Muteness Failure Detectors: Specification and Implementation

Assia Doudou*  Benoit Garbinato! =~ Rachid Guerraouit =~ André Schiper?

Abstract

This paper extends the failures detector approach from crash-stop failures to mute-
ness failures. Muteness failures are malicious failures in which a process stops sending
algorithm messages, but might continue to send other messages, e.g., "I-am-alive” mes-
sages. The paper presents both the specification of a muteness failure detector, denoted
by &M 4, and an implementation of GM 4 in a partial synchrony model (there are bounds
on message latency and clock skew, but these bounds are unknown and hold only after
some point that is itself unknown). We show that, modulo a simple modification, a con-
sensus algorithm that has been designed in a crash-stop model with &, can be reused
in the presence of muteness failures simply by replacing OM 4 with ©S.
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1 Introduction

A fundamental characteristic of distributed systems is the notion of partial failures: part of a
system might have failed while the rest might be correct. Coping with partial failures usually
requires to get some (even approximative) knowledge about which processes have failed and
which have not.

1.1 Background: Crash Detectors

Traditionally, failure detection mechanisms were usually mixed up with the distributed pro-
tocols using them. Relatively recently, Chandra and Toueg suggested an approach where
failure detection is encapsulated within a so-called failure detector and decoupled from the
rest of the distributed protocol [3]. Roughly speaking, a failure detector is a distributed or-
acle that provides hints about partial failures in the system; a process p typically consults
its failure detector module to know whether a given process g has crashed or not. Formally,
a failure detector is described according to axiomatic completeness and accuracy properties.
Completeness expresses the ability of a failure detector to eventually detects failures, while
accuracy expresses its ability to eventually avoid false suspicions (i.e., falsely suspecting cor-
rect processes). By decoupling failure detection from other algorithmic issues, Chandra and
Toueg provided an abstraction that avoids focusing on operational features of a given model,
such as the asynchrony of the transmission and the relative speeds of processes. Features
related to failure detection are encapsulated within a separate module: the failure detector
becomes a powerful abstraction that simplifies the task of designing distributed algorithms'
and proving their correctness. For example, Chandra and Toueg have described an algorithm
that solves the consensus problem in an asynchronous system augmented with an eventually
strong failure detector, denoted by ©S&. The axiomatic properties of S encapsulate the
amount of synchrony needed to solve the consensus problem in the presence of crash failures
and hence to circumvent the well-known FLP impossibility result.2 Other agreement algo-
rithms, e.g., the Early Consensus [13], have later been designed on top of the same failure
detector ©S. Although &S cannot be implemented in a purely asynchronous system (this
would contradict the FLP impossibility result), when assuming practical systems however,
e.g. those that provide some kind of partial synchrony, implementations of such a failure
detector do exist [3].

A failure detector acts as a modular black-box of which implementation can change with
no impact on the algorithm using it, as long as that implementation ensures the adequate
completeness and accuracy properties.

1.2 Motivation: From Crash to Muteness Failures

The motivation of our work is to explore the applicability of the failure detector approach to
a broader context, where failures are not only crash failures but might have a more malicious
nature. In a crash-stop model, it is usually assumed that either a process correctly executes
the algorithm that has been assigned to it, or the process crashes and completely stops its
execution. Some authors have discussed the applicability of the failure detector approach

'Hereafter, we sometimes refer to distributed algorithms as protocols.

2 Consensus is a fundamental problem that consists for a set of processes to decide on the same final value
among a set of initial values. The FLP impossibility result states that no algorithm can solve consensus in an
asynchronous distributed system if one process can fail by crashing [7].



in system models where processes can crash and recover and communication links are not
always reliable [1, 12, 11, 4]. In each of those models however, the notion of failure (and thus
of an incorrect process) is completely independent from the algorithms run by processes in
the system. This is no more the case with a Byzantine failure model, i.e., with malicious
failures.

A process is said to commit a Byzantine failure when it deviates from the specification of
its algorithm [9]: the process might not have necessarily stopped its execution, but might send
messages that have nothing to do with the messages it is supposed to send in the context of its
algorithm. Malicious failures are thus intimately related to a given algorithm. To illustrate
this point, consider a process ¢ that is part of a set Q of processes trying to agree on some
value. Suppose now that ¢ executes agreement protocol A, which is proven to be correct,
whereas all other processes in () execute a different agreement protocol A’, also proven to be
correct. With respect to processes executing A’, g is viewed as a Byzantine process, that is a
faulty process, although it executes correct algorithm A.

The fact that the notion of failure is relative to a given algorithm in a Byzantine model
has an important consequence: it is impossible to achieve a complete separation of the failure
detector from the algorithm using it. A consequence is an intrinsic circular dependency: if
algorithm A relies on some failure detector D, the latter must in turn be specified and thus
implemented in terms of A (at least partially).

Our paper can be seen as a first step towards understanding how this circular dependency
can be explicitly taken into account, when specifying and implementing failure detectors in a
Byzantine model.

Muteness Failure Detectors

To simplify our discussion, rather than considering all possible Byzantine behaviours, we in-
troduce a weaker malicious failure model that we call the muteness failure model. Intuitively,
a process p is said to be mute with respect to algorithm A if p stops sending A’s messages to
one or more processes. Crash failures are particular cases of mute failures, which are them-
selves particular cases of Byzantine failures. Interestingly, distinguishing mute failures from
other Byzantine failures in the design of consensus algorithms allows us to clearly separate
liveness issues from safety issues: muteness failures are those preventing the progression of
the algorithm and should be captured at the failure detector level, whereas other kinds of
Byzantine failures can be handled at the algorithmic level [10, 5].

Furthermore, we restrict our work to a class of distributed algorithms, which we call
reqular round-based algorithms. Roughly speaking, this class includes all algorithms that have
a regular and round-based communication pattern. Most consensus algorithms that make use
of unreliable failure detectors belong to that class, including the centralised algorithm of [3]
and the decentralised algorithm of [13]. By analogy with crash failure detectors, we define
muteness failure detector OM 4 as one that tries to capture muteness failures with respect to
a given algorithm A. We show that our specification of GM 4 does indeed make sense in the
context of regular round-based algorithms, and we then describe an implementation of OM 4
in a partial synchrony model where there are bounds on message latency and clock skew, but
these bounds are unknown and hold only after some unknown point in time.



1.3 Contribution: Preserving the Modularity of Failure Detectors

The key contribution of our work is to show that, even though a muteness failure detector
is inherently related to a given algorithm, we can still partly preserve the modularity of the
failure detector approach. This result is conveyed along three dimensions.

1. From the specification viewpoint, we define the muteness failure detector ©CM 4 in terms
of axiomatic properties. By doing so, we provide an abstraction that helps proving the
correctness of consensus algorithms in a Byzantine model. Intuitively, we rely on O M 4
to ensure liveness and we leave other Byzantine failures to the consensus algorithm
itself [5].

2. From the algorithmic viewpoint, the dependency between the failure detector and the
algorithm using it can be reduced to a simple well-defined interaction. Modulo this
interaction, we can reuse the decentralised consensus algorithm of [13] (initially designed
for the crash-stop model) as it is in a model with mute processes, by merely replacing
the failure detector ¢S with GM 4.

3. From the implementation viewpoint, we isolate the dependency between some algo-
rithm A and the implementation of its corresponding GM 4 in some function A 4 (r);
the latter is used to increment the timeout at the beginning of each round r. Roughly
speaking, the correctness of OM 4’s implementation does not only rely on partial syn-
chrony assumptions made on the system, but also on time assumptions made on algo-
rithm A. Intuitively, those assumptions state a set of necessary conditions for finding
a function A 4 that makes our implementation of GM 4 satisfy adequate completeness
and accuracy properties.

1.4 Roadmap

Section 2 presents our model and formally introduces the notion of muteness failures. Sec-
tion 3 defines the properties of the muteness failure detector &M 4 and specifies the class of
algorithms that we consider. Section 4 presents our implementation of GM 4. We then prove
the correctness of our implementation in a partial synchrony model, provided some time as-
sumptions on algorithms using GM 4. Section 5 shows how a consensus algorithm designed
in a crash-stop model, namely the decentralised protocol of [13], can be reused in the context
of muteness failures. Finally, Section 6 describes the research results that relate to ours and
Section 7 closes the paper with some concluding remarks and open questions.

2 The Model

This section introduces our model, basically made of processes participating in a distributed
algorithm, via the execution of a local automata. We also formally define the muteness failure
model that we consider, and discuss how it relates to other failure models.

2.1 Algorithm & Automata

We consider an asynchronous distributed system, i.e, there is no upper bound on the time
required for a computation or a communication. The system is composed of a finite set



Q = {p1,...,pn} of N processes, fully interconnected through a set of reliable communication
channels. Hereafter, we assume the existence of a real-time global clock outside the system:
this clock measures time in discrete numbered ticks, which range 7 is the set of natural
numbers N. We define distributed algorithm A as a set of deterministic automata A, run by
processes in the system. We sometimes refer to A, as an algorithm rather than an automata
but it should be clear that we mean the local automata run by some correct process p.

2.2 A Restricted Byzantine Model

Byzantine failures can be splited into undetectable and detectable failures [8]. Undetectable
failures are those that cannot be detected from received messages, e.g., a Byzantine process
that cheats on its initial value when participating to some agreement protocol. Faced with the
impossibility to detect such a kind of failure, a process that commits only undetectable failures
is considered as correct by the other correct processes. Among detectable failures, we have
(1) commission failures (with respect to some algorithm), i.e., messages that do not respect
the semantics of the algorithm and (2) omission failures (with respect to some algorithm),
i.e., expected algorithm messages that never arrive. According to this classification, muteness
can be seen as a permanent omission failure, i.e., a mute process is a process that crashes or
arbitrary decides to stop sending any algorithm messages to one or more correct processes.

Muteness Failures

A process ¢ is mute with respect to some algorithm A and some process p if ¢ prematurely
stops sending expected A messages to p. We say that process g fails by quitting algorithm A
with respect to some process p. A muteness failure pattern F' is a function from 2 x T
to 2, where F(p,t) is the set of processes that quit algorithm A with respect to p by
time t. By definition, we have F(p,t) C F(p,t + 1). We also define quit,(F) = Uyer F(p, 1)
and correct(F) = Q — Upeq quity(F). We say that q is mute to p if ¢ € quity(F), and if
q € correct(F'), we say q is correct.

Muteness failures constitute a subset of Byzantine behaviours and a superset of crash
failures. Figure 1 conveys this idea, with B denoting the set of all possible Byzantine failures,
M the set of muteness failures, and C the set of crash failures. A crashed process is a mute
process with respect to all other processes. Note that M Z C' because a mute process might
stop sending messages without crashing.

A Minimum Number of Correct Processes

Besides failure detectors, a distributed algorithm .4 also often depends on a minimum number
of correct processes to avoid blocking. This number is usually expressed as N — f, where f
is an upper bound on the number of faulty processes tolerated in the system. In [2], Bracha
and Toueg proved that no agreement problem can be solved in an asynchronous model in
presence of at least one half of crashed processes, i.e., with f > N/2. In presence of Byzantine
processes, they also proved that no agreement problem can be solved with f > N/3. For sake
of generality of our discussion, we refer hereafter to N — f as the minimum number of correct
processes required by algorithm 4, without specifying a value for f.
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Figure 1: A Classification of Byzantine Failures

3 Muteness Failure Detector

This section formally presents the OM 4 muteness failure detector and the class of algorithms
that can use that detector.

3.1 The OGM,4 Muteness Failure Detector

A muteness failure detector is a distributed oracle aimed at detecting mute processes. Since
the notion of muteness failure is related to some algorithm A, the notion of muteness detector
is also related to A. Formally, the OM 4 muteness failure detector is expressed in terms of
the following two properties:

Eventual Mute Completeness. There is a time after which every process that is mute
to a correct process p, with respect to A, is suspected by p forever.

Eventual Weak Accuracy. There is a time after which a correct process p is no more
suspected to be mute, with respect to A, by any other correct process.

About Algorithms Using OM 4

There are algorithms for which the use of CM 4 makes no sense. More precisely, for such
algorithms, it is impossible to implement GM 4, even in a completely synchronous model.
Intuitively, these algorithms are those for which a mute process cannot be distinguished
from a correct process, even in a completely synchronous system, i.e., algorithms where mute-
ness can be a correct behaviour. A trivial example of such algorithms is one which requires
that a correct process stops sending any message to one or more correct processes. A more
subtle example is an algorithm where a correct process sends a message only when it is sus-
pected by some other process. In those two examples, the Fventual Mute Completeness and
Eventual Weak Accuracy become contradictory properties: since a correct process might be



mute (first example), or might seem to be mute infinitely many times (second example), sat-
isfying completeness leads to suspect it infinitely many times, whereas satisfying accuracy
means eventually stopping suspecting it.

3.2 Regular Round-Based Algorithms

We now define a class of algorithms, named C 4, for which the use of GM 4 does indeed make
sense. We characterise this class by specifying the set of attributes that should be featured
by any algorithm A € C4. We qualify such algorithms as regular round-based.

Attribute (a) Each correct process p owns a variable round, that takes its range R to be
the set of natural numbers N. As soon as round, = n, we say that process p reaches
round n. Then, until round, = n + 1 process p is said to be in round n.

Attribute (b) In each round, there is at most one process g from which all correct processes
are waiting for one or more messages. We say that ¢ is a the critical process of round n
and its explicitly awaited messages are said to be a critical messages.

Attribute (c) With at least N — f correct processes participating in algorithm A, each
process is critical every k rounds, k¥ € N. If in addition the process is correct then it
sends a message to all in that round.

Intuitively, Attribute (a) states that A proceeds in rounds, while Attribute (b) defines the
notion of critical process and restricts the number of such processes to one in each round.
Finally, Attributes (c) expresses, in terms of rounds, that a correct process is critical an
infinite number of times, and that it should therefore not be mute.

Interestingly, many agreement protocols that we know of feature these three attributes.
In particular, both the centralised consensus algorithm of [3] and the decentralised consensus
algorithm of [13] are instances of class C4. They trivially feature Attributes (a), (b) and (c),
since they proceed in asynchronous rounds and rely on the rotating coordinator paradigm; in
particular, we have k = N for their instance of Attribute (c).

4 An Implementation for GMy

In the crash-stop failure model, the implementation of some failure detector D can be made
independent of the messages sent by the algorithm using D. For example, this is the case of the
timeout-based implementation of OP sketched in [3], which sends periodically its own “p-is-
alive” messages: such messages are completely separate from those generated by the consensus
algorithm (or by whatever algorithm using the failure detector).? This independence is made
possible because a crashed process stops sending any kind of messages, no matter whether
they are generated by the algorithm or by the local failure detector module. In some sense,
we can say that, in a crash-stop model, incorrect processes have a coherent behaviour with
respect to the messages they send. So, if they stop sending messages related to the failure
detector, they also stop sending messages related to the algorithm.

In the muteness failure model, on the contrary, incorrect processes can stop sending algo-
rithm messages without crashing. In other words, they can play by the rule as far as messages

3Note that this implementation is correct only if we assume that failure detector messages and algorithm
messages do not prevent each other from reaching their destination.



“p-is-alive” are concerned, and at the same time they can stop sending any other message.
So, the periodic reception of messages from the failure detector module of some process p is
no longer a guarantee that an algorithm message will eventually arrive from p. Consequently,
an implementation of ©M 4 based on independent messages cannot help to capture mute
processes.

4.1 An Algorithm 7p for Implementing OM 4

An implementation Zp of the muteness failure detector GM 4 is given in Algorithm 1. It relies
on a timeout mechanism and is composed of three concurrent tasks. Variable A, holds the
current timeout and is initialised with some arbitrary value inita > 0 that is the same for all
correct processes. In addition, Zp maintains a set outpout, of currently suspected processes
and a set critical, containing the processes that p is allowed to add to its output, set. These
two sets are initially empty. A newly suspected process is added to output, by Task 1 as
follows: if p does not receive a “g-is-not-mute” message for A, ticks from some process g that
is in criticaly, g is suspected to be mute and inserted in the output, set.

Algorithm 1 Implementation Zp of Muteness Failure Detector OM 4

1: {Every process p ezecutes the following :}
2: Ap +inita; output, < 0; critical, + 0; {Initialisation}
3: for all g € critical, do {Task 1}

4: if (g & outputy) A (p did not receive “g-is-not-mute” during A, ticks) then
5: outputy, < output, Uq

6: when receive “g-is-not-mute” from A, {Task 2}
7. if (¢ € output, ) then

8: output, < output, —q

9: when receive new_critical, from A, {Task 3}

10:  critical, < new_critical,
11: Ay ga(ly)

Interactions between A, and OCM 4

Figure 2 sketches how algorithm A, executed by a correct process p and OMy4 interact:
besides queries to OM 4 (arrow 1), our implementation Zp handles two more interactions
with A,. Tasks 2 and 3 are responsible for that. Each time p receives a message from some
process g (arrow 2), algorithm A;, delivers “g-is-not-mute” to Zp (arrow 3). As a consequence,
Task 2 removes process ¢ from output, in case g was suspected. At the beginning of each
round, A, delivers a new_critical, set to Zp (arrow 4) containing the critical processes of the
new round. Task 3 updates critical, accordingly to the set new_critical,. In addition, Task 3
also computes a new value for timeout A, by applying some function g4 on the current value
of A,. Since the timeout is updated in each new round, there exists a corresponding function
Ay : R — T that maps each round n onto its associated timeout A 4 (n). For instance, if
function g4 doubles the current timeout Ay, then A4 (n) = 2"~ inita.
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Figure 2: Interactions between A, and OGM 4

4.2 Assumptions for Proving the Correctness of Algorithm 7,

Our algorithm Zp does not approximate the bound on communication delays, as does the im-
plementation of ¢P in [3], but rather the maximum delay between two consecutive A’s mes-
sages sent by some correct process. Therefore, proving the correctness of this implementation,
even when assuming a partial synchrony model, is not a straightforward task. Indeed, the
delay between A’s message does not depend only on transmission delay, but also depends on
the communication pattern of algorithm A.

In order to prove the correctness of implementation Zp, we then rely on (1) partial syn-
chrony assumptions, and (2) time assumptions on algorithm 4 and on the timeout function
of Zp, i.e., on function A 4. In addition, we assume that there are permanently N — f correct
processes participating in distributed algorithm A.*

Partial Synchrony Assumptions

The partial synchrony model assumed here is slightly weaker than those discussed in [6], a
reference paper by Dwork et al. on consensus in partial synchrony. In the model they consider,
the bound ¢ on communication delays and the bound ¢ on processes’ relative speeds do exist
but they are either unknown, or known but they hold only after some Global Stabilisation
time, hereafter GST, that is itself unknown. Here, we assume a system where § and ¢ are both
unknown and hold only after some unknown GST. Such a weaker partially synchronous system
is also the one assumed by Chandra and Toueg for their implementability proof of OP [3].
i,From now on, we consider the system only after GST, i.e., we assume only values of the
global clock that are greater or equal than GST.

Time Assumptions on A and Zp

Before stating those assumptions, we need a few definitions. We say that some round n is
reached as soon as at least one correct process p reaches n; once a round is reached, it remains
so forever. For some round n where the critical process is correct, we say that n is completed
if all correct processes have received all the critical messages of round n.

Assumption (a) There exists a constant § such that the following holds. Let n be a round
with a correct critical process p. As soon as p is in round n together with at least N — f
correct processes, then n is completed in some constant time (.

4We will come back to this additional assumption in Section 4.4, where we discuss what happens if it does
not holds forever.



Assumption (b) There exists a function h : R — 7 that maps each reached round n onto
the mazimum time required by any correct process in some round m < n to reach n.

Assumption (c¢) There exists a function A 4 such that the following holds. There exists a
round 7’ such that Vn > n' where n is a reached round, we have:
A (n) > h(n) ANAg (n+1) —h(n+1) >Ayu (n) — h(n).
Intuitively, this means that after round n’, the timeout A4 (n) associated with any
reached round n > n' is larger and grows faster than h(n).

Corollary 4.1 From Assumption (a) to (c), we can easily infer that:
In' € R, Vn >n', Ay (n) > h(n) + .

4.3 Correctness Proof of Algorithm 7

We now prove that, when used by any regural round-based algorithm, 7p satisfies the Eventual
Mute Completeness and the Eventual Weak Accuracy properties, under the assumptions of
Section 4.2. This is formally expressed by Theorem 4.2.

Theorem 4.2 When used by an algorithm A of class C4, Ip ensures the properties of OM 4
in the partial synchrony model, under Assumptions (a) to (c).

PrOOF: We first prove the Mute Completeness property, which is needed to prove the Even-
tual Weak Accuracy property.

Eventual Mute Completeness. By Attribute (c¢) of any algorithm A € C 4, we infer that
each process is critical in an infinite number of rounds. Therefore, each process ¢ is eventually
added the set of critical, of a correct process p. If ¢ is mute to process p, that means ¢ stops
sending messages to p forever. Thus the algorithm A, of process p stops receiving messages
from ¢ and algorithm Zp stops receiving “g-is-not mute” messages (Task 2). Therefore, there
is a time ¢ after which process p timeouts on ¢ and inserts its in its output, set (Task 1).
Since ¢ stops sending messages to p forever, process ¢ is never removed from output, and q is
suspected forever to be mute by p. Hence, there is a time after which the Eventually Mute
Completeness holds forever.

Eventual Weak Accuracy. ;From the Eventual Mute Completeness a correct process is
never blocked forever by a mute process. Therefore, any correct process executes an infinite
sequence of rounds. Let p and g be two correct processes. We know that g can only be
added to output, in rounds r where ¢ is the critical process of r. ;jFrom Corollary 4.1, we
have In' € R, Vn > n', A4 (n) > h(n) + 8. Let n be any such round where ¢ is the critical
process, and assume that p just reached n, i.e., p is at the beginning of round n. There are
two possible cases:

Case 1. Process g & output, at the beginning of round n, i.e, when p starts round n it does
not suspect ¢q. Since Ay (n) > h(n) + 3, the timeout A, is larger than the maximum
time required by any correct process (includes g) to reach round n, plus the time needed
by round n to be completed. As consequence, process p receives the expected critical
messages from g without suspecting ¢g. Thus, ¢ is not added to output,. Furthermore,
thanks to Corollary 4.1, we infer that ¢ will not be added to output, in n, nor in any
future round where g will be critical..

10



Case 2. Process g € output, at the beginning of round 7, i.e, when p starts round n process
q is already suspected by p. Therefore, g was suspected by p in some round r < n, where
q was r’s critical process. Since each correct process executes an infinite sequence of
rounds, from the assumption that there are always N — f participating correct processes
and from Attribute (c), we know that process g eventually reaches round r as well as
at least V — f correct processes and sends a message to all in that round. So, there is
a round r’ > n, where p eventually receives ¢’s messages and consequently removes ¢
from output,. Since for round ' we also have A 4 (r') > h(r') + 8 and g & output,, we
fall back on Case 1.

Therefore, there exists a round maz(r’,n) after which process g is never suspected to be
mute by any correct process p. Thus, there is a time after which the Eventual Weak Accuracy
holds forever. O

4.4 The Problem of Ensuring OM 4 Properties Forever

It is worth noting that several distributed algorithms do not ensure the participation of
N — f correct processes forever. With such an algorithm A, we say that correct process p
terminates when A, yields its last result and p stops participating in A. This is the case
for many agreement algorithms, in particular for both the centralised and decentralised algo-
rithms described in [3] and [13] respectively. The problem is that, with less that N — f correct
processes, we cannot guarantee anymore that a correct process executes an infinite sequence
of rounds and sends regular messages to all. As a consequence, Zp cannot ensure Eventual
Weak Accuracy forever.

Often, however, such algorithms also guarantee that once a correct process terminates,
all correct processes are then able to eventually terminate without using ©M 4 anymore.® In
other words, such algorithms only need Zp to ensure OM 4 properties as long as no correct
process terminates. Again, this is the case of both aforementioned agreement algorithms.

5 Putting OM 4 to work

This section gives an example of a distributed agreement algorithm that can be combined
with &M 4, namely the decentralised consensus algorithm of [13]; this algorithm is also known
as Farly Consensus, hereafter EC. We have already shown that EC is a regular round-based
algorithm (Section 3.2). Now, we additionally show that EC satisfies, in the partial synchrony
model we defined above, Assumptions (a) to (c) stated in section 4.2. We start by recalling
the basic insight of the EC algorithm, and then we proceed with the proofs. The detailed
EC algorithm can be found in [13].

5.1 Background: Overview of Early Consensus

EC is based on the rotating coordinator paradigm and proceeds in asynchronous rounds, each
one being divided into two phases. In Phase 1 of every round r, algorithm EC tries to decide
on the estimate of the coordinator p. of round r. The coordinator p. starts by broadcasting
its current estimate.. When a process receives estimate,, it reissues (broadcasts) this value

SChandra & Toueg’s point out that failure detector properties need only to hold “long enough for the
algorithm to achieve its goal” [3, page 228].
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to all. Once process has received estimate, from N — f processes, it broadcasts a decision
message containing estimate, and decides on it. Phase 1 is illustrated in Figure 3.

Critical Process
Coordinator P1

/\ >
\ Z / decide
p2 -
\ % decide
p3 -

Critical message: estimate, estimate,, decide

Figure 3: Phase 1 of Early Consensus

If p. is suspected by at least N — f processes, Phase 2 ensures that if any process decides
on estimate, in round r, then all correct processes that start round r + 1 have estimate. as
their current estimate. This is ensured as follows. When a process suspects coordinator p,,
it broadcasts a suspicion message. Once a process has received at least (N — f) suspicion
messages, it broadcasts its current estimate in a so-called GoPhase2 message. Once a process
has received (N — f) GoPhase2 messages, it checks if one of the received estimates is the
estimate of p.. If so, the process adopts it and moves to round r + 1. Phase 2 is illustrated
in Figure 4.

Suspected Process p
Coordinator p1 O ‘ -
P A\ < 4 [ / N
/ / A
/ /! /
e / , Ve
p2 /\ /// < N -
D4 \
/ /y\ , 7/
p3 ”/i\ \ : . L
Suspicions GoPhase2 Next round

Figure 4: Phase 2 of Early Consensus

5.2 Usability Proof of GM 4 by Algorithm EC
Lemma 5.1 Assumption (a) holds with A = EC.

PROOF: Let n be a round with a correct critical process p, and assume that p is is in
round n together with at least N — f correct processes. Since we are after GST, process p
sends its current estimate in bounded time < ¢. The estimate is then received by all other

correct processes in bounded time < § + ¢. Therefore, round n is completed in a constant
time 8 = ¢ + 4. O

Lemma 5.2 Assumption (b) holds with A = EC.

12



ProOOF: This proof shows the existence of function h. Let p; be a correct process in the most
advanced round, let say n. Let p; be a correct process in the less advanced round, let say m.
In EC, each correct process sends a GoPhase2 message to all before proceeding to the next
round. Therefore, process p; already sent message (p;,m, 2, —) to all, when it was in round m.

Since we are after GST, message (p;, m,2,—) is received by each correct process in a
bounded time < §. Each correct process delivers this message and relays it to all the other
processes in bounded time < (N + 1)¢. So, any correct process, in particular process p;
which is in round m, collects (N — f) GoPhase2 messages and proceeds to the next round
in bounded time < (26 4+ (N + 1)¢). Therefore, process p; reaches round n in bounded time
< (n—m)(20 + (N + 1)¢). Since the worse case is m = 1, we can roughly bound the time
needed by process p; to reach round n by (n —1)(26 + (N + 1)¢). We have thus proved the
existence of a linear function h(n) = (n — 1)(26 + (N + 1)¢) for algorithm EC. O

Lemma 5.3 Assumption (c) holds with A = EC.

PROOF: Immediate from Lemma 5.2, if we define exponential function A4 (n) = 2" linita.
O

Theorem 5.4 If A = EC and Ay (n) = 2" Linita, Tp ensures the properties of OM4 in
the partial synchrony model.

PrROOF: Immediate from Lemmas 5.1 to 5.3, and from Theorem 4.2 O

6 Related Work

Beside ours, there were two research efforts to extend the notion of failure detectors to Byzan-
tine models and address the solvability of consensus using such detectors. Malkhi and Reiter
considered a system model where all messages are exchanged using a causal-order reliable
broadcast primitive [10]. They defined the notion of quiet process that is close to our notion
of mute process. They also introduced a failure detector, denoted by ¢S (bz), of eventually
strong Byzantine fault detectors, and they expressed its properties in terms of Strong Com-
pleteness and Eventual Weak Accuracy. The aim of OS (bz) is to track processes that prevent
the progress of the algorithm (i.e., quiet processes). The failure detector ¢S (bz) is shown to
be strong enough to solve consensus.

In [8], the authors define two classes of failure detectors: (1) the eventual Weak Byzantine
failure detector GW (Byz), and (2) the eventual Strong Byzantine failure detector ¢S (Byz).
Both detectors are shown to be strong enough to solve consensus. Contrary to the specification
proposed by Malkhi and Reiter and contrary to the one we propose, these classes of failure
detectors capture all the detectable Byzantine failures. Consequently they also capture the
failures that prevent the progression of the algorithm, i.e., muteness failures.

None of [10] or [8] address the fundamental circularity problem (i.e., the dependency
between the algorithm and the Byzantine fault detector), which we believe is the fundamental
issue when applying the failure detector approach in the context of Byzantine failures. The
reason, we believe, is that none of those papers discuss the correctness of Byzantine fault
detector implementations. As we have pointed out in this paper, unless one restricts the
set of algorithms to those that have a regular communication pattern, a Byzantine fault
detector might end up impossible to implement, even in a completely synchronous model. By
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focusing on mute detectors and restricting our work to regular round-based algorithms, we
could address the circularity problem and describe implementations of mute detectors in a
partial synchrony model.

Furthermore, rather then designing a new consensus algorithm from scratch ([8]) or as-
suming specific communication primitives ([10]), we have shown how to reuse an algorithm
designed in crash-stop model in the context of muteness failures.

7 Concluding Remarks

The motivation of this paper is to extend failures detectors for crash-stop failures to malicious
failures. The extension is however not straightforward because, in a malicious environment,
the notion of fault is intimately related to a given algorithm. It is thus impossible to specify a
Byzantine fault detector that is independent from an algorithm (unlike in a crash-stop model).
Furthermore, given the necessity of a two-ways interaction between the fault detector and the
algorithm using it, one might end up with a fault detector that is impossible to implement,
even in a completely synchronous model.

This paper can be viewed as a first step towards better understanding these issues in
a Byzantine environment. The paper focuses on muteness failures. Muteness failures are
malicious failures in which a process stops sending algorithm messages, but might continue
to send other messages. The paper presents both a definition of a mute detector OM 4
and a protocol for implementing GM 4 in a partial synchrony model (there are bounds on
message latency and clock skew, but these bounds are unknown and hold only after some
point which is itself unknown). The mute detector O M 4 is strong enough to solve consensus
in an asynchronous distributed system with mute failures.

Although the implementation of &M 4 and the algorithm using it must cooperate, which
is actually inherent in the problem, we have confined that interaction inside a specific module.
Furthermore, we have shown that modulo that interaction, one could reuse, in a muteness
failure context, a consensus algorithm designed in a crash stop model.

We restricted our work to the class of regular round-based distributed algorithms. Al-
though many algorithms we know about belong to that class, it would be interesting to see
whether one could extend that class and still be able to provide a sensible implementation
of OM 4 in a partial synchrony model. In fact, some of the attributes of that class could
indeed be relaxed. For instance, we required (*) the permanent participation of a majority
of correct processes in the algorithm. This assumption is not really needed as long as, once
a correct process terminates, all correct processes are able to eventually terminate without
using OM 4 anymore. ¢ In other words, OM 4 properties are actually only needed as long as
no correct process terminates. We can thus replace (*) by (**) there is at least a majority
of correct processes participating in the algorithm, as long as no correct process terminates.
It would be interesting to find out whether other attributes can be relaxed and whether the
time assumptions that we require to implement GM 4 are just sufficient or necessary.
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