
Synchronous System and Perfect Failure Detector:
solvability and efficiency issues

Bernadette Charron-Bost

École Polytechnique
91128 Palaiseau Cedex, France
charron@lix.polytechnique.fr

Rachid Guerraoui André Schiper
Dépt. de Systèmes de Communication

École Polytechnique Fédérale de Lausanne
1015 Lausanne EPFL, Switzerland

{rachid.guerraoui, andre.schiper}@epfl.ch

Abstract

We compare, in terms of solvability and efficiency, the
synchronous model, noted SS, with the asynchronous
model augmented with a perfect failure detector, noted
SP . We first exhibit a problem that, although time-
free, is solvable in SS but not in SP . We then ex-
amine whether one of these two models allows more
efficient solutions for designing fault-tolerant applica-
tions. In particular, we concentrate on the uniform
consensus problem which is solvable in both models,
and we design a uniform consensus algorithm for the
SS model that is more efficient than any algorithm
solving uniform consensus in SP with respect to some
significant time complexity measure. From a practi-
cal viewpoint, the synchronous model thus seems better
than the asynchronous model augmented with a perfect
failure detector.

1 Introduction

The choice of a model is a fundamental issue in the
design of a fault-tolerant distributed system. Since
agreement protocols (e.g., atomic broadcast, atomic
commit) are at the heart of such systems [3, 4, 14],
one need to consider models that are strong enough to
circumvent the impossibility result of [13]. For this
concern, two main approaches have been proposed:
the timing-based approach [11, 12, 10, 16, 9] and the
failure detector approach [6, 5, 1, 2].

The first approach consists in providing processes
with information about time: the resulting models are
called timing-based models. For example, message de-
lays and relative processes speeds are bounded, and
these bounds are known in the “perfect” timing-based
model, namely the synchronous model. In contrast,
none of these bounds exist in the asynchronous model.
Intermediate timing-based models between the syn-

chronous and the asynchronous models are those in
which timing information is partial or inexact.

The second approach, i.e., the failure detector ap-
proach, is based on the observation that the impos-
sibility results in the asynchronous model stem from
the inherent lack of reliable failure detection. Chandra
and Toueg [6] propose to augment the asynchronous
model with an external failure detection mechanism,
which may make mistakes. Instead of focusing on tim-
ing features, the models of [6] are defined according
to axiomatic properties of failure detectors. Failure
detectors are classified in a hierarchy according to the
correctness of their suspicions. The strongest element
of this hierarchy is called the perfect failure detector,
and is denoted by P . Roughly speaking, the failure de-
tector P suspects a process (to have crashed) iff that
process has indeed crashed.

Each approach has some advantages. On the one
hand, timing-based models are more realistic than
time-free models, since distributed systems do use tim-
ing information. For example, in most of real systems
processes have access to almost-synchronized clocks
and know approximate bounds on process step time
or message delivery time. On the other hand, the ab-
stract failure detector approach is particularly pow-
erful for investigating the solvability of fault-tolerant
problems. As an example, Chandra, Hadzilacos, and
Toueg [5] determined the minimal amount of informa-
tion about failures that processes require to achieve
consensus. This information is simply expressed as
axiomatic properties of a failure detector. In contrast,
there is no analogous result for timing-based models:
the minimal amount of synchrony required to solve
consensus is still an open problem.

The motivation of our work is to explore the sim-
ilarities and differences between the timing-based ap-
proach and the failure detector approach. Some rela-
tions between the system models considered in these
two approaches have already been discussed in [6]. In

1

0-7695-0707-7/00 $10.00 � 2000 IEEE

particular, it is shown that a perfect failure detec-
tor can be implemented in the synchronous model us-
ing time-outs. In the system models of [12], time-out
mechanisms can also be used to implement an eventual
perfect failure detector – one of the eight failure detec-
tors in Chandra and Toueg’s hierarchy [6]. More gen-
erally, timing assumptions can be used to implement
some failure detectors, and so are translated into ax-
iomatic properties of failure detectors. However, some
features of timing-based models may be lost in this
failure detector translation. Comparing the two ap-
proaches consists in the determination of the proper-
ties of the timing-based models that are not preserved
by the translation.

Rather than addressing this general issue, the pa-
per restricts the comparison to the strongest cases.
More precisely, we compare the strongest timing-based
model, namely the synchronous model, with the model
obtained by augmenting the asynchronous model with
the strongest failure detector, namely P . These two
models are denoted by SS and SP , respectively. We
compare SS and SP assuming process crash failures
and reliable links, and we address the following two
questions:

1. Is the class of problems solvable in SS the same
as the class of problems solvable in SP ?

2. For problems that are solvable both in SS and
SP , does one of these models allow for more ef-
ficient solutions?

We first consider question (1), about problem solv-
ability. Since SS can implement SP , any problem that
can be solved in SP can also be solved in SS . Con-
versely, there trivially exist problems that are solvable
in SS but not in SP : problems whose specifications
contain timing conditions (such as the scheduled dead-
line of some events) might be solvable in SS but cannot
be solved in SP . This observation leads us to define a
notion of “time-free” problems which captures prob-
lems whose specifications do not involve absolute and
relative timing conditions. We show that even when
considering this class of problems only, solvability in
SS does not enforce solvability in SP . We do so by
exhibiting a time-free problem, called the strong de-
pendent decision problem, that is solvable in in SS

but not in SP . The initial motivation for introducing
this problem specification is theoretical. However, we
show that the strong dependent decision problem is
quite relevant in the context of atomic commit.

To address question (2) about efficiency, we con-
sider the time complexity measure. For that, we intro-
duce an adequate round-based computational model

for SP , denotedRWS , which is comparable to the well-
known synchronous round model RS for SS [16]. In
both RS and RWS , we measure the time complexity
in terms of the number of rounds until the required
outputs are produced. More precisely, we consider
the latency degree introduced in [18] and two refine-
ments of this time complexity measure. We concen-
trate on the fundamental uniform consensus problem
that is well-known to be solvable in RS (and so in
SS) despite failures. We show that this result still
holds in RWS (and so in SP). We analyze various
algorithms that solve uniform consensus for RS and
for RWS in the presence of up to t faulty processes.
When t = 1, we show that the RS model enables to
gain one round over RWS in failure-free runs. This
result is extended to any value of t (t < n) in a com-
panion paper [7]. Therefore, uniform consensus can
sometimes be reached in RS sooner than in RWS . In
conclusion, contrary to a fairly common idea the SS

synchronous model is strictly stronger than the asyn-
chronous model augmented with a perfect failure de-
tector SP , in terms of both solvability and efficiency.

The paper is organized as follows. Section 2 defines
the SS and SP system models. Section 3 shows that
SS is strictly stronger than SP in terms of problem
solvability, even when considering only problems with
time-free specifications. Section 4 compares the effi-
ciency of uniform consensus algorithms in SS and SP .
Finally Section 5 discusses our results and summarizes
our contribution.

2 System Models

In this section, we define the synchronous system
model SS (Sect. 2.4) and the system model SP ob-
tained from augmenting the asynchronous model with
the perfect failure detector P (Sect. 2.6) in a unified
framework. Our definitions are taken from [11, 6].

We consider distributed systems consisting of a set
of n processes Π = {p1, · · · , pn}. Processes commu-
nicate by exchanging messages. Communications are
point to point. Every pair of processes is connected
by a reliable channel. We assume the existence of a
discrete global clock to which processes do not have
access. The range of the clock’s ticks is the set of
natural numbers, and is denoted by T .

2.1 Failures and Failure Patterns

Processes can fail by crashing. A failure pattern F
is a function from T to 2Π, where F (t) denotes the set
of processes that have crashed by time t. If pi /∈ F (t),

0-7695-0707-7/00 $10.00 � 2000 IEEE

we say that pi is alive at time t. Processes are assumed
not to recover, i.e., ∀t ∈ T : F (t) ⊆ F (t + 1). Process
pi is faulty if pi ∈ Faulty(F) = ∪t∈T F (t); otherwise,
pi is correct and pi ∈ Correct(F) = Π \ Faulty(F).

2.2 Algorithms

Each process pi has a buffer, bufferi, that repre-
sents the set of messages that have been sent to pi but
that are not yet received. An algorithm A is a collec-
tion of n deterministic automata, one for each process.
The automaton which runs on pi is denoted by Ai. A
configuration C of A consists of:

• n process states state1(C), · · · , staten(C) of
A1, · · · , An, respectively;

• n sets of messages buffer1(C), · · · , buffern(C),
representing the messages presently in
buffer1, · · · , buffern.

Configuration C is an initial configuration if every
state statei(C) is an initial state of Ai and bufferi(C)
is empty. Computations proceed in steps of A. In each
step, a unique process pi atomically (1) receives a (pos-
sibly empty) set of messages, (2) changes its state, and
(3) may send a message to a single process, depending
on its state at the beginning of the step and on the
set of messages received in the step. A schedule of A
is an infinite sequence of A’s steps.

System models are defined according to the way
algorithms execute. In other words, a system model
determines the set of runs that algorithms can produce
in the model. In this way, we define the asynchronous
model, as well as the SS and SP models that are both
derived from the asynchronous model by restricting
the set of possible runs.

2.3 The Asynchronous Model

A run of algorithm A in the asynchronous model is
a tuple <F, C0, S, T >, where F is a failure pattern,
C0 is an initial configuration of A, S is a schedule of
A, and T is an infinite list of increasing time values of
T (indicating when each step of S occurs), and which
satisfies the following properties: (1) every correct pro-
cess takes an infinite number of steps in S, (2) every
process cannot take a step in S if it has crashed, and
(3) every message sent to a correct process is eventu-
ally received in S.

An asynchronous run (or a run, for short) is a run
of some algorithm in the asynchronous model.

2.4 The SS Synchronous Model

Following [11], the synchronous model SS is defined
by two constants Φ ≥ 1 and ∆ ≥ 1 such that any run
<F, C0, S, T > of algorithm A in SS satisfies the two
following synchrony conditions:

• Process synchrony: for any finite subsequence S′

of consecutive steps in S, if some process takes
Φ + 1 steps in S′ then any process that is still
alive at the end of S′ has taken at least one step
in S′.

• Message synchrony: for any pair of indices k, l
with l ≥ k+∆, if message m is sent to pi during
the k-th step and pi takes the l-th step, then m
is received by the end of the l-th step.

Notice that these two conditions are only in terms of
steps: they both refer only to schedule S and not to T .
In particular, they do not specify bounds on the real
time required to execute a step nor to deliver a mes-
sage. In contrast, [15] defines the synchronous model
in terms of real time synchrony conditions, which im-
ply that the Φ and ∆ bounds of the process and mes-
sage synchrony properties exist. With respect to non-
real time problems, we prefer the above definition bor-
rowed from [11], since it does not refer to some specific
operational features of systems.

2.5 Models with Failure Detectors

A failure detector history H is a function from Π×T
to 2Π, where H(pi, t) represents the set of processes
that pi suspects to have crashed at time t in the history
H . A failure detector D is a function that maps each
failure pattern F to a set of failure detection histories.

In a system equipped with a failure detector, algo-
rithms are defined in the same way as above, except
that each step taken by pi contains an intermediate
failure detector query phase during which pi queries
and receives a value from its failure detector module.
The state and the message resulting from the send
phase of a step depend additionally on the value re-
turned by the failure detector. A run r is defined as in
the asynchronous model, except that one has to spec-
ify a “compatible” (cf. [5]) failure detector history HD

of D, i.e., r =<F, HD, C0, S, T>.

2.6 The SP Model with Perfect Failure
Detector

Roughly speaking, the so-called perfect failure de-
tector P detects process crashes without any mistakes:
all failures are eventually detected, and processes are

0-7695-0707-7/00 $10.00 � 2000 IEEE

never wrongly suspected to crash. The system model
obtained by augmenting the asynchronous model with
the perfect failure detector P is denoted by SP .

2.7 Problem Specifications

A problem specification (or a problem, for short) is
defined as requirements on runs. Therefore, a problem
may be modelled by a set Σ of runs.

We restrict our attention to specifications Σ that do
not depend on failure detector histories, i.e., for any
runs r =<F, H, C0, S, T> and r′ =<F, H ′, C0, S, T>,
r ∈ Σ implies r′ ∈ Σ. In problem specifications, refer-
ences to failure detector history are thus useless and
will be omitted.

As we saw in the introduction, problems whose
specifications are related to synchrony conditions lead
to a trivial comparison between SS and SP . We
thereby restrict attention to problems whose specifi-
cations are insensitive to consistent schedule modifi-
cations [17]. Formally, let Si denote the sequence of
the steps taken by pi in S. A problem Σ is time-free if
for any runs r =<F, C0, S, T> and r′ =<F, C0, S

′, T ′>
such that Si = S′

i for any process pi, r ∈ Σ implies
r′ ∈ Σ. In particular, this holds when S = S′ but step
time lists T and T ′ are different. From now on, we
only consider such problem specifications. The term
“problems” will thus refer only to time-free problems.

For any system model S and any distributed algo-
rithm A, let Run(A,S, t) denote the set of runs that A
can produce in S, in which at most t processes crash.
Algorithm A tolerates t crashes and solves problem Σ
in S if Run(A,S, t) ⊆ Σ.

3 SS is strictly stronger than SP

In the synchronous model, detecting failures per-
fectly is easy: a simple time-out mechanism with time-
out periods that depend on the ∆ and Φ bounds, one
can implement a perfect failure detector. This implies
that any problem that can be solved with a perfect
failure detector is also solvable in a synchronous sys-
tem.

A widespread argument explaining why some prob-
lems (such as consensus, atomic broadcast, ...) cannot
be solved in asynchronous systems is the impossibil-
ity to determine whether a process crashed or is very
slow in such a system. In other words, with respect
to problem solvability, asynchronous systems seem to
differ from synchronous systems basically on the im-
possibility of achieving perfect failure detections. This
leads to think that an asynchronous system becomes

as “suitable” as a synchronous system for solving prob-
lems as soon as it is equipped with a perfect failure
detector. So it may appear that any problem solvable
in a synchronous system is still solvable in an asyn-
chronous system where one can detect failures per-
fectly.

We show below that this intuition is incorrect by
exhibiting a problem which can be solved in SS but
not in SP . For this problem, we consider two processes
pi and pj. Process pi starts with an input value in
{0, 1}. The goal is for process pj to eventually output a
decision in {0, 1}. There are three conditions imposed
on the decision made by pj :

• Integrity: Process pj decides at most once.

• Validity: If pi has not initially crashed, the only
possible decision value for pj is pi’s initial value.

• Termination: If pj is correct, then pj eventually
decides.

This problem will be referred to as the Strongly De-
pendent Decision problem (or simply, SDD). Note that
SDD is clearly a time-free problem.

The motivation for introducing the SDD problem
is not just theoretical. This problem turns out to be
quite relevant in the context of atomic commit. In-
deed, solving SDD provides more efficient atomic com-
mit algorithms, i.e., algorithms that lead to the com-
mit decision more often, while preserving the validity
property: When all processes propose to commit and
there is no initially dead process, processes may safely
decide to commit despite failures if the SDD problem
is solvable.

In SS , the SDD problem has a very simple algo-
rithm: pi sends its initial value to pj during its first
step. Process pj executes Φ + 1+∆ (possibly empty)
steps. If pj receives a message from pi during this
period, pj decides the value sent by pi; otherwise, it
decides 0.

Since the Φ and ∆ bounds do not exist in the SP

model, this algorithm does not work in SP . More gen-
erally, we show that SDD cannot be solved in SP .

Theorem 3.1 There is no algorithm that solves SDD
in the SP model and tolerates one crash.

Proof: Suppose, for contradiction, that there is such
an algorithm A. Let r0 be a run of A where pi’s ini-
tial value is 0, pi crashes from the beginning, and pj

suspects pi as soon as pi crashes. By the termination
requirement, pj eventually decides in r0. Since mes-
sages may experience arbitrary (but finite) delays in
the SP model, we construct a run r′0 of A whose first
step is taken by pi, pi crashes just after taking one

0-7695-0707-7/00 $10.00 � 2000 IEEE

step, and except its first step, r′0 is identical to r0 up
to pj ’s decision. By validity, pj decides 0 in r′0. From
pj ’s viewpoint, r′0 is indistinguishable from r0 until pj

decides. So pj also decides 0 in r0. Let r1 and r′1 be the
runs of A that are the same as r0 and r′0, respectively,
except pi’s initial value is 1. By the same reasoning as
above, process pj decides 1 in both r1 and r′1. Clearly,
r1 is indistinguishable from r0 with respect to pj , and
so pj decides the same value in both r0 and r1 — a
contradiction. ✷

From Theorem 3.1, it follows that there exist atomic
commit algorithms for synchronous systems that are
more efficient (i.e., that lead to the commit decision
more often) than any atomic commit algorithm for
asynchronous systems equipped with a perfect failure
detector.

This result points out a fundamental difference be-
tween SS and SP : the delay for detecting a failure is
bounded in the SS model whereas it is finite but un-
bounded in the SP model. More precisely, if pi is sup-
posed to send a message m to pj while pj is taking its
k-th step, if pj is aware of that, and if pi crashes and
fails in sending m, then pj can detect pi’s crash when
taking its (k+Φ+1+∆)-th step in SS . Such a bound
does not exist in SP . Basically, the SDD problem has
been specified to capture this difference.

4 Round-Based Computational
Models

To address the efficiency issue, we consider the
time complexity measure. For that, we introduce two
round-based computational models that can be easily
emulated from SS and SP . More precisely, we show
that computations in SS and SP can be organized in
synchronous rounds and in weakly synchronous rounds,
respectively. This defines two round-based computa-
tional models RS and RWS , which provide a uniform
framework for describing and assessing algorithms. In
both RS and RWS , the time complexity is measured
in terms of the number of rounds until all the required
outputs are produced.

4.1 The RS Model.

As in Section 2, each process has a buffer denoted
bufferi. An algorithm A of the RS model consists for
each process pi ∈ Π of the following components [16]:
a set of states denoted by statesi, an initial state
initi, a message-generation function msgsi mapping
statesi × Π to a unique (possibly null) message, and

a state transition function transi mapping statei and
vectors (indexed by Π) of message to statesi. In any
execution of A, each process pi repeatedly performs
the following two actions in lock-step mode:

1. Apply msgsi to the current state to generate the
messages to be sent to each process. Put these
messages in the appropriate buffers.

2. Apply transi to the current state and the mes-
sages present in bufferi to obtain the new state.
Remove all messages from the bufferi.

The combination of these two actions is called a round
of A.

It turns out that each round in RS satisfies the
round synchrony property: If pi is alive at the end of
round r and does not receive a message from pj at
round r, then pj fails before sending a message to pi

at round r.
The RS computational model can be easily emu-

lated by SS . The basic idea of the emulation is the
following: In each round r, every process pi executes
n+k steps of the SS model. The first n steps are used
to send real messages whereas in the k last steps, pi

sends null messages to make sure that, before moving
to round r + 1, pi receives all messages sent to it by
other processes in round r (k is a function of n, ∆, Φ
and r).

4.2 The RWS Model.

We define now a comparable round-based computa-
tional model RWS for SP . Likewise in RS , the code of
each process pi is entirely determined by the state set
statesi, the message-generation function msgsi, and
the state transition function transi. The difference
between RS and RWS lies in the fact that the state-
transition function transi is now applied to a subset
of messages present in bufferi.

The round synchrony property is no longer guaran-
teed, but we assume that rounds of RWS satisfy the
weak round synchrony property: If pi is alive at the
end of round r and does not receive a message from
pj at round r, then pj crashes by the end of round
r + 1. Contrary to RS , it might be the case that a
(faulty) process sends a message to pi at round r but
pi does not receive this message although pi is alive at
the end of round r. Such a message is called a pending
message.

The RWS model can be emulated from SP . The
reception of messages in round r is done as follows in
SP : Process pi keeps executing (possibly null) steps of
model SP until, for every process pj , either pi receives
a message from pj or pi suspects pj . In this emulation,

0-7695-0707-7/00 $10.00 � 2000 IEEE

it may be possible that pj sends a pending message at
round r and does not crash at round r. However, the
following lemma states that pj crashes by the end of
round r + 1.

Lemma 4.1 The above emulation guarantees the
weak round synchrony property.

Proof: Suppose for contradiction that some process
pj that is alive at the beginning of round r+2 sends a
pending message m to pi at round r. Let t′ be the time
at which pj starts round r + 2 and t′′ be the time at
which pi starts round r + 1. From the emulation and
the fact that m is pending, it follows that pi suspects
pj at t′′, i.e., pj ∈ H(pi, t

′′). Since the failure detector
is perfect, this implies that pj has crashed by time t′′.
Therefore, we have t′ < t′′.

On the other hand, pj is allowed to start round r+2
only if it has received a message from pi at round r+1
or it suspects pi. But pi is alive at time t′′ and thus at
time t′. Since the failure detector is perfect, pj can-
not suspect pi at time t′. It follows that pj receives a
message from pi at round r + 1. Let t be the time at
which pj receives this message; since a message must
be sent before it is received, we have t′′ < t < t′. This
is a contradiction. ✷Lemma 4.1

4.3 Runs in RS and RWS

Let A be any algorithm of the RWS model (and so
of the RS model). A run of A in RS is an infinite
sequence of A’s rounds. A partial run of A is a finite
prefix of a run of A. Definitions of Section 2 concerning
problem specifications are easily adapted to RS and
RWS . Note that since synchronous rounds are weakly
synchronous, if an algorithm solves a problem Σ in
RWS , then it also solves Σ in RS . The number of
rounds required to solve a problem in RS is thus not
greater than in RWS .

5 RS is More Efficient than RWS with
Respect to Uniform Consensus

We now concentrate on the uniform consensus prob-
lem. In order to measure time complexity of uniform
consensus algorithms, we consider the latency degree
introduced in [18] and various refinements of it. All
these time complexity measures are in terms of the
number of rounds until all the correct processes decide,
and so are quite significant in practice. We prove that
with regard to the most discriminating time complex-
ity measures among the ones we consider, RS allows
to achieve uniform consensus faster than RWS does.

5.1 The Uniform Consensus Specification

Let V be a fixed value set that is totally ordered.
Here each process starts with an input value from V
and must reach an irrevocable decision on one value of
V . The uniform consensus specification is defined as
the set of all runs that satisfy the following conditions:

• Uniform validity: If all processes start with the
same initial value v ∈ V , then v is the only pos-
sible decision value.

• Uniform agreement: No two processes (whether
correct or faulty) decide on different values.

• Termination: All correct processes eventually
decide.

The uniform consensus problem for crash failures
has a very simple algorithm in RS , called Flood-
Set [16]. Processes just propagate all the values in
V that they have ever seen and use a simple decision
rule at the end. More precisely, each process main-
tains a variable W containing a subset of V . Initially,
process pi’s variable W contains only pi’s initial value.
For each of t + 1 rounds, each process broadcasts W ,
then adds all the elements of the received sets to W .
After t + 1 rounds, any still alive process decides on
the minimum value of W . The complete code of Flood-
Set is given in Figure 1.1 From the observation that
if at most t processes may crash, then among t + 1
rounds there must be some round at which no process
fails, we easily deduce that FloodSet solves the uniform
consensus problem in RS if at most t processes may
crash.

Because of pending messages, FloodSet allows dis-
agreement in RWS . However, we can slightly modify
this algorithm by forcing any process that does not
receive a message from process pi at some round r to
ignore the message that may arrive from pi at round
r+1. The code of the resulting algorithm called Flood-
SetWS is given in Figure 2. In a companion paper [7],
we prove that FloodSetWS actually solves the uniform
consensus problem in RWS .

Uniform consensus differs from the consensus prob-
lem in the uniform agreement condition: it prevents
two processes to disagree even if one of the two pro-
cesses crash some (maybe long) time after deciding.
Thereby, uniform consensus, that is achievable in the
context of crash failures ofRS andRWS , precludes un-
desirable runs and thus specifies the agreement prob-
lem in a more satisfactory way than consensus does.
For much of system models, Charron-Bost et al. [8]

1In the code of FloodSet, as well as in the codes that follow,
null messages are not specified in the msgsi’s.

0-7695-0707-7/00 $10.00 � 2000 IEEE

statesi
rounds ∈ N , initially 0
W ⊆ V , initially the singleton set consisting of pi’s

initial value
decision ∈ V ∪ {unknown}, initially unknown

msgsi
if rounds ≤ t then send W to all processes

transi
rounds := rounds + 1
let Xj be the message from pj , for each pj from

which a message arrives
W := W ∪ ⋃

j
Xj

if rounds = t + 1 then decision := min(W)

Figure 1: FloodSet Algorithm

show that in fact, considering the consensus specifica-
tion instead of its uniform version has no bad effect:
for such systems, any algorithm that solves consensus
also solves uniform consensus. However, this result
holds neither in RS nor in RWS . Therefore, the uni-
form consensus problem actually differs from consen-
sus in the system models considered here.

5.2 Latency Degrees of Uniform
Consensus Algorithms

Let A be any uniform consensus algorithm of the
RWS model (and so of the RS model). For any run
r of A, the latency degree of r introduced in [18] cor-
responds to the number of rounds until all the correct
processes decide in run r. We denote the latency de-
gree of r by |r|.

Of course, any uniform consensus algorithm gener-
ates many different runs, depending for example on
initial configurations or on failure histories. Given a
system S and an integer t such that t < n, Schiper [18]
defines the latency degree of A as the minimal run la-
tency degree over all possible runs that can be pro-
duced by A when running in S and in the presence of
at most t process failures. Namely,

lat(A) = min{|r| : r ∈ Run(A,S, t)}.

Basically, this time complexity measure captures the
algorithm abilities of taking advantage of some run
parameters (e.g., initial configuration, number of fail-
ures) to achieve consensus quickly.

Because of the validity condition, any process that
receives n messages with the same value v at round 1

statesi
rounds ∈ N , initially 0
W ⊆ V , initially the singleton set consisting of pi’s

initial value
halt ⊆ Π, initially ∅
decision ∈ V ∪ {unknown}, initially unknown

msgsi
if rounds ≤ t then send W to all processes

transi
rounds := rounds + 1
let Xj be the message from pj , for each pj from

which a message arrives
W := W ∪ ⋃

pj /∈halt
Xj

for all pj from which no message has arrived do
halt := halt ∪ {pj}

if rounds = t + 1 then decision := min(W)

Figure 2: FloodSetWS Algorithm

could safely decide v at the end of round 1. Based
on this remark, we can slightly modify FloodSet and
FloodSetWS to obtain two new uniform consensus al-
gorithms for the RS and RWS models, respectively.
Each process operates as in FloodSet and FloodSetWS,
except that it decides v at round 1 if it receives n
messages with value v at round 1. Formally, transi

functions are modified by substituting the following
decision rule:

if rounds = 1 and
a message has arrived from every process then
if |W | = 1 then decision := v, where W = {v}

else if rounds = t + 1 then decision := min(W)

for

if rounds = t + 1 then decision := min(W)

We denote the resulting algorithms by C OptFloodSet
and C OptF loodSetWS, respectively. Clearly, we
have

lat(C OptF loodSet) = lat(C OptF loodSetWS) = 1

This is because C OptFloodSet and
C OptF loodSetWS both take advantage of the fact
that by validity, the decision value is determined from
the beginning if all the initial values are the same.
A sharper comparison of RS and RWS thus requires
the definition of a time complexity measure that does
not focus on some runs with “too specific” initial con-
figurations. This leads discriminating runs according

0-7695-0707-7/00 $10.00 � 2000 IEEE

to their initial configurations. Namely, for any initial
configuration C we define
lat(A, C) =
min{|r| : r ∈ Run(A,S, t) and r starting from C},

and
Lat(A) = max{lat(A, C) : C ∈ C}

where C denotes the set of A’s initial configurations.
In turn, algorithms can exploit some specific failure

histories to decide quickly. For example, if process pi

receives n − t messages at round 1 then pi knows the
exact set of faulty processes. In this case, pi can decide
at the end of round 1 provided it notifies its decision at
round 2 and this decision is then forced on other pro-
cesses. According to this idea, we can modify Flood-
Set and FloodSetWS to design uniform consensus al-
gorithms in which a decision is taken at the end of the
first round if t processes initially crash, regardless ini-
tial configurations. We denote the resulting new ver-
sions of FloodSet and FloodSetWS by F OptFloodSet
and F OptFloodSetWS, respectively. The formal code
of F OptFloodSet is given in Figure 3.

Theorem 5.1 F OptFloodSet
and F OptFloodSetWS solve the uniform consensus
problem in RS and RWS , respectively.

Proof: We only show the correctness
of F OptFloodSet. The proof for F OptFloodSetWS
is similar. We use the notation Wi(r) to denote the
value of variable W at process pi just after r rounds.

Termination is obvious, by the decision rules. For
uniform validity, suppose that all the initial values are
equal to v. Then v is the only value that ever gets
sent anywhere. Each set Wi is non empty, because it
contains pi’s initial value. Therefore, each Wi(t + 1)
must be exactly equal to {v}, so the decision rules say
that v is the only possible decision.

For uniform agreement, we consider two cases:

1. No process receives exactly n−t messages during
the first round. That is, all processes run the
FloodSet algorithm. By uniform agreement of
FloodSet, it follows that all processes make the
same decision.

2. The set Π′ of processes that receive exactly n− t
messages during the first round is not empty.
By the round synchrony property which holds
in RS , the set of processes from which every
process in Π′ receives a message at round 1 is
exactly the set of correct processes. It follows
that for any processes pi and pj in Π′, we have

Wi(1) = Wj(1).

statesi
rounds ∈ N , initially 0
W ⊆ V , initially the singleton set consisting of pi’s

initial value
decided ∈ {false, true}, initially false
decision ∈ V ∪ {unknown}, initially unknown

msgsi
if rounds ≤ t then

if decided = false then send W to all processes
else send (D, decision) to all processes

transi
rounds := rounds + 1
let Xj be the message from pj , for each pj from

which a message arrives
if rounds = 1 and n − t messages have arrived then

W := W ∪ ⋃
j
Xj

decided := true
decision := min(W)
decided := true

else if at least one Xj equals to (D, v) then
decision := v
decided := true

else W := W ∪ ⋃
j
Xj

if rounds = t + 1 and decided = false then
decision := min(W)
decided := true

Figure 3: F OptFloodSet Algorithm

Then all the processes in Π′ make the same de-
cision, say v. At round 2, processes of Π′ force
decision v. Therefore, all the correct processes
that have not decided at round 1, also decide v
at the end of round 2.

✷

Considering the runs of F OptFloodSet and
F OptFloodSetWS in which t processes initially crash,
we have:

Lat(F OptF loodSet) = Lat(F OptF loodSetWS) = 1.

Interestingly, this contradicts a widespread idea that
minimal latency degree is typically obtained with fail-
ure free runs.

The above examples yield a new refinement of the
latency degree: we now discriminate runs according to
the number of failures which occur. Formally, for any
integer f such that 0 ≤ f ≤ t we define

Lat(A, f) = max{|r| : r ∈ Run(A,S, f)},

0-7695-0707-7/00 $10.00 � 2000 IEEE

and
Λ(A) = min

0≤f≤t
Lat(A, f).

By definition of Lat(A, f), we have Lat(A, f) ≤
Lat(A, f + 1), and so Λ(A) = Lat(A, 0). In other
words, Λ(A) is the maximal latency degree over all
failure free runs.

5.3 RS May Be More Efficient Than RWS

We now compare the RS and RWS models in terms
of the Λ latency degree. First we restrict to the case
t = 1, and we present a simple algorithm A1 for uni-
form consensus inRS that tolerates at most one crash.
The A1 algorithm is based on the following ideas: Pro-
cess p1 broadcast its initial value v1 during the first
round. Upon receiving v1, process pi decides v1 at the
end of round 1. Subsequently, pi reports its decision
at round 2. If p2 does not receive a message from p1

in the first round (because p1 has crashed), it broad-
casts its initial value v2 at round 2. Since at most one
failure may occur, every correct process has received
v1 or v2, or both by the end of the second round. If it
receives v1, it decides v1; otherwise it decides v2. All
the runs of A1 have thus two rounds. The code of A1

is given in Figure 4.

Theorem 5.2 The A1 algorithm tolerates one crash
and solves the uniform consensus problem in the RS

model.

Proof: Termination is obvious, by the decision rules.
For uniform validity, suppose that all the initial values
are equal to some v0 ∈ V . Then v0 is the only possible
value of any w variable. So the decision rules say that
v0 is the only possible decision.

For uniform agreement, there are two cases to con-
sider:

1. Process p1 decides at round 1. Then p1 decides
on its initial value v1. Before deciding, p1 suc-
ceeded in sending v1 to all processes. Therefore,
any correct process receives v1 and then decides
v1 at the end of the first round.

2. Process p1 does not decide at round 1. In this
case, p1 crashes during the first round. Since
t = 1, all the other processes are correct. We
consider two subcases:

(a) Process p1 succeeds in sending at least one
message to some (correct) process pi before
crashing. From the algorithm, we deduce
that pi decides v1 at round 1 and broad-
casts (p1, v1) at round 2. All correct pro-
cesses then receive at least one message of

statesi
rounds ∈ N , initially 0 ;
w ∈ V , initially pi’s initial value ;
decided ∈ {false, true}, initially false ;
decision ∈ V ∪ {unknown}, initially unknown

msgsi
if rounds = 1 and i = 1 then send w to all
if rounds = 2 then

if decided = true then send (p1, w) to all
else if i = 2 then send w to all processes

transi
rounds := rounds + 1
let xj be the message from pj , for each pj from which

a message arrives
if rounds = 1 and a message has arrived from p1 then

w := x1

decision := x1

decided := true
if round = 2 then

if at least one message xj is equal to (p1, wj) then
decision := wj

decided := true
else {a message x2 = w2 arrives from p2}

decision := x2

decided := true

Figure 4: The A1 Algorithm

the form (p1, v1) in the second round, and
so decide v1.

(b) No correct process receives a message from
p1 at round 1, and thus no process decides
at the end of this round. At round 2, pro-
cess p2 broadcasts its initial value v2 and all
the other messages that are sent at round
2 are null. All processes, except process p1

(that never decides), decide v2.

✷

In every failure free run of A1, each process de-
cides at the end of the first round. We thus have
Lat(A1, 0) = 1, and so Λ(A1) = 1.

Basically, the uniform agreement property is no
more guaranteed by A1 in the RWS model. To see
that, assume that at round 1, p1 succeeds in broad-
casting v1, decides, and then crashes. In addition,
suppose that all the messages sent by p1 are pend-
ing. In this scenario, p1 decides v1 whereas all the
other processes decide v2. Modifications such as the

0-7695-0707-7/00 $10.00 � 2000 IEEE

one used to transform FloodSet into FloodSetWS do
not preclude such disagreement. In fact, a result in [7]
shows that if n ≥ 3, then there is no uniform consen-
sus algorithm in the RWS model such that all correct
processes decide at round 1 of all failure free runs. In
other words, for any uniform consensus algorithm A in
RWS that tolerates one crash we have Lat(A, 0) ≥ 2,
and so Λ(A) ≥ 2. This shows that RS allows to de-
sign more efficient solutions to the uniform consensus
problem than RWS does, in the presence of one crash.
Thanks to the general result stated in [7], we extend
this result: we show that this discrepancy between RS

andRWS still exists with any number t < n of possible
crashes.

6 Discussion

With regard to both solvability and efficiency con-
cerns, we have shown that the synchronous model is
better than the asynchronous model equipped with a
perfect failure detector. We have pointed out some sig-
nificant properties of the synchronous model that are
lost when translating the synchronous timing assump-
tions into the axiomatic properties of a perfect failure
detector. This is a first step towards the general com-
parison between timing-based models and models with
failure detectors. This wide question is indeed a fun-
damental issue on which the practical relevance of the
failure detector approach relies. It thus seems worthy
to extend these results to other classes of timing-based
models and other classes of failure detectors.

References

[1] M. Aguilera, W. Chen, and S. Toueg. Failure detec-
tion and consensus in the crash-recovery model. In
Proceedings of the 12th International Symposium on
Distributed Computing, Lecture Notes on Computer
Science, pages 231–245. Springer-Verlag, September
1998.

[2] M. K. Aguilera, W. Chen, and S. Toueg. Using
the heartbeat failure detector for quiescent reliable
communication and consensus in partitionable net-
works. Theoretical Computer Science, 220(1):3–30,
June 1999.

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database Sys-
tems. Addison-Wesley, 1987.

[4] K. P. Birman and T. A. Joseph. Reliable communi-
cation in the presence of failures. ACM Transactions
on Computer Systems, 5(1):47–76, February 1987.

[5] T. D. Chandra, V. Hadzilacos, and S. Toueg. The
weakest failure detector for solving consensus. Journal
of the ACM, 43(4):685–722, July 1996.

[6] T. D. Chandra and S. Toueg. Unreliable failure detec-
tors for asynchronous systems. Journal of the ACM,
43(2):225–267, March 1996.

[7] B. Charron-Bost and A. Schiper. Uniform consensus
is harder than consensus. Technical Report, EPFL,
Dépt. de Systèmes de Communication, April 2000.

[8] B. Charron-Bost, S. Toueg, and A. Basu. Revisiting
safety and liveness in the context of failures. Technical
report, LIX, École Polytechnique, January 2000.

[9] F. Cristian and C. Fetzer. The timed asynchronous
distributed system model. IEEE Transactions on
Parallel & Distributed Systems, 10(6):642–657, June
1999.

[10] F. Cristian and F. Schmuck. Agreeing on processor-
group membership in asynchronous distributed sys-
tems. Technical Report CSE95-428, UCSD, 1995.

[11] D. Dolev, C. Dwork, and L. Stockmeyer. On the min-
imal synchronism needed for distributed consensus.
Journal of the ACM, 34(1):77–97, January 1987.

[12] C. Dwork, N. A. Lynch, and L. Stockmeyer. Consen-
sus in the presence of partial synchrony. Journal of
the ACM, 35(2):288–323, April 1988.

[13] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Im-
possibility of distributed consensus with one faulty
process. Journal of the ACM, 32(2):374–382, April
1985.

[14] R. Guerraoui and A. Schiper. Consensus service: A
modular approach for building agreement protocols in
distributed systems. In International Symposium on
Fault-Tolerant Computing System. IEEE, June 1996.

[15] V. Hadzilacos and S. Toueg. A modular approach to
fault-tolerant broadcasts and related problems. Tech-
nical Report TR 94-1425, Cornell University, Dept. of
Computer Science, May 1994.

[16] N. A. Lynch. Distributed Algorithms. Morgan Kauf-
mann, 1996.

[17] Gil Neiger and Sam Toueg. Simulating synchronized
clocks and common knowledge in distributed systems.
Journal of the ACM, 40(2):334–377, April 1993.

[18] A. Schiper. Early consensus in an asynchronous sys-
tem with a weak failure detector. Distributed Com-
puting, 10(3):149–157, April 1997.

0-7695-0707-7/00 $10.00 � 2000 IEEE

