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Abstract

Despite the great number of papers that broach the consensus agreement, just a
few specifically discuss the structure or the implementation of failure detectors.
Even these papers usually present only the structure of the detectors, and avoid
presenting a comparison between the suggested detector and other existing ones.
In fact, at the literature, we have found only one work that compares by
simulations different failure detector models. We have chosen to use that paper as
basis, and decided to make a comparison among some failure detectors models,
using practical systems. In a practical environment, the implementation issues and
the operational system can influence both the performance of the detectors and the
consensus termination time. This paper presents our results, which allows us not
only to judge the efficiency of these models, but also allow us to learn how these
detectors work under different failure situations and under diverse system loads.
Key-words: Failure Detectors, Consensus Termination, Asynchronous Distributed
Systems

1. Introduction

Since Chandra and Toueg [1] defined the properties of the failure detectors, many
authors have suggested algorithms to solve consensus in a wide variety of environments and
failure models. Despite this variety, there are few failure detectors described in the literature.
Usually, consensus algorithms consider detectors as independent modules, which should work
fine in almost all situations (the situations where the detectors makes false suspicions should be
handled by the consensus).

However, this vision about the detectors is unreal, since their implementation model can
interfere in the consensus performance through many factors. Felber [2] pointed out that the
detectors withPushapproach (also known asheartbeator I am alivedetectors) have distinct
reactions than thePull detectors (known asinterrogativeor Are you alive?detectors) if the
application wants more accuracy or wider dissemination. Although his remarks are interesting
to show that this difference exists, his suggestions of use for each failure detector model are
based only on obvious tendencies. Actually several factors can influence the detection and the
consensus: the communication model may overload the network if system parameters are not
well tuned; and messages processing may consume system resources [3]. So, in a real system,
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the combination of these factors may lead to false suspicions. As each detector presents a
particular reaction to different failure scenarios, choosing the right detector and setting the best
parameters for each situation is the only way to keep the consensus performance at a suitable
level.

In fact, we know a single paper that had proposed a comparison among failure
detectors, published by Sergent, Défago and Schiper [3]. In this work, they had used
simulations to compare the behavior from three different failure detector models, evaluating
their impact on the consensus termination. While this work is very useful to understand the
influence of the communication model, many practical aspects were not included in the
simulation specification, but some of them could represent potential points to reduce the
performance of the consensus.

So, taking into account the limitations due to the use of simulation models, we tried to
explore the question from another point of view, evaluating those detectors (and also some
other model we found in the literature) through practical implementation, where the
performance of the consensus and the detectors could be influenced by the system and network
overhead.

In this paper, we present a fast revision on Sergent’s report, in the section 2. After, in
section 3, we discuss the practical environment, the used metrics and the test situations where
the metrics were taken. In section 4, we present the considered failure detectors model,
identifying their differences and similarities. In section 5, our results and a brief comparative
analysis are shown. Finally, we conclude the paper in section 6.

2. A Brief  Review on Sergent's Report

Usually, papers discussing about failure detectors, or more specifically, "asynchronous
systems augmented with failure detectors", do not care about timing issues, and so, authors
tend to consider consensus in asynchronous systems as inefficient or time spending [4]. In fact,
this is a natural consequence of the failure detectors definition given by Chandra and Toueg,
which allows a clear separation of "logic issues" (proof of safety and liveness of the algorithm)
from the "engineering issue" (failure detectors implementation)[3].

Sergent's report has tried to show that optimal performance can be achieved, when
tuning up the detectors. So, the choice of the better detector for a given situation must
consider both implementation and algorithm characteristics.

To simulate the consensus and detectors operation, Sergent has represented the system
as a private LAN, where identical workstations with only one process running on each
machine communicate through datagram messages (like UDP/IP), in a point-to-point
communication. The computation time was considered negligible compared to the time
needed to transmit the messages, so the local computation time was set to 0. The transmission
delays had been measured on a real network during a previous work.

Initially, four models of failure detectors have been considered: two traditional
detectors, withPushand Pull characteristics, and two specialized ones, namedad-hoc "no
message"andad-hoc "heart-beat"2, whose goal was to reduce the number of failure detection
messages using the messages of the consensus to get the necessary detection information. For
his simulations, Sergent considered that thead-hoc "heart-beat"outperforms thePush
detector, since it sends messages only when required, so the evaluation has been applied only
to the remaining three detectors.

2 As Felber's nomenclature (Push and Pull) we also kept the names used by Sergent in our paper.



As simulation environment, Sergent considered two situations. In the first one, no
process crashes, so the consensus must reach the decision in the minimal time (this situation
was calledfailure free case). In the other situation, the coordinator of the round crashes just
before sending itspropose message, so this can be considered as the worst case that the
algorithm can face in one round. The first case shows how the detectors may affect the
consensus performance, while the second situation remarks the algorithm agility to detect the
coordinator failure and start a new round. As these situations are antagonistic, and the best
solution to the first case (longer time-outs and message intervals) becomes harmful to the
worst case (longer time-outs lead to slower detection), tuning up the detector and the
parameters demands a wide evaluation. Unfortunately, the analysis has been focused in the
best performance points, so the behavior of each detector through all the tested parameters
has not been completely shown.

Sergent analysis has identifiedad-hoc "no message"as the detector with the minimal
impact, presenting better detections than the other detectors. Closer to its results was thead-
hoc "heart-beat"detector, but the network overload caused by its messages reduced the final
performance. ThePull detector was considered inefficient when compared to thead-hoc
ones, because its detection mechanism disputes resources (network and memory) with the
consensus.  

 

3. Assumptions for the Practical Environment

To evaluate implementations of the detectors in a real environment, we have judged
that the tools used by Sergent were poor. We considered that the best environment for the
experiments should face the same interactions as a normal distributed application. We used five
machines running Linux (Pentium II 233Mhz, 64MB, kernel 2.2.16), connected through a 10-
BaseTX Ethernet for the experiments. As there were not only these machines in the network,
we have executed the experiments only at unsocial moments, like at night and weekends, to
reduce possible interactions. The consensus and the failure detector algorithms were
implemented in Java, using only UDP messages. The choice for the Java environment is due to
our main interest in the behavior evaluation of the detectors, not in their particular
performance. The results here presented comprise the average from at least 1000 consensus
operations.

Also, as our measures probably could not be directly compared with those presented in
Sergent's report without an expensive evaluation, we had chosen to compare the behavior of
each detector through the tests. This decision makes the analysis more independent from the
environment or the implementation techniques, and allowed us to include some other models
of failure detectors that we found in the literature.

To evaluate the detectors we considered only crash failures, and we have used two
hypothetical test situations and a "normal" one. The two hypothetical situations represent both
thebest caseand theworst casethat a consensus algorithm can face in one round. In the best-
case situation, there is no suspicion, so it solves the consensus in only one round. This leads to
the analysis of the overhead caused by the failure detectors, because only the system overhead
influences the termination time in this situation. As the detectors can make suspicions even if
no real failure has occurred (false suspicions), this case forces the consensus to ignore
suspicions from the detector. Thus, we became able to measure the impact of the detectors
processing without inserting additional rounds in the consensus operation.



The second situation, named worst case, allows us to measure the detection latency from
the detectors. This case represents those situations where the coordinator crashes just after it
had gathered messages from the majority of the processes (more specifically, just before
sending its propose message). When the detector suspects that the coordinator has crashed, the
processes start a new round, and solve the consensus. As this is not a restricted situation and
the consensus could delay for many rounds due to false suspicions, it would be hard to
compare the results. Thus, we restricted the detection to the second round, forcing the
consensus to finish in exactly two rounds, as this situation is enough to show the detection
latency of each model.

In the normal casesituation, we have evaluated the detectors in a normal operation,
where they are free to cast suspicion on anyone. With this situation, we can evaluate the
moment when the overhead from the detectors begins to prejudice the detection, leading to
false suspicions. For example, in Figure 1 we show the three corresponding situations for one
of the Push detectors presented ahead. 

Here, we can see that the termination in the best case situation is influenced when the
time-out is lesser than 400 ms, because the overhead increases. Meanwhile, the worst case
situation shows that the longer the time-out is, the slower will be the detection of the
coordinator's crash, increasing the consensus termination time. The analysis of the normal case
shows that for time-outs longer than 400 ms the termination time will be close to that seen in
the best case. However, when we use smaller time-outs, the termination time increases so far,
that it also overtakes the worst case time. This means that the detector makes too many false
suspicions, so the consensus takes many rounds before its termination.

4. Failure Detectors Models

We decided to add in our comparison more detectors that were found in the literature.
Our main interest was to compare detectors with different mechanisms, communication
models and suspicion procedures. In fact, we gathered samples from four kinds of detectors.
In the group of the traditional detectors, we evaluated thePushandPull detectors. The group
of the specific detectors had thead-hoc "no message"and ad-hoc "heart-beat". We also
considered the adaptive detectors (based in [1]), variations fromPushandPull detectors that
allow their time-out to be dynamically set. Finally, we tried a gossip-styled detector, called
Heartbeat [5], as its diffusion mechanism can be useful when the systems faces with
excessive message traffic, because it exchanges messages only with a limited number of
processes each time [6]. Currently, there are also other proposals on adaptive detectors as, for

Figure 1 - A Push detector analysis
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example, the mechanisms proposed by Macedo [7] or Chenat al. [8]. Those models, however,
consider the provision of additional information about the network and system status to make
their computations. Although these detectors can achieve better results, we considered them
excessively complex to the objectives from this work.

The detection in the traditional detectors is shown in Figures 2 and 3. They mainly
differ on the time-out control and the tuning among the processes. For example, aPull
detector can ask for information with longer intervals, because each detector handles the time
that the messages must take to be returned. APushdetector however must send its messages
periodically, because the other processes control the time-out of the messages of a given
process. Even if each one of these models has its advantages and disadvantages, they are the
most popular detectors referred in the literature.

The specialized detectors run over the consensus algorithm, using its basic structure and
messages. Also, these detectors are activated only in specific moments, when the consensus
needs the detection. The first detector, which is also the simplest one, is calledad-hoc "no
message". It does not send detection messages; it just controls the time-out of a specific
message from the application. In this case, thead-hoc "no message"monitors the
transmission and reception of theestimate andpropose consensus messages. The set of
specific messages that are monitored by the detector are called critical messages; this
characterization makes them different from the other messages produced by the algorithm.
The ad-hoc "no message",however, can induce several mistakes if some process does not
receive the critical anwer in the proper time. This happens because, in the consensus, a slow
process may induce the coordinator to not send thepropose message within the proper
time, as the consensus has not yet received messages from a majority of processes (Figure 4).
Due to this problem, Sergent also considered another variation on this detector, calledad-hoc
"heart-beat". Thead-hoc "heart-beat"avoids these false suspicion situations by making the
coordinator to send I am alive messages while no critical response is dispatched (Figure 5).

Figure 2 - Failure detection: the Push implementation
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Figure 3 - Failure detection: the Pull implementation
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Figure 4 - Incorrect suspicions with the ad-hoc "no message" detector [3]
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In Table 1 we list the parameters and their characteristics - fixed or variable - as used in
our experiments. The relations between message interval (∆i) and timeout (∆to) stand for the
proportionality required by the detector to manage the network delay. AsPushdetectors need
that its messages to arrive before the timeout, they sends the messages before the timeout
limit (for example, ∆i = 98% ∆to). The closer the relation is, the less will be the allowed
delay, but the network overload will be small as there will be less messages being sent in a
time period. On the other hand, this report is not necessary to aPull detector, so it can send
are you alive?messages in larger intervals (∆i = 150% ∆to, for example). The adaptive
detector, however, does not have a fixed timeout, so we just gave it an initial value and an
increment rate, instead of a parameters relation. TheHeartbeatdetector, as thePushmodel,
needs to set its relation, but also needs to manage the number of neighbors to which it sends
his messages in each communication step; thus, we have chosen the minimal set of neighbors
to generate the minimum number of additional messages. 

Table 1 - Failure detectors evaluated

Detector Fixed parameter Variable parameter

Push ∆i = 98% ∆to and  ∆i = 75% ∆to ∆to

Pull ∆i = 150% ∆to and  ∆i = 100% ∆to ∆to

ad-hoc "no message" - ∆to

ad-hoc "heart-beat" ∆i = 75% ∆to ∆to

AdaptivePush ∆to starts as 100 ms, increment = 50 ms ∆i

AdaptivePull ∆to starts as 100 ms, increment = 50 ms ∆i

Heartbeat ∆i = 75% ∆to and neighbors = 2 ∆to

5. Results Assessment

For our analysis, we decided to separate the detectors in three groups. The time-out
based group consists of those detectors that use the time-out as their fixed parameter. This
group has most of our examples. In the second group we have evaluated the adaptive
detectors, because they use∆i as their variable parameter. The last group has only the
Heartbeat detector, because its results were much higher than the results from the other
detectors, so we reasoned that a special analysis on its behavior would be interesting.

5.1. Time-out based detectors

The performance analysis in the best case (Figure 6) has shown that the influence of the
failure detector mechanisms was, in general, similar among the detectors. Except for thead-

Figure 5 - Detection with the ad-hoc "heart-beat" [3] 
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hoc "heart-beat", the other detectors behave in a close manner. Just in the higher overhead
situation (about 100 ms) their performance was reduced and had presented the most
significant differences. We have also seen specially that thead-hoc "no message"was better
than the others, but these results were not really significant. Consequently, we have concluded
that the presence (or absence) of the detection mechanism (sending detection messages) has
not an expressive impact in the consensus performance as thought before.

In the worst case (Figure 7), we have seen that these detectors, which have a permanent
message passing ,can detect failures faster than thead-hocdetectors. As thead-hocdetectors
have to start the detection procedure every time, they do not keep the knowledge that the
other detectors gather all the time. So, withad-hocdetectors, the consensus algorithm has a
longer waiting time, which lasts until the detector suspects the coordinator or the coordinator
answers the messages. 

Our great surprise has occurred in the normal case (Figure 8). First, some detectors
have a special tendency to make false suspicions when the system overload increases. Besides
this, the networkroundtrip has a special impact on the detectors which depend on two-steps
communication. This is the case of thePull detectors, which cannot work with short time-
outs, like 100 ms. Also thead-hoc detectors are influenced, because despite of their
communication scheme, they still depend on theroundtrip represented by the
estimate/propose or estimate/heartbeat message pairs. The averageroundtrip
in our tests was about 133 ms; thus, when the time-outs became smaller than 200 ms, these
detectors became unable to receive messages within the time-out, so they started to make
false suspicions.

The bad performance shown by thead-hoc"heart-beat"was important to curb the use
of specialized detectors. Its performance was harmed by the activation cost from the threads

Figure 6 - Time-out based detectors: best case comparison
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Figure 7 - Time-out based detectors: worst case comparison
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and objects involved in the detection process, as well as the dispute for communication
channels with the consensus algorithm. Because of this behavior, even if thead-hoc "no
message" has worked well, the use of detectors specifically designed to achieve the lower cost
is very risky, and without a well-conducted evaluation, they do not show significant
differences from the traditional detectors.  

Our conclusion is that, within this group, bothPush detector with the relation
∆i = 98% ∆to and ad-hoc "no message"are the most efficient detectors, while thead-hoc
"heart-beat" is the worst detector concerning performance as the criterion. BothPull
detectors evaluated, together with thePush ∆i = 75% ∆to, stand in a second level group,
which have a good performance only when the parameter settings do not lead to generate
excessive overload.

5.2. Adaptive detectors

Adaptive detectors have been analyzed as a different group because they use the
message interval (∆i) as variable parameter, instead of time-outs (∆to), as the other detectors
do. When we analyze the best case situation (Figure 9), our first perception is that these
detectors are easily affected by the system overload. But, although their rates are pretty close
to the termination time of the other detectors, this extra overhead can be explained by the
adaptive processing itself, as the awareness and the reaction to an expired time-out leads to
more processing time. 

When dealing with the worst case (Figure 10), these detectors show their purpose. As
the time-out is dynamically tuned up to allow distinguishing between the moments when a
message is just late and when a process has crashed, the detectors keep the termination time
constant, without regard to the defined message interval.

Figure 8 - Time-out based detectors: normal case comparison
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Figure 9 - Adaptive detectors:  best case comparison
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This regular behavior also can be seen with the Adaptive Push detector in the normal
case (Figure 11). However, the behavior presented by the Adaptive Pull was quite
unexpected, as it was very variant through the test. We made some observations and reasoned
about the possible factors that could explain the behavior we found. First, there are stable
periods, between 200 ms and 400 ms and between 500 ms and 900 ms. The relative
difference between them come from the increasing number of false suspicions; the detector
tries to adapt, but the more suspicions we have, the bigger will be the termination time. Our
second observation is related to the growth of the termination time, when the message interval
is greater than 900 ms. These results correspond to the average from many consensus.
Consequently we presume that this growth reflects the excessive number of aborted rounds
that the first consensus has had before the time-out was adapted to its parameters.

Because of this huge variation in the behavior, we selected the Adaptive Push detector
as the best (and stable) adaptive detector. In fact, this is a good detector if the application
needs a stable service through different situations.

5.3. Heartbeat detector

We have included the Heartbeat detector in this work to explore a different kind of
mechanism, generally referred asgossip. We had previously studied this detector [9,10], and
we were anxious to see if its structural innovations would reduce the impact of the detection
in the consensus operation.

However, this detector has proved to be inefficient, in comparison with the others. The
first problem is related to the total number of exchanged messages. Even if the gossip

Figure 10 - Adaptive detectors:  worst case comparison
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Figure 11 - Adaptive detectors:  normal case comparison
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mechanism reduces the amount of the originally sent messages, the detector also uses a
"retransmission" procedure that makes the total number of messages be greater than in the
other detectors. Figure 12 shows that even with only one neighbor (that cannot be used in
normal operation as a single failure may lead to a logic partition) the total number of
exchanged messages is equal to those sent by thePushdetector to its four neighbors. This
happens because the number of redirected messages increases too much (each possible path
will generate another message) [10]. 

As there are many messages carrying information from one process, it takes too much
time to detect a crash, because every message with the old information must stop running.
Adding this fact to the non-deterministic behavior from the gossip diffusion scheme, we got a
terrible performance in the worst case, as shown in Figure 13. 

On the other hand, the "redundant information" that makes so higher the cost of a crash
detection also helps the detector to avoid false suspicions. As we may see in Figure 14, the
performance in the normal case is relatively close to the performance from the best case. We
believe that the termination time is not lower than the presented because this detector must
deal with the high cost of processing all the information carried by the messages. In fact, we
believe that the significant increase to the system overhead has been caused by this excessive
processing.

Figure 12 - Number of messages exchanged by a single process in
one communication step (based on [10])
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Figure 13 - Heartbeat performance
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Despite this experience, we think that correcting some of these problems, specially the
information exchange model, this detector could be able to achieve good results.

6. Conclusion

This paper has presented a comparison among the most representative models of failure
detectors. The main goal was to learn more about the behavior of the detectors through
different scenarios, and specially to identify adequate efficiency of the detectors to the
consensus agreement.

Since we do not know any other comparison except Sergent's simulations, we think that
this paper may contribute to the implementation and the suggestion of new failure detectors.
Also, the data acquired in this work was very helpful to compare practical issues with
simulation ones. As we saw, some results we got are different from simulation ones, because
even when communication model is efficient and economic, the processing cost can overlap
those benefits. Other detectors, however, had proved their efficiency, in both cases. This
trade-off between communication efficiency and processing cost should always be in mind
when designing a failure detector, together with the logical issues like the proof of safety and
liveness of the algorithm.

More than simply define the most efficient detector, this paper allows us to analyze the
behavior and tendencies from the detectors, contributing to the choice of the better detector
that a specific application would need. This would be very important to our future works,
because these specifications will conduct the construction of other components for group
communication.

To conclude, we think that this work strengthened the qualities from those detectors
which are modular and permanently-working. We saw that they behave as efficiently (or in
other words, they make so lower impact on consensus termination) as the specific detectors,
but are less intrusive in the application algorithm and can be reused with few or without
modifications.
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