
Abstract - Despite the great number of papers that broach the
consensus agreement, just a few specifically discuss the
structure or the implementation of failure detectors. Some
authors have commented on the most traditional detectors,
like the heartbeat and interrogation models, with basis in their
general characteristics. Although these results could change
considering different application scenarios, their differences
have not been well evaluated. In fact, at the literature, we
have found only one work that compares by simulations
different failure detector models. We have chosen to use that
paper as basis, and decided to make a comparison among
some failure detectors models, using practical systems. In a
practical environment, the implementation issues and the
operational system can influence both the performance of the
detectors and the consensus termination time. This paper
presents the evaluation results concerning a specific group of
detectors, the heartbeat-like, under several condition,
allowing us to identify the behavior of these detectors and
their real cost to the system.

Index Terms - Failure detectors, consensus, distributed
agreement, heartbeat, practical evaluation

I. INTRODUCTION

SinceChandra and Toueg [1] defined the properties of the
failure detectors, many authors have suggested algorithms
to solve consensus in a wide variety of environments and
failure models. Despite this variety, there are few failure
detectors described in the literature. Usually, consensus
algorithms consider detectors as independent modules,
which should work fine in almost every situation (the
situations where the detectors fail should be handled by the
consensus).

However, this vision about the detectors is unreal, since
their implementation model can interfere in the consensus
performance through many factors. Felber [2] pointed out
that the heartbeat detectors have a distinct behavior from
the interrogative detectors. Although his remarks are
interesting to show that this difference exists, his
suggestions of use for each failuredetector model arebased
only on obvious tendencies. Actuall y several factors can
influence the detection and the consensus: the
communication model may overload the network if system
parameters are not well tuned; and messages processing
may consume system resources [3]. In result, the
combination of these factors may lead to falsesuspicions in
a real system. As each detector presents a particular
reaction to different failure scenarios, choosing the right
detector and setting the best parameters for each situation
is the only way to keep the consensus performance at a
suitable level.

The evaluation of heartbeat-li ke detectors is notably
important, as they are probably the most popular detectors
used with consensus operations. Moreover, these detectors
approach (gather knowledge using ping messages) are very
common in many other applications and systems,
increasing the importance of such comparison.

In this paper, we present a fast revision on the basic
principles of these detectors, in section II . In section III , we
discuss some variations on the basic model, found in the
literature. In section IV, we discuss the practical
environment, the test situations where we have taken the
metrics and some implementation issues. In section V, we
present our results and a brief comparative analysis.
Finall y, some conclusions finish the paper.

II . BASIC STRUCTURE FOR A HEARTBEAT DETECTOR 

Despite the importance of the failure detectors and their
definition presented by Chandra and Toueg [1], the basic
principles of heartbeat-li ke detectors aresimple, and can be
found in many other systems and applications. The main
idea is that one process(the failure detector) needs to know
the status of other processes. Thus, they send signals to that
detector, meaning that they are alive. In the heartbeat
model, monitored processes need to notify the detector
using some kind of "I am alive!" message. If the message
does not arrive within the maximum time allowed (the
message time-out), the detector should start its suspicion
procedures (Fig. 1 shows an example of this detection).

This notification method is relatively eff icient, because the
processes can use one-way messages that havea low cost to
the system. In addition, the implementation might use
some multi cast serviceprovided by thenetwork to optimize
the communication process, if there are many detectors to
notify [2]. However, this mechanism requires that the
monitored processes are active, sending these messages
periodicall y. Although it is possible to easil y implement
this state with some concurrent threads, it forces all the
monitored processes to be aware of the presence of the
detectors, as they need to specify the identity of their
receiver detector to send the "I am ali ve!" signals.
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Fig. 1. The heartbeat communication model

time-out T
Failure 
Detector

Process M1

I am 
alive!

I am 
alive!

I am 
alive!

Failure

M1 
Suspect



Thus, an important point on the use of this class of
detectors is that both processes and detectors should be
tuned up with the same parameters. As the detectors
control the time-out of the messages sent by the processes,
there is a trade-off between messages interval and time-out.
If message period is longer than the time-out allows, the
processes will probably be suspect. In fact, the detectors
should usually send their messages in slightly shorter
intervals than the maximum allowed, dealing with network
and processing delays. 

While sending messages in shorter intervals allows the
processes to deliver their messages in the proper time, the
network traff ic increases, as well as the system load. So,
setting these detectors to balance the detection latency and
the system overload have a direct impact on the occurrence
of false suspicions, and relates directly to the completeness
and accuracy properties.

III . HEARTBEAT VARIATIONS

 
While traditional heartbeat detectors are widely known and
used, they present some disadvantages. As the detectors
communicate all the time, they overload the network and
the system. Moreover, these detectors are strictly tied to
shared parameters (because one process needs to deliver
messages within the time-out controlled by the other
processes), and are unable to adapt themselves to the
relative speed from different processes and links. Possible
variations on the heartbeat model were found in the
literature [4,6], and intend to reduce some of those
problems. We will study them in the following.

A. Adaptive Detectors

Actually, adaptive detectors do not represent a different
model of detector. These detectors have a special suspicion
mechanism that tries to increase the accuracy of the
detection. This is desirable because with the traditional
heartbeat detector there is only one fixed time-out, and
often the network delay or the processing speed of other
detectors leads to erroneous suspicions. Since slow
processes are more li kely to send their messages too late,
the other processes frequently suspect them. A simple
solution would be to increase this global time-out until all
correct processes are able to send their messages in time,
but this solution only increases the detection latency. Even
if we give a different time-out for each process, setting
fixed time-outs is a hard task, because it depends on many
environmental aspects. In fact, the adaptive detectors try to
set these time-outs dynamically, adapting to the delay of
each network or process(Fig. 2 shows how this mechanism
works). 

Chandra and Toueg [1] have introduced the main idea of
adaptive detectors while discussing detection in partiall y
synchronous environments. Adaptive detectors try to
incrementall y achieve the proper time-out for each correct
detector. Obviously, when the time-out value is not enough,
processes unable to deliver their messages in time become
suspect. Moreover, when correct processes start to deliver
their messages in time, it increases the probabilit y that the
silent detectors reall y crashed.

Currently, there is also another proposal or are also other
proposals on adaptive detectors as, for example, the
mechanisms proposed by Macedo [7] or Chen at al. [8].
Those models, however, consider the provision of
additional information about the network and system status
to make their computations. Although these detectors can
achieve better results, we considered them excessively
complex to the objectives from this work.

B. Speciali zed Detector

Sergent et al. [4] have presented the ad-hoc "heart-beat"
detector in the paper where they have compared different
models of failure detectors. This is a speciali zed
implementation, which runs inside the consensus
algorithm, using its basic structure and messages.
Moreover, this kind of detector is only activated in specific
moments, when the consensus demands the detection.

This detector intends to work between the transmission and
reception of the estimate and propose messages from
the consensus algorithm. The ad-hoc "heart-beat"
implementation sends "I am alive" messages while the
propose message has not been sent (Fig. 3).

While this detector generates fewer messages (only the
coordinator of each round sends "I am alive" messages to
the others), the "fixed time-out" problem appears again. As
each processdefines its time-out, it shall be long enough to
deal with the delays from all possible coordinators.
Moreover, this time-out has to consider both send and
receive time, because the first heartbeat message only
arrives after each process had sent its propose message.

IV. EVALUATION ON THE PRACTICAL ENVIRONMENT

We considered that the best environment for the
experiments should face the same interactions as a normal
distributed application. We used five machines running
Linux (Pentium II 233Mhz, 64MB, kernel 2.2.16),
connected through a 10-BaseTX Ethernet for the
experiments. As there were not only these machines in the
network, we have executed the experiments only at
unsocial moments, li ke at night and weekends, to reduce

Fig. 2. Failure detection: the adaptive implementation
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Fig. 3. Detection with the ad-hoc "heart-beat" [4] 
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possible interactions. The consensus and the failure
detector algorithms were implemented in Java, using only
UDP messages. The choicefor the Java environment is due
to our main interest in the behavior evaluation of the
detectors, not in their particular performance. The results
here presented comprise the average from at least 1000
consensus operations.

To evaluate thedetectors we considered only crash failures,
and we have used two hypothetical test situations and a
"normal" one. The two hypothetical situations represent
both the best case and the worst case that a consensus
algorithm can face in one round. In the best-case situation,
there is no suspicion, so it solves the consensus in only one
round. This leads to the analysis of the overhead caused by
the failure detectors, because only the system overhead
influences the termination time in this situation. As the
detectors can make suspicions even if no real failure has
occurred (false suspicions), this case forces the consensus
to ignore suspicions from the detector. Thus, we became
able to measure the impact of the detectors processing
without inserting additional rounds in the consensus
operation. 

The second situation, named worst case, allows us to
measure the detection latency from the detectors. This case
represents those situations where the coordinator crashes
just after it had gathered messages from the majority of the
processes (more specificall y, just before sending its propose
message). When the detector suspects that the coordinator
has crashed, the processes start a new round, and solve the
consensus. As this is not a restricted situation and the
consensus could delay for many rounds due to false
suspicions, it would be hard to compare the results. Thus,
we restricted the detection to the second round, forcing the
consensus to finish in exactly two rounds, as this situation
is enough to show the detection latency of each model.

In the normal case situation, we have evaluated the
detectors in a normal operation, where they are freeto cast
suspicion on anyone. With this situation, we can evaluate
the moment when the overhead from the detectors begins
to prejudice the detection, leading to false suspicions. 

The main metric used to compare the detectors was the
consensus termination time, measured between the
consensus invocation and the return to the application.
However, just one metric may not be able to show all
aspects from the operation [5], so we also considered the
CPU time used by the processes and the memory usage.
The CPU time allows us to filter "stand by" situations,
which can happen, for example when one process has to
wait for a specific message to progress. The memory use
helps us to identify when the system and network buffers
become overloaded by the exchanged messages.

Both traditional and adaptive detectors have the same
structure design, as we considered the adaptive detector
only as a slightly modified version from the traditional
detector. Nevertheless, the design of the speciali zed
detector did not follow the same pattern. As this detector
should work within the consensus algorithm, we
implemented it using all available mechanisms from the
consensus. In this way, the detector sends "I am alive"

messages through the consensus communication faciliti es;
the message reception uses the same communication
channels than the consensus does; and shared variables
speed the interaction between the consensus and the
detector. Actuall y, the only addition to the consensus was
the suspicion thread, which handles the timeout and the
processing from the "I am ali ve" message.

In Table I, we list the parameters and their characteristics -
fixed or variable - as used in our experiments. The
relations between message interval (∆i) and timeout (∆to)
stand for the proportionalit y required by the detector to
manage the network delay; as heartbeat-li ke detectors
need  its messages to arrive before the timeout, they sends
the messages before the timeout limit (for example,
∆i = 98% ∆to). The closer the relation is, the less will be
the allowed delay, but the network overload will be small
as there will be lessmessages being sent in a time period.
The adaptive detector, however, does not have a fixed
timeout, so we just gave it an initial value and an
increment rate, instead of a parameters relation. 

Table I -Test Parameters 
Detector Fixed parameter Variable

parameter

heartbeat ∆i = 98% ∆to and 

∆i = 75% ∆to

∆to

adaptive ∆to starts as 100 ms,
increment = 50 ms

∆i

ad-hoc "heart-beat" ∆i = 75% ∆to ∆to

V. RESULTS ASSESSMENT

For our analysis, we had to separate the detectors in two
groups, because the adaptive detector uses messages
interval (∆i) as a variable parameter, while the other
detectors use the timeout (∆to). However, they can be
compared in a tough way, which is enough for our
purposes.  

A. Best case situation

The performance analysis of the termination time in the
best case (Fig. 4) has shown that the influence from the
failure detector mechanisms was generall y similar in all
implementations, except for the ad-hoc "heart-beat". The
performanceof the detectors presented the most significant
reductions only under shorter timeouts (or message
intervals, depending on the detector model). Although
already expected, this behavior does not explain the results
from the ad-hoc "heart-beat". Therefore, we still have to
look at the CPUTime and memory usage graphics (Fig. 5
and Fig. 6).

The CPUTime metric shows that the ad-hoc "heart-beat"
detector does not useso much CPU as suggested the former
graphic. Moreover, Fig. 6 shows that the memory usage in
this detector is even lower than in the others, so the
problem is not related to excessive message traff ic. In fact,
we believe that the performance problem presented by the
ad-hoc "heart-beat" detector is related with three factors:
its detection mechanism, the communication channels and



the occurrence of false suspicions. As the network
roundtrip limits the ad-hoc detector, the first "I am alive"
message will not arrive before this time. In addition, this
detector appeared to be very liable to message delays, since
it was not possible to test the relation ∆i = 98% ∆to due to
theabsenceof enough messages arriving in time. Themain
reason for these delays probably is the communication
scheme, which shares thesame channels with the messages
from consensus. Because of these factors (roundtrip and
delays), it increases the probabilit y to make false
suspicions, and the consensus is delayed through many
rounds before its termination.

Another interesting fact refers to the adaptive detector,
when analyzed in this test situation. Our first perception is
that although its performance rates are pretty close to the
termination time of the other detectors, it uses more
memory. The adaptive processing itself may explain this
extra memory usage, because the detector demands more
control structures to be aware and react when time-outs
expire.

 
B. Worst case situation

The analysis of the termination time in the worst case
situation (Fig. 7), has shown that detectors that have
permanent message exchange are able to detect failures
faster than the ad-hoc detector. As the ad-hoc detector
have to start its detection procedure every time, it does not
keep the knowledge that other detectors gather through
their operation, and in addition, it is limited by thenetwork
roundtrip. Consequently, the use of an ad-hoc detector
brings longer waits to the consensus algorithm. The wait
lasts until the detector suspects the coordinator or the
coordinator answers the messages. That is why the bad
rates from the ad-hoc "heart-beat" do not relate to
excessive processing or message traff ic, as Fig. 8 and Fig.
9 show. 

The adaptive detector has presented a very stable behavior,
coherent with its main purpose. As timeouts are

Fig. 5. CPUTime: best case comparison
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Fig. 6. Memory Usage: best case comparison
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Fig. 7. Consensus Termination: worst case comparison
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Fig. 4. Consensus Termination: best case comparison
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dynamically tuned up to allow the detector to distinguish
crashed or slow processes, the adaptivedetector was able to
keep constant the termination time, without regard to the
messages interval. However, this stabilit y demands more
memory and processing time (as shown in Fig. 8 and Fig.
9), so this detector probably will be more liable to system
overload.

C. Normal case situation

While the hypothetical situations (best caseand worst case)
are useful to show the impact of the detectors in the
consensus operation, the normal case situation is the most
important. That is because this situation points which
detector has more tendency to make false suspicions, when
the system overload increases. As told before, the network
roundtrip had a special impact on the detectors that depend
on two-step communication. Because the average roundtrip
in our tests was about 133 ms, when timeouts became
lesser than 200 ms, the ad-hoc detector became unable to

receive messages within the timeout, making more false
suspicions than the other detectors.

Fig. 10 presents the termination time of the detectors. It
shows that the ad-hoc "heart-beat" starts to make false
suspicions much earlier than the other detectors. The
impact of these false suspicions in the ad-hoc detector
appears well in Fig. 11, which presents the three testing
situations for this specific detector. 

Especiall y in the termination graphics, the curve from the
normal case situation quickly surpasses the curve from the
worst-case situation. As the worst-case situation solves the
consensus in exactly two rounds (the application forces this
limitation to avoid multiple rounds), the ad-hoc "heart-
beat" detector demands several rounds before its
termination, in the normal case. We believe, however, that
using its own communication channels would improve the
performancefrom the ad-hoc "heart-beat" detector, despite
the roundtrip limitation.

Fig. 12 also presents this behavior. In addition, Fig. 13
shows the same memory usage tendencies already observed
in the worst case situation.

Despite the ad-hoc detector, there are still two important
remarks about these results. The first one refers to the
adaptive detector. This detector presented termination
results a littl e worse than the heartbeat detectors, and the

Fig. 8. CPUTime: worst case comparison
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Fig. 9. Memory Usage: worst case comparison
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Fig. 10. Consensus Termination: normal case comparison
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Fig. 11. The behavior from the ad-hoc "heart-beat" 
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other metrics also confirmed this evaluation. However, this
detector worked in a constant pace through all test
situations, presenting a desirable behavior for reliable
systems.

Thesecond remark refers to theheartbeat detector with the
relation ∆i = 75% ∆to. In the hypothetical situations, there
was very littl e difference between this detector and the
heartbeat with the relation ∆i = 98% ∆to. However, in the
normal case situation, this detector presented higher levels
of memory consumption. Even if this difference had not
influenced so much the termination time, it can represent a
possible weakness (perhaps, the better word would be
liabilit y) when the system overhead increases.

VI. CONCLUSION

This paper has presented a comparison among some
implementations from one of the most representative
models of failure detectors. The main goal was to know
more about the behavior of the detectors through different
scenarios, and speciall y to identify adequate eff iciency
levels to support the consensus agreement.

Since we do not know of any other comparison except
Sergent's simulations (even though Chen et al. had done a
good evaluation on thedetection parameters), we think that
this paper may contribute to the implementation issues and
the suggestion of new failure detectors. While the
"traditional" heartbeat detector presented the best
performance, the adaptive detector behaved extremely
stable in all situations (a desirable qualit y for reliable
systems). Concerning the ad-hoc heartbeat detector, whose
results were not so good, has presented the lower cost to
the system (memory and processing); we still believe that
the use of some usual techniques can improve it.

More than simply defining the most eff icient detector, this
paper allowed us to analyze the behavior and tendencies of
the detectors, contributing to the choice of the better
detector that a specific application would need. This would
be very important to our future works, because these
specifications can conduct the construction of other
components for group communication.

REFERENCES

[1] T.D. Chandra and S. Toueg. Unreliable Failure Detectors for
Reliable Distributed Systems. Journal of the ACM,
43(2):225-267, March 1996.

[2] P. Felber. The CORBA Object Group Service. PhD. Thesis.
EPFL, Lausanne, Switzerland, 1998. 

[3] L.A.B. Estefanel and I. Jansch-Pôrto. Avaliação Prática de
um Detector de Defeitos: teoria versus implementação. Anais
do II Workshop de Testes e Tolerância a Falhas. Curiti ba,
Brasil . Julho 2000.

[4] N. Sergent, X. Défago and A. Schiper. Failure Detectors:
implementation issues and impact on consensus performance.
Technical Report, EPFL, Lausanne, Switzerland, 1999.

[5] R. Jain. The Art of Computer Systems Performance Analysis,
New York: John Wiley, 1991

[6] L. A. B. Estefanel. Detectores de Defeitos Não Confiáveis.
Publi cação Interna, 90 pg., UFRGS, Porto Alegre, Brasil .
Janeiro 2000. Available at <http://www.inf.ufrgs.br/
~angelo/ publi cations/TIDetectores.zip> (in Portuguese)

[7] R. Macêdo. Failure Detection in Asynchronous Systems.
Anais do II Workshop de Testes e Tolerância a Falhas.
Curiti ba, Brasil . Julho 2000.

[8] W. Chen, S. Toueg and M. K. Aguilera. On the Qualit y of
Service of Failure Detectors. Proceedings of the IEEE
International Conference on Dependable Systems and

Networks. New York. June 2000. 
Fig. 13. Memory Usage: normal case comparison
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Fig. 12. CPUTime: normal case comparison
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