the occurrence
of such an event by suspecting p itself. A fail-awareness
property implies that wheneverp is not suspected by its local
failure detector module, less than k processes do suspect p.
However, when a process p suspects itself, pmight or might
not be suspected by k or more failure detector modules.

Strong fail-awareness requires that a process p suspects
itself as soon as some process q suspects p, i.e. k = 1. For
example, consider a system with two processes p and q (see
Figure 2). When q starts suspecting p at some time t and
stops suspecting p at time u, then process p has to suspect
itself during interval [t; u].

Suspect (p)q

Ok (p)pSuspect (p)p

q

p

t u

Ok (p)q

v

real-time

s

Figure 2. Strong fail-awareness requires that
a process p suspects itself as soon as any
other process q suspects p.

Weak fail-awareness requires that a failure detector module
suspects its process p whenever a majority of processes
suspect p, i.e. k = dn+1

2 e. Consider a system with three

processes p, q and r (see Figure 3). Let s; t; u; and v be
four points in real-time such that s � t � u � v. When
r suspects p in interval [s; u] and q suspects p in interval
[t; v], then p has to suspect itself at least in interval [t; u]
when both q and r suspect p. However, p is not required to
suspect itself in intervals [s; t] and [u; v].

Suspect (p)q

Suspect (p)r

Suspect (p)p

q

p

Ok (p)

Ok (p)p

Ok (p)

r r

q

s t u v

real-time

Figure 3. Weak fail-awareness requires that a
process p suspects itself when a majority of
processes suspect p.

Note that the two fail-awareness properties do not require
that some process eventually does not suspect itself. How-
ever, the combination of a fail-awareness property with an
accuracy property enforces that not all processes do suspect
themselves all the time.

Formally, we can define the two fail-awareness properties
as follows. A failure detector D satisfies the weak fail-
awarenessproperty iff for any time t and any process p
that is not crashed at t, if p is suspected by a majority of
failure detectors at time t, then p’s failure detector suspects
p at t. In the terminology of [1] this property can be stated
as follows. For any failure pattern F , for any time t, any
valid failure detector history H for F , and any process p
not crashed at t, if the non-crashed processes that suspect p
at t form a majority, then p also suspects itself at t:

8 F, 8 t, 8 H 2 D(F), 8 p 2 Π-F(t):
|{ q : q 2 Π-F(t)

^ p 2 H(q,t)}| > n/2) p 2 H(p,t)

A failure detector D satisfies the strong fail-awareness
property iff for any time t and for any two processes p
and q that are not crashed at t, when q suspects p at t, then
p suspects itself at t:

8 F, 8 t, 8 H 2 D(F), 8 p,q 2 Π-F(t):
p 2 H(q,t)) p 2 H(p,t)

3

4.1 Fail-Aware Failure Detectors

We call a failure detector fail-awareif it satisfies the weak
or the strong fail-awareness property. In this paper we are
particularly interested in two new failure detector classes:
3S

WF and 3SSF . Class 3SWF contains all failure de-
tectors that satisfy strong completeness, eventual weak ac-
curacy, and weak fail-awareness. Class 3SSF contains all
failure detectors that satisfy strong completeness, eventual
weak accuracy, and strong fail-awareness. Each failure
detector in 3SWF or 3SSF guarantees that there exists a
process p which is eventually never suspected by any pro-
cess, and thus, p eventually never suspects itself. We show
in Section 5 that any failure detector in3SWF can solve the
election problem when a majority of processes are correct.
All failure detectors in3SSF allow a deterministic solution
of the election problem when at least one process is correct.

Chandra et al. [1] proposed a transformation algorithm
that transforms a failure detector FDW that satisfies the
weak completeness property into a failure detector FDS

that satisfies the strong completeness property. However,
this transformation does not preserve the weak or the strong
fail-awareness property. We therefore only consider failure
detector classes 3SSF and 3SWF that satisfy the strong
completeness instead of the weak completeness property.

5 Election

The election problem requires that

(S) at any time t there exists at most one leader, and

(L) for any time s there exists a time t > s for which there
exists a leader.

We show how the failure detectors in3SWF and3SSF can
be used to solve the election problem. The two election
protocols that we provide are preemptivein the sense that
they can demote a “non-performant” leader to replace it by
a new leader. A leader is demoted whenever it is suspected
by its failure detector. However, the two protocols guar-
antee that eventually one process stays leader permanently
because the eventual weak accuracy property guarantees
that eventually one process is never suspected. Note that
election protocols based on group membership services [5]
are also preemptive because they can demote a “slow” or
“disconnected” leader.

Like the authors of [10], we do require that a process can
detect any change in the output of its failure detector mod-
ule. We therefore assume that the failure detector module
of process q maintains for each process p a flag sq(p) and a
version number vq(p) (see Figure 4):

� flag sq(p) = true represents the fact that process p is
suspected by process q, and

qv (p)
s (p)q

real-time

ok

suspect

ok
210 3

210

q
q
s (r)
v (r)

s t

suspect

Figure 4. The fail-aware failure detector mod-
ule of a process q provides for each process
p a suspicion flag sq(p) and a version num-
ber vq(p) that is incremented every time sq(p)
changes its value.

� version number vq(p) is incremented whenever the
value of sq(p) changes, that is, whenever p is included
or excluded from q’s set of suspected processes.

Version numbers enable a client q of a failure detector mod-
ule to determine if a process p was continuously suspected
between two of q’s samplings of the failure detector mod-
ule. For example, when process q samples its module for
some process p at times s and t (see Figure 4) and if vq(p) at
t is greater than vq(p) at s, then q has changed it suspicion
of p at least once between s and t. Note that [10] assumes
instead of version numbers an event oriented mechanism
that allows a process to detect any change in the output of
its failure detector module.

5.1 Election with 3SWF

Any failure detector in3SWF can be used to solve the elec-
tion problem provided a majority of processes are correct.
The proposed election protocol has a similar structure like
the consensus protocol for3S described in [1]. Both proto-
cols are round based and for each round there is an a priori
defined “coordinator”. Because the rounds seen by differ-
ent processes can overlap, there can exist two coordinators
at the same time. However, a coordinator can use the weak
fail-awareness property to detect when there might be more
than one coordinator at a time. The eventual weak accuracy
and strong completeness property can be used to guarantee
that the rounds are eventually in “synch” in the sense that all
non-crashed processes are in the same round and therefore
there is only one coordinator. When a coordinator has suc-
cessfully verified that it is the only coordinator it becomes
the leader and stays leader until it crashes or suspects itself.

Our protocol achieves the safety property (S) in the follow-
ing manner (see Figure 5). For a process p to become leader,
it is necessary that p’s election is supported by a majority
of processes. A process q which has supported p’s election
will not participate in a new election unless (1) p sends q a
“GiveUp”-message indicating that it was demoted, or (2) q
learns that a majority of processes suspect p. To guarantee

4

(S), it is therefore sufficient that p is demoted as soon as
a majority of processes might suspect p, that is, p begins
to suspect itself. When p does not suspect itself (that is,
at most a minority of processes suspect p) and p has not
sent its GiveUp-message, no new leader r can be elected.
Indeed, if another leader r could be elected before p is de-
moted (and since any two majorities must have at least one
process q in common), there would exist a process q which
participated in the elections of both p and r while at the
same time knowing that a majority of processes suspect p.
This is in contradiction with the fact that p is demoted as
soon as a majority of processes suspect p.

p
Electp Demotep

Suspectp(p)

Crashp

q
Electq

p leader

leaderFlagp = true or

majority
suspects p

≥ 0

or
p sends

‘‘GiveUp’’

≥ 0
leaderFlagq = true

Figure 5. A process p becomes the
leader (Electp) whenever it sets its variable
leaderF lagp to true. It stays leader until it
suspects itself or it crashes.

The implementation of the liveness property (L) is based
on the following ideas. Processes try to elect a leader in a
round based fashion. Only the “coordinator” p of a round
R is eligible to become the leader. We therefore call p the
eligible leader(inR). A process q which has supported p’s
election in R starts a new round R + 1 when either (1) q
has received a GiveUp-message from p, or (2) q learns that
a majority of processes suspect p. By using a sequence of
“consistent snapshots”, each non-crashed process eventu-
ally learns that a crashed leader is suspected by a majority
of processes. From the above “new round start rule”, it can
therefore be derived that when p has crashed or has been
demoted, all non-crashed processes eventually start a new
round R + 1. Therefore, some process r different from p

becomes the eligible leader in R + 1. The eventual weak
accuracy property ensures that, eventually, there exists at
least some correct process l which is not suspected by any
process. This property ensures that, when no other process
happens to become leader permanently (before l), l will
succeed in becoming leader permanently.

5.2 Protocol

The pseudo-code of the proposed protocol WE is given in
[7] and cannot be given in this paper due to space restriction.
The eligible leader is a priori determined in a round robin
fashion. Let p be the eligible leader for round R. When
process p starts round R and p does not suspect itself, p
broadcasts an “election”-message to let all processes know
that pwants to become leader. In case p suspects itself inR,

p broadcasts a “GiveUp”-message instead of the election-
message to let the other processes know that it does not want
to become leader. By broadcastingwe mean that p sends
the same message to all processes. The GiveUp-message
allows the processes to start a new round knowing that p is
not the leader.

Let us assume that two processes p and q are in round R
and p is the eligible leader in R. If q receives an election-
message from p and q suspects p, then q replies with a
“no-support”-message to let p know that it does not sup-
port p’s election. If q does not suspect p, q replies with a
“support”-message that supports p’s election. As soon as
p has received replies from at least a majority of processes
(i.e. dn+1

2 e), and all these messages are support-messages,
p becomes the leader and stays leader as long as p does not
suspect itself and p does not crash. When process p sus-
pects itself or when it has received a no-support-message
amongst the first dn+1

2 e replies to its election message, p
broadcasts a GiveUp-message to allow the other processes
to start the next round.

A process q which has supported the election of p at time s
has to wait until either (C1) q receives a GiveUp-message
from p, or (C2) q learns that there exists a time t > s

for which a majority of processes suspect p. Note that
whenever condition (C2) is true, p cannot be the leader
because either p has crashed, or p has suspected itself at t.
The protocol uses a sequence of “consistent snapshots” to
implement (C2) . When p is demoted and does not crash,
it is guaranteed that every correct process will eventually
receive p’s GiveUp-message. It is therefore sufficient, to
ensure (C2) in case p has crashed.

Process q sends “snapshot”-messages in a round based fash-
ion to query all failure detector modules if they suspect the
eligible leader p. When a process r receives such a message,
it queries its failure detector module about p and returns the
result in a “state”-message. In particular, a state-message
contains the current suspicion flag sr(p) and the version
number vr(p) of r’s failure detector module. After re-
ceiving dn+1

2 e replies to a snapshot-message, q starts a new
snapshot-round unless it has determined that condition (C2)
holds. The intuitionbehind the determination of (C2) is that
when the same majorityM of processes p in two successive
rounds (i.e. there exists a time t such that the first round
finishes before t and the second round is started after t),
and their failure detector modules have not changed their
output for p between these two rounds, then all processes
in M suspect p at t.

Since a process q starts a new snapshot-round as soon as
it has received a reply from dn+1

2 e processes and more
than dn+1

2 e processes can reply to a snapshot message, it is
possible that the sets of the first dn+1

2 e processes that reply
to successive snapshot-messages differ. Moreover, when
a reply m for snapshot-round SR arrives after snapshot-
round SR+1 has started, it is possible thatmwas sent after
SR + 1 was already started. In other words, there exists
not necessarily a time t for which a majority of processes
suspect the eligible leader p. The solution to this problem
is to “merge” snapshot-rounds (see Figure 6).

5

s (l)r

qs (l)

s (l)p

t1 2 3 4 5 6 7 98
snapshot
round

suspect

suspect

suspect

r

ok

ok

snapshot message state-message

ok

Figure 6. The snapshot algorithm queries all
failure detector modules until it finds a ma-
jority M = fp; q; rg of processes and a time
t such that each process in M has sent two
state-messages saying that it has constantly
suspected the eligible leader l in an interval
that includes t. Therefore, l has to suspect
itself at t.

Let a state-message also contain the snapshot-round number
during which the requesting snapshot-message was sent.
Each process r keeps for each process q that suspects the
eligible leader l:

� The snapshot-round number, denoted MinRec-
Stamp[q], when r has received the first state-message
m with the highest failure detector version number
m:vq(l) from q so far (i.e. all state-messages m0 that r
has received beforem from q contain a smaller failure
detector version number for l: m0

:vq(l) < m:vq(l)).

� The highest snapshot round number, denoted
MaxSendStamp[q], included in a state message with
failure detector version number m:vq(l) that r has re-
ceived so far from q, i.e. r sent the snapshot message
(that requested this state message) in snapshot round
MaxSendStamp[q].

When MinRecStamp[q]is smaller than MaxSendStamp[q],
then we know that q’s failure detector module output for
the eligible leader l has not changed between the end of
r’s snapshot-round MinRecStamp[q] and the start of r’s
snapshot-roundMaxSendStamp[q]. Process r performs
a search to find a snapshot-round number threshold such
that there exists a majority of processes which suspect the
eligible leader l at the time snapshot-round threshold was
started. When the eligible leader l has crashed, eventually
all processes will permanently suspect p. Hence, all failure
detector version numbers for process l will eventually stop
changing. Array MinRecStamp will therefore eventually
stop changing while the entries for all correct processes in
array MaxSendStamp will continue to increase. There-
fore, eventually process r will succeed to find a majority of
processes that suspects l at the start of some snapshot-round
threshold.

The protocol exports a function Leader? that determines
iff the calling process is the current leader. The function
returns a tuple (leaderFlag,version). The version number
returned by Leader?is incremented every time the process
becomes leader or is demoted. It lets a caller determine
iff it was continuously the leader between any two calls of
function Leader?. Before process p can become leader it
queries its failure detector module to make sure that it does
not suspect itself. Function Leader?also queries the local
failure detector module to check if the calling process p has
suspected itself since it became leader. In case p has not
suspected itself since it became leader, function Leader?
returns leaderFlag = true. Otherwise, p has been demoted
and Leader?returns leaderFlag = false.

Theorem T2: Protocol WE is a correct election protocol.

Proof: see [7].

5.3 Solving Election with 3SSF

Any failure detector in 3SSF can be used to solve election
as long as at least one process survives. We propose an
election protocol SE which is similar to the protocol for
3SWF : we modify protocolWE to correctly handle runs in
which a majority of processes are crashed. In particular, (1)
an eligible leader cannot expect that a majority of processes
reply to its election message, and (2) a process q supporting
the election of the eligible leader p cannot expect that after
p crashes it can find a majority of processes that suspect
p. The strong fail-awareness properties however allows to
modify the protocol such that processes do not need to rely
on replies from a majority of processes.

5.4 Protocol

A process p can stay leader as long as p does not suspect
itself. The strong fail-awareness property ensures that p is
demoted as soon as one process suspects p. When a process
q has supported the election of p, q can therefore start a new
round as soon as q suspects p because it knows that at that
point p has already been demoted.

In round R the eligible leader p broadcasts an election-
message provided it does not suspect itself. Process p has
only to wait for support-messages from processes which p
does not suspect because (1) any process q suspected by p
cannot be leader, and (2.1) before q can become leader, p
has to stop suspecting q, and (2.2) q has either to suspect
p which implicitly demotes p, or (2.3) q has to receive a
support-message from p, however, p does not send support-
messages while being leader.

Theorem T3: Protocol SE is a correct election protocol.

Proof: see [7].

6

6 Weak Fail-Awareness

The goal of this section is to show how to implement
a fail-aware failure detector in a timed system. Let
3SWF

0 denote the weakest failure detector in 3SWF , that
is, let 3SWF

0 satisfy the properties of strong completeness,
eventual weak accuracy, and weak fail-awareness but no
other properties. In this section we sketch how 3SWF

0 can
be implemented in timed asynchronous systems [5] pro-
vided they satisfy a certain “progress assumption” [6]. The
protocol depends upon fail-aware datagramand fail-aware
clock synchronizationservices [8]. For self-containment,
before we describe our protocol for 3SWF

0 , we give a
brief overview of the timed asynchronous system model
and these two services.

6.1 Timed Systems and Progress As-
sumptions

The timed asynchronous system model does not guaran-
tee an upper bound on message transmission and process
scheduling delays. Nevertheless, it defines two time-out
delays: � for message transmission delays and � for pro-
cess scheduling delays. The time-outs are introduced to
define performance failures. These occur when the trans-
mission delay of a message or a process scheduling delay
(i.e. the time a process takes to react to a trigger event) is
greater than the associated time-out delay. Processes have
access to hardware clocks. Since the drift rate of hardware
clocks is bounded by a very small constant (typically of
the order of 10�4 to 10�6), an upper bound on the error
made in measuring real-time intervals is computable. The
failure semantics of processes and communication services
are crash/performance and omission/performance, respec-
tively. For consistency with [1], in this paper we will
assume that crashed processes do not recover.

3SWF
0 is not implementable in timed asynchronous sys-

tems without making some additional assumptions. The
reason for this is that the timed asynchronous system model
allows the existence of a run R in which no process is
crashed and all processes form singleton partitions. In
other terms, in R processes cannot communicate with each
other. If there would exist a process p that is eventually
not suspected by any non-crashed process, we could find a
run R0 in which p is crashed, and R0 is for all processes
(except p) indistinguishable from R. Therefore, in the
timed asynchronous system model it is not possible to sat-
isfy both eventual weak accuracy and strong completeness.
We therefore have to introduce an additional assumption to
make 3SWF

0 implementable.

Progress assumptionsintroduce additional synchronism by
asserting that the system will eventually show “synchronous
behavior” for a sufficiently long time [6]. Such synchronous
behavior is described by a stability predicate. In this paper
we introduce a new stability predicate (m+-stable) which
is a strengthened version of the majority-stabilitypredicate
[6]. We say that the system is m+-stablein a time inter-

val I = [s; u] iff there exists a majority of non-crashed
processes M such that

1. none of the processes inM suffers a failure during I,

2. a message sent at a time t 2 [s; u � �] between two
processes in M is delivered in time at its destination,
i.e. at or before time t+ �, and

3. every message sent during I between two processes p
and q is eventually delivered unless p or q are crashed
at some point in I.

We have shown in [6] that the first two conditions (which
characterize the majority-stability predicate) are sufficient
to solve the election problem. However, these two condi-
tions are not sufficient to implement a failure detector that
satisfies the eventual weak accuracy and strong complete-
ness properties. This fact can be proven in a way similar to
the above sketched proof that 3SWF

0 is not implementable
in timed asynchronous systems because these two condi-
tions still allow some non-crashed process to be partitioned
from the remaining processes. To address this problem,
we could define a weaker majority completenessproperty
which would still allow to solve the election problem and its
implementation would not require condition (3): a crashed
process is eventually suspected by a majority of processes.
An analysis of the election protocol for3SWF (see Section
5) shows that it is correct even for failure detectors that
only satisfy the majority instead of the strong completeness
property. Below we will propose a failure detector protocol
that satisfies the strong completeness property in case the
system is eventually always m+-stable. We will sketch a
slight modified version of that protocol that guarantees ma-
jority completeness in case the system is eventually always
majority-stable1. In this paper we emphasize the proto-
col for strong completeness and hence, will use the m+-
stability predicate instead of the weaker majority-stability
predicate.

In the definition ofm+-stable no uniqueness of the majority
M is assumed: it is possible that in an interval I there exists
two majorities M1 and M2 that satisfy the requirements
of m+-stable. For simplicity, we describe the protocol
assuming a uniqueM , i.e. we select one setM and describe
the behavior of the protocol for that set M . However, the
protocol is correct even when there are multiple majorities
that satisfy the requirements ofm+-stable. Processes inM
are called m+-stable, while processes in Π-M are called
non-stable.

To implement 3SWF
0 we assume the following progress

assumption (PA): the system of processes Π eventually be-
comes permanentlym+-stable, that is, there exists a time s
such that the system is m+-stable in [s;1]

2. In what fol-

1Note that the even though the majority-stability predicate would allow
us to solve the election problem, it does not allow us to implement a reliable
unicast service required by the time-free model because even when the
system is majority-stable there can exist two non-crashed processes that
cannot communicate with each other.

2This is not realistic for existing asynchronousdistributed systems with

7

lows we are only interested in one intervalI0
∆
= [s+IT;1],

where constant IT is sufficiently long to allow the fail-
aware clock synchronization and datagram services to be
initialized. Henceforth, we use “stable” to mean “m+-
stable” and implicitly assume I0 whenever we talk about
stability in our fail-aware failure detector protocol.

6.2 Fail-Aware Services

The essential property of a fail-aware datagram service [8]
is that messages delivered to a process are tagged as either
“standard” (timely) or “exceptional” (slow). Exceptional
messages are slow messages that may contain out-of-date
information. A fail-aware datagram service defines a con-
stant ∆ > � such that when the transmission delay of a
message m is at most �, it delivers m as a standard mes-
sage. When the transmission delay of m is greater than ∆,
m is delivered as an exceptional message. A message with
a transmission delay within]�;∆] may be delivered as either
exceptional or standard. In this section we implicitly as-
sume that all messages are sent by the fail-aware datagram
service.

A fail-aware clock synchronization service [8] provides
each process p with an indicator Sp which, when true, tells
p that its clock Cp is synchronized. A fail-aware clock
synchronization service is required to satisfy the following
properties: 1) when the indicators of processes p and q are
true, the deviation between the clocks of p and q is at most
 :

Sp(t) ^ Sq(t) ! |Cp(t) - Cq(t)| �

2) the indicator of each stable process is true, 3) the drift rate
of synchronized clocks is bounded by a very small constant,
and 4) clocks are monotonically increasing. From the above
properties, it follows that the deviation between the clock
of a non-stable process p and the clock of another process
might be greater than . However, in this case p’s indicator
is false.

6.3 Overview of Protocol

The goal of our protocol is to ensure that (1) eventually
no process will suspect any stable process, and (2) each
crashed process is eventually suspected by all non-crashed
processes. In particular, our first requirement implies that

respect to the requirement that the system will be permanentlym+-stable.
We nevertheless introduce it, as was done in [1], to avoid talking about
time constants abovethe failure detector abstraction layer, yet to be able
to express that the interval is “sufficiently long”. Realistically, one could
assume that for any time s there exists a time t > s such that the system is
stable in interval [t; t+L], whereL is a time constant that is “sufficiently
long” to elect a new leader. The election protocols proposed in this paper
would still be correct under such a weakerprogress assumption, that makes
sense in a timed asynchronoussystem model, but does not in the time-free
model, where one cannot talk about time constants.

eventually even any non-stable process stops suspecting
stable processes. A non-crashed, non-stable process might
or might not be suspected by other processes. Requirement
(1) and progress assumption (PA) imply that there exists at
least one stable process which is eventually never suspected
by any other process.

s (q)p

qs (q)

s (q)r
∆d+

ok

suspect

suspect

ok

suspect

ok

∆d+

s standard alive messaget

≤d

Figure 7. When process q receives a standard
alive message at s from a process p such that
q is in the message’s alive set, then q knows
that p will not suspect q for at least d time
units after s. Hence, q can stop suspecting
itself as long as a majority of processes have
guaranteed that they do not suspect q.

The weak fail-awareness property is implemented using pe-
riodic broadcasts of alive-messages. By broadcastwe mean
in this section that p sends the same message to all pro-
cesses using the fail-aware datagram service. Each process
q maintains a set Aliveq which contains all processes from
which q has “recently” received a standard alive-message.
The set Aliveq is piggy-backed on any alive-message that
q sends. Because a stable process p receives periodically
standard alive-messages from all stable processes, Alivep
contains at least all stable processes. The protocol ensures
that any stable process q receives a standard alive-message
from any other stable process p at least every d time units.
When q receives such a message (see Figure 7), it knows
that 1) p is alive, and 2) p will (by convention) not suspect
any process in Alivep for at least d + ∆ time units. The
broadcast of alive messages is coordinated using the fail-
aware clock synchronization service. Each stable process
q will therefore always know that all stable processes will
not suspect q, and hence, q will not suspect itself.

An important requirement in the proposed election proto-
cols is that a process can detect any change in the output of
its failure detector module. The fail-aware failure detector
module of a process q therefore provides for each process
p a flag sq(p) and a version number vq(p). (see Section 5
for more details).

6.4 Protocol Details

The pseudo-code of the proposed protocol WF is given
in [7] and cannot be given in this paper due to space
restrictions. The protocol is based on the broadcast of

8

alive-messages in a round based fashion. The fail-aware
datagram service is used to discard out-dated information
in alive-messages. The start of a round is determined by
the fail-aware clock synchronization service. Only when
the clock of a process p is synchronized, it sends alive-
messages.

The protocol has to ensure that no process q can suspect a
stable process p even when p and q cannot communicate
in a timely fashion with each other (otherwise the eventual
weak accuracy property could be violated). To ensure this,
process q is allowed to suspect a process p only when q
knows that a majority of processes do not include p in
their alive-messages. Because all stable processes include
all stable processes in their alive-messages, eventually no
process can suspect a stable process.

An important implementation detail is how protocol WF can
guarantee the fail-awareness property even when process
performance failures occur during the execution of WF. In
particular, consider that p’s failure detector module knows
that a majority of processes will not suspect p in the current
round (represented by variable round) which lasts at least
as long as p’s hardware clock shows a value of at most,
say, nextUpdate. When protocol WF cannot collect alive-
message from a majority saying that they will not suspect p
during round+1, p has to suspect itself during round+1.
When process p asks if its failure detector module suspects
p, then the module reads p’s hardware clock to see if it
already shows a value greater than nextUpdate. In case
this is true, a performance failure must have occurred and
the module will therefore suspect p.

A slight modified version of this protocol can ensure the
eventually weak accuracy, the weak fail-awareness, and the
majority completeness property in case the system is even-
tually always majority-stable. In this version, a process
which suspects itself does not suspect any other process.
Since eventually all majority-stable processes do not sus-
pect themselves, these processes will eventually suspect
all crashed processes permanently. In other words, the
majority completeness property is satisfied. However, this
version does not necessarily satisfy the strong completeness
property.

Theorem T1: Protocol WF satisfies the weak fail-
awareness, eventual weak accuracy, and the strong com-
pleteness properties.
Proof: The proof is given in [7].

7 P0 versus 3SWF

0

In this section we show that 3SWF
0 is strictly weaker than

any Perfect failure detector: 3SWF
0 can be reduced to P0,

butP0 cannot be reduced to3SWF
0 . Failure detectorP0 sat-

isfies all properties of 3SWF
0 : P0 only suspects processes

that have crashed and hence, a process has never to suspect
itself. We can therefore restrict ourselves to show that there
exists no reduction algorithm that transforms 3SWF

0 into a
Perfect failure detector.

The fact that 3SWF
0 is strictly weaker than P0 can be ex-

plained as follows. P0 has to be able to decide correctly if
a process is just “slow” or crashed. 3SWF

0 does not have
to make this decision: it just suspects a “slow” or crashed
process p because a “slow” process p can detect when it is
“slow” and then suspect itself. In particular, 3SWF

0 can be
implemented in some systems that do not allow to distin-
guish between a crashed and a “slow” process whileP is not
implementable in these systems. When there would exist
a reduction algorithm that transforms 3SWF

0 into P0, this
algorithm would allow to implement P in such systems. In
other terms, when we show that there exists a system that
allows the implementation of 3SWF

0 but not P0, we can
prove by contradiction that 3SWF

0 is strictly weaker than
P0.

In the timed asynchronous system model we can give
“slow” a precise meaning: a process is “slow” when it
is not stable. We first show that in eventually stable timed
asynchronous systems a process cannot correctly decide if
a remote process is just slow or crashed. In other words,
we show thatP0 is not implementable in these systems. We
already know that 3SWF

0 is implementable in eventually
stable timed asynchronous systems. Second, we show by
contradiction that 3SWF

0 is strictly weaker than P0: when
there would exist a reduction algorithm that transforms
3SWF

0 to P0, this algorithm could be used to implement
P0 in eventually stable timed asynchronous systems.

The reason whyP0 is not implementable in eventually stable
systems is the following. We can select a run R in which
there exists a process p which is not stable. In particular, in
run R we can delay all messages between p and any other
process for an arbitrarily long time. Eventually all other,
non-crashed processes have to suspect p to ensure the strong
completeness property. Otherwise, we could find a from
R indistinguishable run R0 in which p is crashed but not
suspected by some non-crashed process. In other words, in
an eventually stable system one can implement the strong
completeness or the strong accuracy property, but not both.

7.1 Impossibility Proof

We first show that in eventually stable timed systems a
process cannot always correctly decide if another process
is crashed or just slow.

Theorem T4: No Perfect failure detector is implementable
in eventually stable timed systems.
Informal Proof: We prove this theorem by contradiction.
Let us assume that P0 would be implementable in all even-
tually stable systems. We consider a system which contains
at least 3 processes, i.e. we can select runs in which at least
one non-crashed process p can be non-stable. We iteratively
construct a run such that either the strong completeness or
the strong accuracy property is violated. The idea is to se-
lect a run R in which all messages sent from p to any other
process are delayed until at least one non-crashed process
suspects p. Let us first consider the case that in run R no
process would ever suspect p. This implies that in run R
these delayed messages suffer omission failures and R is

9

therefore not valid because the progress assumption (PA)
requires that eventually all messages sent between two non-
crashed processes are delivered. However, we can select a
valid run R0 which is indistinguishable from R for all pro-
cesses (except p) and inR0 process p is crashed. Therefore,
in runR0 the strong completeness condition is not satisfied.

Second, we consider the case that some process q eventually
suspects p in R. After q suspects p, we deliver all delayed
messages to make R valid. Thus, in run R the strong accu-
racy condition is violated. Both cases are a contradiction to
our initial assumption that P0 would be implementable in
all eventually stable systems, hence theorem T4 holds. 2

We can use theorem T4 to show that a Perfect failure de-
tector is not reducible to 3SWF

0 because 3SWF
0 is imple-

mentable in eventually stable systems but not P0. Let us
first show the following lemma.

Lemma L1: Any reduction algorithm implementable in a
time-free system is implementable in an eventually stable
timed system.
Informal Proof: It is sufficient to show that a reliable uni-
cast service is implementable in an eventually stable sys-
tem, i.e. a service which guarantees that a message sent
by a process p to a process q is eventually delivered to q
unless p or q eventually crashes. The progress assumption
PA ensures that eventually all non-crashed processes can
communicate using the basic datagram service without the
occurrence of omission failures. Thus, a simple positive
acknowledgement based protocol can implement a reliable
unicast service using the basic datagram service (in case
progress assumption PA holds). 2

Theorem T5: P0 is not reducible to3SWF
0 .

Informal Proof: We prove this theorem by contradiction.
Let us assume that there would exist a reduction algorithm
T that transform 3SWF

0 to P0. We have shown in Lemma
L1 that T is implementable in eventually stable timed sys-
tems. Hence, P0 is implementable in eventually timed
systems because we have shown in Section 6 that3SWF

0 is
implementable in such systems. This is a contradiction to
theorem T4. 2

8 Conclusion

This paper has addressed the problem that (1) the weakest
“reasonable” failure detector to solve election seems to be
a Perfect failure detector [10], (2) our experience indicates
that a Perfect failure detector is not implementable in exist-
ing asynchronous systems, and (3) the election problem is
solvable in such systems [6]. We resolve the above prob-
lem by introducing two fail-aware failure detector classes
that contain failure detectors which are strictly weaker than
the weakest Perfect failure detector and we show how fail-
aware failure detectors can be used to provide deterministic
solutions to the election problem.

For compatibility with [1], we considered a stronger com-
pleteness property (strong completeness instead of major-
ity completeness) for our failure detectors than necessary

to solve election. This forced us to use a stronger than
necessary progress assumption to implement a fail-aware
failure detector that allows to solve the election problem.
However, the proposed election protocol WE that uses the
fail-aware failure detector 3SWF

0 still works for majority
completeness. We also sketched a version of the failure
detector protocol WF that works for the weaker progress
assumption that the system is eventually majority-stable
for a “sufficiently long” time.

References

[1] T. Chandra, V. Hadzilacos, and S. Toueg. Un-
reliable failure detectors for reliable distributed
systems. Journal of the ACM. to ap-
pear; also available at ftp.cs.cornell.edu as
/pub/chandra/failure.detectors.algorithms.ps.Z.

[2] T. Chandra, V. Hadzilacos, and S. Toueg. The weakest
failure detector for solving consensus. In Proceedings
of the 11th ACM Symposium on Principles of Dis-
tributed Computing, pages 147–158, Aug 1992.

[3] T. Chandra and S. Toueg. Unreliable failure detec-
tors for asynchronous systems. In Proceedings of the
10th ACM Symposium on Principles of Distributed
Computing, pages 325–340, Aug 1991.

[4] F. Cristian. Reaching agreement on processor-group
membership in synchronous distributed systems. Dis-
tributed Computing, 4:175–187, 1991. An earlier ver-
sion in FTCS-18, 1988, Kyoto.

[5] F. Cristian and F. Schmuck. Agreeing on processor-
group membership in aynchronous distributed sys-
tems. Technical Report CSE95-428, UCSD, 1995.
Available via anonymous ftp at cs.ucsd.edu as
/pub/team/asyncmembership.ps.Z.

[6] C. Fetzer and F. Cristian. On the possibility of con-
sensus in asynchronous systems. In Proceedings of
the 1995 Pacific Rim Int’l Symp. on Fault-Tolerant
Systems, Newport Beach, CA, Dec 1995.

[7] C. Fetzer and F. Cristian. Fail-aware failure detec-
tors. Technical Report CSE96-475, UCSD, 1996.
Available via anonymous ftp at cs.ucsd.edu as
/pub/team/failAwareFD. ps.Z.

[8] C. Fetzer and F. Cristian. Fail-awareness in timed
asynchronous systems. In Proceedings of the 15th
ACM Symposium on Principles of Distributed Com-
puting, Philadelphia, May 1996.

[9] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Im-
possibility of distributed consensus with one faulty
process. Journal of the ACM, 32(2):374–382, Apr
1985.

[10] L. Sabel and K. Marzullo. Election vs. consensus in
asynchronous systems. Technical Report TR95-1488,
Cornell University, Feb 1995.

10

