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Abstract

Uniform Reliable Broadcast (URB) is a communication primitive that requires that if a process delivers
a message, then all correct processes also deliver this message. A recent PODC paper [HR99] uses
Knowledge Theory to determine what failure detectors are necessary to implement this primitive in
asynchronous systems with process crashes and lossy links that are fair. In this paper, we revisit this
problem using a different approach, and provide a result that is simpler, more intuitive, and, in a precise
sense, more general.

1 Introduction

Uniform Reliable Broadcast (URB) is a communication primitive that requires that if a process delivers
a message, then all correct processes also deliver this message [HT94]. A recent PODC paper [HR99]
uses Knowledge Theory to determine what failure detectors are necessary to implement this primitive in
asynchronous systems with process crashes and fair links (roughly speaking, a fair link may lose an infinite
number messages, but if a message is sent infinitely often then it is eventually received).1 In this paper, we
revisit this problem using an algorithmic-reduction approach [CHT96], and provide a result that is simpler,
more intuitive, and, in a precise sense, more general, as we now explain.

[HR99] considered systems where up to f process may crash and links are fair, and used Knowledge Theory
to show that solving URB in such a system requires a generalized f -useful failure detector (denoted Gf in
here). Such a failure detector is parameterized by f and is described in Figure 1. [HR99] shows that when
f = n or f = n − 1, Gf is equivalent to a perfect failure detector.

In this paper, we revisit this problem using the approach in [CHT96], and give a simpler characterization of
the failure detectors that can solve URB in systems with process crashes and fair links. More precisely, we

∗Research partially supported by NSF grant CCR-9711403 and by an Olin Fellowship.
1[HR99] actually studies a problem called Uniform Distributed Coordination. This problem, however, is isomorphic to URB:

init and do in Uniform Distributed Coordination correspond to broadcast and deliver in URB, respectively.



A generalized failure detector [HR99] outputs a pair (S, k) where S is a subset of processes and k is a positive
integer. Intuitively, the failure detector outputs (S, k) to report that k processes in S are faulty. In a run r, the
failure detector event suspect p(S, k) is said to be f -useful for r if (a) S contains all processes that crash in r, and (b)
n−|S| > min(f, n−1)−k. A generalized failure detector is f -useful if, for all runs r and processes p, the following
two properties hold (where rp(t) denotes the prefix of run r at process p up to time t):

• If suspectp(S, k) is in rp(t) then there is a subset S ′ ⊆ S such that |S ′| = k and for all q ∈ S′, we have that
crashq is in rq(t).

• If p is correct, then there is a f -useful failure-detector event for r in rp(t), for some t.

Figure 1: Definition of a generalized f -useful failure detectors.

prove that the weakest failure detector for this problem is a simple failure detector denoted Θ. Θ outputs a
set of processes that are currently trusted to be up,2 such that:

Completeness: There is a time after which correct processes do not trust any process that crashes.

Accuracy: If there is a correct process then, at every time, every process trusts at least one correct
process.

This simple characterization of the weakest failure detector for URB is more general than the one given
in [HR99], in the sense that it holds for any system with fair links, regardless of f or any other types
of restrictions or dependencies on process crashes.3 To illustrate this point, consider the following three
systems with n processors {p1, p2, . . . , pn}:

1. In system S1, every processor may crash, except that we assume that p1 and p2 cannot both crash in
the same run (this assumption makes sense if, for example, p1 and p2 are configured as symmetric
primary/backup servers). Note that in S1, up to f = n − 1 processors may crash in the same run.

2. In system S2, every processor may crash, except that processor p1 is a fault-tolerant highly-available
computing server that crashes only when it is left alone in the system (this assumption is not unrea-
sonable: in some existing systems, processes kill themselves if they are unable to communicate with
a minimum number of processes). Note that in S2, up to f = n processors may crash in the same run.

3. In system S3, the number of processes that crash is bounded, but this bound f is not known. Moreover,
there are some additional restrictions and dependencies on process crashes (e.g., if more than half of
the processes crash then a certain process p1 commits suicide) but these are also not known.

What is the weakest failure detector for solving URB in each of S1, S2 and S3? By our result, the answer is
simply Θ.

In contrast, the result in [HR99] cannot be applied to S1, S2 and S3, as we now explain. For S3, this is
obvious because f is not even known. For S1, the value of f , namely n − 1, is known. So, one may be

2Some failure detectors in the literature output a set of processes suspected to be down; this is just the complement of the set of
processes that are trusted to be up.

3If one assumes that a majority of processes does not crash, then URB can be solved without any failure detector [BCBT96].
As we explain in Section 11, this does not contradict our result.
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tempted to naively plug f = n− 1 in the result of [HR99], and to conclude that solving URB in S1 requires
Gn−1 (i.e., a perfect failure detector). This conclusion is incorrect, because [HR99] explicitly assumes that
any subset of up to f = n − 1 processors can crash in a run — an assumption that does not hold for S1.
Similarly, for S2, one cannot just plug f = n in [HR99] to obtain the correct answer.

Since, in some sense, both Gf and Θ are “minimal” for URB, an important question is now in order: What
is the relation between Gf and Θ? To answer this question, we introduce the notions of failure patterns and
environments [CHT96]. Roughly speaking, a failure pattern indicates, for each process p, whether p crashes
and, if so, when. An environment E is a set of failure patterns; and a system with environment E is one where
the process crashes must match one of the failure patterns in E . Intuitively, environments allow us to express
restrictions on process crashes, such as “either p1 or p2, but not both, may crash” (so environments can be
used to formally define the systems S1 and S2 described earlier). A commonly-used environment in the
literature is Ef , the set of all failure patterns in which at most f processes crash: A system with environment
Ef allows up to f process crashes, but there are no other constrains or dependencies, i.e., any subset of f
processes may crash, and these crashes can occur at any time.

We can now compare Gf and Θ. Roughly speaking, Θ is the weakest failure detector regardless of the
environment E , while Gf is necessary and sufficient for environment Ef . When E = Ef , there is an
algorithm that transforms Gf into Θ, and so Θ is at least as weak as Gf in environment Ef .4

An important difference between [HR99] and this paper is that [HR99] uses Knowledge Theory [FHMV95]
to establish and state its results, while we use algorithmic reductions [CT96]. An advantage of the algorith-
mic reduction method over the knowledge approach, is that the former allows the derivation of a stronger
result: in a nutshell, the knowledge approach determines only what information about failures processes
know, while the algorithmic reduction method determines what information about failures processes know
and can effectively compute. Specifically, the result in [HR99] is that, in order to solve URB, processes
must know the information provided by Gf . This does not automatically imply that processes can actually
compute Gf .5

In contrast, the algorithmic reduction given in this paper shows that if processes can solve URB with some
failure detector D, then they can use D to compute failure detector Θ. This reduction implies that D is at
least as strong as Θ in terms of problem solving: if processes can solve a problem with Θ, they can also
solve it with D (by first using D to compute Θ). Note we would not be able to say that D is at least as strong
as Θ (in terms of problem solving) if D only allowed processes to know (but not compute) Θ.

Finally, there is another difference between our approach and the one in [HR99], namely, the universe of
failure detectors that is being considered. To understand the meaning of a statement such as “D is the
weakest failure detector...”, or “D is necessary...”, one needs to know the universe of failure detectors under
consideration (because it is among these failure detectors that D is the “weakest” or “necessary”). In our
paper, the universe of failure detectors is explicit and clear: a failure detector is a function of the failure
pattern — a natural definition that is widely used [CHT96, HMR97, OGS97, YNG98, LH94]. The universe
of failure detectors in [HR99], however, is implicitly defined, and the exact nature and power of the failure
detectors considered are not entirely clear. This issue is further discussed in Section 8.

In summary, in this paper we consider the problem of determining the weakest failure detector for solving
URB in systems with process crashes and lossy links — a problem that was first investigated in [HR99].

4This is modulo a technicality due to a difference in the two models: in [HR99] all the failure detector events are “seen” by
processes, while here processes can “miss” some failure detector values.

5In Knowledge Theory, processes may know facts that they cannot actually compute. For example, if the system is sufficiently
expressive, they known the answer to every unsolved problem in Number Theory, and they also know whether any given Turing
Machine halts on blank tape.
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In [HR99], this problem was studied using the framework of Knowledge Theory. In this paper, we tackle
this problem using a different approach based on the standard failure detector models and techniques of
[CHT96]. The results that we obtain are simple, intuitive and general. More precisely:

1. We provide a single failure detector Θ, and show that it is the weakest failure detector for URB, in
any environment. In particular, our result holds even if f is not known.

In environment Ef , Θ is at least as weak as Gf .

2. Θ is simple and a natural candidate for solving URB. As a result, the algorithm that uses Θ to solve
URB in any environment E , is immediate.

3. Our results are derived and can be understood from first principles (they do not require Knowledge
Theory).

4. Our “minimality” result is in term of effective computation, not knowledge: roughly speaking, if
processes can solve URB, we show how they can compute Θ (this implies knowledge of Θ; but the
converse does not necessarily hold).

5. The universe of failure detectors (with respect to which our minimality result hold) is given explicitly
through a simple definition.

The paper is organized as follows. Our model is described in Section 2. In Section 3, we explain what it
means for a failure detector to be weaker than another one. Section 4 defines the uniform reliable broadcast
problem. Failure detector Θ is defined in Section 5, and in Section 6, we show how to use it to implement
uniform reliable broadcast in systems with process crashes and fair links. In Section 7 we show that Θ is
actually the weakest failure detector for this problem. In Section 8, we briefly discuss the nature and power
of failure detectors, and in Section 9 we consider the relation between Gf and Θ. Related work is discussed
in Section 10 and we conclude the paper in Section 11.

2 Model

Throughout this paper, in all our results, we consider asynchronous message-passing distributed systems in
which there are no timing assumptions. In particular, we make no assumptions on the time it takes to deliver
a message, or on relative process speeds. The system consists of a set of n processes Π = {1, 2, . . . , n} that
are completely connected by point-to-point (bidirectional) links. The system can experience both process
failures and link failures. Processes can fail by crashing, and links can fail by dropping messages. The
model, based on the one in [CHT96], is described next.

We assume the existence of a discrete global clock — this is merely a fictional device to simplify the
presentation and processes do not have access to it. We take the range T of the clock’s ticks to be the set of
natural numbers.

2.1 Failure Patterns and Environments

Processes can fail by crashing, i.e., by halting prematurely. A failure pattern F is a function from T
to 2Π. Intuitively, F (t) denotes the set of processes that have crashed through time t. Once a process
crashes, it does not “recover”, i.e., ∀t : F (t) ⊆ F (t + 1). We define crashed(F ) =

⋃
t∈T F (t) and
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correct(F ) = Π \ crashed(F ). If p ∈ crashed(F ) we say p crashes (or is faulty) in F and if p ∈ correct(F )
we say p is correct in F .

An environment E is a set of failure patterns. As we explained in the introduction, environments describe
the crashes that can occur in a system.

Links can fail by dropping messages, but we assume that links are fair. Roughly speaking, a fair link from
p to q may intermittently drop messages, and may do so infinitely often, but it must satisfy the following
“fairness” property: if p repeatedly sends some message to q and q does not crash, then q eventually receives
that message. This is made more precise in Section 2.3.

2.2 Failure Detectors

Each process has access to a local failure detector module that provides (possibly incorrect) information
about the failure pattern that occurs in an execution. A failure detector history H with range R is a function
from Π×T to R. H(p, t) is the output value of the failure detector module of process p at time t. A failure
detector D is a function that maps each failure pattern F to a non-empty set of failure detector histories
with range RD (where RD denotes the range of the failure detector output of D). D(F ) denotes the set of
possible failure detector histories permitted by D for the failure pattern F .

2.3 Runs of Algorithms

An algorithm A is a collection of n (possibly infinite-state) deterministic automata, one for each process in
the system. Computation proceeds in atomic steps of A. In each step, a process may: receive a message
from a process, get an external input, query its failure detector module, undergo a state transition, send a
message to a neighbor, and issue an external output.

A run of algorithm A using failure detector D is a tuple R = (F, HD, I, S, T ) where F is a failure pattern,
HD ∈ D(F ) is a history of failure detector D for failure pattern F , I is an initial configuration of A, S is an
infinite sequence of steps of A, and T is an infinite list of increasing time values indicating when each step
in S occurs.

A run must satisfy some properties for every process p: If p has crashed by time t, i.e., p ∈ F (t), then p
does not take a step at any time t′ ≥ t; if p is correct, i.e., p ∈ correct(F ), then p takes an infinite number of
steps; and if p takes a step at time t and queries its failure detector, then p gets HD(p, t) as a response.

A run must also satisfy the following “fair link properties” for every pair of processes p and q:

• Fairness: If p sends a message m to q an infinite number of times and q is correct, then q eventually
receives m from p.

• Uniform Integrity: If q receives a message m from p then p previously sent m to q; and if q receives
m infinitely often from p, then p sends m infinitely often to q.

3 Failure Detector Transformations

As explained in [CT96, CHT96], failure detectors can be compared via algorithmic transformations. We
now explain what it means for an algorithm TD→D′ to transform a failure detector D into another failure
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detector D′ in an environment E . Algorithm TD→D′ uses D to maintain a variable D′
p at every process p.

This variable, reflected in the local state of p, emulates the output of D′ at p. Let HD′ be the history of all
the D′ variables in a run R of TD→D′ , i.e., HD′(p, t) is the value of D′

p at time t in run R. Algorithm TD→D′

transforms D into D′ in E if and only if for every F ∈ E and every run R = (F, HD, I, S, T ) of TD→D′

using D, we have HD′ ∈ D′(F ). Intuitively, since TD→D′ is able to use D to emulate D′, D provides at
least as much information about process failures as D′ does, and we say that D′ is weaker than D in E .

Note that, in general, TD→D′ need not emulate all the failure detector histories of D′ (in environment E);
what we do require is that all the failure detector histories it emulates be histories of D′ (in that environment).

4 Uniform Reliable Broadcast

Uniform Reliable Broadcast (URB) is defined in terms of two primitives: broadcast(m) and deliver(m).
We say that process p broadcasts message m if p invokes broadcast(m). We assume that every broadcast
message m includes the following fields: the identity of its sender, denoted sender(m), and a sequence
number, denoted seq(m). These fields make every message unique. We say that q delivers message m if q
returns from the invocation of deliver(m). Primitives broadcast and deliver satisfy the following properties
[HT94]:

• Validity: If a correct process broadcasts a message m, then it eventually delivers m.

• Uniform Agreement: If some process delivers a message m, then all correct processes eventually
deliver m.

• Uniform Integrity: For every message m, every process delivers m at most once, and only if m was
previously broadcast by sender(m).

Validity and Uniform Agreement imply that if a correct process broadcasts a message m, then all correct
processes eventually deliver m.

5 Failure Detector Θ

We now define failure detector Θ. Each failure detector module of Θ outputs a set of processes that are
trusted to be up, i.e., RΘ = 2Π. For each failure pattern F , Θ(F ) is the set of all failure detector histories
H with range RΘ that satisfy the following properties:

• [Θ-completeness]: There is a time after which correct processes do not trust any process that crashes.
More precisely:

∃t ∈ T , ∀p ∈ correct(F ), ∀q ∈ crashed(F ), ∀t′ ≥ t : q �∈ H(p, t′)

• [Θ-accuracy]: If there is a correct process then, at every time, every process trusts at least one correct
process. More precisely:

crashed(F ) �= Π ⇒ ∀t ∈ T , ∀p ∈ Π \ F (t), ∃q ∈ correct(F ) : q ∈ H(p, t)

6



1 For every process p:
2

3 To execute broadcast(m):
4 got [m] ← {p}
5 fork task diffuse(m)
6 return
7

8 task diffuse(m):
9 while true do
10 send m to all processes
11 d ← Dp { d is the list of processes trusted to be up }
12 if d ⊆ got [m] and p has not delivered m
13 then deliver(m)
14

15 upon receive m from q do
16 if task diffuse(m) has not been started yet then
17 got [m] ← {p, q}
18 fork task diffuse(m)
19 else got [m] ← got [m] ∪ {q}

Figure 2: Implementing Uniform Reliable Broadcast using D = Θ

Note that a process may be trusted even if it has actually crashed. Moreover, the correct processes
trusted by a process p is allowed to change over time (in fact, it can change infinitely often), and it is
not necessarily the same as the correct process trusted by another process q.

6 Using Θ to Implement Uniform Reliable Broadcast

The algorithm that implements URB using Θ is shown in Figure 2. When ambiguities may arise, a variable
local to process p is subscripted by p. To broadcast a message m, a process p first initializes got p[m] to
{p}; this variable represents the processes that p knows to have received m so far. Process p then forks task
diffuse(m). In diffuse(m), process p periodically sends m to all processes, and checks if got [m] contains
all processes that are currently trusted by p; when that happens, p delivers m if it has not done so already.
When process p receives m from a process q, it starts task diffuse(m) if it has not done so already.

Theorem 1. Consider an asynchronous distributed system with process crashes and fair links, and with
environment E . The algorithm in Figure 2 implements URB using Θ in E .

The proof is straightforward and can be found in Appendix A.

7 The Weakest Failure Detector for Uniform Reliable Broadcast

We now show that, in any environment, a failure detector D that can be used to solve URB can be trans-
formed to Θ. We first give a rough outline of how the transformation works, and then give the detailed
transformation algorithm and its proof.
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7.1 Outline of the Transformation Algorithm

Let E be an environment, D be a failure detector that can be used to solve URB in E , and Aurb be the URB
algorithm that uses D. Intuitively, the algorithm that transforms D into Θ in E works as follows.

Processes periodically query their failure detector D and exchange information about the values of D that
they see. Using this information, processes construct a directed acyclic graph (DAG) that represents a
“sampling” of the failure detector output and some temporal relationships between the values sampled.
To illustrate this, suppose that q0 queries its failure detector D for the k0-th time and sees value d0; q0

then reliably broadcasts the message [q0, d0, k0] (it can use Aurb to do so). When a process q1 receives
[q0, d0, k0], it can add vertice [q0, d0, k0] to its (current) version of the DAG. When q1 later queries D and
sees the value d1 (say this is its k1-th query), it adds vertice [q1, d1, k1] and edge [q0, d0, k0] → [q1, d1, k1]
to its DAG: This edge indicates that q0 saw d0 (in its k0-th query) before q1 saw d1 (in its k1-th query). By
periodically sending its current version of the DAG to all processes, and incorporating all the DAGs that it
receives into its own DAG, a process can construct an ever increasing DAG that includes the failure detector
values seen by processes and some of their temporal relationships.

Consider a run of the transformation algorithm above in which the failure pattern is F ∈ E , and the failure
detector history is H ∈ D(F ). In this run, a process p can use its DAG to simulate runs of Aurb with failure
pattern F and failure detector history H . These are runs that could have occurred if processes were running
Aurb instead of the transformation algorithm.

To illustrate this, let p be a process, and consider a path in its DAG, say [q0, d0, k0], [q1, d1, k1], . . . ,
[q�, d�, k�]. In the transformation algorithm, process p uses this path to simulate a run Rurb of Aurb . In
Rurb , q0 takes the 0-th step, q1 takes the 1-st step, q2 takes the 2-nd step, and so on. In the 0-th step, q0

broadcasts m0. Moreover, for every j, in the j-th step process qj sees failure detector value dj and receives
the oldest message sent to it that it has not yet received (if there are no such messages, it receives nothing).
It turns out that, if failure pattern F has some correct process, then process p can extract from Rurb a list
of processes that contains at least one such a correct process. To see how, consider the step of Rurb when a
process first delivers m0, and suppose this is the k-th step. Then, among processes {q0, . . . , qk} (those that
took steps before the delivery of m0), there is at least one that never crashes in F . If that were not the case,
we could construct another run Rbad

urb of Aurb with failure pattern F and failure detector history H , where
(1) up to the k-th step, processes behave as in Rurb , (2) after the k-th step, processes {q0, . . . , qk} all crash,
and all messages sent by these processes to other processes are lost and (3) from the (k+1)-st step onwards,
the correct processes (in F ) take steps in a round-robin fashion. Note that in Rbad

urb , (1) process qk delivers
m0 at the k-th step, (2) correct processes (in F ) only take steps after the k-th step, (3) these processes never
receive a message sent by k-th step, and so (4) correct processes (in F ) never deliver m0 — a contradiction.
Thus, the list {q0, . . . , qk} contains at least one correct process (in F ), and so p can achieve the Θ-accuracy
property by outputting this list.

The list {q0, . . . , qk} that p generates, however, may contain processes that crash (in F ). Thus, to achieve
Θ-completeness, p must continuously repeat the simulation above to generate new {q0, . . . , qk} lists, such
that eventually the lists contain only correct processes (in F ). In order to guarantee that, p must ensure that
the path [q0, d0, k0], [q1, d1, k1], . . . , [q�, d�, k�] that it uses to extract {q0, . . . , qk} eventually includes only
vertices of processes that do not crash. That will be true if all the processes that crash in F , do so before
q0 obtains d0 at its k0-th step. Therefore, process p can achieve Θ-completeness (as well as Θ-accuracy)
by simply periodically reselecting a new path [q0, d0, k0], [q1, d1, k1], . . . , [q�, d�, k�] so that [q0, d0, k0] is a
“recent” vertice in its DAG.
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7.2 The Algorithm TD→Θ and Its Proof

Having given an outline of the transformation algorithm, we now explain it in more detail. In what fol-
lows, let S be a sequence of pairs consisting of a process name and a failure detector value, that is,
S := ([q0, d0], [q1, d1], . . . , [qk, dk]). Let m0 be an arbitrary fixed message. Given S, we can simulate
an execution of Aurb in which (1) process q0 initially invokes broadcast(m0) and (2) for j = 0, . . . , k, the
j-th step of Aurb is taken by process qj ; in that step, qj obtains dj from its local failure detector module,
and receives the oldest message addressed to it that it has not yet received (if there are no such messages,
it receives nothing). We define Delivered(S) to be true if process qk delivers m0 in the k-th step of this
simulation.

The detailed algorithm TD→Θ that transforms D to Θ is given in Figure 3. As we explained in the outline,
each process p maintains a directed acyclic graph DAGp, whose nodes are triples [q, d, seq]. The transfor-
mation algorithm has three tasks; in the first task, a process p periodically queries its local failure detector,
creates a new node [p, d, curr] in DAGp and adds an edge from all other nodes in DAGp to this new node.
Then, p uses Aurb to broadcasts its new DAGp to all processes. In the second task, upon the delivery of
DAGq from a process q, process p merges its own DAGp with DAG q. In the third task, process p loops
forever. In the loop, p first waits until its Task 1 adds a new node to DAGp, and then waits until there is a
path starting at this new node that truthifies Delivered . Once p finds such a path, it sets the output of D′ to
the set of all processes that appear in the path. Then, process p restarts the loop.

Let E be an environment, D be a failure detector that can be used to solve URB in E , and Aurb be the URB
algorithm that uses D. Consider a run Rtrans of the transformation algorithm of Figure 3, and we let C

be the set of correct processes in this run. In order to differentiate between the suspicions of D and of D′,
we henceforth prefix the word “trust” by the failure detector to which it refers. For example, we say “p
D′-trusts”.

Lemma 2. If there is a correct process then, at every time, every process p D ′-trusts at least one correct
process.

Proof. Initially, p sets D′
p to Π, so clearly if there is a correct process q, then p D′-trusts q.

Now suppose p sets D′
p to a set S in line 27 at time t. In order to obtain a contradiction, assume that S

contains no correct process, i.e., S ∩ C = ∅. At time t, DAGp contains a path P = ([q0, d0, seq0], . . . ,
[qk, dk, seqk]) such that (1) q0 = p, (2) Delivered([q0, d0], . . . , [qk, dk]) = true, and (3) {q0, . . . , qk} = S.
Since DAGp contains P , we claim that there exists a of run Rbad

urb of Aurb in environment E such that

• the set of correct processes is C, and

• process p = q0 initially invokes broadcast(m0), and

• for j = 0, . . . , k, the j-th step is taken by process qj; in that step, qj obtains dj from its local failure
detector module, and receives the oldest message addressed to it that it has not yet received (if there
are no such messages, it receives nothing), and

• after the k-th step, (1) the set of messages sent by the k-th step and not yet received are lost and (2)
processes in C take steps in round-robin fashion, obtain some value from their failure detector, and
receive the oldest message not yet received that was sent after the k-th step

To see why the claims holds, note that DAGp was constructed in a run Rtrans with failure detector D in
environment E; since DAGp contains P , then in this run the following happened in chronological order: (1)
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1 For every process p:
2

3 Initialization:
4 DAG ← ∅
5 curr ← −1
6 D′

p ← Π { trust all processes }
7

8 cobegin
9 || Task 1:
10 while true do
11 d ← Dp

12 curr ← curr + 1
13 add to DAG the node [p, d, curr ] and edges from all other nodes to [p, d, curr ]
14 broadcast(DAG) { use URB algorithm to broadcast }
15

16 || Task 2:
17 upon deliver(DAGq) from q do
18 DAG ← DAG ∪ DAGq

19

20 || Task 3:
21 while true do
22 next ← curr + 1
23 wait until DAG contains a node of the form [p, ∗,next ]
24 wait until DAG contains a path P = ([q0, d0, seq0], . . . , [qk, dk, seqk]) such that
25 (1) q0 = p and seq0 = next and
26 (2) Delivered ([q0, d0], . . . , [qk, dk]) is true
27 D′

p ← {q0, . . . , qk} { all processes in this path }
28 coend

Figure 3: Transformation of D to D′ = Θ

q0 took a step and obtained d0 from its local failure detector; (2) q1 took a step and obtained d1 from its local
failure detector; (3) q2 took a step and obtained d2 from its local failure detector; and so on. Note that C is
the set of correct process in Rtrans . Thus, there is a run Rbad

urb of Aurb with D in environment E in which
q0 broadcasts m0, such that: (1) C is the set of correct processes; (2) for j = 0, . . . , k, in the j-th step, qj

obtains dj from its local failure detector and receives the oldest message addressed to it that it has not yet
received; (3) messages sent by the k-th step that were not received by the k-th step are lost; (4) after the k-th
step, processes in C take steps in a round-robin fashion, obtain some value from their failure detector, and
receive the oldest message not yet received that was sent after the k-th step. This is a valid run in our model
because the correct processes C take an infinite number of steps, and only a finite number of message are
lost (the lost message are those that are sent, but not received by the k-th step). This shows the claim.

Now consider run Rbad
urb . Up to the k-th step, no process in C takes a step (since only processes in S take a

step, and S ∩C = ∅ by assumption). At the k-th step, process qk delivers m0, since Delivered([q0, d0], . . . ,
[qk, dk]) = true. After the k-th step, only processes in C �= ∅ take a step, and they never receive a message
sent by the k-th step. It is easy to see that processes in C do not deliver m0. Since qk delivers m0 and
processes in C are correct, Rbad

urb violates the Uniform Agreement property of URB — a contradiction.

Lemma 3. If p is a correct process and at some time DAGp contains a path P , then eventually for every
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correct process q, DAG p contains path P · [q, d, seq] for some d and seq .

Proof. Suppose DAGp contains a path P . Eventually p broadcasts DAGp and since p and q are correct,
eventually q delivers that broadcast and incorporates P into DAGq (if it is not already there). After that,
in Task 1, q queries its failure detector, obtains a value d, and adds to DAGq a new node [q, d, seq] with
incoming edges from all other nodes. When that happens, DAGq contains the path P · [q, d, seq]. Then
q broadcasts DAG q. Since both p and q are correct, eventually p delivers that broadcast and incorporates
P · [q, d, seq] into DAGp.

Lemma 4. If p is a correct process then p does not block forever in lines 23 or 24.

Proof. Let p be a correct process. Then p does not block forever in line 23, since eventually its Task 2
adds to DAGp a node of the form [p, ∗,next ]. To see that p does not block forever in line 24, let seq0

be the value of nextp when p starts line 24, and let d0 be such that [p, d0, seq0] belongs to DAGp (such
a d0 exists because p has just executed past line 23). We claim that eventually DAGp contains a path
P = ([p, d0, seq0], [q1, d1, seq1], . . . , [qk, dk, seqk]) such that Delivered([p, d0], [q1, d1], . . . , [qk, dk]) is
true. This claim immediately implies that p does not block forever in line 24.

To show the claim, let r = |C|, q0 = p and q1, . . . , q|C|−1 be the processes in C \ {p} in some arbitrary
order. In order to obtain a contradiction, suppose that at every time, any path P in DAGp whose first node is
[p, d0, seq0] satisfies Delivered(P ) = false . We now define inductively an increasing sequence P0, P1, . . .
of paths that are all eventually in DAGp. Let P0 be the singleton path ([p, d0, seq0]) and note that DAGp

contains P0. For j ≥ 1, given that Pj−1 is in DAGp, by Lemma 3 eventually DAGp contains a path
Pj−1 · [qjmod|C|, dj, seqj] for some dj and seqj . We set Pj to be such a path.

We can now construct a run R0
urb of Aurb using D in environment E , where:

• the set of correct processes is C, and

• process q0 initially invokes broadcast(m0), and

• for j ≥ 0, the (j + 1)-th step is taken by process qjmod|C|; in that step, qjmod|C| obtains dj from
its local failure detector module, and receives the oldest message addressed to it that it has not yet
received (if there are no such messages, it receives nothing).

Note that R0
urb is a valid run of Aurb using D in environment E . Since q0 is correct in R0

urb , it must
eventually deliver m0, say at some step k. Therefore, we have that Delivered(Pk) = true. This contradicts
the assumption that Delivered(P ) = false for every path P in DAGp whose first node is [p, d0, seq0].

Lemma 5. There is a time after which correct processes do not D′-trust any process that crashes.

Proof. Let p be a correct process and q be a process that crashes. We now show that there is a time after
which p does not D′-trusts q. Let t0 be the time when q crashes. Let curr t0

p be the value of currp at time t0.

We claim that for any seq ≥ currt0
p + 1, DAGp can never contain a path whose first node is [p, ∗, seq ]

and that has a subsequent node of the form [q, ∗, ∗]. To see why, note that for any path P = ([p, d0, seq],
[q1, d1, seq1], . . . , [qk, dk, seqk]) in DAGp, it must be the case that after time t0 p obtains d0 from Dp

and adds node [p, d0, seq ] to DAGp, which happens no later than p broadcasts a DAGp containing node
[p, d0, seq ], which happens no later than q delivers a DAGp containing node [p, d0, seq].
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Note that there is an edge [p, d0, seq ] → [q1, d1, seq1] in DAGp, and so there must be such an edge in
DAGq1 (this is because for any process q, an edge of the form [∗, ∗, ∗] → [q, ∗, ∗] must appear DAGq before
it appears in the DAG of any other process). Therefore, q1 delivers a DAGp containing node [p, d0, seq ] no
later than q1 adds node [q1, d1, seq1] to DAGq1 . Moreover, through a similar reasoning, we have that for any
j : 1 ≤ j < k, qj adds node [qj , dj, seqj ] to DAGqj no later than p adds this same node to DAGp, which
happens no later than qj+1 added node [qj+1, dj+1, seqj+1] to DAGqj+1 .

With all that, we conclude that for any j : 0 ≤ j ≤ k, qj added node [qj, dj, seqj ] to DAGqj after time t0.
Since q crashes at time t0, we conclude that q �= qj . Thus DAGp can never contain a path whose first node
is [p, ∗, seq ] and that has a subsequent node of the form [q, ∗, ∗].
Now let t1 ≥ t0 be the time when p reaches line 27 with nextp set to curr t0

p +1. Note that eventually a path
is selected in line 24 after time t1. By the claim, no path selected after time t1 contains a node of the form
[q, ∗, ∗]. Thus, after time t1, p does not D′-trust q.

We can now prove our main result.

Theorem 6. Consider an asynchronous distributed system with process crashes and fair links, and with
environment E . Suppose failure detector D can be used to solve URB in E . Then D can be transformed in E
to the Θ failure detector.

Proof. By Lemma 2, D′ satisfies Θ-accuracy, and by Lemma 5, D′ satisfies Θ-completeness. Therefore the
algorithm in Figure 3 transforms D to Θ.

8 On the Nature and Power of Failure Detectors

As we mentioned in the introduction, to understand the meaning of a statement such as “D is the weakest
failure detector...”, or “D is necessary...”, we need to know the universe of failure detectors under considera-
tion. For such minimality results to be significant, the universe of failure detectors should be reasonable. In
particular, it should not include failure detectors that provide information that have nothing to do with fail-
ures, e.g., hints on which messages have been broadcast, information about the internal state of processes,
etc. To see why, suppose that a “failure detector” is allowed to indicate whether a message m was broadcast;
then processes could use it solve the URB problem without ever sending any messages! Similarly, with the
Consensus problem, if a “failure detector” could peek at the initial value of a process and provide this value
to all processes, processes could use it to solve Consensus without messages and without ♦W [CHT96].
Thus, a failure detector should be defined as an oracle that provides information about failures only.

In [HR99], it is not clear what information failure detectors are allowed to provide: On one hand, the formal
model defines failure detectors as generic oracles;6 on the other hand, their behavior is implicitly restricted
by a closure axiom (on the set of runs of the system) that is introduced later in the paper.7 The difficulty
is that this axiom is technical and quite complex; furthermore, it does not mention failure detectors and it
captures other assumptions that are not related to failure detection (e.g., the fact that processes are using
a full-information protocol). Thus, the nature and power of the failure detectors that actually satisfy this
axiom, and the universe of failure detectors under consideration, are not entirely clear.

6Even though the definition of a failure detector states that it must output a set S of processes, and that S should be “interpreted”
as processes suspected of being faulty, there is nothing in the definition to enforce this interpretation: the model does not tie the
output S to the crashes that occur in a run. Thus, the formal definition allows a failure detector to use its output S to encode
information that has nothing to do with failures.

7This axiom, A4, is given in Appendix B.
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1 For every process p:
2

3 Initialization:
4 D′

p ← Π { trust all processes }
5 got ← ∅
6

7 cobegin
8 || Task 1:
9 while true do send (I-am-alive) to all processes
10

11 || Task 2:
12 upon receive (I-am-alive) from q do
13 got ← got ∪ {q}
14

15 || Task 3:
16 while true do
17 if there exists S, k such that
18 (1) p got event suspect(S, k) (from Gf ),
19 (2) k > |S| − n + min(f, n − 1), and
20 (3) got contains Π \ S
21 then D′

p ← got ; got ← ∅ { trust processes in got }
22 coend

Figure 4: Transformation of Gf to D′ = Θ in Ef .

9 Relation between Gf and Θ

[HR99] shows that failure detector Gf is necessary and sufficient to solve URB in environment Ef (recall
that Ef is the set of all failure patterns in which at most f processes crash: in a system with environment Ef

any subset of up to f processes may crash, and these crashes can occur at any time).

We now show that in environment Ef , Θ is at least as weak as Gf , that is, it is possible to transform Gf to
Θ in Ef . The transformation algorithm is given in Figure 4. Initially, each process p sets its failure detector
output to Π (trust all processes). There are three concurrent tasks. In the first task, p repeatedly sends “I-am-
alive” to all processes in the system. In the second task, when p receives one such message from process q,
it adds q to the set got . In the third task, process p loops forever. In each iteration, p checks whether at some
time Gf has output a pair (S, k) such that k > |S| − n + min(f, n − 1) and got contains the complement
of S. In that case, p sets its failure detector output to got , and then resets got to the empty set.

We now show that the algorithm in Figure 4 transforms Gf into Θ in systems with process crashes and link
failures, and environment Ef . To do so, consider a run of this algorithm in such a system.

Lemma 7. If there is a correct process then, at every time, every process D ′-trusts at least one correct
process.

Proof. Assume that there is a correct process, and let p be any process. Initially, p D′-trusts all processes,
so clearly there exists some correct process that is D ′-trusted by p. Now assume that p sets its failure
detector output in line 21, and consider the value of some pair (S, k) that truthifies lines 18 and 19. Then,
in environment Ef , the definition of Gf implies that Π \ S contains at least one correct process. Thus, by
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condition (3), gotp contains some correct process, and so when p sets D′ in line 21, p D′-trusts at least one
correct process.

Lemma 8. If p is a correct process then p executes line 21 infinitely often.

Proof. In order to obtain a contradiction, assume that p executes line 21 only finitely often, and let tfinal

be the time when p executes this line for the last time (if p never executes this line, let tfinal = 0). Let
C be the set of correct processes. After time tfinal , p never resets got to the empty set. Since p receives
messages from correct processes infinitely often, then eventually got contains C after time tfinal . Moreover,
by definition of Gf , eventually p gets an f -useful event suspect(S, k). That means that S contains Π \ C

and condition (2) in line 19 holds. Thus C contains Π \ S. Since got contains C after time tfinal , then got
contains Π \ S after time tfinal , and so condition (3) in line 20 holds. Thus, after time tfinal , p executes
line 21 — a contradiction.

Lemma 9. There is a time after which correct processes do not D′-trust any process that crashes.

Proof. Let p be a correct process. Let t0 be the time when the last process crashes, and let t1 > t0 be
the time after which no messages sent by t0 are received (such a time t1 exists because of the Uniform
Integrity property of links and the fact that only a finite number of messages are sent by t0). Then, after
t1 all messages received were sent by correct processes. By Lemma 8, there exists a time t2 > t1 when p
executes line 21. Note that after time t2, variable got contains only correct processes. Let t3 > t2 be next
time when p executes line 21 (such a time t3 exists by Lemma 8). Then, after t3 p does not D′-trust any
process that crashes.

Theorem 10. The algorithm in Figure 4 transforms Gf into Θ in systems with process crashes and link
failures, and environment Ef .

Proof. Lemmata 7 and 9 show that D′ satisfies Θ-accuracy and Θ-completeness, respectively.

10 Related Work

The difference between the concepts of Agreement and Uniform Agreement was first pointed out in [Had86]
in a comparison of Consensus versus Atomic Commitment. The term “Uniform” was introduced in [GT89,
NT90], where it was studied in the context of Reliable Broadcast. In these papers, it is shown that with send
and receive omission failures, URB can be solved if and only if a majority of processes are correct.

[BCBT96] consider systems with process crashes and fair (lossy) links, and addresses the following ques-
tion: given any problem P that can be solved in a system where the only possible failures are process
crashes, is P still solvable if links can also fail by losing messages? [BCBT96] shows that if P can be
solved in systems with only process crashes, then P can also be solved in systems with process crashes and
fair links, provided that (a) P is correct-restricted8, or (b) a majority of processes are correct (i.e., n > 2f ).
As a corollary of this result (and the fact that URB is solvable in systems with only process crashes), we get
that URB is solvable in systems with f < n/2 process crashes and fair links.

[HR99] is the first paper to consider solving URB in systems with fair links and f ≥ n/2. As mentioned
above, this cannot be done without failure detectors, and [HR99] determined that failure detector Gf is

8Intuitively, a problem P is correct-restricted if its specification does not refer to the behavior of faulty processes [BN92, Gop92].
Note that URB is not correct-restricted.
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necessary and sufficient to solve this problem in Ef . A discussion of the differences between [HR99] and
this paper was given in Section 1.

11 Concluding Remarks

In some environments, URB can be solved without failure detectors at all, and this seems to contradict the
fact that Θ is the weakest failure detector for URB in any environment. There is no contradiction, however,
because in such environments Θ can be implemented.

For example, as we saw in the previous section, URB can be solved without failure detectors in an environ-
ment Emaj where a majority of processes are correct. This does not contradict Theorem 6 because Θ can be
implemented in Emaj , as we now explain.

To implement Θ in Emaj , processes periodically send an “I-am-alive” message to all processes, and each
process p keeps a list of processes Order p. This list records the order in which the last “I-am-alive” message
from each process is received. More precisely, Orderp is initially an arbitrary permutation of the processes,
and when p receives an “I-am-Alive” message from q, p moves q to the front of Order. To obtain Θ, a
process p repeatedly outputs the first �(n + 1)/2� processes in Orderp as the set of trusted processes. It is
easy to see why this implementation works: any process that crashes stops sending “I-am-alive” messages
and soon moves towards the end of Orderp. Since at most �(n − 1)/2 processes crash, all processes that
crash are eventually among the last �(n − 1)/2 processes in Orderp — so they do not appear among the
first �(n + 1)/2� processes. Thus our implementation satisfies Θ-completeness. To see that it also satisfies
Θ-accuracy, note that among the first �(n + 1)/2� processes in Orderp, there is always at least one correct
process (since no majority of processes can crash in Emaj ).

In general, from the transformation algorithm in Figure 3, the following obviously holds:

Remark 1. Consider an asynchronous distributed system with process crashes and fair links, and with
environment E . If URB can be solved in E without any failure detectors then Θ can be implemented in E .
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Appendix

A Proof of Theorem 1

We now prove that the algorithm in Figure 2 implements URB in any system with process crashes and link
failures, and with any environment. Consider a run of the algorithm using D = Θ in any environment.

Lemma 11. If a correct process p starts task diffuse(m) then eventually all correct processes start task
diffuse(m).

Proof. Let q be a correct process. In task diffuse(m), process p repeatedly sends m to all processes, includ-
ing q. By the Fairness property of links, eventually q receives m from p, and starts task diffuse(m) if it has
not done so already.

Lemma 12. If a correct process p starts diffuse(m) then p eventually delivers m.

Proof. Let q be a correct process; we first argue that eventually q ∈ gotp[m] holds forever. Indeed, by
Lemma 11, q eventually starts task diffuse(m). In that task, q sends m to p an infinite number of times. By
the Fairness property of links, p eventually receives m from q and adds q to gotp[m]. Once that happens, q
remains in gotp[m] forever.

We conclude that eventually every correct process is in gotp[m] forever. By the Θ-completeness property,
there is a time after which the output d of Dp contains only correct processes. Therefore, eventually d ⊆
gotp[m], and p delivers m.

Corollary 13. If a correct process p broadcasts a message m then p eventually delivers m.

Corollary 14. If some process p delivers a message m then all correct processes eventually deliver m.

Proof. If there are no correct processes, the corollary is vacuously true, so assume there is some correct
process. If p delivers m then for some d, (1) p obtained d from Dp and (2) d ⊆ gotp[m]. By (1) and the
Θ-accuracy property, d contains at least one correct process q. By (2), q ∈ gotp[m]. It is easy to show that
this implies that q started task diffuse(m). Since q is correct, by Lemma 11 all correct processes start task
diffuse(m). By Lemma 12, all correct processes deliver m.

Lemma 15. For every message m, every process delivers m at most once, and only if m was previously
broadcast by sender(m).

Proof. From the code of the algorithm: (a) a process only delivers a message m if it has not done so
previously, and so every process delivers m at most once; and (b) a process can only deliver m if it starts
task diffuse(m). By the Uniform Integrity property of links, it is easy to show that a process only starts
diffuse(m) if m was previously broadcast by sender(m).

Theorem 16. Consider an asynchronous distributed system with process crashes and fair links, and with
environment E . The algorithm in Figure 2 implements URB using Θ in E .

Proof. Validity, Uniform Agreement and Uniform Integrity follow from Corollary 13, Corollary 14 and
Lemma 15, respectively.

17



B The A4 Axiom of [HR99]

The axiom that implicitly restricts the behavior of failure detectors in [HR99] is:

(A4) If ϕ is a stable formula local to some process p in R that is insensitive to failure by p and there is
some S ⊆ Proc such that (R, r, t) |=

∧
q∈S ¬Kqϕ, then there exists a point (r′, t) such that (a)

r′q(t) = rq(t) for q ∈ S, (b) for q �∈ S, there is a prefix h of rq(t) (not necessarily strict) such that
r′q(t) is either h or h · crashq , and r′q(t) = h · crashq only if crashq ∈ rq(t), (c) (R, r′, t) |= ¬ϕ.

In this definition, R is a system (a set of runs), Proc is the set of processes in the system (in our paper, this
is denoted Π). The notation (R, r, t) |= ϕ means that formula ϕ is true at point (r, t) in system R, where
r is a run in R and t is a time. Roughly speaking, rq(t) is the prefix of run r at q up to time t (for details,
see [HR99]). crashq is an event that is in q’s history if q crashes. The allowed formulas ϕ are primitive
propositions, closed off under Boolean combinations, �, and the epistemic operators Kp for each process p.
Among the primitive propositions are sendp(q,msg), recvq(p,msg), crash(p), dop(α), and initp(α).9 A
formula ϕ local to q is said to be insensitive to failure by q if for all runs r, r′ ∈ R, if r′q(t

′) = rq(t) · crashq ,
then (R, r, t) |= ϕ iff (R, r′, t′) |= ϕ.

9Recall than in [HR99], broadcast and deliver correspond to init and do , respectively.
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