
Timing Failure Detection with a Timely Computing Base

Ant�onio Casimiro Paulo Ver��ssimo
casim@di.fc.ul.pt pjv@di.fc.ul.pt

FC/UL� FC/UL�

Abstract

In a recent report we proposed an architectural con-

struct to address the problem of dealing with timeliness

speci�cations in a generic way. We called it the Timely

Computing Base, TCB. The TCB de�nes a set of services

available to applications, including timely execution, du-

ration measurement and timing failure detection. We

showed how these services could be used to build depend-

able and timely applications. In this paper we further

extend the description of the TCB, namely by presenting

a protocol for its Timing Failure Detection (TFD) ser-

vice. We discuss the essential aspects of providing such

a service under the TCB framework and make some con-

siderations relative to the service interface.

1 Introduction

In the past few years we have been witness of dis-

tributed systems expansion and of the appearance of

more demanding applications. While many of these ap-

plications can take advantage of growing system capabil-

ities like processing speed, storage size or memory size,

other have requirements, like real-time or fault-tolerance,

that do not depend exclusively on hardware capabilities.

For instance, the implementation of services with high

interactivity or mission-criticality requirements must be

based on solid and adequate system models and correct

software protocols. This kind of services are usually de-

manding in terms of timeliness, either because of depend-

ability constraints (e.g. air tra�c control, telecommu-

nication intelligent network architectures) or because of

user-dictated quality-of-service requirements (e.g. net-

work transaction servers, multimedia rendering, synchro-

nized groupware). An intuitive approach to cope with

such timeliness needs is to use a synchronous system

model. However, large-scale, unpredictable and unreli-

able infrastructures cause synchronous system models to

work incorrectly. On the other hand, asynchronous mod-

els do not satisfy our needs because they do not allow

timeliness speci�cations.

In order to clarify the problem and create a generic

framework to deal with this problem, we introduced the

�Faculdade de Ciências da Universidade de Lisboa. Bloco

C5, Campo Grande, 1700 Lisboa - Portugal. Tel. +(351)

1 750 0087 (secretariat); +(351) 1 750 0103 (direct) (o�ce).

Fax +(351) 1 750 0084. The Navigators Group Web page:

http://www.navigators.di.fc.ul.pt/.

Timely Computing Base (TCB) model[13]. It as-

sumes that any system, regardless of its synchrony prop-

erties, can rely on services provided by a special mod-

ule, the TCB, which is timely, that is, synchronous. In

this paper we further extend the description of the TCB,

namely by proposing a protocol for its Timing Failure De-

tection (TFD) service. We show that synchronized clocks

are not required to implement such a TFD service. We

also analyze the problem of node crashes { how this af-

fects the TFD service { and propose a solution to deal

with it. To keep the protocol generic we do not assume

any speci�c environment or computational platform.

The rest of the paper is organized as follows. Next

section presents some related work. Section 3 describes

the TCB model and its services. Section 4 is dedicated

to the presentation and discussion of the TFD service.

In section 5 we discuss some issues related to the service

interface. Finally, we conclude with a summary of what

has been done and highlight some topics for future work.

2 Related Work

The problem of failure detection is strictly related to

system assumptions. In the past few years, several au-

thors have addressed this problem under di�erent per-

spectives and assuming varying degrees of synchronism

properties. One of the �rst known results, derived for

fully asynchronous systems, describes the impossibility

of distributed consensus in the presence of failures [11].

In such a time-free model the speci�cation of a useful fail-

ure detector (one that could allow some progress) turns

out to be impossible.

Chandra & Toueg proposed a classi�cation model for

failure detectors [5]. The merit of their work lies in the

formal way the problem was treated, and how they man-

aged to isolate and specify the exact properties that de-

termine the possibility or impossibility of solving vari-

ous distributed system problems like consensus, atomic

broadcast or leader election.

The timed asynchronous model adds some synchro-

nism to the system by assuming the existence of local

hardware clocks with bounded drift rate [7]. This al-

lows processes to measure the passage of time and use

timeouts. In timed systems it is possible to construct a

special failure detector, a fail-aware failure detector [8],

which can be implemented if some additional progress

assumptions are made. In [10], Fetzer proposes an ap-



proach to calculate upper bounds for the transmission

delay of messages inspired on the round-trip clock read-

ing method [6]. Our work uses these results as a building

block to construct the timing failure detection service.

The quasi-synchronous model introduces the notion of

timing failure detectors [12]. In [2], Almeida describes a

TFD service for the quasi-synchronous model which as-

sumes local clocks are synchronized and is used as a spe-

ci�c tool to implement a group communication protocol

providing total temporal order. In a more recent work, it

was shown that the timing failure detector has such prop-

erties that allow a timely failure detection, so that, de-

spite the eventual failure of synchrony assumptions, pro-

tocols can adapt to timing failures and allow the system

to remain correct [3]. The TFD service we propose in this

paper also has these properties. However, its construc-

tion is ruled by other objectives. First, we show that it is

possible to timely detect timing failures without synchro-

nized clocks. Second, we propose a self-contained service

with a clearly de�ned objective, which is solely the provi-

sion of timeliness information about events occurring in

the system. As opposed to the service presented in [2],

no application related information can be sent through

this service. Finally, we envisage a TFD service that

gives more than just timeliness related information since

it may keep, and manage, historical information about

the system behavior.

3 The TCB Model

The assumed system model is composed of partic-

ipants or processes (both designations are used inter-

changeably) which exchange messages, and may exist in

several sites or nodes of the system. A communication

network interconnects sites. The system can have any

degree of synchronism, that is, if bounds exist for pro-

cessing or communication delays, their magnitude may

be uncertain or not known. Local clocks may not exist or

may not have a bounded rate of drift towards real time.

In terms of fault assumptions, the system is assumed to

follow an omissive failure model, that is, components only

do timing failures| and of course, omission and crash,

since they are subsets of timing failures| no value fail-

ures occur.

Given the above assumptions, systems have to face the

problem of uncertain timeliness (bounds may be violated)

while still being dependable with regard to time (timely

executing certain functions). This can be achieved if pro-

cesses in the system have access to a Timely Comput-

ing Base, that is, a component that performs the follow-

ing functions on their behalf: timely execution, duration

measurement, timing failure detection. In this paper we

deal with the last of these functions, and de�ne the pro-

tocols for a Timing Failure Detection service.

There is one local TCB at every site, ful�lling the fol-

lowing architectural principles:

Interposition - the TCB position is such that no direct

access to resources vital to timeliness can be made

in default of the TCB

Shielding - the TCB construction is such that it itself

is protected from faults a�ecting timeliness

Validation - the TCB functionality is such that it al-

lows the implementation of veri�able mechanisms

w.r.t. timeliness

TCB components are assumed to fail only by crashing,

i.e. they are fail-silent. Furthermore, the failure of a local

TCB module implies the failure of that site. Each local

TCB enjoys the following synchronism properties:

Ps 1 There exists a known upper bound T 1

Dmax
on pro-

cessing delays

Ps 2 There exists a known upper bound T 2

Dmax
on the

rate of drift of local clocks

Property Ps 1 refers to the determinism in the execu-

tion time of code elements by the TCB. Property Ps 2

refers to the existence of a local clock in each TCB whose

individual drift is bounded. This allows measuring local

durations, that is, the interval between two local events.

These clocks are internal to the TCB. Remember that

the general system may or not have clocks.

A distributed TCB is the collection of all local TCBs

in a system, interconnected by a communication means

by which local TCBs exchange messages. The interposi-

tion, shielding and validation requirements must also be

satis�ed by the distributed TCB such as the communica-

tion among local TCBs, which must still be synchronous.

Property Ps 3 refers to the determinism in the time to

exchange messages among participants via the TCB:

Ps 3 There exists a known upper bound T 3

Dmax
, on mes-

sage delivery delays

������

���

� ������

���

�����	

���

�

�

�

�

�

�


�	

�����
������

Figure 1: The TCB Architecture

The architecture of a system with a TCB is suggested

by Figure 1. Whilst there is a generic, payload system

over a global network, or payload channel, the system ad-

mits the construction of say, a control part, made of local



TCB modules, interconnected by some form of medium,

the control channel. The medium may be a virtual chan-

nel over the available physical network or a network in

its own right. Processes p execute on the several sites,

making use of the TCB whenever appropriate. The TCB

subsystem, dashed in the �gure, ful�lls the interposition,

shielding and validation principles. Altogether, it pre-

serves properties Ps 1 to Ps 3. The nature of the modules

and the interconnection medium is outside the scope of

this paper. The interested reader can refer to [13] where

a few hints on how to implement a TCB are given.

4 The TFD Service

In this section we present and discuss a protocol for

the TCB Timing Failure Detection service. We �rst in-

troduce the formal de�nitions of timed action and timing

failure, that are necessary to subsequently understand

how the TCB, and more speci�cally the TFD service,

handles application timeliness requirements. Given that,

we introduce the properties required for the TFD service

and briey overview what they imply in terms of system

model. We then propose a generic protocol and prove it

satis�es those properties.

4.1 Timed Actions and Timing Failures

The TCB model makes a clear distinction between two

classes of safety properties: logical safety properties, de-

scribed by formulas containing logic and temporal op-

erators, and timeliness safety properties, containing only

time operators. For simplicity the former are called safety

properties and the latter timeliness properties. A timeli-

ness property speci�es that a predicate P will be true at

in�nitely many instants of real time. Such a predicate is

related with doing timely executions, in bounded time,

and there are a number of informal ways of specifying

such a behavior. The TCB model formally de�nes the

within/from operator, which is based on durations and is

the most appropriate time operator to capture all relevant

notions of time-related operations without ambiguity.

Whatever the underlying speci�cation, the runtime en-

forcement of timely behavior can be expressed in terms

of what we call a timed action, which we de�ne as an

event to be produced by a process and the latest real

time instant when the event must take place:

Timed Action - Given process p, event e, and real time

instant te, a timed action is: X(p; e; te) � p produces

e at t � te

The correctness of the execution of a timed action may

be a�ected by timing failures:

Timing Failure - given the execution of a timed action

X(p; e; te), there is a timing failure by p at te, i� e

takes place at a real time instant t
0

e, te < t
0

e � 1.

The lateness degree is the delay of occurrence of e,

Ld = t
0

e � te

In consequence of an implementation dictated by a

given property, a component must perform one, several

or in�nitely many timed actions . If a timed action does

not incur in a timing failure, the action is timely.

4.2 TFD properties

As speci�ed in the TCB model, the Timing Failure

Detector service must have the following properties:

TFD 1 Timed Strong Completeness: There ex-

ists TTFDmax
such that given a timing failure of p in

any timed action X(p; e; te), the TCB detects it within

TTFDmax
from te

TFD 2 Timed Strong Accuracy: There exists

TTFDmin
such that given any timed action X(p; e; te) by

p that does not occur within �TTFDmin
from te, the TCB

considers p timely

These quite strong properties, de�ning a Perfect Tim-

ing Failure Detector (pTFD), can only be guaranteed if

certain conditions are met. The underlying system syn-

chrony is the crucial factor dictating whether or not these

properties can be satis�ed. Remember we are now con-

sidering the environment under which the TCB and its

services are run. In totally asynchronous, or time-free

systems, it is obviously impossible to construct such a

timing failure detection service since by de�nition the no-

tion of time (thus of timing failures) is absent. Adding

a short amount of synchrony, namely by allowing pro-

cesses to access a local clock with bounded drift rate, it

becomes possible to tackle problems with timeliness spec-

i�cations. In particular, it is possible to detect late events

and to construct fail-aware services [9]. However, achiev-

ing simultaneously the two properties required for perfect

timing failure detection is still not possible [4]. That is

only possible, in fact, if the model over which the TFD

service is constructed is, at least in part, synchronous.

This has implications both in terms of the communica-

tion medium and at the operating system level. There

must exist a synchronous control channel interconnecting

every local TCB module and the system must be sched-

uled in order to ensure that TCB tasks are hard real-time

tasks, immune to timing faults in the other tasks.

4.3 TFD protocol

The problem we have to solve is how to build a tim-

ing failure detector which satis�es properties TFD 1 and

TFD 2. This requires a protocol to be executed by all

TFD modules on top of the above-mentioned synchronous

control channel. To better understand the intuition be-

hind the protocol we will proceed by steps and discuss

some aspects we consider relevant.

Any timed action is related to an event that must take

place at a speci�c time instant. We make a clear distinc-

tion between an event and its corresponding timed action.

An event may occur at any given instant independently

of what is speci�ed in the timed action. The timed action



only de�nes the allowed interval of timely occurrence of

the event.

We further consider the existence of two kinds of

events. Those that occur locally to the TCB where the

timed action was issued, and those that occur in a remote

site. Then, we also distinguish timed actions relative to

such events: the former are described by local timed ac-

tions, and the later by remote timed actions. Formally, a

timed action X(p; e; te) is local if it is generated by pro-

cessor p and remote otherwise (when generated by some

q 6= p).

In practice, local timed actions refer to local function

executions and the timed event corresponds to the func-

tion termination. Remote timed actions are issued when

a message is sent to another site. In this case the timed

event is the remote receive event.

The timing failure of an event at a processor p can

only be detected if that processor knows the deadline for

the event, i.e. it must be aware of the timed action spec-

i�cation. For local events this is not a problem since

the speci�cation is locally available. However, for remote

ones this requires the timed action speci�cation to be

delivered to the appropriate TCB module. This, in part,

justi�es the necessity of a protocol that allows TCB mod-

ules to exchange and share information. Another reason

is due to the requirement for timely detection. In fact,

timely detection can only be achieved if there is a proto-

col which forces the TFD to make a decision in bounded

time. Simply waiting for an event to occur is certainly

not su�cient.

Making decisions about timeliness of events is based

on time values. According to the formal speci�cation of

timing failure, a TFD module detects a timing failure if

the event occurs at a real time instant greater than the

deadline instant speci�ed in the timed action. Since the

TCB model only assumes the existence of local clocks

(property Ps 2) and does not even require clocks to be

synchronized, reasoning in terms of a global time frame

is not possible. Another methodology must be chosen.

Using local clock values to specify deadlines is a simple

and acceptable solution for local events. But for remote

events absolute time values must be replaced by relative

ones, that is, the arrival deadline on the remote local

clock must be speci�ed in terms of a duration related

with the message send time. This requires some form

of relating both clocks. The round-trip duration mea-

surement technique described in [6] can be used for this

purpose.

Following we present and describe the TFD protocol.

Since local and remote timed actions can be treated dif-

ferently, we �rst deal with failure detection of remote

events and only then present a brief description of an

algorithm to handle local timing failures.

Remote timing failure detection

The protocol that implements the \remote" part of the

TFD service is presented in �gure 2. It is executed in

rounds, during which each TFD instance broadcasts all

information relative to new (remote) timed actions and

to timed events evaluated during last interval (since last

round). The protocol uses three tables to store this in-

formation: a Timed Actions Table (TATable), an Event

Table (ETable) and a Log Table (LTable). The TAT-

able holds information about timed actions that must

be delivered to remote sites during the next round. The

ETable maintains information about receive events and

their deadlines (speci�ed in the timed actions), which will

be used to make decisions about timeliness. The last ta-

ble is where timing failure decisions are output and is also

used to keep timeliness information of past events.

For each TFDp instance

01 // Tsend is the duration of send actions

02 // r is round number

03 // � is the period of a TFD round

04 // C(t) returns the local clock value at real-time t

05 // RTAT is the set of all records in TATable

06 // RET is the set of all complete records the in ETable

07

08 when user requests to send hmi to D do

09 mid := get uniqId();

10 timed-send(hm;midi;D); // to payload channel

11 insert (mid;D; Tsend) in TATable;

12 od

13 when C(t) = r� do

14 broadcast (hRTAT ;RET i); // to control channel

15 r := r + 1;

16 od

17 when timed-receive(hm;midi; q; Tmid; Trec) do

18 if 9R 2 ETable : R:mid = mid then

19 R:Tmid := Tmid;

20 R:q := q;

21 if R:Complete = False then

22 stop (timerhmidi);

23 R:Complete := True;

24 �

25 else

26 insert (mid; Tmid; q;?; False) in ETable;

27 �

28 deliver (hmi; mid; Trec; q) to user ;

29 od

30 when message hRTAT ;RET i received from q do

31 foreach (mid;D; Tsend) 2 RTAT : p 2 D do

32 if 9R 2 ETable : R:mid = mid then

33 R:Tsend := Tsend;

34 R:Complete := True;

35 else

36 insert (mid;?;?; Tsend; False) in ETable;

37 start (timerhmidi ; Tsend);

38 �

39 od

40 foreach (mid; q; Tmid; Tsend) 2 RET do

41 if Tmid = ? then

42 Failed := True;

43 else if Tmid > Tsend then

44 Failed := True;

45 else

46 Failed := False;

47 �

48 insert (mid; q; Tmid; Tsend; Failed) in LTable;

49 od

50 od

51 when timerhmidi expires do

52 search R 2 ETable : R:mid = mid;

53 R:Complete := True;

54 od

Figure 2: Timing Failure Detection protocol.



Activity within the TCB is triggered by a user request

to send a message (line 8). We assume the TCB is ca-

pable of intercepting send requests, since it occupies a

privileged position in the system. How this is done is

an implementation issue out of the scope of this paper.

Upon intercepting a message, a unique message identi�er

mid is generated (using some function get uniqId()) and

assigned to both the message and the timed action (lines

9-11). This identi�er makes the association between a

message and a timed action and it must be unique within

the (distributed) TCB to avoid wrong associations.

The intercepted message is then sent to the payload

channel using a special timed-send service, which in-

serts additional timestamping information in the mes-

sage. This is required to allow the computation, at the re-

ceiver, of an upper bound for the e�ective message trans-

mission delay. A detailed description of this technique

can be found in [10]. The timed-receive() function, coun-

terpart of timed-send(), delivers the measured transmis-

sion delay (Tmid) and the receive timestamp (Trec) values

(line 17).

After sending the message a new record is added to the

Timed Actions Table (line 11). Each record contains the

following items: the unique message identi�er mid, the

set of destination processes D and the speci�ed duration

for the send action, Tsend. The value of Tsend is kept

by the TCB but may be changed at execution time. For

instance, a Timeliness-Tuning Algorithm, as explained

in [13] may do this. It is worthwhile to point out the

generic and innovative perspective of assuming a dynamic

system evolution in terms of timeliness parameters. In

essence, this dynamic behavior allows a certain class of

applications to adapt to environment changes and achieve

coverage stability, as described in [13].

As said earlier, each TFD instance periodically dis-

seminates new information concerning timed actions and

event executions. The period � depends on several fac-

tors, including the control channel bandwidth, the num-

ber of processes and the maximum amount of informa-

tion sent in each round. Ideally, the value of � should

be the lowest possible to minimize the timing failure de-

tection latency (see section 4.3). The TFD service wakes

up, timely, when the local clock indicates it is time for a

new round (line 13). The contents of the TATable and

the complete records in the ETable are then broadcast

on the control channel. A record is considered complete

(and marked accordingly) when all the information nec-

essary to make a decision has been collected, or when this

decision can be made solely with the timed action infor-

mation or if a special failure situation is detected (see

section 4.3). The Complete �eld is not included as part

of the message.

Synchronization among TFD instances is not enforced.

Therefore, dissemination rounds of all instances may be

spread in an interval of duration �. However, since we

assume bounded delays for TCB tasks (property Ps 1)

and a synchronous control channel (property Ps 3), the

inter-arrival interval of control information from a given

instance is bounded. This knowledge can be used, as we

will see, to detect the crash of a TCB module.

A message arriving from the payload channel is re-

ceived with the already mentioned timed-receive() func-

tion (line 17). This function calculates the message

transmission delay and it does so using send and receive

timestamps of a round-trip message pair. Since the ex-

act transmission delay cannot be determined, its upper

bound is used instead. The error associated to this up-

per bound yields the value of TTFDmin
speci�ed in prop-

erty TFD 2.

When the message arrives three situations are possi-

ble: (a) there is yet no information about the timed action

and thus no entry in ETable for the message, (b) there

is an entry which is not complete or (c) there is an entry

marked as complete. In case (a) a new record is created

for the message (line 26, ? denotes absence of value). In

cases (b) and (c) the duration (Tsend) for message mid is

already known and an entry for the message exists so Tmid

and q (the sender process identi�cation) are added to that

record (lines 18-20). If the record is not marked complete,

this means the TFD was still waiting for the message to

arrive and so timerhmidi is stopped and Complete is set

to True (lines 21-23). Otherwise, it means the message

arrived late and a positive failure decision was, or will be

made. Whichever is the case, the message is always deliv-

ered to the user along with the (TFD internal) message

identi�cation and the receive timestamp (line 28). Note

that the aim of the TFD service is just to provide infor-

mation about timing failures and thus no �ltering of any

kind is done to messages. Applications are free to handle

the information provided by the TFD service in a man-

ner that makes sense at their level of abstraction. But

we will come back to this interesting interface problem in

section 5.

Each message received from the control channel pro-

vides two kinds of information: timed actions records

and complete event records. For a certain process p, the

relevant timed actions are those of messages delivered

to p (line 31). Durations of messages not yet received

are inserted in ETable and a timer is started to allow

a timely failure detection (lines 36-37). If the timer ex-

pires before the message arrives, the message will never

be considered timely. Then, since we have to preserve

property TFD 2 assuring that timely messages are never

considered late, the smallest timeout value we can use is

Tsend. This value is obtained assuming that the duration

in a timed action can be remotely known as soon as it

is generated. If a more pessimistic, although realistic as-

sumption was made, the timeout value could be relaxed

to a lower value1. Nevertheless, this would not improve

the maximum latency time for failure detection in the

general case.

Complete event records are treated next. The TFD

service compares the speci�ed delivery delay with the

measured one and assert a Boolean value to the variable

Failed (lines 41-47). If Tmid is empty (?) this means the

message is late (timerhmidi expired) and there is a timing

1At least, the minimum message delivery delay for the control

channel could be taken into account.



failure. Each record in LTable contains the (TFD) mes-

sage identi�er, the sender, the speci�ed and measured

durations and the Failed ag.

In the presented protocol we intentionally omitted the

problem of table size and possible memory exhaustion to

simplify the problem. Although it is simple to devise a

solution to clean table records after the TFD has made

the decisions, it may be useful to keep an history of timed

action executions, and this raises the problem of choosing

an adequate criterion to make the deletions. Solutions to

this problem can only be dealt taking into account the

possible uses of the information, and these depend on

the application.

Local timing failure detection

As we said earlier, detection of local timing failures can

be done more easily than remote ones. In fact, since all

events in a same site can be timestamped using the same

local clock it is easy to measure time intervals between

events. Hence, it is simple for the TCB to measure the

duration of any executed function.

For each TFD instance

01 // Tf is the duration of function f

02 // C(t) returns the local clock value at real-time t

03 // Rf is a local record for function f

04 // The Rf :T �eld keeps the speci�ed duration

05 // The Rf :Start �eld stores the start timestamp

06 // The Rf :Run �eld stores the measured duration

07 // The Rf :Failed �eld indicates the failure decision

08

09 when user calls function f do

10 start (timerf ; Tf );

11 Rf :T := Tf ;Rf :Run := ?;Rf :Failed := ?;

12 Rf :Start := C(t);

13 od

14 when function f terminates do

15 Rf :Run := C(t) � Rf :Start;

16 if Rf :Failed = ? then

17 stop (timerf );

18 Rf :Failed := False;

19 �

20 od

21 when timerf expires do

22 Rf :Failed := True;

23 od

Figure 3: Algorithm for local timing failure detection.

In �gure 3 we present an algorithm to keep track of

local timing failures. We assume that the TCB can inter-

cept function calls and that recursive function calls are

not allowed (an extended version of the algorithm could

be devised to cope with this). We also assume that the

speci�ed duration Tf is known within the TFD service

and is initialized to some value which can be changed by

the application later on. Again we are not too worried

with the interface. The interesting feature is that we can

have a service that measures timeliness of functions exe-

cuted by the application. Whether the application uses

this service, and how, is another problem that we will

tackle in a future paper.

Perfect timing failure detection

We are now able to state the following theorem.

Theorem 1 The algorithms of �gures 2 and 3 satisfy

properties TFD 1 and TFD 2.

The proof is obvious from the discussion of the proto-

cols. Nevertheless we explain how the values of TTFDmax

(TFD 1) and TTFDmin
(TFD 2) are obtained. We only

discuss the case for remote timed actions, since this is the

harder one.

Consider the example depicted in �gure 4. It illus-

trates a situation where a process p sends a message m

to a process q with a speci�ed duration of zero. Obvi-

ously, since no message can be sent instantaneously, a

timing failure will occur as soon as the message is sent.

Clearly, no timing failure can occur sooner than this. At

worst, the TFD of processor p wakes up and broadcast

the information about m into the control channel � time

units after the timing failure. This information is deliv-

ered at most � time units later to the TFD of processor

q. It is inserted in the Event Table and the record for

message m is marked as complete. It is so independently

ofm having arrived, since the timeout of timerhmidi is set

to zero (the value of Tsend) and hence will expire imme-

diately. Then, it may be possible to wait another � +�

time units until TFDq disseminates the complete record

is to all TFD instances. Only then the decision about

the timed action will be made, that is, at most 2(�+�)

after the timing failure.

The value of TTFDmax
is then 2(� +�).

�

�


���


���

� � � �

�

������������������ ���	

�������

���������	
�	�
��������
��������	�	�������	

����������
�
��

���������

��	
���� �
�
����
����������

Figure 4: Example of earliest timing failure and maxi-

mum detection latency.

The value of TTFDmin
derives from the error of the de-

livery delay measurement. Since the exact value of this

delay is unknown, the higher bound is used to assure that

a late event is never considered timely. In our protocol,

the message delivery delay is measured by the timed-send

service, which delivers the upper bound value. The as-

sociated error depends on the drift rate of local clocks

(�p; �q), on the maximum drift rate (�), on the send and

receive timestamps of a round-trip message pair hm1;m2i

(Sm1, Rm1, Sm2, Rm2), on the minimum message deliv-

ery delay (�min) and on the measured delivery delay of

messagem1 (Tm1). Assuming that m1 is �rst sent from q



to p and then m2 from p to q, the error associated to the

transmission delay of m2 can be expressed as follows [10]:

e(m2) = (Rm2 � Sm1)(�+ �q)+

(Sm2 �Rm1)(�� �p)+

(Tm1 � �min)

The value of TTFDmin
is then e(m).

Impact of crash failures

The discussion of possible implications of a TFD instance

crash was left to this point since it raises some model re-

lated questions that, if presented earlier, could confuse

the protocol explanation. We also did so because we are

convinced that the cases described below do not compro-

mise what has been said until now.

There are two situations in which the crash of a TFD

instance must be carefully analyzed to prevent the mis-

behavior of remaining instances or, even worse, incorrect

information to be output. The key issue is the loss of

information that, in this case, concerns timed action du-

rations and complete event results.

�

�


���


���

�� �

�

�������
�
�����

���	���������
�����
��������	�	�������	

���	�� !��

�

�������
�
�"����

� �

Figure 5: Example of crash failure before timed action

durations are sent to control channel.

Figure 5 illustrates a situation in which the informa-

tion contained in the TATable is lost. When process p

sends m to q, TFDp stores the timing information of m

in TATable. Normally, this information would then be

delivered to TFDq and inserted in ETable. However, if

TFDp crashes before sending the control message, the in-

formation will be lost and therefore it will be impossible

to decide about the timeliness of m. At �rst glance, this

impossibility may seem a violation of properties TFD 1

and TFD 2. However, the fact that a crash failure oc-

curred can be detected and this allows a special decision

to be taken without knowing the speci�ed duration for

m. Thus, while the TFD service cannot say if message m

was timely or late, it indicates that a crash of processor

p occurred and that no decision can be made. It is then

up to the application to handle this information and act

upon it.

A generic solution to the problem of crash detection

was discussed by Almeida in [1]. In what follows we

present a speci�c extension to the TFD protocol to han-

dle TFD crashes, and then �nalize the discussion of �gure

5.

For each TFDp instance

01 // � is the period of a TFD round

02 // � is the Max delivery delay in control channel

03 // C is the set of crashed processes

04

05 when message hRTAT ;RET i received from q do

06 (re)start (timerhTFDqi;�+�);

07 if q 2 C then remove q from C �

08 (... treat RTAT as before ...)

09 foreach (mid; r; Tmid; Tsend) 2 RET do

10 if Tsend = ? then

11 Failed := ?;

12 else

13 (... decide as before ...)

14 �

15 insert (mid; q; Tmid; Tsend; Failed) in LTable;

16 od

17 od

18 when timerhTFDqi expires do

19 add q to C;

20 foreach R 2 ETable : R:q = q do

21 R:Complete := True;

22 od

23 od

24 when timed-receive(hm;midi; q; Tmid; Trec) do

25 if q 2 C then

26 insert (mid; Tmid; q;?; T rue) in ETable;

27 �

28 deliver (hmi; mid; Trec; q) to user ;

29 od

Figure 6: Extension of the TFD protocol to handle crash

failures.

The extension protocol uses a timer for each active

process, which is restarted every time new control infor-

mation is received from that process (line 6). Since the

channel is synchronous, the interval between the recep-

tion of successive control messages from a given process

is bounded by � + �. Hence, if the timeout is set to

this value, the timer will expire only if that process has

crashed. In the �gure it is possible to observe when TFDq

detects the crash of p. Since a decision has to be deliv-

ered, all pending events are marked as complete (lines 20-

22). A set containing all crashed processes is maintained

so that future decisions (for messages still in transit) can

be taken (lines 25-26). At decision time, if the �eld con-

taining the value of the speci�ed duration is empty (?),

the special empty value ? will also be assigned to Failed

in the Log Table, meaning that it was not possible to

make a decision (lines 10-11).

Having considered the possibility of crash failures, the

value previously obtained for TTFDmax
must be reconsid-

ered. In fact, since the detection of a process crash may

take longer than the reception of control information, we

get a value slightly higher than before. Observe �gure

5 and suppose TFDq only sends the control message �

time units after detecting the crash. Consider also that

for the purpose of calculating TTFDmax
we may admit

that m had a timing failure as soon as it was sent. Then,

the new value will be 2� + 3�.

The other potential problem is due to the loss of in-

formation in the Event Table. Since this table contains

results of event executions, an intuitive approach would



make them immediately available (in LTable) at the local

site. However, if a crash occurred before the broadcast

of those results, this would mean a decision had been

taken in one site and not in the others. To prevent this,

we assure that decisions are only made upon reception of

ETable records, and so either all TFD instances or none

will output timeliness decisions.

5 TFD Service Interface

We have seen that remote timed actions are generated

upon interception of send requests and that local func-

tion calls are also intercepted by the TFD. This mode of

operation was intentionally devised to obtain a transpar-

ent service invocation. This means that applications do

not have to be modi�ed to explicitly request a timeliness

evaluation of each action they perform. Instead, they

are allowed to con�gure timeliness parameters, namely

by de�ning the required duration for a certain kind of

action, and then only have to query the service to col-

lect the results. This transparency can be useful to deal

with di�erent kind of applications, speci�cally in terms

of their synchrony assumptions.

The main source of information output by the TFD

service is the Log Table, where timeliness information

about events is kept. The idea to access this information

is to have some kind of event identi�er that is used to

query the TFD service. This is why messages delivered

to applications are accompanied by the identi�ermid and

by the receive timestamp. The application may not use

these values, but if it wants it may use the timestamp

to know when will the timeliness information be avail-

able (remember the TTFDmax
constraint) and the mid to

obtain it.

For a certain kind of applications it may be useful to

know the activity in the payload channel. For instance, it

may be interesting to know if there are any messages sent

by some processor, which are supposed to be received. We

know that the TFD service may be able to provide this

information since it has a description of timed actions

registered in the Event Table. So it may be convenient

to provide an interface to access this particular table.

6 Conclusions

The TCB model provides a framework to deal with ap-

plication timeliness requirements. It de�nes a number of

services to be required including a Timing Failure Detec-

tion service. This paper has discussed several important

aspects related to the provision of this service and a pro-

tocol with perfect timing failure detection properties has

been presented. We have shown that clock synchroniza-

tion is not an essential requirement to be able to timely

detect timing failures. Some general issues relative to the

TFD service interface have �nally been discussed.

To conclude, we consider the implementation of a fully-

edged TCB prototype to be a long-term goal. We are

currently investigating the requirements for an adequate

and generic interface between control and payload mod-

ules exhibiting any degree of synchrony.

Acknowledgments

The authors are grateful to Christof Fetzer and Flaviu

Cristian for a lot of discussions on these issues.

References

[1] Carlos Almeida. Comunication in Quasi-Synchronous Sys-

tems: Providing Support a for Dynamic Real-Time Applica-

tions. PhD thesis, Instituto Superior T�ecnico, January 1998.

(in Portuguese).

[2] Carlos Almeida and Paulo Ver��ssimo. Timing failure detec-

tion and real-time group communication in quasi-synchronous

systems. In Proceedings of the 8th Euromicro Workshop on

Real-Time Systems, L'Aquila, Italy, June 1996.

[3] Carlos Almeida and Paulo Ver��ssimo. Using light-weight

groups to handle timing failures in quasi-synchronous systems.

In Proceedings of the 19th IEEE Real-Time Systems Sympo-

sium, pages 430{439, Madrid, Spain, December 1998. IEEE

Computer Society Press.

[4] A. Casimiro, F. Cristian, C. Fetzer, and P. Ver��ssimo. Private

communications, September 1998.

[5] Tushar Chandra and Sam Toueg. Unreliable failure detec-

tors for reliable distributed systems. Journal of the ACM,

43(2):225{267, March 1996.

[6] Flaviu Cristian. Probabilistic clock synchronization. Dis-

tributed Computing, 3(3):146{158, 1989.

[7] Flaviu Cristian and Christof Fetzer. The timed asynchronous

system model. In Digest of Papers, The 28th Annual Interna-

tional Symposium on Fault-Tolerant Computing, pages 140{

149, Munich, Germany, June 1998. IEEE Computer Society

Press.

[8] Christof Fetzer and Flaviu Cristian. Fail-aware failure detec-

tors. Technical Report CS96-475, University of California, San

Diego, October 1996.

[9] Christof Fetzer and Flaviu Cristian. Fail-awareness in timed

asynchronous systems. In Proceedings of the 15th ACM Sym-

posium on Principles of Distributed Computing, pages 314{

321a, Philadefphia, USA, May 1996. ACM.

[10] Christof Fetzer and Flaviu Cristian. A fail-aware datagram

service. In Proceedings of the 2nd Annual Workshop on Fault-

Tolerant Parallel and Distributed Systems, Geneva, Switzer-

land, April 1997.

[11] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility

of distributed consensus with one faulty process. Journal of the

Association for Computing Machinery, 32(2):374{382, April

1985.

[12] Paulo Ver��ssimo and Carlos Almeida. Quasi-synchronism: a

step away from the traditional fault-tolerant real-time system

models. Bulletin of the Technical Committee on Operating

Systems and Application Environments (TCOS), 7(4):35{39,

Winter 1995.

[13] Paulo Ver��ssimo and Ant�onio Casimiro. The timely computing

base, February 1999. Submitted to EDCC-3, Third European

Dependable Computing Conference.


