
The Weakest Failure Detector for Solving
Consensus∗

Tushar Deepak Chandra† Vassos Hadzilacos‡ Sam Toueg§

June 1996

Abstract

We determine what information about failures is necessary and sufficient to
solve Consensus in asynchronous distributed systems subject to crash failures. In
[CT91], it is shown that 3W, a failure detector that provides surprisingly little
information about which processes have crashed, is sufficient to solve Consensus
in asynchronous systems with a majority of correct processes. In this paper, we
prove that to solve Consensus, any failure detector has to provide at least as much
information as 3W. Thus, 3W is indeed the weakest failure detector for solving
Consensus in asynchronous systems with a majority of correct processes.

1 Introduction

1.1 Background

The asynchronous model of distributed computing has been extensively studied. Infor-
mally, an asynchronous distributed system is one in which message transmission times
and relative processor speeds are both unbounded. Thus an algorithm designed for
an asynchronous system does not rely on such bounds for its correctness. In practice,
asynchrony is introduced by unpredictable loads on the system.

Although the asynchronous model of computation is attractive for the reasons out-
lined above, it is well-known that many fundamental problems of fault-tolerant dis-
tributed computing that are solvable in synchronous systems, are unsolvable in asyn-
chronous systems. In particular, it is well-known that Consensus, and several forms

∗Research supported by NSF grants CCR-8901780 and CCR-9102231, DARPA/NASA Ames grant
NAG-2-593, grants from the IBM Endicott Programming Laboratory and Siemens Corp, and a grant
from the Natural Sciences and Engineering Research Council of Canada. A preliminary version of this
paper appeared in Proceedings of the Eleventh ACM Symposium on Principles of Distributed Computing,
pages 147–158. ACM press, August 1992.

†H2-L10, IBM T. J. Watson Research Center, 30 Saw Mill Road, Hawthorne, NY 10532, USA.
‡Computer Systems Research Institute, University of Toronto, 6 King’s College Road, Toronto,

Ontario M5S 1A1.
§Computer Science Department, Upson Hall, Cornell University, Ithaca, NY 14853.

1

2

of reliable broadcast, including Atomic Broadcast, cannot be solved deterministically in
an asynchronous system that is subject to even a single crash failure [FLP85, DDS87].
Essentially, these impossibility results stem from the inherent difficulty of determining
whether a process has actually crashed or is only “very slow”.

To circumvent these impossibility results, previous research focused on the use of
randomization techniques [CD89], the definition of some weaker problems and their so-
lutions [DLP+86, ABD+87, BW87, BMZ88], or the study of several models of partial
synchrony [DDS87, DLS88]. Nevertheless, the impossibility of deterministic solutions
to many agreement problems (such as Consensus and Atomic Broadcast) remains a
major obstacle to the use of the asynchronous model of computation for fault-tolerant
distributed computing.

An alternative approach to circumvent such impossibility results is to augment the
asynchronous model of computation with a failure detector. Informally, a failure detector
is a distributed oracle that gives (possibly incorrect) hints about which processes may
have crashed so far: Each process has access to a local failure detector module that
monitors other processes in the system, and maintains a list of those that it currently
suspects to have crashed. Each process periodically consults its failure detector module,
and uses the list of suspects returned in solving Consensus.

A failure detector module can make mistakes by erroneously adding processes to its
list of suspects: i.e., it can suspect that a process p has crashed even though p is still
running. If it later believes that suspecting p was a mistake, it can remove p from its list.
Thus, each module may repeatedly add and remove processes from its list of suspects.
Furthermore, at any given time the failure detector modules at two different processes
may have different lists of suspects.

It is important to note that the mistakes made by a failure detector should not prevent
any correct process from behaving according to specification. For example, consider an
algorithm that uses a failure detector to solve Atomic Broadcast in an asynchronous
system. Suppose all the failure detector modules wrongly (and permanently) suspect
that a correct process p has crashed. The Atomic Broadcast algorithm must still ensure
that p delivers the same set of messages, in the same order, as all the other correct
processes. Furthermore, if p broadcasts a message m, all correct processes must deliver
m.1

In [CT91], it is shown that a surprisingly weak failure detector is sufficient to solve
Consensus and Atomic Broadcast in asynchronous systems with a majority of correct
processes. This failure detector, called the eventually weak failure detector and denoted
W here, satisfies only the following two properties:2

1. There is a time after which every process that crashes is always suspected by some
correct process.

2. There is a time after which some correct process is never suspected by any correct
process.

1A different approach was taken in [RB91]: a correct process that is wrongly suspected to have
crashed, voluntarily leaves the system. It may later rejoin the system by assuming a new identity.

2In [CT91], this is denoted 3W .

3

Note that, at any given time t, processes cannot useW to determine the identity of a
correct process. Furthermore, they cannot determine whether there is a correct process
that will not be suspected after time t.

The failure detectorW can make an infinite number of mistakes. In fact, it can forever
add and then remove some correct processes from the lists of suspects (this reflects
the inherent difficulty of determining whether a process is just slow or has crashed).
Moreover, some correct processes may be erroneously suspected to have crashed by all
the other processes throughout the entire execution.

The two properties of W state that eventually something must hold forever; this
may appear too strong a requirement to implement in practice. However, when solving a
problem that “terminates”, such as Consensus, it is not really required that the properties
hold forever, but merely that they hold for a sufficiently long time, i.e., long enough for
the algorithm that uses the failure detector to achieve its goal. For instance, in practice
the algorithm of [CT91] that solves Consensus using W only needs the two properties of
W to hold for a relatively short period of time.3 However, in an asynchronous system it
is not possible to quantify “sufficiently long”, since even a single process step or a single
message transmission is allowed to take an arbitrarily long amount of time. Thus it is
convenient to state the properties of W in the stronger form given above.

1.2 The problem

The failure detection properties of W are sufficient to solve Consensus in asynchronous
systems. But are they necessary? For example, consider failure detector A that satisfies
Property 1 of W and the following weakening of Property 2:

There is a time after which some correct process is never suspected by at
least 99% of the correct processes.

A is clearly weaker than W. Is it possible to solve Consensus using A? Indeed what
is the weakest failure detector sufficient to solve Consensus in asynchronous systems?
In trying to answer this fundamental question we run into a problem. Consider failure
detector B that satisfies the following two properties:

1. There is a time after which every process that crashes is always suspected by all
correct processes.

2. There is a time after which some correct process is never suspected by a majority
of the processes.

It seems that B andW are incomparable: B’s first property is stronger thanW’s, and B’s
second property is weaker thanW’s. Is it possible to solve Consensus in an asynchronous
system using B? The answer turns out to be “yes” (provided that this asynchronous
system has a majority of correct processes, as W also requires). Since W and B appear

3In that algorithm processes are cyclically elected as “coordinators”. Consensus is achieved as soon
as a correct coordinator is reached, and no process suspects it to have crashed while this coordinator is
trying to enforce consensus.

4

to be incomparable, one may be tempted to conclude that W cannot be the “weakest”
failure detector with which Consensus is solvable. Even worse, it raises the possibility
that no such “weakest” failure detector exists.

However, a closer examination reveals that B and W are indeed comparable in a
natural way: There is a distributed algorithm TB→W that can transform B into a failure
detector with the Properties 1 and 2 of W. TB→W works for any asynchronous system
that has a majority of correct processes. We say that W is reducible to B in such a
system. Since TB→W is able to transform B into W in an asynchronous system, B must
provide at least as much information about process failures as W does. Intuitively, B is
at least as strong as W.

1.3 The result

In [CT91], it is shown that W is sufficient to solve Consensus in asynchronous systems
if and only if n > 2f (where n is the total number of processes, and f is the maximum
number of processes that may crash). In this paper, we prove that W is reducible
to any failure detector D that can be used to solve Consensus (this result holds for
any asynchronous system). We show this reduction by giving a distributed algorithm
TD→W that transforms any such D into W. Therefore, W is indeed the weakest failure
detector that can be used to solve Consensus in asynchronous systems with n > 2f .
Furthermore, if n ≤ 2f , any failure detector that can be used to solve Consensus must
be strictly stronger than W.

The task of transforming any given failure detector D (that can be used to solve
Consensus) into W runs into a serious technical difficulty for the following reasons:

• To strengthen our result, we do not restrict the output of D to lists of suspects.
Instead, this output can be any value that encodes some information about failures.
For example, a failure detector D should be allowed to output any boolean formula,
such as “(not p) and (q or r)” (i.e., p is up and either q or r has crashed)—or any
encoding of such a formula. Indeed, the output ofD could be an arbitrarily complex
(and unknown) encoding of failure information. Our transformation from D into
W must be able to decode this information.

• Even if the failure information provided by D is not encoded, it is not clear how to
extract from it the failure detection properties of W. Consequently, if D is given
in isolation, the task of transforming it into W may not be possible.

Fortunately, since D can be used to solve Consensus, there is a corresponding algorithm,
ConsensusD, that is somehow able to “decode” the information about failures provided
by D, and knows how to use it to solve Consensus. Our reduction algorithm, TD→W uses
ConsensusD to extract this information from D and obtain W.

2 The model

We consider asynchronous distributed systems in which there is no bound on message
delay, clock drift, or the time necessary to execute a step. Our model of asynchronous

5

computation with failure detection is patterned after the one in [FLP85]. The system
consists of a set of n processes, Π = {p1, p2, . . . , pn}. Every pair of processes is connected
by a reliable communication channel.

To simplify the presentation of our model, we assume the existence of a discrete global
clock. This is merely a fictional device: the processes do not have access to it. We take
the range T of the clock’s ticks to be the set of natural numbers.

2.1 Failures and failure patterns

Processes can fail by crashing, i.e., by prematurely halting. A failure pattern F is a
function from T to 2Π, where F (t) denotes the set of processes that have crashed through
time t. Once a process crashes, it does not “recover”, i.e., ∀t : F (t) ⊆ F (t + 1). We
define crashed(F) =

⋃
t∈T F (t) and correct(F) = Π − crashed(F). If p ∈ crashed(F) we

say p crashes in F and if p ∈ correct(F) we say p is correct in F . We consider only
failure patterns F such that at least one process is correct, i.e., correct(F) �= ∅.

2.2 Failure detectors

Informally, a failure detector provides (possibly incorrect) information about the failure
pattern that occurs in an execution. Associated with each failure detector is a (possibly
infinite) range R of values output by that failure detector. A failure detector history H
with range R is a function from Π× T to R. H(p, t) is the value of the failure detector
module of process p at time t. A failure detector D is a function that maps each failure
pattern F to a set of failure detector histories with range RD (where RD denotes the
range of failure detector outputs of D). D(F) denotes the set of possible failure detector
histories permitted by D for the failure pattern F .

For example, consider the failure detector W mentioned in the introduction. Each
failure detector module of W outputs a set of processes that are suspected to have
crashed: in this case RW = 2Π. For each failure pattern F , W(F) is the set of all failure
detector histories HW with range RW that satisfy the following properties:

1. There is a time after which every process that crashes in F is always suspected by
some process that is correct in F :

∃t ∈ T , ∀p ∈ crashed(F), ∃q ∈ correct(F), ∀t′ ≥ t : p ∈ HW(q, t′)

2. There is a time after which some process that is correct in F is never suspected by
any process that is correct in F :

∃t ∈ T , ∃p ∈ correct(F), ∀q ∈ correct(F), ∀t′ ≥ t : p �∈ HW(q, t′)

Note that we specify a failure detector D as a function of the failure pattern F of
an execution. However, this does not preclude an implementation of D from using other
aspects of the execution such as when messages are received. Thus, executions with the

6

same failure pattern F may still have different failure detector histories. It is for this
reason that we allow D(F) to be a set of failure detector histories from which the actual
failure detector history for a particular execution is selected non-deterministically.

2.3 Algorithms

We model the asynchronous communication channels as a message buffer which contains
messages of the form (p, data, q) indicating that process p has sent data addressed to
process q and q has not yet received that message. An algorithm A is a collection of
n (possibly infinite state) deterministic automata, one for each of the processes. A(p)
denotes the automaton running on process p. Computation proceeds in steps of the
given algorithm A. In each step of A, process p performs atomically the following three
phases:4

Receive phase: p receives a single message of the form (q, data, p) from the message
buffer, or a “null” message, denoted λ, meaning that no message is received by p
during this step.

Failure detector query phase: p queries and receives a value from its failure detector
module. We say that p sees a value d when the value returned by p’s failure detector
module is d.

Send phase: p changes its state and sends a message to all the processes according to
the automaton A(p), based on its state at the beginning of the step, the message
received in the receive phase, and the value that p sees in the failure detector query
phase.

The message actually received by the process p in the receive phase is chosen non-
deterministically from amongst the messages in the message buffer addressed to p, and
the null message λ. The null message may be received even if there are messages in
the message buffer that are addressed to p: the fact that m is in the message buffer
merely indicates that m was sent to p. Since ours will be a model of asynchronous
systems, where messages may experience arbitrary (but finite) delays, the amount of
time m may remain in the message buffer before it is received is unbounded. Indeed,
our model will allow a message sent later than another to be received earlier than the
other. Though message delays are arbitrary, we also want them to be finite. We model
this by introducing a liveness assumption: every message sent will eventually be received,
provided its recipient makes “sufficiently many” attempts to receive messages. All this
will be made more precise later.

We also remark that the non-determinism arising from the choice of the message to be
received reflects the asynchrony of the message buffer — it is not due to non-deterministic
choices made by the process. The automaton A(p) is deterministic in the sense that the
message that p sends in a step and p’s new state are uniquely determined from the

4Our result also applies to models where steps have finer granularity (see Section 7.1).

7

present state of p, the message p received during the step and the failure detector value
seen by p during the step.

To keep things simple we assume that a process p sends a message m to q at most
once. This allows us to speak of the contents of the message buffer as a set, rather than
a multiset. We can easily enforce this by adding a counter to each message sent by p to
q — so this assumption does not damage generality.

2.4 Configurations, runs and environments

A configuration is a pair (s,M), where s is a function mapping each process p to its local
state, and M is a set of triples of the form (q, data, p) representing the messages presently
in the message buffer. An initial configuration of an algorithm A is a configuration (s,M),
where s(p) is an initial state of A(p) and M = ∅. A step of a given algorithm A transforms
one configuration to another. A step of A is uniquely determined by the identity of the
process p that takes the step, the message m received by p during that step, and the
failure detector value d seen by p during the step. Thus, we identify a step of A with a
tuple (p,m, d, A). If the message received in that step is the null message, then m = λ,
otherwise m is of the form (−,−, p).5 We say that a step e = (p,m, d, A) is applicable
to a configuration C = (s,M) if and only if m ∈M ∪ {λ}. We write e(C) to denote the
unique configuration that results when e is applied to C.

A schedule S of algorithm A is a finite or infinite sequence of steps of A. S⊥ denotes
the empty schedule. We say that a schedule S of an algorithm A is applicable to a
configuration C if and only if (a) S = S⊥, or (b) S[1] is applicable to C, S[2] is applicable
to S[1](C), etc (we denote by v[i] the ith element of a sequence v). If S is a finite schedule
applicable to C, S(C) denotes the unique configuration that results from applying S to
C. Note S⊥(C) = C for all configurations C. Let C be any configuration and S be any
schedule applicable to C. We say that C ′ is a configuration of the pair (S,C) if there is
a finite prefix S ′ of S such that C ′ = S ′(C).

A partial run of algorithm A using a failure detector D is a tuple R = 〈F ,HD, I, S, T 〉
where F is a failure pattern, HD ∈ D(F) is a failure detector history, I is an initial
configuration of A, S is a finite schedule of A, and T is a finite list of increasing time
values (indicating when each step in S occurred) such that |S| = |T |, S is applicable to
I , and for all i ≤ |S|, if S[i] is of the form (p,m, d, A) then:

• p has not crashed by time T [i], i.e., p /∈ F (T [i])

• d is the value of the failure detector module of p at time T [i], i.e., d = HD(p, T [i])

Informally, a partial run of A using D represents a point of an execution of A using D.
A run of an algorithm A using a failure detector D is a tuple R = 〈F ,HD, I, S, T 〉

where F is a failure pattern, HD ∈ D(F) is a failure detector history, I is an initial
configuration of A, S is an infinite schedule of A, and T is an infinite list of increasing
time values indicating when each step in S occurred. In addition to satisfying the above
properties of a partial run, a run must also satisfy the following properties:

5Throughout this paper, a “−” in a tuple denotes an arbitrary value of the appropriate type.

8

• Every correct process takes an infinite number of steps in S. Formally:

∀p ∈ correct(F), ∀i, ∃j > i : S[j] is of the form (p,−,−, A)

• Every message sent to a correct process is eventually received. Formally:

∀p ∈ correct(F), ∀C = (s,M) of (S, I) : m = (q, data, p) ∈M ⇒
(∃i : S[i] is of the form (p,m,−, A))

In [CT91], it is shown that any algorithm that uses W to solve Consensus requires
n > 2f . With other failure detectors the requirements may be different. For example,
there is a failure detector that can be used to solve Consensus only if p1 and p2 do not both
crash. In general whether a given failure detector can be used to solve Consensus depends
upon assumptions about the underlying “environment”. Formally, an environment E (of
an asynchronous system) is set of possible failure patterns.6

3 The Consensus problem

In the Consensus problem, each process p has an initial value, 0 or 1, and must reach an
irrevocable decision on one of these values. Thus, the algorithm of process p, A(p), has
two distinct initial states σp

0 and σp
1 signifying that p’s initial value is 0 or 1. A(p) also

has two disjoint sets of decision states Σp
0 and Σp

1.
We say that algorithm A uses failure detector D to solve Consensus in environment

E if every run R = 〈F ,HD, I, S, T 〉 of A using D where F ∈ E satisfies:

Termination: Every correct process eventually decides some value. Formally:

∀p ∈ correct(F), ∃C = (s,M) of (S, I) : s(p) ∈ Σp
0 ∪ Σp

1

Irrevocability: Once a correct process decides a value, it remains decided on that value.
Formally, let S[1..i] be the prefix of S consisting of the first i elements of S:

∀p ∈ correct(F), ∀k ∈ {0, 1}, ∀i ≤ i′ :
(S[1..i](I) = (s,M) ∧ S[1..i′](I) = (s′,M ′) ∧ s(p) ∈ Σp

k)⇒ s′(p) ∈ Σp
k

Agreement: No two correct processes decide differently.

Formally:

∀p, p′ ∈ correct(F), ∀C = (s,M) of (S, I), ∀k, k′ ∈ {0, 1} :

(s(p) ∈ Σp
k ∧ s(p′) ∈ Σp′

k′)⇒ k = k′

6In a synchronous system, assumptions about the underlying environment may also include other
characteristics such as the relative process speeds, the maximum message delay, the degree of clock
synchronization, etc. In such a system, a more elaborate definition of an environment would be required.

9

Validity: If a correct process decides v, then v was proposed by some process.

Formally, let I = (s0,M0):

∀p ∈ correct(F), ∀k ∈ {0, 1} : (∃C = (s,M) of (S, I) :
s(p) ∈ Σp

k)⇒ (∃q ∈ Π : s0(q) = σq
k)

4 Reducibility

We now define what it means for an algorithm TD→D′ to transform a failure detector
D into another failure detector D′ in an environment E . Algorithm TD→D′ uses D to
maintain a variable outputp at every process p. This variable, reflected in the local state
of p, emulates the output of D′ at p. Let OR be the history of all the output variables
in run R, i.e., OR(p, t) is the value of outputp at time t in run R. Algorithm TD→D′

transforms D into D′ in E if and only if for every run R = 〈F ,HD, I, S, T 〉 of TD→D′

using D, where F ∈ E , OR ∈ D′(F).

#

"

!

'

&

$

%

TD→D′

D

Algorithm B uses D′

D′ emulated

Figure 1: Transforming D into D′

Given the reduction algorithm TD→D′, anything that can be done using failure de-
tector D′ in environment E , can be done using D instead. To see this, suppose a given
algorithm B requires failure detector D′ (when it executes in E), but only D is avail-
able. We can still execute B as follows. Concurrently with B, processes run TD→D′ to
transform D into D′. We modify Algorithm B at process p as follows: whenever p is
required to query its failure detector module, p reads the current value of outputp (which
is concurrently maintained by TD→D′) instead. This is illustrated in Figure 1.

Intuitively, since TD→D′ is able to use D to emulate D′, D provides at least as much
information about process failures in E as D′ does. Thus, if there is an algorithm TD→D′

10

that transforms D into D′ in E , we write D �E D′ and say that D′ is reducible to D in
E ; we also say that D′ is weaker than D in E . Clearly, the reducibility relation �E is
transitive.

Note that, in general, TD→D′ need not emulate all the failure detector histories of
D′ (in environment E); what we do require is that all the failure detector histories it
emulates be histories of D′ (in that environment).

5 An outline of the result

In [CT91], it is shown that W can be used to solve Consensus in any environment in
which n > 2f . We now show thatW is weaker than any failure detector that can be used
to solve Consensus. This result holds for any environment E . Together with [CT91], this
implies thatW is indeed the weakest failure detector that can be used to solve Consensus
in any environment in which n > 2f .

To prove our result, we first define a new failure detector, denoted Ω, that is at least
as strong as W. We then show that any failure detector D that can be used to solve
Consensus is at least as strong as Ω. Thus, D is at least as strong as W.

The output of the failure detector module of Ω at a process p is a single process, q,
that p currently considers to be correct; we say that p trusts q. In this case, RΩ = Π.
For each failure pattern F , Ω(F) is the set of all failure detector histories HΩ with range
RΩ that satisfy the following property:

• There is a time after which all the correct processes always trust the same correct
process:

∃t ∈ T , ∃q ∈ correct(F), ∀p ∈ correct(F), ∀t′ ≥ t : HΩ(p, t′) = q

As with W, the output of the failure detector module of Ω at a process p may change
with time, i.e., p may trust different processes at different times. Furthermore, at any
given time t, processes p and q may trust different processes.

Theorem 1: For all environments E , Ω �E W.

Proof: [Sketch] The reduction algorithm TΩ→W that transforms Ω intoW is as follows.
Each process p periodically sets outputp ← Π−{q}, where q is the process that p currently
trusts according to Ω. It is easy to see that (in any environment E) this output satisfies
the two properties of W. 2

Theorem 2: For all environments E , if a failure detector D can be used to solve
Consensus in E , then D �E Ω.

Proof: The reduction algorithm TD→Ω is shown in Section 6. It is the core of our result.
2

Corollary 3: For all environments E , if a failure detector D can be used to solve Con-
sensus in E , then D �E W.

11

Proof: If D can be used to solve Consensus in E , then, by Theorem 2, D �E Ω. From
Theorem 1, Ω �E W. By transitivity, D �E W. 2

In [CT91] it is shown that, for all environments E in which n > 2f , W can be used to
solve Consensus. Together with Corollary 3, this shows that:

Theorem 4: For all environments E in which n > 2f ,W is the weakest failure detector
that can be used to solve Consensus in E .

6 The reduction algorithm

6.1 Overview

Let E be an environment, D be a failure detector that can be used to solve Consensus in
E , and ConsensusD be the Consensus algorithm that uses D. We describe an algorithm
TD→Ω that transforms D into Ω in E . Intuitively, this algorithm works as follows.

Fix an arbitrary run of TD→Ω using D, with failure pattern F ∈ E and failure detector
history HD ∈ D(F). Processes periodically query their failure detector D and exchange
information about the values of HD that they see in this run. Using this information, pro-
cesses construct a directed acyclic graph (DAG) that represents a “sampling” of failure
detector values in HD and some temporal relationships between the values sampled.

To illustrate this, suppose that process q1 queries its failure detector D for the
k1-th time and sees value d1; q1 then sends to all processes the message [q1, d1, k1]. When
a process q2 receives [q1, d1, k1] it can add vertex [q1, d1, k1] to its (current) version of
the DAG: This vertex indicates that q1 saw d1 in its k1-th failure detector query. When
q2 later queries D and sees the value d2 (say this is its k2-th query), it adds vertex
[q2, d2, k2], and edge [q1, d1, k1] → [q2, d2, k2], to its DAG: This edge indicates that q1

saw d1 (in its k1-th query) before before q2 saw d2 (in its k2-th query). By periodically
sending its current version of the DAG to all processes, and incorporating all the DAGs
that it receives into its own DAG, every correct process can construct ever increasing
finite approximations of the same (infinite) limit DAG G.

It turns out that DAG G can be used to simulate runs of ConsensusD with failure
pattern F and failure detector history HD. These are runs that could have occurred if
processes were running ConsensusD instead of TD→Ω.

To illustrate this, consider a path of G, say g = [q1, d1, k1], [q2, d2, k2], [q3, d3, k3], . . .
We can use this path to simulate schedules of runs of ConsensusD in which q1 takes the
first step and sees failure detector value d1, q2 takes the second step and sees d2, q3 takes
the third step and sees d3, etc. We say that such a schedule is “compatible” with path
g. Note that there are many schedules of ConsensusD that are compatible with g: For
each step, we have a choice of which message to receive — either one of the messages
contained in the simulated buffer (i.e., a message previously sent but not yet received)
or the empty message.

Now consider any initial configuration I of ConsensusD. The set of simulated sched-
ules of ConsensusD that are compatible with some path of G and are also applicable to

12

I can be organized as a tree: paths in this tree represent simulated runs of ConsensusD
with initial configuration I , and branching occurs at the points where simulated runs
diverge. By considering several initial configurations of ConsensusD, we obtain a forest
of simulated runs of ConsensusD: a tree for each different initial configuration.

Thus, the (infinite) DAG G induces an (infinite) simulation forest Υ of runs of
ConsensusD with failure pattern F and failure detector history HD. Using Υ, we show
that it is possible to extract the identity of a process p∗ that is correct in F , and we give
the extraction algorithm.

The simulation forest Υ, however, is infinite and cannot be computed by any process.
Fortunately, the information needed by the extraction algorithm to identify p∗ is present
in a “crucial” finite subgraph of Υ that processes are able to eventually compute. When
running TD→Ω, each process p constructs ever increasing finite approximations of the
DAG G. Using these approximations, p also constructs ever increasing finite approxi-
mations of Υ that eventually include the crucial subgraph needed to extract p∗. At all
times, p runs the extraction algorithm on its present finite approximation of Υ to select
some process that it considers to be correct: once p’s approximation of Υ includes the
crucial subgraph, the extraction algorithm will select p∗ (forever). Thus, there is a time
after which all correct processes trust the same correct process, p∗—which is exactly
what Ω requires.

Having given an overall account of how the transformation of D to Ω works, we
now provide a roadmap for the rest of this section. We first define the DAGs G that
allow us to induce an infinite simulation forest Υ (Section 6.2), and to extract a correct
process from Υ (Sections 6.3–6.5). We then show how processes compute ever increasing
approximations of such a G and corresponding Υ (Section 6.6.1) . Finally, we show
that by periodically extracting a process from their current finite approximation of Υ,
all correct processes will eventually keep extracting (forever) the same correct process
(Section 6.6.2).

We now state some conventions that simplify the discussion that follows. We say
that a process is correct (crashes) if it is correct (crashes) in F . For the rest of this
paper, whenever we refer to a run of ConsensusD, we mean a run of ConsensusD using
D. Furthermore, we only consider schedules of ConsensusD, and so we write (p,m, d)
instead of (p,m, d,ConsensusD) to denote a step.

6.2 A DAG and a forest

Let D be a failure detector that can be used to solve Consensus in environment E . Given
an arbitrary failure pattern F ∈ E , and failure detector history HD ∈ D(F), let G be
any infinite DAG with the following properties:

1. The vertices of G are of the form [p, d, k] where p ∈ Π, d ∈ RD and k ∈ N. Each
vertex is labeled with a time (an element in T) such that:

(a) If vertex [p, d, k] is labeled with t, then p /∈ F (t) and d = HD(p, t) (i.e., at
time t, p has not crashed and the value of p’s failure detector module is d).

13

(b) If vertices v1 and v2 are labeled with t1 and t2, respectively, and v1 → v2 is
an edge of G, then t1 < t2.

2. If [p, d, k], [p, d′, k′] are vertices of G and k < k′, then [p, d, k]→ [p, d′, k′] is an edge
of G.

3. G is transitively closed.

4. Let V be any finite subset of vertices of G and p be any correct process. There is
a d ∈ RD and a k ∈ N such that for every vertex v ∈ V , v → [p, d, k] is an edge of
G.

Note that G contains only a “sampling” of the failure detector values that occur in HD,
and only a subset of the temporal relationships that relate them. In other words, we do
not require that G contain all the values that occur in HD, or that it relate (with an
edge) all its values according to the time at which they occur in HD. However, Property 4
implies that G contains infinitely many “samplings” of the failure detector module of
each correct process.

Let g = [q1, d1, k1], [q2, d2, k2], . . . be any (finite or infinite) path of G. A schedule S
is compatible with g if it has the same length as g, and S = (q1, m1, d1), (q2, m2, d2), . . .,
for some (possibly null) messages m1, m2, . . . We say that S is compatible with G if it is
compatible with some path of G.

Let I be any initial configuration of ConsensusD. Consider a schedule S that is
compatible with G and applicable to I . Intuitively, S is the schedule of a possible run of
ConsensusD with initial configuration I , failure pattern F , and failure detector history
HD.

We can represent all the schedules that are compatible with G and applicable to I
as a tree. This is called the simulation tree ΥI

G induced by G and I and is defined as
follows. The set of vertices of ΥI

G is the set of finite schedules S that are compatible
with G and are applicable to I . The root of ΥI

G is the empty schedule S⊥. There is
an edge from vertex S to vertex S ′ if and only if S ′ = S · e for a step e;7 this edge is
labeled e. With each (finite or infinite) path in ΥI

G, we associate the unique schedule
S = e1, e2, . . . , ek, . . . consisting of the sequence of labels of the edges on that path. Note
that if a path starts from the root of ΥI

G and it is finite, the schedule S associated with
it is also the last vertex of that path.

The following two lemmata make precise the connection between paths of ΥI
G and

runs of ConsensusD. The proofs, which follow directly from the definitions, are included
in the Appendix.

Lemma 5: Let S be a schedule associated with a finite path of ΥI
G that starts from the

root of ΥI
G. There is a sequence of times T such that 〈F ,HD, I, S, T 〉 is a partial run of

ConsensusD.

Lemma 6: Let S be a schedule associated with an infinite path of ΥI
G that starts from

the root of ΥI
G . If in S every correct process takes an infinite number of steps and every

7If u, w are sequences and u is finite then u · w denotes the concatenation of the two sequences.

14

message sent to a correct process is eventually received, there is a sequence of times T
such that 〈F ,HD, I, S, T 〉 is a run of ConsensusD.

The following lemmata state some “richness” properties of the simulation trees in-
duced by G (their proofs are in the Appendix).

Lemma 7: For any two initial configurations I and I ′, if S is a vertex of ΥI
G and is

applicable to I ′ then S is also a vertex of ΥI ′
G .

Lemma 8: Let S be any vertex of ΥI
G and p be any correct process. Let m be a message

in the message buffer of S(I) addressed to p or the null message. For some d, S has a
child S · (p,m, d) in ΥI

G.

Lemma 9: Let S be any vertex of ΥI
G and p be any process. Let m be a message in

the message buffer of S(I) addressed to p or the null message. Let S ′ be a descendent
of S such that, for some d, S ′ · (p,m, d) is in ΥI

G. For each vertex S ′′ on the path from
S to S ′ (inclusive), S ′′ · (p,m, d) is also in ΥI

G.

Lemma 10: Let S, S0, and S1 be any vertices of ΥI
G. There is a finite schedule E

containing only steps of correct processes such that:

1. S · E is a vertex of ΥI
G and all correct processes have decided in S ·E(I).

2. For i = 0, 1, if E is applicable to Si(I) then Si · E is a vertex of ΥI
G.

Let I i, 0 ≤ i ≤ n, denote the initial configuration of ConsensusD in which the initial
values of p1 . . . pi are 1, and the initial values of pi+1 . . . pn are 0. The simulation forest
induced by G is the set {ΥI0

G ,ΥI1

G , . . . ,ΥIn

G } of simulation trees induced by G and initial
configurations I0, I1, . . . , In.

6.3 Tagging the simulation forest

We assign a set of tags to each vertex of every tree in the simulation forest induced by
G. Vertex S of tree ΥI

G gets tag k if and only if it has a descendent S ′ (possibly S ′ = S)
such that some correct process has decided k in S ′(I). Hereafter, Υi denotes the tagged
tree ΥIi

G , and Υ denotes the tagged simulation forest {Υ0,Υ1, . . . ,Υn}.

Lemma 11: Every vertex of Υi has at least one tag.

Proof: From Lemma 10, every vertex S of Υi has a descendent S ′ = S · E (for some
E) such that all correct processes have decided in S ′(I i). 2

A vertex of Υi is monovalent if it has only one tag, and bivalent if it has both tags, 0 and
1. A vertex is 0-valent if it is monovalent and is tagged 0; 1-valent is similarly defined.

Lemma 12: Every vertex of Υi is either 0-valent, 1-valent, or bivalent.

15

Proof: Immediate from Lemma 11. 2

Lemma 13: The ancestors of a bivalent vertex are bivalent. The descendents of a k-
valent vertex are k-valent.

Proof: Immediate from the definitions. 2

Lemma 14: If vertex S of Υi has tag k, then no correct process has decided 1 − k in
S(I i).

Proof: Since S has tag k, it has a descendent S ′ such that a correct process p has
decided k in S ′(I i). From Lemma 5, there is a T such that R = 〈F ,HD, I

i, S ′, T 〉
is a partial run of ConsensusD. Since p has decided k in S ′(I i), from the agreement
requirement of Consensus, no correct process has decided 1 − k in S ′(I i). Since S ′ is a
descendent of S, from the irrevocability requirement of Consensus, no correct process
could have decided 1− k in S(I i). 2

Lemma 15: If vertex S of Υi is bivalent, then no correct process has decided in S(I i).

Proof: Immediate from Lemma 14. 2

Recall that in I0 all processes have initial value 0, and in In they all have initial value 1.

Lemma 16: The root of Υ0 is 0-valent; the root of Υn is 1-valent.

Proof: We first show that the root of Υ0 is 0-valent. Suppose, for contradiction, that
the root of Υ0 has tag 1. There must be a vertex S of Υ0 such that some correct process
has decided 1 in S(I0). From Lemma 5, there is a T such that R = 〈F ,HD, I

0, S, T 〉
is a partial run of ConsensusD. R violates the validity requirement of Consensus—a
contradiction. Thus the root of Υ0 cannot have a tag of 1. From Lemma 11, the root of
Υ0 has at least one tag: thus it is 0-valent.

By a symmetric argument, the root of Υn is 1-valent. 2

Index i is critical if the root of Υi is bivalent, or if the root of Υi−1 is 0-valent while the
root of Υi is 1-valent. In the first case, we say that index i is bivalent critical ; in the
second case, we say that i is monovalent critical.

Lemma 17: There is a critical index i, 0 < i ≤ n.

Proof: Apply Lemmata 12 and 16 to the roots of Υ0, Υ1, . . . ,Υn. 2

The critical index i is the key to extracting the identity of a correct process. In fact, if i
is monovalent critical, we shall prove that pi must be correct (Lemma 19). If i is bivalent
critical, the correct process will be found by focusing on the tree Υi, as explained in the
following section.

16

6.4 Of hooks and forks

We describe two forms of finite subtrees of Υi referred to as decision gadgets of Υi. Each
type of decision gadget is rooted at the root S⊥ of Υi and has exactly two leaves: one
0-valent and one 1-valent. The least common ancestor of these leaves is called the pivot.
The pivot is clearly bivalent.

hh

h

h

�
�
�

@
@
@

S
(pivot)

{0, 1}

S⊥

Root

S · (p,m, d)

{0}

{1}
S · (p,m′, d′)

Figure 2: A fork—p is the deciding process

The first type of decision gadget, called a fork, is shown in Figure 2. The two leaves are
children of the pivot, obtained by applying different steps of the same process p. Process
p is called the deciding process of the fork, because its step after the pivot determines
the decision of correct processes.

hh

h

h

h�
�
�

�
�
�@

@
@

S
(pivot)

{0, 1}

S⊥

Root

{0}

S ′ = S · (p,m, d)

{1}
S ′ · e

S · e

Figure 3: A hook—p is the deciding process

The second type of decision gadget, called a hook, is shown in Figure 3. Let S be
the pivot of the hook. There is a step e such that S · e is one leaf, and the other
leaf is S · (p,m, d) · e for some p,m, d. Process p is called the deciding process of the
hook, because the decision of correct processes is determined by whether p takes the step
(p,m, d) before e. (The tags of the leaves S · e and S ′ · e may be reversed in a hook
relative to the tags shown in Figure 3: it may be that 1 is the only tag of S · e and 0 is

17

the only tag of S ′ · e.)8

We shall prove that the deciding process p of a decision gadget, whether a fork or
a hook, must be correct (Lemma 21). Intuitively, this is because if p crashes, then no
process can figure out whether p has taken the step that determines the decision value;
indeed, this is so even though processes can consult the failure detector D. Thus, if p
crashes, then no process can decide — contradicting the correctness of ConsensusD.

S ← S⊥ {S⊥ is the bivalent root of Υi}
repeat forever

Let p be the next correct process in round-robin order
Let m be the oldest message addressed to p in the message buffer of S(I i)

(if no such message exists, m = λ)
if S has a descendent S ′ (possibly S ′ = S) such that

for some d, S ′ · (p,m, d) is a bivalent vertex in Υi

then S ← S ′ · (p,m, d) {S is bivalent}
else exit

Figure 4: Generating path π in Υi

Lemma 18: If index i is bivalent critical then Υi has at least one decision gadget (and
hence a deciding process).

Proof: Starting from the bivalent root of Υi, we generate a path π in Υi, all the vertices
of which are bivalent, as follows. We consider all correct processes in round-robin fashion.
Suppose we have generated path S so far, and it is the turn of process p. Let m be the
the oldest message addressed to p that is in the message buffer of S(I i).9 (If no such
message exists, we take m to be the null message.) We try to extend the path S so that
the last edge in the extension corresponds to p receiving m and the target of that edge is
a bivalent vertex. The path construction ends if and when such an extension is no longer
possible. This construction is shown in Figure 4. Each iteration of the loop extends the
path by at least one edge. Let π be the path generated by these iterations; π is finite or
infinite depending on whether the loop terminates.

Claim 1: π is finite.

Proof: Suppose, for contradiction, that π is infinite. Let S be the schedule associated
with π. By construction, in S every correct process takes an infinite number of steps and
every message sent to a correct process is eventually received. By Lemma 6, there is a
T such that R = 〈F ,HD, I

i, S, T 〉 is a run of ConsensusD. By construction, all vertices
in π are bivalent. By Lemma 15, no correct process decides in R, thus violating the
termination requirement of Consensus—a contradiction. 2claim 1

8A fork may be a subgraph of a hook.
9By a slight abuse of notation we identify a finite path from the root of Υi and its associated schedule.

18

Let S be the last vertex of π (clearly, S is bivalent). Let p be the next correct process
in round-robin order when the loop in Figure 4 terminates. Let m be the oldest message
addressed to p in the message buffer of S(I i) (if no such message exists, m is the null
message). The loop exit condition is:

For all descendents S ′ of S (including S ′ = S) and all d, (∗)
S ′ · (p,m, d) is not a bivalent vertex of Υi.

From Lemma 8, for some d, S has a child S · (p,m, d) in Υi. By (∗) and Lemma 12,
S · (p,m, d) is monovalent. Without loss of generality, assume it is 0-valent.

Claim 2: For some d′ there is a descendent S ′ of S such that S ′ · (p,m, d′) is a 1-valent
vertex of Υi, and the path from S to S ′ contains no edge labeled (p,m,−).

Proof: Since S is bivalent, it has a descendent S∗ such that some correct process has
decided 1 in S∗(I i). From Lemmata 11 and 14, S∗ is 1-valent. There are two cases:

1. The path from S to S∗ does not have an edge labeled (p,m,−). Suppose m �= λ.
Since m is in the message buffer of S(I i) and p does not receive m in the path
from S to S∗, m is still in the message buffer of S∗(I i). From Lemma 8 (which
also applies if m = λ), for some d′, S∗ · (p,m, d′) is in Υi. Since S∗ is 1-valent, by
Lemma 13, S∗ · (p,m, d′) is also 1-valent. In this case, the required S ′ is S∗.

2. The path from S to S∗ has an edge labeled (p,m,−). Let (p,m, d′) be the first
such edge on that path. Let S ′ be the source of this edge. By (∗) and Lemma 12,
S ′ · (p,m, d′) is monovalent. Since S ′ · (p,m, d′) has a 1-valent descendent S∗, by
Lemma 13, S ′ · (p,m, d′) is 1-valent. 2claim 2

Consider the vertex S ′ and edge (p,m, d′) of Claim 2. By Lemma 9, for each vertex S ′′

on the path from S to S ′ (inclusive), S ′′ · (p,m, d′) is also in Υi. By (∗) and Lemma 12,
all such vertices S ′′ · (p,m, d′) are monovalent. In particular, S · (p,m, d′) is monovalent.
There are two cases (see Figure 5):

1. S · (p,m, d′) is 1-valent. Since S · (p,m, d) is 0-valent, Υi has a fork with pivot S.

2. S · (p,m, d′) is 0-valent. Recall that S ′ · (p,m, d′) is 1-valent and for each vertex
S ′′ between S and S ′, S ′′ · (p,m, d′) is monovalent. Thus, the path from S to S ′

must have two vertices S0 and S1 such that S0 is the parent of S1, S0 · (p,m, d′) is
0-valent and S1 · (p,m, d′) is 1-valent. Hence, Υi has a hook with pivot S0. 2

6.5 Extracting the correct process

By Lemma 17, there is a critical index i. If i is monovalent critical, Lemma 19 below
shows how to extract a correct process. If i is bivalent critical, a correct process can be
found by applying Lemmata 18 and 21.

Lemma 19: If index i is monovalent critical then pi is correct.

Proof: Suppose, for contradiction, that pi crashes. By Lemma 10(1) (applied to the
root S = S⊥ of Υi), there is a finite schedule E that contains only steps of correct

19

h

h

h

h h

h
h

h

h

h

�
�
�

@
@
@

�
�
�

�
�
�

�
�
�

,
,
,
,
,
,
,
,
,
,
,

���
���

���
���

���

S ′

(p,m, d)

1-valent

0-valent

π

(p,m, d′)

(p,m, d′)

(p,m, d′)

(p,m, d′)

S1

S0 (pivot of hook)

S (bivalent)

S⊥

0-valent

1-valent

Hook (for case 2)

Fork (for case 1)

Figure 5: The decision gadgets in Υi if i is bivalent critical

processes (and hence no step of pi) such that all correct processes have decided in E(I i).
Since index i is monovalent critical, the root S⊥ of Υi is 1-valent. Hence all correct
processes must have decided 1 in E(I i).

I i and I i−1 only differ in the state of pi. Since E is applicable to I i and does not
contain any steps of pi, an easy induction on the number of steps in E shows that: (a) E
is also applicable to I i−1, and (b) the state of all processes other than pi are the same in
E(I i) and E(I i−1). Using Lemma 7, (a) implies that E is also a vertex of Υi−1. By (b),
all correct processes have decided 1 in E(I i−1). Thus the root of Υi−1 has tag 1. Since i
is monovalent critical, the root of Υi−1 is 0-valent—a contradiction. 2

Lemma 20: Let S be any bivalent vertex of Υi, and S0, S1 be any 0-valent and 1-valent
descendents of S. If there is a process p such that the paths from S to S0 and from S to
S1 contain only steps of the form (p,−,−), then p is correct.

Proof: Suppose, for contradiction, that p crashes. From Lemma 10, there is a schedule
E containing only steps of correct processes (and hence no step of p) such that:

i. S · E is a vertex of Υi and all correct processes have decided in S · E(I i).

ii. For k = 0, 1, if Sk · E is applicable to I i then Sk · E is a vertex of Υi.

Without loss of generality assume that all correct processes decided 0 in S · E(I i).

20

h

h

h h

h

h

S · E (Correct processes assumed to have
decided 0)

S1 ·E

S0 (0-valent)S1 (1-valent)

S (bivalent)

S⊥

Figure 6: Lemma 20

Refer to Figure 6. Since all steps in the path from S to S1 are steps of p, the state of
every process other than p is the same in S(I i) and in S1(I

i). Furthermore, any message
addressed to a process other than p that is in the message buffer in S(I i) is still in the
message buffer in S1(I

i). Since E is applicable to S(I i) and does not contain any steps
of p, an easy induction on the number of steps in E shows that: (a) E is also applicable
to S1(I

i), and (b) the state of every process other than p is the same in S · E(I i) and
S1 · E(I i). By (ii), (a) implies that S1 · E(I i) is a vertex in Υi. By (b), all correct
processes decide 0 in S1 ·E(I i). So S1, has tag 0. But S1 is 1-valent—a contradiction.2

Lemma 21: The deciding process of a decision gadget is correct.

Proof: Let γ be any decision gadget of Υi. There are two cases to consider:

1. γ is a fork. By Lemma 20, the deciding process of γ is correct.

2. γ is a hook. Assume (without loss of generality) that S is the pivot of γ, S0 =
S ·(p′, m′, d′) is the 0-valent leaf of γ and S1 = S ·(p,m, d) ·(p′, m′, d′) is the 1-valent
leaf of γ (see Figure 7). There are two cases:

(a) p = p′. By Lemma 20, p is correct.

(b) p �= p′. Suppose, for contradiction, that p crashes. By Lemma 10, there is a
schedule E containing only steps of correct processes (and hence no step of
p) such that:

i. S0 ·E is a vertex of Υi and all correct processes have decided in S0 ·E(I i).
Since S0 is 0-valent, all correct processes must have decided 0 in S0 ·E(I i).

ii. If E is applicable to S1(I
i) then S1 ·E is a vertex of Υi.

21

h

h

h h

h

h

h

�
�
�

@
@
@

�
�
�

S⊥

S (bivalent)

S ′ = S · (p,m, d)

S1 · E

S0 · E

S1 = S ′ · (p′, m′, d′)

S0 = S · (p′, m′, d′)

(1-valent)

(0-valent)

Figure 7: Lemma 21

Let S ′ = S ·(p,m, d) be the parent of S1. The state of every process other than
p is the same in S(I i) and S ′(I i). Furthermore, any message addressed to a
process other than p that is in the message buffer in S(I i) is still in the message
buffer in S ′(I i). Therefore, since S0 = S · (p′, m′, d′) and S1 = S ′ · (p′, m′, d′),
the state of every process other than p is the same in S0(I

i) and S1(I
i). In

addition, any message addressed to a process other than p that is in the
message buffer in S0(I

i) is also in the message buffer in S1(I
i). Since E is

applicable to S0(I
i) and does not contain any steps of p, an easy induction

on the number of steps in E shows that: (a) E is also applicable to S1(I
i),

and (b) the state of every process other than p is the same in S0 · E(I i) and
S1 · E(I i). By (ii), (a) implies that S1 · E is a vertex of Υi. By (b), all
correct processes decide 0 in S1 · E(I i). Thus S1, receives a tag of 0. But S1

is 1-valent—a contradiction. 2

There may be several critical indices and several decision gadgets in the simulation forest.
Thus, Lemmata 19 and 21 may identify many correct processes. Our selection rule will
choose one of these, as the failure detector Ω requires, as follows. It first determines
the smallest critical index i. If i is monovalent critical, it selects pi. If, on the other
hand, i is bivalent critical, it chooses the “smallest” decision gadget in Υi according to
some encoding of gadgets, and selects the corresponding deciding process. It is easy to
encode finite graphs as natural numbers. Since a decision gadget is just a finite graph,
the selection rule can use any such encoding. The whole method of selecting a correct

22

process is shown in Figure 8 (recall that G is any directed acyclic graph that satisfies
Properties 1–4 of Section 6.2 with respect to the given failure pattern F).

{Build and tag simulation forest Υ induced by G}
for i← 0, 1, . . . , n:

Υi ← simulation tree induced by G and I i

for every vertex S of Υi

if S has a descendent S ′ such that a correct process has decided k in S ′(I i)
then add tag k to S

{Select a process from tagged simulation forest Υ}
i← smallest critical index (1)
if i is monovalent critical then return pi (2)
else return deciding process of the smallest decision gadget in Υi (3)

Figure 8: Selecting a correct process

Theorem 22: The algorithm in Figure 8 selects a correct process.

Proof: By Lemma 17, there is a critical index i, 0 < i ≤ n. If i is monovalent critical,
Line (2) returns pi which, by Lemma 19, is correct. If i is bivalent critical, by Lemma 18,
Υi contains at least one decision gadget. Let γ be the decision gadget in Υi with the
smallest encoding. By Lemma 21, the deciding process of γ is correct in F . Thus,
Line (3) returns the identity of a process that is correct. 2

6.6 The reduction algorithm TD→Ω

The selection of a correct process described in Figure 8 is not yet the distributed algo-
rithm TD→Ω that we are seeking: it involves an infinite simulation forest and is “central-
ized”. To turn it into a distributed algorithm, we will modify it as follows. Each process
will cooperate with other processes to construct ever increasing finite approximations
of the same simulation forest. Such approximations will eventually contain the decision
gadget and the other tagging information necessary to extract the identity of the same
correct process chosen by the selection method in Figure 8.

Note that the selection method in Figure 8 involves three stages: The construction
of G, a DAG representing samples of failure detector values and some of their temporal
relationship; the construction and tagging of the simulation forest induced by G; and,
finally, the selection of a correct process using this forest.

Algorithm TD→Ω consists of two components. In the first component, each process
repeatedly queries its failure detector module and sends the failure detector values it
sees to the other processes. This component enables correct processes to construct ever
increasing finite approximations of the same DAG G. Since all inter-process communi-
cation occurs in this component, we call it the communication component of TD→Ω.

23

In the second component, each process repeatedly (a) constructs and tags the simula-
tion forest induced by its current approximation of graph G, and (b) selects the identity
of a process using its current simulation forest. Since this component does not require
any communication, we call it the computation component of TD→Ω.

6.6.1 The communication component

In this component processes cooperate to construct ever increasing approximations of the
same graph G. The communication component of TD→Ω for p, shown in Figure 9, works
as follows. Let Gp denote p’s current approximation of G. Every process p repeatedly
performs the following three tasks. (i) If p receives Gq for some q, it incorporates this
information by replacing Gp with the union of Gp and Gq. (ii) Process p queries its own
failure detector module. If this is the k-th query of p to its failure detector module, and
d is the value p sees in this query, then p adds [p, d, k] to Gp. Let [p′, d′, k′] be any vertex
that was in Gp just before this insertion. Clearly p saw d in its k-th query after p′ saw
d′ in its k′-th query. Thus p adds an edge from every such [p′, d′, k′] in Gp to [p, d, k].
(iii) Process p sends its updated Gp to all processes.

Note that the body of the repeat forever loop in Figure 9 corresponds to a single
step of p’s algorithm, and that each step is subdivided in three phases: receive, failure
detector query, and send. This conforms to our model, as defined in Section 2. Recall
that in this model the three phases of a step occur atomically at some discrete time t.
If p takes a step at time t, we denote by Gp(t) the value of Gp at the end of that step.

{Build the directed acyclic graph Gp}
Gp ← empty graph
kp ← 0
repeat forever

Receive phase:
p receives m

Failure detector query phase:
dp ← query failure detector D
kp ← kp + 1

Send phase:
if m is of the form (q, Gq, p) then Gp ← Gp ∪Gq (1)
add [p, dp, kp] to Gp and edges from all other vertices of Gp to [p, dp, kp] (2)
outputp ← computation component {Figure 10} (3)
p sends (p,Gp, q) to all q ∈ Π (4)

Figure 9: Process p’s communication component

24

To show that the local graphs constructed by the communication component are ever
increasing finite approximations of the same infinite limit graph, we first prove:

Lemma 6.6.1.1 For any correct process p and any time t:

1. Gp(t) is a subgraph of Gp(t
′), for all t′ ≥ t.

2. For every correct process q, there is a time t′ ≥ t such that Gp(t) is a subgraph of
Gq(t

′).

Proof: The first part of the lemma follows from the fact that no vertex or edge of Gp

is ever removed. Since p is correct, at some time t′ ≥ t it sends its local graph Gp(t
′)

to all processes, including q. Since q is correct, it eventually receives Gp(t
′), and then

replaces Gq with Gq ∪ Gp(t
′), say at time t′′. By the first part of the lemma, Gp(t) is a

subgraph of Gp(t
′). Thus, Gp(t) is a subgraph of Gq(t

′′).
2

Lemma 6.6.1.1(1) allows us to define G∞
p =

⋃
t∈T Gp(t).

Lemma 6.6.1.2 For any correct processes p and q, G∞
p = G∞

q .

Proof: Let o be any vertex or edge of G∞
p , i.e., there is a time t at which o is in Gp(t).

From Lemma 6.6.1.1(2), there is a time t′ such that Gp(t) is a subgraph of Gq(t
′). Thus

o is in G∞
q . Thus G∞

p is a subgraph of G∞
q . By a symmetric argument, G∞

q is a subgraph
of G∞

p , hence G∞
p = G∞

q . 2

Lemma 6.6.1.2 allows us to define the limit graph G to be G∞
p for any correct process p.

We will show (Corollary 6.6.1.5) that G is an infinite DAG that has the four properties
defined in Section 6.2. To do so we first prove a technical lemma.

Lemma 6.6.1.3 Let v = [p, d, k] be a vertex of a local graph during the execution of the
communication component, and t be the earliest time when v appears in any local graph.

1. The first graph that contains v is Gp(t) (i.e., v is in Gp(t), but not in Gq(t
′), for

any process q and any time t′ < t). Moreover, at time t, p sees d, k is the value of
kp, and p inserts v in Gp.

2. If edge u → v is in some local graph during the execution of the communication
component, then u→ v is also in Gp(t).

3. Any local graph that contains v also contains Gp(t).

Proof: 1. Let q be the process that inserts v in its local graph Gq at time t. This inser-
tion occurs in Line (1) or (2) of q’s communication component. If it occurs in Line (1),
q must have received at time t a message with a graph that contains v. The process
that sent that message must have had v in its local graph before time t, contradicting
the definition of t. Thus, q inserts v in its local graph Gq by executing Line (2). Since
v = [p, d, k], it is clear that q = p, and the result immediately follows from p’s algorithm.

25

2. Let t′ be the earliest time when edge u→ v appears in any local graph, and q be the
process that adds u → v to its local graph Gq at time t′. By definition of t, t′ ≥ t. If
t′ > t, it must be that at time t′ process q receives a message that contains a graph with
the edge u→ v. The sender of that message had a local graph that contained the edge
u→ v some time before t′, contradicting the definition of t′. Therefore, t′ = t. Then, by
Part (1), q = p, and so u→ v is in Gp(t), as wanted.

3. Suppose, for contradiction, that some local graph contains v, but does not contain
Gp(t). Let t′ be the earliest time when such a local graph is formed, and say that this
occurs at process q. So Gq(t

′) contains v but not Gp(t). By definition of t, t′ ≥ t. By
Lemma 6.6.1.1(1), Gp(t

′) contains Gp(t), and so q �= p. Therefore, at time t′ process
q receives a message with a graph that contains v but not Gp(t). The sender of that
message must have had a local graph that contains v but not Gp(t) some time before t′,
contradicting the definition of t′. 2

Recall that we are considering a fixed run of TD→Ω, with failure pattern F , and failure
detector history HD ∈ D(F). We now prove that the local graphs constructed by the
communication component of TD→Ω satisfy four properties that are very similar to those
of the DAGs defined in Section 6.2. To state these properties, we define the label of a
vertex v of a local graph to be the earliest time when v appears in any local graph.

Lemma 6.6.1.4 For any correct process p and any time t:

1. The vertices of Gp(t) are of the form [p′, d′, k′] where p′ ∈ Π, d′ ∈ RD and k′ ∈ N.
The labels of the vertices of Gp(t) are such that:

(a) If vertex [p′, d′, k′] is labeled with t′, then p′ /∈ F (t′) and d′ = HD(p′, t′).

(b) If vertices v1 and v2 are labeled with t1 and t2, respectively, and v1 → v2 is an
edge of Gp(t), then t1 < t2.

10

2. If [p′, d′, k′] and [p′, d′′, k′′] are vertices of Gp(t), and k′ < k′′, then [p′, d′, k′] →
[p′, d′′, k′′] is an edge of Gp(t).

3. Gp(t) is transitively closed.

4. There is a time t′ ≥ t, a d ∈ RD and a k ∈ N such that for every vertex v of Gp(t),
v → [p, d, k] is an edge of Gp(t

′).

Proof:

Property 1 : From Figure 9, it is clear that all the vertices of Gp(t) have the required
form. Consider a vertex [p′, d′, k′] labeled with t′. By Lemma 6.6.1.3(1), p′ saw d′

at time t′. Thus p′ /∈ F (t′) (otherwise p′ would not have taken a step at time t′

and would not have seen d′), and d′ = HD(p′, t′), proving 1a.

10This immediately implies that Gp(t) is acyclic.

26

Now consider vertices v1 and v2, labeled t1 and t2, respectively, such that v1 → v2

is an edge in Gp(t). Let v2 = [p2, d2, k2]. By Lemma 6.6.1.3(1), p2 inserted v2 in
Gp2 at time t2. By Lemma 6.6.1.3(2), v1 → v2 is an edge in Gp2(t2). Therefore
vertex v1 was in Gq2 before time t2. Hence, by definition of t1, t1 < t2, proving 1b.

Property 2 : Consider vertices [p′, d′, k′] and [p′, d′′, k′′] of Gp(t), such that k′ < k′′.
Let the labels of these vertices be t′ and t′′, respectively. By Lemma 6.6.1.3(1),
the first graphs that contain these vertices are Gp′(t

′) and Gp′(t
′′), respectively.

Furthermore, the values of kp′ at times t′ and t′′ are k′ and k′′, respectively.
Since the value of kp′ never decreases, and k′ < k′′, it follows that t′ < t′′. By
Lemma 6.6.1.1(1), Gp′(t

′) is a subgraph of Gp′(t
′′). Thus, when p′ inserts [p′, d′′, k′′]

in Gp′ at time t′′, Gp′ already contains [p′, d′, k′]. In Line (2) of the algorithm,
p′ adds the edge [p′, d′, k′] → [p′, d′′, k′′] to Gp′(t

′′). By Lemma 6.6.1.3(3), since
Gp(t) contains [p′, d′′, k′′], it also contains Gp′(t

′′). Thus, Gp(t) contains the edge
[p′, d′, k′]→ [p′, d′′, k′′].

Property 3 : Let [q1, d1, k1] → . . . → [q
, d
, k
] (+ > 1) be a path in Gp(t). We must
show that there is an edge [q1, d1, k1]→ [q
, d
, k
].

For all 1 ≤ i ≤ +, let ti be the label of [qi, di, ki]. By Lemma 6.6.1.3(1), ti is the
time when qi inserted [qi, di, ki] into Gqi

. We first show by induction on i that
[q1, d1, k1] → . . . → [qi, di, ki] is a path in Gqi

(ti). The basis, i = 1, is trivial. For
the induction step, suppose that [q1, d1, k1] → . . . → [qi−1, di−1, ki−1] is a path in
Gqi−1

(ti−1). By Lemma 6.6.1.3(2), since [qi−1, di−1, ki−1] → [qi, di, ki] is an edge in
Gp(t), it is also an edge in Gqi

(ti). By Lemma 6.6.1.3(3), since Gqi
(ti) contains ver-

tex [qi−1, di−1, ki−1], Gqi
(ti) also contains Gqi−1

(ti−1). In particular, Gqi
(ti) contains

the path [q1, d1, k1] → . . . → [qi−1, di−1, ki−1]. Thus, [q1, d1, k1] → . . . → [qi, di, ki]
is a path in Gqi

(ti), as wanted.

Therefore, vertices [q1, d1, k1], . . . , [q
, d
, k
] are all in Gq�
(t
). When q
 inserts

[q
, d
, k
] in Gq�
(at time t
), Gq�

already contains [q1, d1, k1]. Thus, q
 also adds the
edge [q1, d1, k1]→ [q
, d
, k
] in Gq�

(t
). By Lemma 6.6.1.3(3), since Gp(t) contains
[q
, d
, k
], it also contains Gq�

(t
). Therefore, edge [q1, d1, k1] → [q
, d
, k
] is in
Gp(t).

Property 4 : Since p is correct, it takes a step at some time t′ after t. In the failure
detector query phase of this step, p queries its failure detector module and obtains
a value, say d ∈ RD. In Line (2) of this step, p inserts vertex [p, d, k] in Gp (where
k is the current value of kp) and an edge from all other vertices of Gp(t

′) to [p, d, k].
By Lemma 6.6.1.1(1), Gp(t) is a subgraph of Gp(t

′), hence the result follows. 2

Lemma 6.6.1.4 and the definition of the limit graph G immediately imply:

Corollary 6.6.1.5 The limit graph G satisfies the four properties of the DAGs
defined in Section 6.2.

As before, Υi denotes the tagged simulation tree induced by the limit graph G and initial
configuration I i, and Υ denotes the tagged simulation forest {Υ0,Υ1, . . . ,Υn}.

27

{Build and tag simulation forest Υp induced by Gp}
for i← 0, 1, . . . , n:

Υi
p ← simulation tree induced by Gp and I i

for every vertex S of Υi
p

if S has a descendent S ′ such that p has decided k in S ′(I i)
then add tag k to S

{Select a process from tagged simulation forest Υp}
if there is no critical index then return p
else

i← smallest critical index (1)
if i is monovalent critical then return pi (2)
else if Υi

p has no decision gadgets then return p
else return deciding process of the smallest decision gadget in Υi

p (3)

Figure 10: Process p’s computation component

6.6.2 The computation component

Since the limit graph G has the four properties of Section 6.2 (Corollary 6.6.1.5), we can
apply the “centralized” selection method of Figure 8 to identify a correct process. This
method involved:

• Constructing and tagging the infinite simulation forest Υ induced by G.

• Applying a rule to Υ to select a particular correct process p∗.

In the computation component of TD→Ω, each process p approximates the above method
by repeatedly:

• Constructing and tagging the finite simulation forest Υp induced by Gp, its present
finite approximation of G.

• Applying the same rule to Υp to select a particular process.

Since the limit of Υp over time is Υ, and the information necessary to select p∗ is in a
finite subgraph of Υ, we can show that eventually p will keep selecting the correct process
p∗, forever.

Actually, p cannot quite use the tagging method of Figure 8: that method requires
knowing which processes are correct! Instead, p assigns tag k to a vertex S in Υi

p if and
only if S has a descendent S ′ such that p itself has decided k in S ′(I i). If p is correct,
this is eventually equivalent to the tagging method of Figure 8. If p crashes, we do not
care how it tags its forest. Also, p cannot use exactly the same selection method as that
of Figure 8: its current simulation forest Υp may not yet have a critical index or contain

28

any decision gadget (although it eventually will!). In that case, p temporizes by just
selecting itself. The computation component of TD→Ω is shown in Figure 10 (compare it
with the selection method of Figure 8).

We first show that Υp, the simulation forest that p constructs, is indeed an increas-
ingly accurate approximation of Υ (Lemma 23). We then show that the tags that p gives
to any vertex S in Υp are eventually the same ones that the tagging rule of Figure 8 gives
to S in Υ (Lemma 24). Let Υp(t) denote Υp at time t, i.e., Υp(t) is the finite simulation
forest induced by Gp(t).

Lemma 23: For any correct p and any time t:

1. Υp(t) is a subgraph11 of Υ.

2. Υp(t) is a subgraph of Υp(t
′), for all t′ ≥ t.

3.
⋃

t∈T
Υp(t) = Υ.

Proof:

Property 1 : Let S be any vertex of tree Υi
p(t) (for some i, 0 ≤ i ≤ n). From the

definition of Υi
p(t), S is compatible with some path g of Gp(t) and applicable to

I i. Since Gp(t) is a subgraph of G, g is also a path of G. Thus, S is compatible
with G; since it is also applicable to I i, it is a vertex of Υi.

Similarly, let S → S ′ be an edge e of Υi
p(t). Since S and S ′ are also vertices of Υi,

and S ′ = S · e, S → S ′ is also an edge of Υi.

Property 2 : Follows from Lemma 6.6.1.1(1).

Property 3 : We first show that Υ is a subgraph of
⋃

t∈T Υp(t). Let S be any vertex of
any tree Υi of Υ. From the definition of Υi, S is compatible with some finite path
g of G and is applicable to I i. Since G =

⋃
t∈T Gp(t) and g is a finite path of G,

there is a time t such that g is also a path of Gp(t). Since S is compatible with g
of Gp(t) and is applicable to I i, S is a vertex of Υi

p(t).

Let S → S ′ be any edge e of Υi. By the argument above, there is a time t after
which both S and S ′ are vertices of Υi

p. Since S ′ = S · e, after time t the edge e is
also in Υi

p. Thus, every vertex and every edge of Υ is also in
⋃

t∈T Υp(t), i.e., Υ is
a subgraph of

⋃
t∈T Υp(t). By Property 1,

⋃
t∈T Υp(t) = Υ. 2

Lemma 24: Let p be any correct process, and S be any vertex of Υp. There is a time
after which the tags of S in Υp are the same as the tags of S in Υ.

Proof: Suppose that at some time t, p assigns tag k to vertex S of tree Υi
p. Thus S

has a descendent S ′ in Υi
p(t) such that p has decided k in S ′(I i). By Lemma 23(1), S ′ is

also a descendent of S in Υi, and since p is correct, S has tag k in Υi as well.

11The subgraph and graph equality relations ignore the tags.

29

Conversely, suppose a vertex S of a tree Υi of Υ has tag k. We show that, eventually,
p also assigns tag k to S in Υi

p. Since S has tag k in Υi, S has a descendent S ′ in Υi

such that some correct process has decided k in S ′(I i) (cf. tagging rule in Figure 8).
By Lemma 10(1), there is a descendent S ′′ of S ′ in Υi, such that all correct processes,
including p, have decided in S ′′(I i). By Lemma 5, S ′′(I i) is a configuration of a partial
run of ConsensusD. By the Agreement property of Consensus, p must have decided k in
S ′′(I i). Consider the path that starts from the root of Υi and goes to vertex S and then
to S ′′. By Lemma 23(3), there is a time t after which this path is also in Υi

p. Therefore,
when p executes the tagging rule of Figure 10 after time t, p assigns tag k to S in Υi

p

(because p has decided k in S ′′(I i), and S ′′ is a descendent of S in Υi
p). 2

Recall that p∗ is the correct process obtained by applying the selection rule of Figure 8
to the infinite simulation forest Υ. We now show that there is a time after which any
correct p always selects p∗ when it applies the corresponding selection rule of Figure 10 to
its own finite approximation of the simulation forest Υp. Roughly speaking, the reason
is as follows. By Lemma 24, there is a time t after which the tags of all the roots in
p’s forest Υp are the same as in the infinite forest Υ. Since these tags determine the
sets of monovalent and bivalent critical indices, after time t these sets according to p are
the same as in Υ. Let i be the minimum critical index in these sets, and consider the
situation after time t. If i is monovalent critical, the selection rule of Figure 10 selects pi,
which is what p∗ is in this case. If i is bivalent critical, then p selects the deciding process
of its current minimum decision gadget of Υi

p (if it has one). This case is examined below.
Let γ∗ be the minimum decision gadget of Υi (so, p∗ is the deciding process of γ∗).

For a while, γ∗ may not be the minimum decision gadget of Υi
p. This may be because

γ∗ (and its tags) is not yet in Υi
p. However, by Lemmata 23(3) and 24, γ∗ (including its

tags) will eventually be in Υi
p. Alternatively, it may be because Υi

p contains a subgraph
γ whose encoding is smaller than γ∗’s, and for a while γ looks like a decision gadget
according to its present tags. However, by Lemma 24, p will eventually determine all
the tags of γ, and discover that γ is not really a decision gadget. Since there are only
finitely many graphs whose encoding is smaller than γ∗’s, p will eventually discard all
the “fake” decision gadgets (like γ) that are smaller than γ∗, and then select γ∗ as its
minimum decision gadget. After that time, p always selects the deciding process of γ∗

— which is precisely p∗, in this case.

Theorem 25: For all correct processes p, there is a time after which outputp = p∗,
forever.

Proof: Let i∗ denote the critical index selected by Line (1) of Figure 8 applied to Υ.
By Lemma 24, there is a time tinit after which every root of Υp has the same tags as
the corresponding root of Υ. Thus after time tinit, p always sets i = i∗ in Line (1) of
Figure 10. We now show that there is a time after which the computation component of
p (Figure 10) always returns p∗. There are two cases:

1. i∗ is monovalent critical. In this case, p∗ is process pi∗ (by Line (2) of the selection
rule Figure 8). Similarly, after time tinit: (a) p always sets i to i∗ (Line (1) of
Figure 10); (b) p always returns pi∗ (Line (2) of Figure 10).

30

2. i∗ is bivalent critical. Let γ∗ denote the smallest decision gadget of Υi∗ . In this case,
p∗ is the deciding process of γ∗. Since γ∗ is a finite subgraph of Υi∗ , by Lemma 23(3),
there is a time after which γ∗ is also a subgraph of Υi

p. By Lemma 24, there is a
time tγ∗ after which all the (finitely many) vertices of γ∗ receive the same tags in
Υi∗ and Υi∗

p . Thus after time tγ∗ , γ∗ is a also decision gadget of Υi∗
p .

Since each graph is encoded as a unique natural number, there are finitely many
graphs with a smaller encoding than γ∗. Let G denote the set of graphs with a
smaller encoding than γ∗, and γ be any graph in G. We show that there is a time
after which γ is not a decision gadget of Υi∗

p . There are two cases:

(a) γ is not a subgraph of Υi∗ . In this case, by Lemma 23(1), γ is never a subgraph
of Υi∗

p .

(b) γ is a subgraph of Υi∗ . Since γ∗ is the smallest decision gadget of Υi∗ and γ
is smaller than γ∗, γ is not a decision gadget of Υi∗ . By Lemma 24, there is
a time tγ after which all the (finitely many) vertices of γ have the same tags
in Υi∗ and Υi∗

p . Thus after time tγ, γ is not a decision gadget of Υi
p.

Since G is finite, there is a time tG after which no graph in G is a decision gadget
of Υi

p.

Consider the process that is returned by the computation component of p (Fig-
ure 10) at any time t > max(tinit, tγ∗ , tG). Since t > tinit, p always sets i to i∗ in
Line (1). Since t > tγ∗ , γ∗ is a decision gadget of Υi

p(t). Finally, since t > tG, γ∗ is
the smallest decision gadget of Υi

p(t). Thus, since i∗ is bivalent, at any time after
max(tinit, tγ∗ , tG), Line (3) of Figure 10 returns the deciding process of γ∗. There-
fore, after time max(tinit, tγ∗ , tG), the computation component of p always returns
p∗.

From the above, there is a time after which p sets outputp ← p∗, forever, in Line (3) of
Figure 9. 2

We now have all the pieces needed to prove our main result, Theorem 2 in Section 5:

Theorem 2: For all environments E , if a failure detector D can be used to solve Con-
sensus in E , then D �E Ω.

Proof: Consider the execution of algorithm TD→Ω in any environment E . By Theo-
rem 25, there is a time after which all correct processes set outputp = p∗, forever. By
Theorem 22, p∗ is a correct process. Thus, TD→Ω is a reduction algorithm that transforms
D into Ω. In other words, Ω is reducible to D. 2

7 Discussion

7.1 Granularity of atomic actions

Our model incorporates very strong assumptions about the atomicity of steps. First,
the three phases of each step are assumed to occur indivisibly, and at a single time. In

31

particular, the failure of a process cannot happen in the “middle of a step”. This allows
us to associate a single time t with a step and think of the step as occurring at that
time. Second, in the send phase of a step a message is sent to all processes. Given that
the entire step is indivisible, this means that either all or none of the correct processes
eventually receive the message sent in a step. Finally, no two steps can occur at the
same time.12 These assumptions are convenient because they make the formal model
simpler to describe. Also, they are consistent with those made in the model of [FLP85]
that provided the impetus for this work.

On the other hand, in [CT91] a model with weaker properties is used. There, the
three phases of a step need not occur indivisibly, and may occur at different times. Even
within the send phase, the messages sent to the different processes may be sent at different
times. Thus, a failure may occur in the middle of the send phase, resulting in some correct
processes eventually receiving the messages sent to them in that step while others never
do. Also, actions of different processes may take place simultaneously, subject to the
restriction that a message can only be received strictly after it was sent. Since [CT91] is
mainly concerned with showing how to use various types of failure detectors to achieve
Consensus, the use of a weaker model strengthens the results. (In fact, the negative
results of [CT91] hold even in the model of this paper, with the stronger atomicity
assumptions.)

The question naturally arises whether our result also applies to this weaker model.
In other words, if a failure detector D can be used to solve Consensus in the weak model,
is it true that we can transform D to W in that model? It turns out that the answer is
affirmative. To see this, first note that if D solves Consensus in the weak model then it
surely solves Consensus in the strong model. By our result, D can be transformed to W
in the strong model. It remains to show that D can be transformed to W in the weak
model. This is not obvious, since it is conceivable that the extra properties of the strong
model are crucial in the transformation of D to W. Fortunately, the transformation
presented in this paper actually works even in the weak model!

To see this, it is sufficient to ensure that the communication component of the trans-
formation (cf. Figure 9 in Section 6.6.1) constructs graphs that satisfy the properties
listed in Lemma 6.6.1.4, even if we run it in the weak model. It is not difficult to verify
that this is indeed so. The proof is virtually the same, except for the fact that we must
distinguish the time t in which a process p queries its failure detector and the time t′ in
which p adds the value it saw into Gp. In our proof we assume that t = t′; in the weak
model we would have t ≤ t′. Similar comments apply to all actions within a step that are
no longer assumed to occur at the same instant of time. These changes make the proofs
slightly more cumbersome, since we must introduce notation for all the different times
in which relevant actions within a step take place, but the reasoning remains essentially
the same.13

12This is reflected in our formal model by the fact that the list of times in a run (which indicate when
the events in the run’s schedule occur) is increasing.

13Another problem that must be confronted is that in the proofs of Lemmata 6.6.1.3 and 6.6.1.4 we
often refer to the “first graph” in which a vertex or edge is present. In the strong model there is no
difficulty with this, since processes cannot execute steps simultaneously. In the weak model, we have to
justify that it makes sense to speak of the “first” graph to contain a vertex or edge, in spite of the fact

32

Thus, our result is not merely a fortuitous consequence of some whimsical choice of
model. We view the robustness of the result across different models of asynchrony as
further testimony to the significance of the failure detector W.

7.2 Failure detection and partial synchrony

The fundamental reason why Consensus cannot be solved in completely asynchronous
systems is the fact that, in such systems, it is impossible to reliably distinguish a pro-
cess that has crashed from one that is merely very slow. In other words, Consensus
is unsolvable because accurate failure detection is impossible. On the other hand, it
is well-known that Consensus is solvable (deterministically) in completely synchronous
systems — that is, systems where all processes take steps at the same rate and each
message arrives at its destination a fixed and known amount of time after it is sent. In
such a system we can use timeouts to implement a “perfect” failure detector — i.e., one
in which no process is ever wrongly suspected, and every faulty process is eventually
suspected. Thus the ability to solve Consensus in a given system is intimately related to
the failure detection capabilities of that system. This realization led to the extension of
the asynchronous model of computation with failure detectors in [CT91]. In that paper
Consensus is shown to be solvable even with very weak failure detectors that could make
an infinite number of “mistakes”.

A different tack on circumventing the unsolvability of Consensus is pursued in [DDS87]
and [DLS88]. The approach of those papers is based on the observation that between
the completely synchronous and completely asynchronous models of distributed systems
there lie a variety of intermediate “partially synchronous” models. For instance, in one
model of partial synchrony, processes take steps at the same rate, but message delays
are unbounded (albeit finite). Alternatively, it may be known that message delays are
bounded, but the actual bound may be unknown. In yet another variation, the eventual
maximum message delay is known, but during some initial period of finite but unknown
duration some messages may experience longer delays. These and many other models of
partial synchrony are studied in [DDS87] and [DLS88], and the question of solvability of
Consensus in each of them is answered either positively or negatively.

In particular, [DDS87] defines a space of 32 models by considering five key parameters,
each of which admits a “favorable” and an “unfavorable” setting. For instance, one of
the parameters is whether the maximum message delay is known (favorable setting) or
not (unfavorable setting). Each of the 32 models corresponds to a particular setting
of the 5 parameters. [DDS87] identifies four “minimal” models in which Consensus is
solvable. These are minimal in the sense that the weakening of any parameter from
favorable to unfavorable would yield a model of partial synchrony where Consensus is
unsolvable. Thus, within the space of the models considered, [DDS87] and [DLS88]
delineate precisely the boundary between solvability and unsolvability of Consensus, and
provide an answer to the question “What is the least amount of synchrony sufficient to
solve Consensus?”.

that certain actions can be executed at the same time. The fact that a message can be received only
after it was sent is needed here.

33

Failure detectors can be viewed as a more abstract and modular way of incorporating
partial synchrony assumptions into the model of computation. Instead of focusing on
the operational features of partial synchrony (such as the five parameters considered
in [DDS87]), we can consider the axiomatic properties that failure detectors must have
in order to solve Consensus. The problem of implementing a given failure detector in
a specific model of partial synchrony becomes a separate issue; this separation affords
greater modularity.

To see the connection between partial synchrony and failure detectors, it is useful to
examine how one might go about implementing a failure detector. By the impossibility
result of [FLP85], a failure detector that can be used to solve Consensus cannot be
implemented in a completely asynchronous system. Now consider partially synchronous
systems in which correct processes have accurate timers (i.e., they can measure elapsed
time). If in such a system message delays are bounded and the maximum delay is known,
we can use timeouts to implement the “perfect” failure detector described above. In a
weaker system where message delays are bounded but the maximum delay is not known,
we can implement a failure detector satisfying a weaker property: eventually no correct
process is suspected. This can be done by using timeouts of increasing length; once the
timeout period has been increased sufficiently to exceed the unknown maximum delay,
no correct process will be suspected. A failure detector with the same property can also
be implemented in a distributed system where the eventual maximum message delay is
known, but messages may be delayed for longer during some initial period of finite but
unknown duration. With these remarks we illustrate two points: First, that stronger
failure detectors correspond to stronger models of partial synchrony; and second, that
the same failure detector can be implemented in different models of partial synchrony.

Studying failure detectors rather than various models of partial synchrony has several
advantages. By determining whether Consensus is solvable using some specific failure
detector we thereby determine whether Consensus is solvable in all systems in which
that failure detector can be implemented. An algorithm that relies on the axiomatic
properties of a given failure detector is more general, more modular, and simpler to
understand than one that relies directly on some specific operational features of partial
synchrony (that can be used to implement the given failure detector).

From this more abstract point of view, the question “What is the least amount of
synchrony sufficient to solve Consensus?” translates to “What is the weakest failure
detector sufficient to solve Consensus?”. In contrast to [DDS87], which identified a set
of minimal models of partial synchrony in which Consensus is solvable, we are able to
exhibit a single minimum failure detector that can be used to solve Consensus. The
technical device that made this possible is the notion of reduction between failure de-
tectors. We suspect that a corresponding notion of reduction between models of partial
synchrony, although possible, would be more complex. This is because there are models
which are not comparable in general (in the sense that there are tasks that are possible
in one but not in the other and vice versa), although they are comparable as far as
failure detection is concerned — which is all that matters for solving Consensus! In this
connection, it is useful to recall our earlier observation, that the same failure detector
can be implemented in different (indeed, incomparable) models of partial synchrony.

34

7.3 Weak Consensus

[FLP85] actually showed that even the Weak Consensus problem cannot be solved (de-
terministically) in an asynchronous system. Weak Consensus is like Consensus except
that the validity property is replaced by the following, weaker, property:

Non-triviality: There is a run of the protocol in which correct processes decide 0, and
a run in which correct processes decide 1.

Unlike validity, this property does not explicitly prescribe conditions under which the
correct processes must decide 0 or 1 — it merely states that it is possible for them to
reach each of these decisions. It is natural to ask whether our result holds for this weaker
problem as well. That is, we would like to know if the following holds:

Theorem: For all environments E , if a failure detector D can be used to solve Weak
Consensus in E , then D �E Ω.

Under the above definition of non-triviality, this is not quite right. But as we shall argue,
the problem really lies with the definition! Under a slightly stronger definition, which
is more appropriate for our model that incorporates failure detectors, the theorem is
actually true.

Intuitively, the problem with the above definition of non-triviality in our model of
failure detectors is that it is possible for the decision of correct processes to depend
entirely on the the values returned by the failure detector. Consider, for example, a
failure detector D so that for each failure pattern F , D(F) = {H0, H1}, where for all
processes p and times t, and for all i ∈ {0, 1}, Hi(p, t) = i. In other words, in any given
run, this failure detector returns the same binary value to all processes at all times,
independent of the run’s failure pattern. It is trivial to use this failure detector to solve
Weak Consensus: A process merely queries its failure detector and decides the value
returned! It is easy to see that D ��E Ω, for any environment E : D provides absolutely
no information about which processes are correct or faulty.14

At this point, the reader may justifiably object that D is “cheating” — it is really
not a failure detector, but a mechanism that non-deterministically chooses the decision
value. One possible way of fixing this problem would be to make our definition of failure
detector less general than it presently is. We could then try to prove the theorem for
this restricted definition of failure detectors. This approach, however, is fraught with the
danger of restricting the definition too much and ruling out legitimate failure detectors
in addition to bogus ones, like D. Intuitively, the failure detector is supposed to provide
some information about faulty processes. As this information may be encoded in a
complex way, we should not arbitrarily rule out such encodings because, in doing so, we
may be inadvertently ruling out useful failure detectors.

Instead of modifying our definition of failure detector, we strengthen the non-triviality
property to require that the failure detector values seen by the processes do not, by
themselves, determine the decision value. To formalize this, let R be a run of a Consensus
algorithm, and (p1, m1, d1), (p2, m2, d2), . . . , be the schedule of R. We denote by fd(R)

14In fact, D cannot be used to solve Consensus.

35

the sequence [p1, d1], [p2, d2], . . ., i.e., the sequence of failure detector values seen by the
processes in R. Consider the relation ≡ on runs, where R ≡ R′ if and only if fd(R) =
fd(R′). It is immediate that ≡ is an equivalence relation. We now redefine the non-
triviality property in our model (where processes have access to failure detectors) as
follows:

Non-triviality: In every equivalence class of the relation≡, there is a run of the protocol
in which correct processes decide 0, and a run in which correct processes decide 1.

This captures the idea that the decision value cannot be ascertained merely on the basis
of the failure detector values seen by the processes. It must also depend on other aspects
of the run (such as the initial values, the particular messages sent, or other features).

If we define Weak Consensus using this version of non-triviality, then the Theorem
stated above is, in fact, true. We briefly sketch the modifications of our proof needed
to obtain this strengthening of Theorem 2. The only use of the validity property is in
the proof of Lemma 16 which states that the root of Υ0 is 0-valent and the root of Υn

is 1-valent. This, in turn, is used in the proof of Lemma 17, which states that a critical
index exists.

To prove the stronger theorem, we concentrate on the forest induced by all initial
configurations — not just I0, . . . , In. Thus, the forest now will have 2n trees, rather than
only n+1. Consider the n initial values of processes in an initial configuration as an n-bit
vector, and fix any n-bit Gray code.15 Let I0, . . . , I2n−1 be the initial configurations listed
in the order specified by the Gray code, and Υi be the tree ΥIi

G , for all i ∈ {0, . . . , 2n−1}.
We use the same definition for a critical index as we had before: Index i ∈ {0, . . . , 2n−1}
is critical if the root of Υi is bivalent or the root of Υi is 1-valent while the root of Υi−1

is 0-valent. The only difference is that we now take subtraction to be modulo 2n, so that
when i = 0, i− 1 = −1 = 2n − 1. We can now prove an analogue to Lemma 17.

Lemma: There is a critical index i, 0 ≤ i ≤ 2n − 1.

Proof: First, we claim that the forest contains both nodes tagged 0 and nodes tagged 1.
To see this, let S be a node in some tree of the forest. By Lemma 11, S has a tag; without
loss of generality, assume that S has tag 0. Consider an infinite path that extends S.
By Lemma 6 and the fact that S is tagged 0, there is a run R of the Weak Consensus
algorithm in which a correct process decides 0. By non-triviality, there is a run R′ ≡ R,
so that correct processes decide 1 in R′. Let S ′ be the infinite schedule and I
 be the
initial configuration of run R′. Using the definition of the ≡ relation and the construction
of the induced forest, it is easy to show that every finite prefix of S ′ is a node of Υ
.
Since correct processes decide 1 in R′, all these nodes are tagged 1.

Since there are both nodes tagged 0 and nodes tagged 1, by Lemma 13, there are
both roots tagged 0 and roots tagged 1. If the root of some Υi is tagged both 0 and 1, it
is bivalent and we are done. Otherwise, the roots of all trees are monovalent, and there
are both 0- and 1-valent roots. Thus, there exist 0 ≤ i, j ≤ 2n− 1 so that the root of Υi

15An n-bit Gray code is a sequence of all possible n-bit vectors where successive vectors, as well as
the first and last vectors, differ only in the value of one position. It is well-known that such codes exist
for all n ≥ 1.

36

is 0-valent and the root of Υj is 1-valent. By considering the sequence Υi,Υi+1, . . . ,Υj,
(where addition is modulo 2n) it is easy to see that the root of some Υk, k �= i, that
appears in that sequence is 1-valent, while the root of Υk−1 is 0-valent. By definition, k
is a critical index. 2

The rest of the proof remains unchanged.

7.4 Failure detectors with infinite range of output values

The failure detectors in [RB91, CT91] only output lists of processes suspected to have
crashed. Since the set of processes is finite, the range of possible output values of these
failure detectors is also finite. In this paper our model allows for failure detectors with
arbitrary ranges of output values, including the possibility of infinite ranges! We illustrate
the significance of this generality by describing a natural class of failure detectors whose
range of output values is infinite (though each value output is finite).
Example: One apparent weakness with our formulation of failure detection is that a
brief change in the value output by a failure detector module may go unnoticed. For
example, process p’s module of the given failure detector, D, may output d1 at time
t1, d2 at a later time t2 and d1 again at time t3 after t2. If, due to the asynchrony of
the system, p does not take a step between time t1 and t3, p may never notice that its
failure detector module briefly output d2. A natural way of overcoming this problem
is to replace D with failure detector D′ that has the following property: D′ maintains
the same list of suspects as D but when queried, D′ returns the entire history of its list
of suspects up to the present time. In this manner, correct processes are guaranteed
to notice every change in D′’s list of suspects. As the system continues executing, the
values output by D′ grow in size. Thus D′ has an infinite range of output values.

However, since D is a function of F , the failure pattern encountered, D′ is also a
function of F , and can be described by our model. Thus, the result in this paper applies
to D′, a natural failure detector with an infinite range of output values.

Appendix

In this appendix, G is a DAG that satisfies Properties 1–4 listed in Section 6.2. To give
the proofs of the lemmata in Section 6.2, we first show two auxiliary results.

Lemma 26: Let V be any finite subset of vertices in G. G has an infinite path g such
that:

• There is an edge from every vertex of V to the first vertex of g.

• If [p, d, k] is a vertex of g then p is correct; for each correct p, there are infinitely
many vertices of the form [p,−,−] in g.

Proof: By repeated application of Property 4 of the DAG G. 2

Lemma 27: S is a schedule associated with a path of ΥI
G that starts from the root of

ΥI
G if and only if S is a schedule compatible with G and applicable to I .

37

Proof: The lemma obviously holds if S is a finite schedule (this is immediate from the
definitions). Now let S = e1, e2, . . . , ei, . . . be an infinite schedule, where ei = (qi, mi, di).
We define S0 = S⊥, S1 = e1, S2 = S1 · e2, and in general Si = Si−i · ei for all i ≥ 1.

Assume that S is compatible with G and applicable to I . We must show that S
is a schedule associated with a path of ΥI

G that starts from the root of ΥI
G. To see

this, note that for all i ≥ 0, Si is a finite schedule that is also compatible with G and
applicable to I . Thus, all the schedules S0, S1, S2, . . . , Si−1, Si, . . . are vertices of ΥI

G.
Since Si = Si−1 · ei, the tree ΥI

G has an edge from Si−1 to Si which is labeled ei, for
all i ≥ 1. Thus, S = e1, e2, . . . , ei, . . . is the schedule associated with the infinite path
S0 → S1 → S2 → . . .→ Si−1 → Si → . . . of ΥI

G; this path starts from the root S0 = S⊥
of ΥI

G.
Assume that S is a schedule associated with an infinite path of ΥI

G that starts from
the root of ΥI

G. We must show that S is compatible with G and is applicable to I . First
note that for all i, Si is a vertex in ΥI

G, thus Si is applicable to I and compatible with
G. From the definition of applicability, since Si is applicable to I for all i ≥ 1, S is
applicable to I . It remains to show that S is compatible with G.

For all i ≥ 1, Si is compatible with G, so Si is compatible with a finite path πi in G.
Since Si = e1, e2, . . . , ei where ej = (qj , mj , dj),

πi = [q1, d1, k
i
1], [q2, d2, k

i
2], . . . , [qi, di, k

i
i] (1)

for some ki
1, k

i
2, . . . , k

i
i ∈ N. We now show that S is compatible with some infinite path

π in G.
For each positive integer i, consider the set {ki

i, k
i+1
i , ki+2

i , . . .}. This set has a mini-
mum element (because it is a non-empty set of natural numbers). Let µ(i) be a super-

script of that minimum element, i.e., k
µ(i)
i ≤ kj

i for all j ≥ i. Note that µ(i) ≥ i. We
claim that

π = [q1, d1, k
µ(1)
1], [q2, d2, k

µ(2)
2], . . . , [qi, di, k

µ(i)
i], [qi+1, di+1, k

µ(i+1)
i+1], . . .

is an infinite path in G and that S is compatible with π.
The fact that S is compatible with π is immediate from the definitions of S, π,

and compatibility. To prove that π is an infinite path in G, we show that for all i ≥ 1,
[qi, di, k

µ(i)
i]→ [qi+1, di+1, k

µ(i+1)
i+1] is an edge in G. By (1), and the fact that µ(i+1) ≥ i+1,

path πµ(i+1) contains the edge [qi, di, k
µ(i+1)
i]→ [qi+1, di+1, k

µ(i+1)
i+1]. Since πµ(i+1) is a path

in G,
edge [qi, di, k

µ(i+1)
i]→ [qi+1, di+1, k

µ(i+1)
i+1] is in G. (2)

By definition of µ(i), k
µ(i)
i ≤ k

µ(i+1)
i . There are two possible cases:

1. k
µ(i)
i = k

µ(i+1)
i . In this case, the vertices [qi, di, k

µ(i)
i] and [qi, di, k

µ(i+1)
i] coincide,

and by (2), edge [qi, di, k
µ(i)
i]→ [qi+1, di+1, k

µ(i+1)
i+1] is in G.

2. k
µ(i)
i < k

µ(i+1)
i . In this case, by Property 2 of G, [qi, di, k

µ(i)
i] → [qi, di, k

µ(i+1)
i]

is an edge in G. By (2) and Property 3 (transitivity) of G, edge [qi, di, k
µ(i)
i] →

[qi+1, di+1, k
µ(i+1)
i+1] is in G.

38

Thus, in both cases, edge [qi, di, k
µ(i)
i]→ [qi+1, di+1, k

µ(i+1)
i+1] is in G. 2

Lemma 5: Let S be a schedule associated with a finite path of ΥI
G that starts from

the root of ΥI
G. There is a sequence of times T such that 〈F ,HD, I, S, T 〉 is a partial

run of ConsensusD.

Proof: By Lemma 27, S is applicable to I and compatible with G. Thus S is compatible
with some finite path g = [q1, d1, k1], [q2, d2, k2], . . . , [qi, di, ki], . . . , [q
, d
, k
] of G. For all
i, 1 ≤ i ≤ +, let ti be the label of vertex [qi, di, ki]. From Property 1a of G (applied to
every vertex of the path g), for all i, 1 ≤ i ≤ +, di = HD(qi, ti) and qi �∈ F (ti). From
Property 1b of G (applied to every edge of the path g), for all i, 1 ≤ i < +, ti < ti+1.
Thus T is a sequence of increasing times, and, by definition, 〈F ,HD, I, S, T 〉 is a partial
run of ConsensusD. 2

Lemma 6: Let S be a schedule associated with an infinite path of ΥI
G that starts from

the root ΥI
G. If in S every correct process takes an infinite number of steps and every

message sent to a correct process is eventually received, there is a sequence of times T
such that 〈F ,HD, I, S, T 〉 is a run of ConsensusD.

Proof: Similar to Lemma 5. 2

Lemma 7: For any two initial configurations I and I ′, if S is a vertex of ΥI
G and is

applicable to I ′ then S is also a vertex of ΥI ′
G .

Proof: Follows directly from the definitions. 2

Lemma 8: Let S be any vertex of ΥI
G and p be any correct process. Let m be a

message in the message buffer of S(I) addressed to p or the null message. For some d,
S has a child S · (p,m, d) in ΥI

G.

Proof: From the definition of ΥI
G, S is compatible with some finite path g of G and

applicable to I . Let v denote the last vertex of g. By Property 4, there is a d and a
k such that v → [p, d, k] is an edge of G. Therefore, g · [p, d, k] is a path of G, and
S · (p,m, d) is compatible with G.

It remains to show that S · (p,m, d) is applicable to I . Since S is applicable to I , it
suffices to show that (p,m, d) is applicable to S(I). But this is true since, by hypothesis,
m is in the message buffer of S(I) and addressed to p, or the null message. 2

Lemma 9: Let S be any vertex of ΥI
G and p be any process. Let m be a message in

the message buffer of S(I) addressed to p or the null message. Let S ′ be a descendent
of S such that, for some d, S ′ · (p,m, d) is in ΥI

G. For each vertex S ′′ on the path from
S to S ′ (inclusive), S ′′ · (p,m, d) is also in ΥI

G.

Proof: Since they are vertices of ΥI
G, S, S ′′ and S ′ · (p,m, d) are compatible with some

finite paths g, g · g′′ and g · g′′ · g′ · [p, d, k] of G, respectively. From Property 3 (transitive
closure) of G, g · g′′ · [p, d, k] is also a path of G. So S ′′ · (p,m, d) is compatible with this
path of G. We now show that S ′′ · (p,m, d) is also applicable to I , and therefore it is a
vertex of ΥI

G .

39

Since S ′′ is a vertex of ΥI
G, S ′′ is applicable to I . If m = λ, then (p,m, d) is obviously

applicable to S ′′(I). Now suppose m �= λ. Since S ′ · (p,m, d) is a vertex of ΥI
G, (p,m, d)

is applicable to S ′(I), and thus m is in the message buffer of S ′(I). Since each message
is sent at most once and m is in the message buffers of S(I) and S ′(I), there is no edge
of the form (p,m,−) on the path from S to S ′. So m is also in the message buffer of
S ′′(I), and (p,m, d) is applicable to S ′′(I). 2

j ← 0
S0 ← S {S0 is compatible with g and applicable to I}
repeat forever

j ← j + 1
Let [qj , dj, kj] be the j-th vertex of path g∞
Let mj be the oldest message addressed to qj in the message buffer of Sj−1(I)

(if no such message exists, mj = λ)
ej ← (qj , mj, dj)
Sj ← Sj−1 · ej {Sj is compatible with g · [q1, d1, k1] · . . . · [qj , dj, kj]}

{and applicable to I}

Figure 11: Generating schedule S ·E∞, compatible with path g · g∞, in ΥI
G

Lemma 10: Let S, S0, and S1 be any vertices of ΥI
G. There is a finite schedule E

containing only steps of correct processes such that:

1. S · E is a vertex of ΥI
G and all correct processes have decided in S ·E(I).

2. For i = 0, 1, if E is applicable to Si(I) then Si · E is a vertex of ΥI
G.

Proof: Since S is a vertex of ΥI
G, S is compatible with some finite path g of G and

is applicable to I . Similarly, S0 and S1 are compatible with some finite paths g0 and
g1, respectively, of G. From Lemma 26 (applied to the last vertices of g, g0 and g1), G
has an infinite path g∞ = [q1, d1, k1], [q2, d2, k2], . . . , [qj, dj, kj], . . . with the following two
properties:

1. There is an edge from the last vertex of g, g0 and g1 to the first vertex of g∞. (Thus,
g · g∞, g0 · g∞, and g1 · g∞ are infinite paths in G.)

2. If [p, d, k] is a vertex of g∞ then p is correct; for each correct p, there are infinitely
many vertices of the form [p,−,−] in g∞.

We now show how to construct the required schedule E. Consider the infinite sequence
of schedules S0, S1, S2, . . . , Sj, . . . constructed by the algorithm in Figure 11. An easy
induction shows that for all j > 0, Sj is applicable to I and is compatible with g ·
[q1, d1, k1] · . . . · [qj, dj, kj], a prefix of the path g · g∞ in G. So, for all j > 0, Sj is a vertex

40

of ΥI
G. Consider the infinite path of ΥI

G that starts from the root of ΥI
G then goes to

S0 = S, and then to S1, S2, . . . , Sj, . . . The infinite schedule associated with that path
is S∞ = S · e1 · e2 · . . . · ej . . . Note that schedule E∞ = e1 · e2 · . . . · ej . . . is compatible
with path g∞ of G. By Property (2) of path g∞, every correct process p takes an infinite
number of steps in E∞ (and thus also in S∞ = S ·E∞). Since in each one of these steps
p receives the oldest message that is addressed to it, every message sent to p (in S∞) is
eventually received. By Lemma 6, there is a T such that R = 〈F ,HD, I, S

∞, T 〉 is a run
of ConsensusD.

From the termination requirement of Consensus, S∞ has a finite prefix Sd such that
all correct processes have decided in Sd(I). There are two cases:

• Sd is a prefix of S. Since decisions are irrevocable, all correct processes remain
decided in S(I). Thus S⊥, the empty schedule, is the required E.

• S is a prefix of Sd. Thus, Sd = S · E where E is a finite prefix of E∞. Since E∞

is compatible with g∞, E is compatible with a prefix of g∞. Now consider S0 (the
following argument also applies to S1). Since S0 is compatible with g0, S0 · E is
compatible with a prefix of g0 · g∞, a path in G. So, S0 · E is compatible with G.
If S0 ·E is also applicable to I , then, by the definition of ΥI

G , it is a vertex of ΥI
G.

The same argument holds for S1. It remains to show that E contains only steps
of correct processes. This is immediate from Property (2) of g∞ and from the fact
that E is compatible with a prefix of g∞. 2

Acknowledgements

We would like to thank Prasad Jayanti for his valuable comments on various versions
of this paper. We would also like to thank Cynthia Dwork, Dexter Kozen and the
distributed systems group at Cornell for many helpful discussions, and the anonymous
referees.

References

[ABD+87] Hagit Attiya, Amotz Bar-Noy, Danny Dolev, Daphne Koller, David Peleg,
and Rüdiger Reischuk. Achievable cases in an asynchronous environment. In
Proceedings of the Twenty-Eighth Symposium on Foundations of Computer
Science, pages 337–346. IEEE Computer Society Press, October 1987.

[BMZ88] Ofer Biran, Shlomo Moran, and Shmuel Zaks. A combinatorial characteriza-
tion of the distributed tasks that are solvable in the presence of one faulty
processor. In Proceedings of the Seventh ACM Symposium on Principles of
Distributed Computing, pages 263–275. ACM Press, August 1988.

[BW87] Michael Bridgland and Ronald Watro. Fault-tolerant decision making in to-
tally asynchronous distributed systems. In Proceedings of the Sixth ACM

41

Symposium on Principles of Distributed Computing, pages 52–63. ACM Press,
August 1987.

[CD89] Benny Chor and Cynthia Dwork. Randomization in byzantine agreement.
Advances in Computer Research, 5:443–497, 1989.

[CT91] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for
asynchronous systems. In Proceedings of the Tenth ACM Symposium on
Principles of Distributed Computing, pages 325–340. ACM Press, August
1991. To appear in the Journal of the ACM. An extended and revised
version is also available by anonymous ftp from ftp.cs.cornell.edu in
pub/sam/failure.detectors.algorithms.ps.

[DDS87] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On the minimal syn-
chronism needed for distributed consensus. Journal of the ACM, 34(1):77–97,
January 1987.

[DLP+86] Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark, and
William E. Weihl. Reaching approximate agreement in the presence of faults.
Journal of the ACM, 33(3):499–516, July 1986.

[DLS88] Cynthia Dwork, Nancy A. Lynch, and Larry Stockmeyer. Consensus in the
presence of partial synchrony. Journal of the ACM, 35(2):288–323, April 1988.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the ACM, 32(2):374–
382, April 1985.

[RB91] Aleta Ricciardi and Kenneth P. Birman. Using process groups to implement
failure detection in asynchronous environments. In Proceedings of the Tenth
ACM Symposium on Principles of Distributed Computing, pages 341–351.
ACM Press, August 1991.

