
On the Quality of Service of Failure Detectors ∗

Wei Chen
Oracle Corporation

One Oracle Drive, Nashua, NH 03062, USA
weichen@us.oracle.com

Sam Toueg
DIX Departement d’Informatique

Ecole Polytechnique
91128 Palaiseau Cedex, France

sam@dix.polytechnique.fr

Marcos Kawazoe Aguilera
Department of Computer Science

Cornell University
Ithaca, NY 14853-7501, USA

aguilera@cs.cornell.edu

Abstract

We study the quality of service (QoS)of failure detec-
tors. By QoS, we mean a specification that quantifies (a)
how fast the failure detector detects actual failures, and (b)
how well it avoids false detections. We first propose a set
of QoS metrics to specify failure detectors for systems with
probabilistic behaviors, i.e., for systems where message de-
lays and message losses follow some probability distribu-
tions. We then give a new failure detector algorithm and
analyze its QoS in terms of the proposed metrics. We show
that, among a large class of failure detectors, the new algo-
rithm is optimal with respect to some of these QoS metrics.
Given a set of failure detector QoS requirements, we show
how to compute the parameters of our algorithm so that it
satisfies these requirements, and we show how this can be
done even if the probabilistic behavior of the system is not
known. Finally, we briefly explain how to make our failure
detector adaptive, so that it automatically reconfigures itself
when there is a change in the probabilistic behavior of the
network.

1. Introduction

Fault-tolerant distributed systems are designed to pro-
vide reliable and continuous service despite the failures of
some of their components. A basic building block of such
systems is thefailure detector. Failure detectors are used
in a wide variety of settings, such as network communi-

∗Research partially supported by NSF grantCCR-9711403 and an Olin
Fellowship.

cation protocols [8], computer cluster management [18],
group membership protocols [5, 7, 21, 17, 16], etc.

Roughly speaking, a failure detector provides some in-
formation on which processes have crashed. This informa-
tion, typically given in the form of a list ofsuspects, is not
always up-to-date or correct: a failure detector may take a
long time to start suspecting a process that has crashed, and
it may erroneously suspect a process that has not crashed
(in practice this can be due to message losses and delays).

Chandra and Toueg [9] provide the first formal speci-
fication of unreliable failure detectors and show that they
can be used to solve some fundamental problems in dis-
tributed computing, namely,consensus andatomic broad-
cast. This approach was later used and generalized in other
works, e.g., [15, 13, 1, 3, 2].

In all of the above works, failure detectors are speci-
fied in terms of theireventual behavior (e.g., a process that
crashes is eventually suspected). Such specifications are ap-
propriate for asynchronous systems, in which there is no
timing assumption whatsoever.1 Many applications, how-
ever, have some timing constraints, and for such applica-
tions, failure detectors with eventual guarantees are not suf-
ficient. For example, a failure detector that starts suspect-
ing a process one hour after it crashed can be used to solve
asynchronous consensus, but it is useless to an application
that needs to solve many instances of consensus per minute.
Applications that have timing constraints require failure de-
tectors that provide aquality of service (QoS) with some
quantitative timeliness guarantees.

In this paper, we study the QoS of failure detectors in

1Even though thefail-aware failure detector of [13] is implemented in
the “timed asynchronous” model, its specification is for the asynchronous
model.

0-7695-0707-7/00 $10.00 � 2000 IEEE

systems where message delays and message losses follow
some probability distributions. We first propose a set of
metrics that can be used to specify the QoS of a failure de-
tector; these QoS metrics quantify (a) howfast it detects
actual failures, and (b) howwell it avoids false detections.
We then give a new failure detector algorithm and analyze
its QoS in terms of the proposed metrics. We show that,
among a large class of failure detectors, the new algorithm
is optimal with respect to some of these QoS metrics. Given
a set of failure detector QoS requirements, we show how to
compute the parameters of our algorithm so that it satisfies
these requirements, and we show how this can be done even
if the probabilisticbehavior of the system is not known. The
QoS specification and the analysis of our failure detector al-
gorithm is based on the theory of stochastic processes. To
the best of our knowledge, this work is the first comprehen-
sive and systematic study of the QoS of failure detectors
using probability theory.

1.1. On the QoS Specification of Failure Detectors

We consider message-passing distributed systems in
which processes may fail by crashing, and messages may
be delayed or dropped by communication links.2 A failure
detector can beslow, i.e., it may take a long time to suspect
a process that has crashed, and it can makemistakes, i.e.,
it may erroneously suspect some processes that are actually
up (such a mistake is not necessarily permanent: the failure
detector may later stop suspecting this process). To be use-
ful, a failure detector has to be reasonably fast and accurate.

In this paper, we propose a set of metrics for the QoS
specification of failure detectors. In general, these QoS met-
rics should be able to describe the failure detector’sspeed
(how fast it detects crashes) and itsaccuracy (how well it
avoids mistakes). Note that speed is with respect to pro-
cesses that crash, while accuracy is with respect to pro-
cesses that do not crash.

A failure detector’s speed is easy to measure: this is sim-
ply the time that elapses from the moment when a processp
crashes to the time when the failure detector starts suspect-
ing p permanently. This QoS metric, calleddetection time,
is illustrated in Fig. 1.

How do we measure a failure detector’s accuracy? It
turns out that determining a good set ofaccuracy metrics is
a delicate task. To illustrate some of the subtleties involved,
consider a system of two processesp andq connected by a
lossy communication link, and suppose that the failure de-
tector atq monitors processp. The output of the failure
detector atq is either “I suspect thatp has crashed” or “I
trust thatp is up”, and it may alternate between these two
outputs from time to time. For the purpose of measuring the

2We assume that process crashes are permanent, or, equivalently, that a
process that recovers from a crash assumes a new identity.

up

trust

T
D

p

suspect

down

trust

suspectFD at q

Figure 1. Detection time T
D

accuracy of the failure detector atq, suppose thatp does not
crash.

Consider an application that queriesq’s failure detector
at random times. For such an application, a natural measure
of accuracy is the probability that, when queried at a ran-
dom time, the failure detector atq indicates correctly thatp
is up. This QoS metric is thequery accuracy probability.
For example, in Fig. 2, the query accuracy probability of
FD1 at q is 12/(12 + 4) = .75.

3

1

3

1

12 12 12

3 ...

1 ...

p up

FD1

FD2

4 4 4

Figure 2. FD1 and FD2 have the same query
accuracy probability of .75, but the mistake
rate of FD2 is four times that of FD1

The query accuracy probability, however, is not suffi-
cient to fully describe the accuracy of a failure detector. To
see this, we show in Fig. 2 two failure detectorsFD1 and
FD2 such that (a) they have the same query accuracy prob-
ability, but (b)FD2 makes mistakes more frequently than
FD1.3 In some applications, every mistake causes a costly
interrupt, and for such applications themistake rate is an
important accuracy metric.

Note, however, that the mistake rate alone is not suffi-
cient to characterize accuracy: as shown in Fig. 3, two fail-
ure detectors can have the same mistake rate, but different
query accuracy probabilities.

3The failure detectormakes a mistake each time its output changes from
“trust” to “suspect” whilep is actually up.

0-7695-0707-7/00 $10.00 � 2000 IEEE

p up

FD2

12 12 12FD1

8

8 8

8 8

8

4 4 4

Figure 3. FD1 and FD2 have the same mistake
rate 1/16, but the query accuracy probabilities
of FD1 and FD2 are .75 and .50, respectively

Even when used together, the above two accuracy met-
rics are still not sufficient. In fact, it is easy to find two
failure detectorsFD1 andFD2, such that (a)FD1 is better
thanFD2 in both measures (i.e., it has a higher query ac-
curacy probabilityand a lower mistake rate), but (b)FD 2

is better thanFD1 in another respect: specifically, when-
ever FD2 makes a mistake, it corrects this mistake faster
thanFD1; in other words, themistake durations in FD 2

are smaller than inFD1. Having small mistake durations
may be important to some applications.

As it can be seen from the above, there are several differ-
ent aspects of accuracy that may be important to different
applications, and each aspect has a correspondingaccuracy
metric.

In this paper, we identify six accuracy metrics (since the
behavior of a failure detector is probabilistic, most of these
metrics are random variables). We then use the theory of
stochastic processes to quantify the relation between these
metrics. This analysis allows us to select two accuracy met-
rics as theprimary ones in the sense that: (a) they are not
redundant (one cannot be derived from the other), and (b)
together, they can be used to derive the other four accuracy
metrics.

In summary, we show that the QoS specification of fail-
ure detectors can be given in terms of three basic metrics,
namely, the detection time and the two primary accuracy
metrics that we identified. Taken together, these metrics
can be used to characterize and compare the QoS of failure
detectors.

1.2. The Design and Analysis of a New Failure
Detector Algorithm

In this paper, we consider a simple system of two pro-
cessesp and q, connected through a communication link.
Processp may fail by crashing, and the link betweenp and

q may delay or drop messages. Message delays and mes-
sage losses follow some probabilistic distributions. Process
q has a failure detector that monitorsp and outputs either “I
suspect thatp has crashed” or “I trust thatp is up” (“suspect
p” and “trustp” in short, respectively).

A Common Failure Detection Algorithm and its Draw-
backs. A simple failure detection algorithm, commonly
used in practice, works as follows: at regular time intervals,
processp sends a heartbeat message toq; whenq receives a
heartbeat message, it trustsp and starts a timer with a fixed
timeout valueTO ; if the timer expires beforeq receives a
newer heartbeat message fromp, thenq starts suspectingp.

This algorithm has two undesirable characteristics; one
regards its accuracy and the other its detection time, as we
now explain. Consider thei-th heartbeat messagemi. Intu-
itively, the probability of apremature timeout onmi should
depend solely onmi, and in particular onmi’s delay. With
the simple algorithm, however, the probability of a prema-
ture timeout onmi also depends on the heartbeatmi−1 that
precedesmi! In fact, the timer formi is started upon the
receipt ofmi−1, and so ifmi−1 is “fast”, the timer formi

starts early and this increases the probability of a prema-
ture timeout onmi. This dependency on past heartbeats is
undesirable.

To see the second problem, supposep sends a heartbeat
just before it crashes, and letd be the delay of this last heart-
beat. In the simple algorithm,q would permanently suspect
p only d + TO time units afterp crashes. Thus, the worst-
case detection time for this algorithm is themaximum mes-
sage delay plusTO. This is impractical because in many
systems the maximum message delay is orders of magni-
tude larger than the average message delay.

The source of the above problems is that even though the
heartbeats are sent at regular intervals, the timers to “catch”
them expire at irregular times, namely the receipt times of
the heartbeats plus a fixedTO. The algorithm that we pro-
pose eliminates this problem. As a result, the probability
of a premature timeout on heartbeatmi doesnot depend
on the behavior of the heartbeats that precedemi, and the
detection time doesnot depend on the maximum message
delay.

A New Algorithm and its QoS Analysis. In the new al-
gorithm, processp sends heartbeat messagesm1, m2, . . .
to q periodically everyη time units (just as in the simple
algorithm). To determine whether to suspectp, q uses a
sequenceτ1, τ2, . . . of fixed time points, calledfreshness
points, obtained by shifting the sending time of the heart-
beat messages by a fixed parameterδ. More precisely,
τi = σi + δ, whereσi is the time whenmi is sent. For
any timet, let i be so thatt ∈ [τi, τi+1); thenq trusts p at
time t if and only if q has received heartbeatmi or higher.

Given the probabilistic behavior of the system (i.e., the
probability of message losses and the distribution of mes-

0-7695-0707-7/00 $10.00 � 2000 IEEE

sage delays), and the parametersη andδ of the algorithm,
we determine the QoS of the new algorithm using the the-
ory of stochastic processes. Simulation results given in [10]
are consistent with our QoS analysis, and they show that the
new algorithm performs better than the common one.

In contrast to the common algorithm, the new algorithm
guarantees an upper bound on the detection time, and this
bound depends only on the parametersη andδ of the algo-
rithm — not on the probabilistic behavior of the heartbeats.

Moreover, the new algorithm is optimal in the sense that
it has the best possible query accuracy probability with re-
spect to any given bound on the detection time. More pre-
cisely, we show that among all failure detectors that send
heartbeats at the same rate (they use the same network band-
width) and satisfy the same upper bound on the detection
time, the new algorithm has the best query accuracy proba-
bility.

The algorithm that we give here assumes thatp and q
have synchronized clocks. This assumption is not unrealis-
tic, even in large networks. For example, GPS and Cesium
clocks are becoming accessible, and they can provide clocks
that are very closely synchronized (see, e.g., [23]). In [10],
we show how to modify this algorithm so that it works even
when synchronized clocks are not available.

Configuring our Algorithm to Meet the Failure Detector
Requirements of an Application. Given a set of failure
detector QoS requirements (provided by an application), we
show how to compute the parameters of our algorithm to
achieve these requirements. We first do so assuming that
one knows the probabilistic behavior of the system (i.e.,
the probability distributions of message delays and message
losses). We then drop this assumption, and show how to
configure the failure detector to meet the QoS requirements
of an application even when the probabilistic behavior of
the system is not known.

1.3. Related Work

In [14], Gouda and McGuire measure the performance
of some failure detector protocols under the assumption that
the protocol stops as soon as some process is suspected to
have crashed (even if this suspicion is a mistake). This class
of failure detectors is less general than the one that we stud-
ied here: in our work, a failure detector can alternate be-
tween suspicion and trust many times.

In [22], van Renesseet. al. propose a scalable gossip-
style randomized failure detector protocol. They measure
the accuracy of this protocol in terms of theprobability of
premature timeouts.4 The probability of premature time-
outs, however, is not an appropriate metric for the specifi-
cation of failure detectors in general: it is implementation-

4This is called “the probability of mistakes” in [22].

specific and it cannot be used to compare failure detectors
that use timeouts in different ways.

In [19], Raynal and Tronel present an algorithm that de-
tects member failures in a group: if some process detects a
failure in the group (perhaps a false detection), then all pro-
cesses report a group failure and the protocol terminates.
The algorithm uses heartbeat-style protocol, and its time-
out mechanism is the same as the simple algorithm that we
described in Section 1.2.

In [23], Verı́ssimo and Raynal studyQoS failure detec-
tors — these are detectors that indicate when a service does
not meet its quality-of-service requirements. In contrast,
this paper studies the QoSof failure detectors, i.e., how well
a failure detector works.

The probabilistic network model used in this paper is
similar to the ones used in [11, 6] for probabilistic clock
synchronization.

All proofs and many technical details are omitted here,
and they can be found in [10].

2. On the QoS Specification of Failure
Detectors

We consider a system of two processesp and q. We
assume that the failure detector atq monitorsp, and that
q does not crash. Henceforth, real time is continuous and
ranges from0 to∞.

2.1. The Failure Detector Model

The output of the failure detector atq at timet is either
S or T , which means thatq suspects or trustsp at timet,
respectively. Atransition occurs when the output of the
failure detector atq changes: AnS-transition occurs when
the output atq changes fromT to S; a T-transition occurs
when the output atq changes fromS to T . We assume that
there are only a finite number of transitions during any finite
time interval.

Since the behavior of the system is probabilistic, the pre-
cise definition of our model and of our QoS metrics uses
the theory of stochastic processes. In particular, most of the
metrics we proposed are random variables. To keep our pre-
sentation at an intuitive level, we omit the technical details
related to this theory (they can be found in [10]).

2.2. Primary Metrics

We propose three primary metrics for the QoS specifica-
tion of failure detectors. The first one measures the speed
of a failure detector. It is defined with respect to the runs in
whichp crashes.

0-7695-0707-7/00 $10.00 � 2000 IEEE

trust

suspect suspect

up

TM TG

TMR

p

FD atq

Figure 4. Mistake duration T
M

, good period
duration TG , and mistake recurrence time TMR

Detection time (T
D

): Informally, T
D

is the time that
elapses fromp’s crash to the time whenq starts suspect-
ing p permanently. More precisely,TD is a random vari-
able representing the time that elapses from the time thatp
crashes to the time when the final S-transition (of the failure
detector atq) occurs and there are no transitions afterwards
(Fig. 1).5

We next define some metrics that are used to specify the
accuracy of a failure-detector. Throughout the paper, all ac-
curacy metrics are defined with respect tofailure-free runs,
i.e., runs in whichp does not crash.6 There are two primary
accuracy metrics:
Mistake recurrence time (TMR): this measures the time
between two consecutive mistakes. More precisely,T

MR
is

a random variable representing the time that elapses from
an S-transition to the next one (Fig. 4).
Mistake duration (TM): this measures the time it takes the
failure detector to correct a mistake. More precisely,T

M
is

a random variable representing the time that elapses from
an S-transition to the next T-transition (Fig. 4).

As we discussed in the introduction, there are many as-
pects of failure detector accuracy that may be important to
applications. Thus, in addition toT

MR
andT

M
, we propose

four other accuracy metrics in the next section. We selected
TMR andTM as the primary metrics because given these two,
one can compute the other four (this will be shown in Sec-
tion 2.4).

2.3. Derived Metrics

We propose four additionalaccuracy metrics:
Average mistake rate (λM): this measures the rate at which
a failure detector make mistakes, i.e., it is the average num-
ber of S-transitions per time unit. This metric is important

5If there is no such final S-transition, thenTD = ∞; if such an S-
transition occurs beforep crashes, thenTD = 0. We henceforth omit the
boundary cases of other metrics since they can be similarly defined.

6As explained in [10], these metrics are also meaningful for runs in
whichp crashes.

to long-lived applications whereeach failure detector mis-
take (each S-transition) results in a costly interrupt. This
is the case for applications such as group membership and
cluster management.
Query accuracy probability (P

A
): this is the probability

that the failure detector’s output is correct at a random time.
This metric is important to applications that interact with
the failure detector by querying it at random times.

Many applications can make progress only duringgood
periods — periods in which the failure detector makes no
mistakes. This observation leads to the following two met-
rics.
Good period duration (T

G
): this measures the length of

a good period. More precisely,T
G

is a random variable
representing the time that elapses from a T-transition to the
next S-transition (Fig. 4).

For short-lived applications, however, a closely related
metric may be more relevant. Suppose that an application is
started at a random time in a good period. If theremaining
part of the good period is long enough, the short-lived ap-
plication will be able to complete its task. The metric that
measures the remaining part of the good period is:
Forward good period duration (TFG): this is a random
variable representing the time that elapses from a random
time at whichq trustsp, to the time of the next S-transition.

At first sight, it may seem that, on the average,TFG is just
half of TG (the length of a good period). But this is incor-
rect, and in Section 2.4 we give the actual relation between
TFG andTG .

2.4. How the Accuracy Metrics are Related

Theorem 1 below explains how our six accuracy metrics
are related. We then use this theorem to justify our choice
of the primary accuracy metrics. Henceforth,Pr (A) de-
notes the probability of eventA; E(X), E(Xk), andV(X)
denote the expected value (or mean), thek-th moment, and
the variance of random variableX, respectively.

Parts (2) and (3) of Theorem 1 assume that in failure-
free runs, the probabilistic distribution of failure detector
histories isergodic. Roughly speaking, this means that in
failure-free runs, the failure detector slowly “forgets” its
past history: from any given time on, its future behavior
may depend only on its recent behavior. We call failure
detectors satisfying this ergodicity conditionergodic fail-
ure detectors. Ergodicity is a basic concept in the theory of
stochastic processes [20], but the technical details are sub-
stantial and outside the scope of this paper.

Theorem 1 For any ergodic failure detector, the following
results hold: (1) TG = TMR −TM . (2) If 0 < E(TMR) <∞,
then λM = 1/E(TMR), and PA = E(TG)/E(TMR). (3) If
0 < E(TMR) < ∞ and E(TG) = 0, then TFG is always 0.

0-7695-0707-7/00 $10.00 � 2000 IEEE

mi+1mi+1 mi+1

(c)(b)(a)

p

q

mi mimi

τi+1τi+1τi τi τi τi+1

FD at q

suspect

trust trust

suspect

σi σi+1 σi σi+1 σi σi+1

Figure 5. Three scenarios of the failure detector output in one interval [τi, τi+1)

If 0 < E(TMR) < ∞ and E(TG) �= 0, then (3a) for all
x ∈ [0,∞), Pr(TFG ≤ x) =

∫ x

0 Pr(TG > y)dy/E(TG),
(3b) E(T k

FG
) = E(T k+1

G
)/[(k + 1)E(TG)]. In particular,

(3c) E(TFG) = [1 + V(TG)/E(TG)2]E(TG)/2.

The fact thatTG = TMR − TM holds is immediate by
definition. The proofs of parts (2) and (3) use the theory
of stochastic processes. Part (2) is intuitive, while part
(3), which relatesT

G
andT

FG
, is more complex. In par-

ticular, part (3c) is counter-intuitive: one may think that
E(TFG) = E(TG)/2, but part (3c) says thatE(TFG) is in
general larger thanE(TG)/2 (this is a version of the “wait-
ing time paradox” in the theory of stochastic processes [4]).

We now explain how Theorem 1 guided our selection
of the primary accuracy metrics. Parts (2) and (3) show
thatλ

M
, P

A
andT

FG
can be derived fromT

MR
, T

M
andT

G
.

This suggests that the primary metrics should be selected
amongTMR , TM andTG . Moreover, sinceTG = TMR −
TM , it is clear that given the joint distribution of any two
of them, one can derive the remaining one. Thus, two of
T

MR
, T

M
andT

G
should be selected as the primary metrics,

but which two? By choosingTMR andTM as our primary
metrics, we get the following convenient property that helps
to compare failure detectors: ifFD1 is better thanFD2 in
terms of bothE(T

MR
) andE(T

M
) (the expected values of

the primary metrics) then we can be sure thatFD1 is also
better thanFD2 in terms ofE(TG) (the expected values of
the other metric). We would not get this useful property if
TG were selected as one of the primary metrics.

3. The Design and QoS Analysis of a New
Failure Detector Algorithm

3.1. The Probabilistic Network Model

We assume that processesp andq are connected by a link
that does not create or duplicate messages, but may delay or

drop messages. Processesp andq have access to synchro-
nized clocks (the case where synchronized clocks are not
available is treated in [10]).

We assume that the message loss and message delay be-
havior of any message sent through the link is probabilistic,
and is characterized by the following two parameters: (a)
message loss probability pL , which is the probability that
a message is dropped by the link; and (b)message delay
D, which is a random variable with range(0,∞) represent-
ing the delay from the time a message is sent to the time
it is received,under the condition that the message is not
dropped by the link. We assume that the expected value
E(D) and the varianceV(D) of D are finite. Note that our
model does not assume that the message delay timeD fol-
lows any particular distribution, and thus it is applicable to
many practical systems.

For simplicity we assume that the probabilistic behavior
of the network does not change over time. In Section 6,
we explain how to modify the algorithm so that it dynami-
cally adapts to changes in the probabilistic behavior of the
system.

3.2. The Algorithm

The new algorithm works as follows. The mon-
itored processp periodically sends heartbeat messages
m1, m2, m3, . . . to q every η time units, whereη is a pa-
rameter of the algorithm. Every heartbeat messagemi is
tagged with its sequence numberi. Henceforth,σi de-
notes the sending time of messagemi. The monitoring
processq shifts theσi’s forward byδ — the other param-
eter of the algorithm — to obtain the sequence of times
τ1 < τ2 < τ3 < . . ., whereτi = σi + δ. Processq
uses theτi’s and the times it receives heartbeat messages,
to determine whether to trust or suspectp, as follows. Con-
sider time period[τi, τi+1). At time τi, q checks whether it
has received some messagemj with j ≥ i. If so, q trusts

0-7695-0707-7/00 $10.00 � 2000 IEEE

Processp:

1 for all i ≥ 1, at timeσi = i · η, send heartbeatmi to q

Processq:

2 Initialization:output = S; {suspectp initially}
3 for all i ≥ 1, at timeτi = σi + δ:
4 if did not receivemj with j ≥ i then output ← S;

{suspectp if no fresh message is received}
5 upon receive messagemj at timet ∈ [τi, τi+1):
6 if j ≥ i then output ← T ;

{trustp when some fresh message is received}
Figure 6. Failure detector algorithm NFD-S
with parameters η and δ

p during the entire period[τi, τi+1) (Fig. 5 (a)). If not,q
starts suspectingp. If at some time beforeτi+1, q receives
some messagemj with j ≥ i thenq starts trustingp from
that time untilτi+1. (Fig. 5 (b)). If by timeτi+1, q has not
received any messagemj with j ≥ i, thenq suspectsp dur-
ing the entire period[τi, τi+1) (Fig. 5 (c)). This procedure
is repeated for every time period. The detailed algorithm
with parametersη andδ is denoted by NFD-S, and is given
in Fig. 6.7

Note that from timeτi to τi+1, only messagesmj with
j ≥ i can affect the output of the failure detector. For this
reason,τi is called afreshness point: from timeτi to τi+1,
messagesmj with j ≥ i arestill fresh (useful). With this
algorithm,q trustsp at time t if and only if q received a
message that is still fresh at timet.

3.3. The QoS Analysis of the Algorithm

We now give the QoS of the algorithm (for a detailed
analysis see [10]). We assume that the link fromp to q sat-
isfies the followingmessage independence property: (a) the
message loss and message delay behavior of any message
sent byp is independent of whether or whenp crashes; and
(b) the behaviors of any two heartbeat messages sent byp

are independent.8 Henceforth, letτ0
def= 0, andτi = σi + δ

for i ≥ 1 (as in line 3 of the algorithm).
We first formalize the intuition behind freshness points

and fresh messages:

7This version of the algorithm is convenient for illustrating the main
idea and for performing the analysis. We have omitted someobvious opti-
mizations.

8In practice, this holds only if consecutiveheartbeats are sent more than
some∆ time units apart, where∆ depends on the system. So assuming
that the behavior of heartbeats are independent is equivalent to assuming
thatη > ∆.

Lemma 2 For all i ≥ 0 and all time t ∈ [τ i, τi+1), q trusts
p at time t if and only if q has received some message mj

with j ≥ i by time t.

The following definitions are for runs wherep does not
crashes.

Definition 1

(1) For any i ≥ 1, let k be the smallest integer such that
for all j ≥ i+ k, mj is sent at or after time τi.

(2) For any i ≥ 1, let pj(x) be the probability that q does
not receive message mi+j by time τi + x, for every
j ≥ 0 and every x ≥ 0; let p0 = p0(0).

(3) For any i ≥ 2, let q0 be the probability that q receives
message mi−1 before time τi.

(4) For any i ≥ 1, let u(x) be the probability that q sus-
pects p at time τi + x, for every x ∈ [0, η).

(5) For any i ≥ 2, let p
S

be the probability that an S-
transition occurs at time τi.

The above definitions are given in terms ofi, a positive
integer. Proposition 3, however, shows that they are actually
independent ofi.

Proposition 3 (1) k = �δ/η. (2) For all j ≥ 0 and for
all x ≥ 0, pj(x) = p

L
+ (1 − p

L
)Pr(D > δ + x − jη).

(3) q0 = (1 − p
L
)Pr (D < δ + η). (4) For all x ∈ [0, η),

u(x) =
∏k

j=0 pj(x). (5) pS = q0 · u(0).

By definition, if p0 = 0 then for everyi ≥ 1, the prob-
ability thatq receivesmi by time τi is 1. Thus, ifp0 = 0
then, with probability one,q trustsp forever after timeτ1.
Similarly, it is easy to see that ifq0 = 0 then, with prob-
ability one,q suspectsp forever. Sop0 = 0 andq0 = 0
are degenerated cases of no interest. We henceforth assume
thatp0 > 0 andq0 > 0.

The following theorem summarizes our QoS analysis of
the new failure detector algorithm.

Theorem 4 Consider a system with synchronized clocks,
where the probability of message losses is p

L
, and the distri-

bution of message delays is P (D ≤ x). The failure detector
NFD-S of Fig. 6 with parameters η and δ has the following
properties.
(1) The detection time is bounded:

T
D
≤ δ + η. (3.1)

(2) The average mistake recurrence time is:

E(T
MR

) =
η

pS

. (3.2)

(3) The average mistake duration is:

E(TM) =

∫ η

0 u(x) dx
pS

. (3.3)

0-7695-0707-7/00 $10.00 � 2000 IEEE

FromE(TMR) andE(TM) given in the theorem above, we
can easily derive the other accuracy measures using Theo-
rem 1. For example, we can get the query accuracy proba-
bility PA = 1− E(TM)/E(TMR) = 1− 1/η · ∫ η

0
u(x) dx.

Theorem 4 (1) shows an important property of the algo-
rithm: the detection time is bounded, and the bound does
not depend on the behavior of message delays and losses.

In Section 4, we show how to use Theorem 4 to compute
the failure detector parameters, so that the failure detector
satisfies some QoS requirements (given by an application).

3.4. An Optimality Result

Among all failure detectors that send heartbeats at the
same rate and satisfy the same upper bound on the detec-
tion time, the new algorithm provides the best query accu-
racy probability. More precisely, letC be the class of failure
detector algorithmsA such that in every run ofA, process
p sends heartbeats toq everyη time units andA satisfies
TD ≤ TU

D
for some constantTU

D
. LetA∗ be the instance of

the new failure detector algorithm NFD-S with parameters
η andδ = TU

D
− η. By part (1) of Theorem 4, we know that

A∗ ∈ C. We can show that

Theorem 5 For any A ∈ C, let PA be the query accuracy
probability of A. Let P ∗

A
be the query accuracy probability

of A∗. Then P ∗
A
≥ P

A
.

4. Configuring the Failure Detector to Satisfy
QoS Requirements

Suppose we are given a set of failure detector QoS re-
quirements (the QoS requirements could be given by the
application that uses this failure detector). We now show
how to compute the parametersη andδ of our failure detec-
tor algorithm, so that these requirements are satisfied. We
assume that (a) the local clocks of processes are synchro-
nized, and (b) one knows the probabilistic behavior of the
messages, i.e., the message loss probabilitypL and the dis-
tribution of message delaysPr(D ≤ x). In Section 5, we
consider the case when (b) does not hold, and in [10] we
treat the case when both (a) and (b) do not hold.

We assume that the QoS requirements are expressed us-
ing the primary metrics. More precisely, a set of QoS re-
quirements is a tuple(TU

D
, TL

MR
, TU

M
), whereTU

D
is an up-

per bound on the detection time,TL
MR

is a lower bound on
the average mistake recurrence time, andTU

M
is an upper

bound on the average mistake duration. In other words, the

Failure Detector
NFD_S

Configurator

pL

η δ

QoS
Requirements

T , T , TD
U

MR
L

M
U

P(D ≤ x)

Probabilistic Behavior
of Heartbeats

Figure 7. Meeting QoS requirements with
NFD-S. The probabilistic behavior of heart-
beats is given

requirements are that:9

T
D
≤ TU

D
, E(T

MR
) ≥ TL

MR
, E(T

M
) ≤ TU

M
. (4.4)

Our goal, illustrated in Fig. 7, is to find a configuration
procedure that takes as inputs (a) the QoS requirements,
namelyTU

D
, TL

MR
, TU

M
, and (b) the probabilistic behavior of

the heartbeat messages, namelyp
L

andPr(D ≤ x), and
outputs the failure detector parametersη andδ so that the
failure detector satisfies the QoS requirements in (4.4). Fur-
thermore, to minimize the network bandwidth taken by the
failure detector, we want a configuration procedure that
finds the largest intersending intervalη that satisfy these
QoS requirements.

Using Theorem 4, our goal can be stated as a mathemat-
ical programming problem:

maximize η

subject to δ + η ≤ TU
D

(4.5)
η

pS

≥ TL
MR

(4.6)

∫ η

0 u(x) dx
pS

≤ TU
M

(4.7)

where the values ofu(x) andp
S

are given by Proposition 3.
Solving this problem is hard, so instead we show how to find
someη andδ that satisfy (4.5)–(4.7) (but theη that we find
may not be the largest possible). To do so, we replace (4.7)
with a simpler and stronger constraint, and then compute

9Note that the bounds on the primary metricsE(TMR) andE(TM)
also impose bounds on the derived metrics, according to Theorem 1. More
precisely, we haveλM ≤ 1/T L

MR
, PA ≥ (T L

MR
− T U

M
)/T L

MR
, E(TG) ≥

T L
MR

− T U
M

, andE(TFG) ≥ (T L
MR

− T U
M

)/2.

0-7695-0707-7/00 $10.00 � 2000 IEEE

the optimal solution of this modified problem (see [10] for
more details). We obtain the following procedure to findη
andδ:

• Step 1: Computeq′0 = (1 − p
L
)Pr(D < TU

D
), and let

ηmax = q′0TU
M

.

• Step 2: Let f(η) =

η

q′0
∏�T U

D
/η�−1

j=1 [pL + (1− pL)Pr(D > TU
D
− jη)]

.

(4.8)
Find the largestη ≤ ηmax such thatf(η) ≥ TL

MR
. To

find such anη, we can use a simple numerical method,
such as binary search (this works because whenη de-
creases,f(η) increases exponentially fast).

• Step 3: Setδ = TU
D
− η.

Theorem 6 Consider a system with synchronized clocks.
With the parameters η and δ obtained by the above proce-
dure, the failure detector algorithmNFD-S of Fig. 6 satisfies
the QoS requirements given in (4.4).

As an example of the configuration procedure of the fail-
ure detector, suppose we have the following QoS require-
ments: (a) a crash failure is detected within 30 seconds,
i.e.,TU

D
= 30 s; (b) on average, the failure detector makes

at most one mistake per month, i.e.,TL
MR

= 30 days =
2 592 000 s; (c) on average, the failure detector corrects its
mistakes within one minute, i.e.TU

M
= 60 s. Assume that

the message loss probability isp
L

= 0.01, the distribution
of message delayD is exponential, and the average mes-
sage delayE(D) is 0.02 s. By inputting these numbers
into the configuration procedure, we getδ = 20.03 s and
η = 9.97 s. With these parameters, our failure detector sat-
isfies the given QoS requirements.

5. Dealing with Unknown Message Behavior

In Section 4, our procedure to compute the parametersη
andδ of NFD-S to meet some QoS requirements assumed
that one knows the probabilitypL of message loss and the
distributionPr(D ≤ x) of message delays. This assump-
tion is not unrealistic, but in some systems the probabilistic
behavior of messages may not be known. In that case, it is
still possible to computeη andδ, as we now explain. We
proceed in two steps: (1) we first show how to computeη
and δ using onlypL , E(D) and V(D) (recall thatE(D)
andV (D) are the expected value and variance of message
delays, respectively); (2) we then show how to estimatepL ,
E(D) and V(D).

Computing Failure Detector Parameters η and δ Using
p

L
, E(D) and V(D). With E(D) and V(D), we can

boundPr(D > t) using the followingOne-Sided Inequality
of probability theory (e.g., see [4], p.79): For any random
variableD with a finite expected value and a finite variance,

Pr(D > t) ≤ V(D)
V(D) + (t −E(D))2

, for all t > E(D).

(5.9)
With this, we can derive the following bounds on the

QoS metrics of algorithm NFD-S.

Theorem 7 Consider a system with synchronized clocks
and assume δ > E(D). For algorithm NFD-S, we have
E(TMR) ≥ η/β, E(TM) ≤ η/γ, PA ≥ 1 − β, E(TG) ≥
(1− β)η/β, and E(TFG) ≥ (1− β)η/(2β), where

β =
k0∏

j=0

V(D) + pL(δ − E(D) − jη)2

V(D) + (δ − E(D) − jη)2
,

k0 = �(δ − E(D))/η − 1,

and

γ =
(1− pL)(δ −E(D) + η)2

V(D) + (δ −E(D) + η)2
.

Theorem 7 can be used to compute the parametersη and
δ of the failure detector NFD-S, so that it satisfies the QoS
requirements given in (4.4). The configuration procedure is
given below. This procedure assumes thatTU

D
> E(D),

i.e., the required detection time is greater than the average
message delay (a reasonable assumption).

• Step 1: Compute γ′ = (1 − p
L
)(TU

D
−

E(D))2/(V(D) + (TU
D
− E(D))2) and letηmax =

min(γ′ TU
M
, TU

D
−E(D)).

• Step 2: Let f(η) =

η·
�(T U

D
−E(D))/η−1∏

j=1

V(D) + (TU
D
− E(D) − jη)2

V(D) + p
L
(TU

D
−E(D) − jη)2

.

(5.10)
Find the largestη ≤ ηmax such thatf(η) ≥ TL

MR
.

• Step 3: Setδ = TU
D
− η.

Notice that the above procedure does not use the distribu-
tion Pr(D ≤ x) of message delays; it only usesp

L
, E(D)

and V(D).

Theorem 8 Consider a system with synchronized clocks.
With parameters η and δ computed by the above proce-
dure, the failure detector algorithm NFD-S of Fig. 6 sat-
isfies the QoS requirements given in (4.4), provided that
TU

D
> E(D).

0-7695-0707-7/00 $10.00 � 2000 IEEE

Estimating pL , E(D) and V(D). It is easy to estimate
p

L
, E(D) and V(D) using heartbeat messages. For exam-

ple, to estimatep
L

, one can use the sequence numbers of the
heartbeat messages to count the number of “missing” heart-
beats, and then divide this count by the highest sequence
number received so far. To estimateE(D) and V(D), we
use the synchronized clocks as follows: Whenp sends a
heartbeatm, p timestampsm with the sending timeS, and
when q receivesm, q records the receipt timeA. In this
way,A−S is the delay ofm. We then compute the average
and variance ofA−S for multiple past heartbeat messages,
and thus obtain accurate estimates forE(D) and V(D).

6. Concluding Remarks

An Adaptive Failure Detector. In this paper, we assumed
that the probabilistic behavior of heartbeat messages does
not change. In some networks, this may not be the case.
For instance, a corporate network may have one behavior
during working hours (when the message traffic is high),
and a completely different behavior during lunch time or at
night (when the system is mostly idle): During peak hours,
the heartbeat messages may have a higher loss rate, a higher
expected delay, and a higher variance of delay, than during
off-peak hours. Such networks require a failure detector
that adapts to the changing conditions, i.e., it dynamically
reconfigures itself to meet some given QoS requirements.

It turns out that we can use the configuration procedure
given in Section 5 to make our failure detector adaptive.
The idea is to periodically estimate thecurrent values of
pL , E(D) andV (D) using then most recent heartbeats.
These estimates are then fed into the configuration proce-
dure to recompute new failure detector parametersη andδ.

The above adaptive algorithm forms the core of a failure
detection service that is currently being implemented and
evaluated [12]. This service is intended to be shared among
many different concurrent applications, each with a differ-
ent set of QoS requirements. The failure detector in this
architecture dynamically adapts itself not only to changes
in the network condition, but also to changes in the current
set of QoS demands (as new applications are started and old
ones terminate).

References

[1] M. K. Aguilera, W. Chen, and S. Toueg. On quiescent re-
liable communication.SIAM Journal on Computing. To
appear.

[2] M. K. Aguilera, W. Chen, and S. Toueg. Using the heart-
beat failure detector for quiescent reliable communication
and consensus in partitionable networks.Theoretical Com-
puter Science, 220(1):3–30, June 1999.

[3] M. K. Aguilera, W. Chen, and S. Toueg. Failure detec-
tion and consensus in the crash-recovery model.Distributed
Computing, 2000. To appear.

[4] A. O. Allen. Probability, Statistics, and Queueing Theory
with Computer Science Applications. Academic Press, 2nd
edition, 1990.

[5] Y. Amir, D. Dolev, S. Kramer, and D. Malkhi. Transis: a
communication sub-system for high availability. InPro-
ceedings of the 22nd Annual International Symposium on
Fault-Tolerant Computing, pages 76–84, Boston, July 1992.

[6] K. Arvind. Probabilistic clock synchronization in distributed
systems. IEEE Transactions on Parallel and Distributed
Systems, 5(5):475–487, May 1994.

[7] O. Babaoğlu, R. Davoli, L.-A. Giachini, and M. G. Baker.
Relacs: a communications infrastructure for constructing re-
liable applications in large-scale distributed systems, 1994.
BROADCAST Project deliverable report, Department of
Computing Science, University of Newcastle upon Tyne,
UK.

[8] R. Braden, editor. Requirements for Internet Hosts-
Communication Layers. RFC 1122, Oct. 1989.

[9] T. D. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems.Journal of the ACM, 43(2):225–
267, Mar. 1996.

[10] W. Chen. On the Quality of Service of Failure Detectors.
PhD thesis, Cornell University, May 2000.

[11] F. Cristian. Probabilistic clock synchronization.Distributed
Computing, 3(3):146–158, 1989.

[12] B. Deianov and S. Toueg. Personal communication, 2000.
[13] C. Fetzer and F. Cristian. Fail-aware failure detectors. In

Proceedings of the 15th Symposium on Reliable Distributed
Systems, pages 200–209, Oct. 1996.

[14] M. G. Gouda and T. M. McGuire. Accelerated heartbeat pro-
tocols. InProceedings of the 18th International Conference
on Distributed Computing Systems, May 1998.

[15] R. Guerraoui, M. Larrea, and A. Schiper. Non blocking
atomic commitment with an unreliable failure detector. In
Proceedings of the 14th IEEE Symposium on Reliable Dis-
tributed Systems, pages 41–50, Sept. 1995.

[16] M. G. Hayden.The Ensemble System. PhD thesis, Depart-
ment of Computer Science, Cornell University, Jan. 1998.

[17] L. E. Moser, P. M. Melliar-Smith, D. A. Argarwal, R. K.
Budhia, and C. A. Lingley-Papadopoulos. Totem: A fault-
tolerant multicast group communication system.Commun.
ACM, 39(4):54–63, Apr. 1996.

[18] G. F. Pfister.In Search of Clusters. Prentice-Hall, Inc., 2nd
edition, 1998.

[19] M. Raynal and F. Tronel. Group membership failure detec-
tion: a simple protocol and its probabilistic analysis.Dis-
tributed Systems Engineering Journal, 6(3):95–102, 1999.

[20] K. Sigman.Stationary Marked Point Processes, an Intuitive
Approach. Chapman & Hall, 1995.

[21] R. van Renesse, K. P. Birman, and S. Maffeis. Horus:
a flexible group communication system.Commun. ACM,
39(4):76–83, Apr. 1996.

[22] R. van Renesse, Y. Minsky, and M. Hayden. A gossip-style
failure detection service. InProceedings of Middleware’98,
Sept. 1998.

[23] P. Verı́ssimo and M. Raynal. Time, clocks and temporal or-
der. In S. Krakowiak and S. K. Shrivastava, editors,Re-
cent Advances in Distributed Systems, chapter 1. Springer-
Verlag, 2000. to appear.

0-7695-0707-7/00 $10.00 � 2000 IEEE

