On the Weakest Failure Detector
for Uniform Reliable Broadcast*

Marcos Kawazoe Aguilera Sam Toueg Borislav Deianov

Department of Computer Science
Upson Hall, Cornell University
Ithaca, NY 14853-7501, USA.
{agui | era, sam bori sl av}@s. cornel | . edu

April 30, 1999

Abstract

Uniform Reliable Broadcast (URB) is a communication primitive that requires that if a process delivers
a message, then al correct processes also deliver this message. A recent PODC paper [HR99] uses
Knowledge Theory to determine what failure detectors are necessary to implement this primitive in
asynchronous systems with process crashes and lossy links that are fair. In this paper, we revisit this
problem using a different approach, and provide aresult that is simpler, more intuitive, and, in a precise
sense, more general.

1 Introduction

Uniform Reliable Broadcast (URB) is a communication primitive that requires that if a process delivers
a message, then all correct processes also deliver this message [HT94]. A recent PODC paper [HR99]
uses Knowledge Theory to determine what failure detectors are necessary to implement this primitive in
asynchronous systems with process crashes and fair links (roughly speaking, afair link may lose aninfinite
number messages, but if a message is sent infinitely often then it is eventually received).! In this paper, we
revisit this problem using an algorithmic-reduction approach [CHT96], and provide a result that is simpler,
more intuitive, and, in a precise sense, more general, aswe now explain.

[HR99] considered systemswhere up to f process may crash and links are fair, and used Knowledge Theory
to show that solving URB in such a system requires a generalized f-useful failure detector (denoted G in
here). Such a failure detector is parameterized by f and is described in Figure 1. [HR99] shows that when
f=norf=n—1,G' isequivaent to a perfect failure detector.

In this paper, werevisit this problem using the approach in [CHT96], and give asimpler characterization of
the failure detectors that can solve URB in systems with process crashes and fair links. More precisely, we
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1[HR99] actually studies a problem called Uniform Distributed Coordination. This problem, however, isisomorphic to URB:
init and do in Uniform Distributed Coordination correspond to broadcast and deliver in URB, respectively.



A generalized failure detector [HR99] outputs a pair (.S, k) where S is a subset of processes and % is a positive
integer. Intuitively, the failure detector outputs (S, k) to report that k& processes in S are faulty. In arun r, the
failure detector event suspect (S, k) is said to be f-useful for r if (a) S containsall processesthat crashin r, and (b)
n—|S| > min(f,n—1) — k. A generalized failure detector is f-useful if, for al runsr and processesp, the following
two properties hold (where r,(¢) denotesthe prefix of run r at processp up to time t):

o If suspect,(S, k) isinry,(t) thenthereisasubset " C S suchthat |S’| = k and for al ¢ € S’, we have that
crashg isinry(t).

o |f piscorrect, thenthereisa f-useful failure-detector event for  inr,(¢), for somet.

Figure 1. Definition of ageneralized f-useful failure detectors.

prove that the weakest failure detector for this problem is a simple failure detector denoted ©. © outputs a
set of processes that are currently trusted to be up,? such that:

Completeness. There is atime after which correct processes do not trust any process that crashes.

Accuracy: If there is a correct process then, at every time, every process trusts at least one correct
process.

This simple characterization of the weakest failure detector for URB is more general than the one given
in [HR99], in the sense that it holds for any system with fair links, regardiess of f or any other types
of restrictions or dependencies on process crashes.® To illustrate this point, consider the following three
systemswith n processors {p1,p2, ... ,Pn}:

1. In system Sy, every processor may crash, except that we assume that p; and py cannot both crash in
the same run (this assumption makes sense if, for example, p; and ps are configured as symmetric
primary/backup servers). Notethat in S7, upto f = n — 1 processors may crash in the same run.

2. Insystem S,, every processor may crash, except that processor p; is afault-tolerant highly-available
computing server that crashes only when it is left alone in the system (this assumption is not unrea-
sonable: in some existing systems, processes kill themselvesif they are unable to communicate with
aminimum number of processes). Notethat in Sz, up to f = n processors may crash in the same run.

3. Insystem S3, the number of processesthat crash isbounded, but thisbound f isnot known. Moreover,
there are some additional restrictions and dependencies on process crashes (e.g., if more than half of
the processes crash then a certain process p; commits suicide) but these are also not known.

What is the weakest failure detector for solving URB in each of 57, S3 and S3? By our result, the answer is
simply ©.

In contrast, the result in [HR99] cannot be applied to S, S, and S3, as we now explain. For Ss, thisis
obvious because f is not even known. For S, the value of f, namely n — 1, is known. So, one may be

2Some failure detectors in the literature output a set of processes suspected to be down; this is just the complement of the set of
processes that are trusted to be up.

3If one assumes that a majority of processes does not crash, then URB can be solved without any failure detector [BCBT96].
Asweexplain in Section 11, this does not contradict our result.



tempted to naively plug f = n — 1 inthe result of [HR99], and to conclude that solving URB in .S requires
G"~! (i.e.,, aperfect failure detector). This conclusion isincorrect, because [HR99] explicitly assumes that
any subset of up to f = n — 1 processors can crash in a run — an assumption that does not hold for .S;.
Similarly, for Sy, one cannot just plug f = n in [HR99] to obtain the correct answer.

Since, in some sense, both G/ and © are “minimal” for URB, an important question is now in order: What
isthe relation between G and ©? To answer this question, we introduce the notions of failure patterns and
environments [CHT96]. Roughly speaking, a failure pattern indicates, for each process p, whether p crashes
and, if so, when. An environment £ isaset of failure patterns, and a systemwith environment £ is one where
the process crashes must match one of thefailure patternsin £. Intuitively, environments allow usto express
restrictions on process crashes, such as “either p; or po, but not both, may crash” (so environments can be
used to formally define the systems S; and S» described earlier). A commonly-used environment in the
literatureis £7, the set of all failure patternsin which at most f processes crash: A system with environment
&7 dlows up to f process crashes, but there are no other constrains or dependencies, i.e., any subset of f
processes may crash, and these crashes can occur at any time.

We can now compare G/ and ©. Roughly spesking, © is the weakest failure detector regardiess of the
environment £, while Gf is necessary and sufficient for environment £f. When £ = &7, there is an
agorithm that transforms G into ©, and o © is at least as weak as G in environment £7 .4

Animportant difference between [HR99] and this paper isthat [HR99] uses Knowledge Theory [FHMV95]
to establish and stateits results, while we use algorithmic reductions [CT96]. An advantage of the algorith-
mic reduction method over the knowledge approach, is that the former alows the derivation of a stronger
result: in a nutshell, the knowledge approach determines only what information about failures processes
know, while the algorithmic reduction method determines what information about failures processes know
and can effectively compute. Specifically, the result in [HR99] is that, in order to solve URB, processes
must know the information provided by G/. This does not automatically imply that processes can actually
compute G .5

In contrast, the algorithmic reduction given in this paper shows that if processes can solve URB with some
failure detector D, then they can use D to compute failure detector ©. This reduction impliesthat D is at
least as strong as © in terms of problem solving: if processes can solve a problem with ©, they can aso
solveit with D (by first using D to compute ©). Notewe would not be ableto say that D is at least as strong
as O (in terms of problem solving) if D only allowed processes to know (but not compute) ©.

Finally, there is another difference between our approach and the one in [HR99], namely, the universe of
failure detectors that is being considered. To understand the meaning of a statement such as “D is the
weakest failure detector...”, or “D is necessary...”, one needs to know the universe of failure detectors under
consideration (because it is among these failure detectors that D is the “weakest” or “necessary”). In our
paper, the universe of failure detectors is explicit and clear: a failure detector is a function of the failure
pattern — a natural definition that iswidely used [CHT96, HMR97, OGS97, YNG98, LH94]. The universe
of failure detectorsin [HR99], however, isimplicitly defined, and the exact nature and power of the failure
detectors considered are not entirely clear. Thisissueisfurther discussed in Section 8.

In summary, in this paper we consider the problem of determining the weakest failure detector for solving
URB in systems with process crashes and lossy links — a problem that was first investigated in [HR99].

4This is modulo a technicality due to a difference in the two models: in [HR99] all the failure detector events are “seen” by
processes, while here processes can “miss’ some failure detector values.

%In Knowledge Theory, processes may know facts that they cannot actually compute. For example, if the system is sufficiently
expressive, they known the answer to every unsolved problem in Number Theory, and they aso know whether any given Turing
Machine halts on blank tape.



In [HR99], this problem was studied using the framework of Knowledge Theory. In this paper, we tackle
this problem using a different approach based on the standard failure detector models and techniques of
[CHT96]. The resultsthat we obtain are ssmple, intuitive and general. More precisely:

1. We provide a single failure detector ©, and show that it is the weakest failure detector for URB, in
any environment. In particular, our result holds even if f isnot known.

In environment £/, © is at least asweak as G/

2. © issimple and a natura candidate for solving URB. As aresult, the algorithm that uses © to solve
URB in any environment &, isimmediate.

3. Our results are derived and can be understood from first principles (they do not require Knowledge
Theory).

4. Our “minimality” result is in term of effective computation, not knowledge: roughly speaking, if
processes can solve URB, we show how they can compute © (this implies knowledge of ©; but the
converse does not necessarily hold).

5. The universe of failure detectors (with respect to which our minimality result hold) is given explicitly
through a simple definition.

The paper is organized as follows. Our model is described in Section 2. In Section 3, we explain what it
means for afailure detector to be weaker than another one. Section 4 defines the uniform reliable broadcast
problem. Failure detector © is defined in Section 5, and in Section 6, we show how to use it to implement
uniform reliable broadcast in systems with process crashes and fair links. In Section 7 we show that © is
actually the weakest failure detector for this problem. In Section 8, we briefly discuss the nature and power
of failure detectors, and in Section 9 we consider the relation between G/ and ©. Related work is discussed
in Section 10 and we conclude the paper in Section 11.

2 Modd

Throughout this paper, in al our results, we consider asynchronous message-passing distributed systemsin
which there are no timing assumptions. In particular, we make no assumptions on thetimeit takes to deliver
amessage, or on relative process speeds. The system consistsof aset of n processesIl = {1,2,... ,n} that
are completely connected by point-to-point (bidirectional) links. The system can experience both process
failures and link failures. Processes can fail by crashing, and links can fail by dropping messages. The
model, based on the one in [CHT96], is described next.

We assume the existence of a discrete global clock — this is merely a fictional device to simplify the
presentation and processes do not have accessto it. We take the range 7 of the clock’s ticksto be the set of
natural numbers.

2.1 Failure Patterns and Environments
Processes can fail by crashing, i.e., by halting prematurely. A failure pattern F' is a function from 7°

to 2. Intuitively, F(t) denotes the set of processes that have crashed through time ¢. Once a process
crashes, it does not “recover”, i.e., V¢t : F(t) C F(t + 1). We define crashed(¥) = |, F(t) and
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correct(F') = IT \ crashed(F'). If p € crashed(F') we say p crashes (or isfaulty) in F' and if p € correct(F)
wesay piscorrectin F.

An environment £ is a set of failure patterns. Aswe explained in the introduction, environments describe
the crashes that can occur in a system.

Links can fail by dropping messages, but we assume that links are fair. Roughly speaking, afair link from
p to ¢ may intermittently drop messages, and may do so infinitely often, but it must satisfy the following
“fairness’ property: if p repeatedly sends some messageto ¢ and ¢ doesnot crash, then ¢ eventually receives
that message. Thisis made more precisein Section 2.3.

2.2 Failure Detectors

Each process has access to a loca failure detector module that provides (possibly incorrect) information
about the failure pattern that occursin an execution. A failure detector history H with range R isafunction
fromIl x 7 toR. H(p,t) isthe output value of the failure detector module of processp at timet. Afailure
detector D is a function that maps each failure pattern F' to a non-empty set of failure detector histories
with range Rp (where Rp denotes the range of the failure detector output of D). D(F') denotes the set of
possible failure detector histories permitted by D for the failure pattern F.

2.3 Runsof Algorithms

An algorithm A isa collection of n (possibly infinite-state) deterministic automata, one for each processin
the system. Computation proceeds in atomic steps of .A. In each step, a process may: receive a message
from a process, get an external input, query its failure detector module, undergo a state transition, send a
message to a neighbor, and issue an external output.

A run of algorithm A using failure detector D isatuple R = (F, Hp, I, S,T) where F' isafailure pattern,
Hp € D(F)isahistory of failure detector D for failure pattern F', I isan initial configuration of A, S isan
infinite sequence of steps of A, and T' is an infinite list of increasing time values indicating when each step
in.S occurs.

A run must satisfy some properties for every process p: If p has crashed by time ¢, i.e, p € F(t), thenp
does not take a step at any time ¢’ > ¢; if p iscorrect, i.e., p € correct(F’), then p takes an infinite number of
steps; and if p takes astep at timet and queriesits failure detector, then p gets Hp(p, t) as aresponse.

A run must also satisfy the following “fair link properties’ for every pair of processes p and ¢:

e Fairness: If p sends a message m to ¢ an infinite number of times and ¢ is correct, then ¢ eventually
receives m from p.

e Uniform Integrity: If ¢ recelves a message m from p then p previously sent m to ¢; and if ¢ receives
m infinitely often from p, then p sendsm infinitely often to q.

3 FailureDetector Transformations

As explained in [CT96, CHT96], failure detectors can be compared via algorithmic transformations. We
now explain what it means for an algorithm T»_.p to transform a failure detector D into another failure
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detector D’ in an environment €. Algorithm Tp_.p uses D to maintain avariable D, at every process p.
This variable, reflected in the local state of p, emulates the output of D’ at p. Let Hp be the history of all
the D’ variablesinarun R of Tp_.p, i.€., Hp/ (p, t) isthe value of D}’, attimet inrun R. Algorithm Tp_,p
transforms D into D’ in £ if and only if for every F' € £ and every run R = (F, Hp,I,S,T) of Tp_pr
using D, we have Hp: € D/(F). Intuitively, since Tp_.p isableto use D to emulate D', D provides at
least as much information about process failures as D’ does, and we say that D’ isweaker than D in £.

Note that, in general, T»_,» need not emulate all the failure detector histories of D’ (in environment £);
what we do requireisthat all the failure detector historiesit emulatesbe historiesof D’ (in that environment).

4 Uniform Reliable Broadcast

Uniform Reliable Broadcast (URB) is defined in terms of two primitives. broadcast(m) and deliver(m).
We say that process p broadcasts message m if p invokes broadcast(m). We assume that every broadcast
message m includes the following fields: the identity of its sender, denoted sender(m), and a sequence
number, denoted seq(m). These fields make every message unique. We say that ¢ delivers message m if ¢
returns from the invocation of deliver(m). Primitives broadcast and deliver satisfy the following properties
[HT94]:

e Validity: If acorrect process broadcasts a message m, then it eventually delivers m.

e Uniform Agreement. If some process delivers a message m, then all correct processes eventually
deliver m.

e Uniform Integrity: For every message m, every process delivers m at most once, and only if m was
previously broadcast by sender(m).

Validity and Uniform Agreement imply that if a correct process broadcasts a message m, then al correct
processes eventually deliver m.

5 Failure Detector ©

We now define failure detector ©. Each failure detector module of © outputs a set of processes that are
trusted to be up, i.e., Re = 2. For each failure pattern F', ©(F) isthe set of all failure detector histories
H with range R¢ that satisfy the following properties:

e [©-completeness|: Thereisatime after which correct processes do not trust any processthat crashes.
More precisely:

3t € T,Vp € correct(F'),Vq € crashed(F),Vt' > t:q & H(p,t')

e [©-accuracy]: If thereisacorrect processthen, at every time, every process trusts at |east one correct
process. More precisely:

crashed(F) # Il =Vt € T,Vp € I\ F(t),3q € correct(F) : ¢ € H(p, )



For every process p:

To execute broadcast(m):
got[m] — {p}
fork task diffuse(m)
return

task diffuse(m):
whiletruedo
send m to al processes
d— D, { disthelist of processestrusted to be up }
if d C got[m] and p has not delivered m
then deliver(m)

© 00 N o g » W N P
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upon receive m from ¢ do
if task diffuse(m) has not been started yet then
got[m] — {p,q}
fork task diffuse(m)
else got[m] < got[m] U {q}

P
© ® N o o

Figure 2: Implementing Uniform Reliable Broadcast using D = ©

Note that a process may be trusted even if it has actually crashed. Moreover, the correct processes
trusted by a process p is allowed to change over time (in fact, it can change infinitely often), and it is
not necessarily the same as the correct process trusted by another process g.

6 Using O to Implement Uniform Reliable Broadcast

The algorithm that implements URB using © is shown in Figure 2. When ambiguities may arise, avariable
local to process p is subscripted by p. To broadcast a message m, a process p first initializes got ,[m] to
{p}; this variable represents the processes that p knows to have received m so far. Process p then forks task
diffuse(m). In diffuse(m), process p periodically sends m to al processes, and checksif got[m] contains
all processes that are currently trusted by p; when that happens, p delivers m if it has not done so already.
When process p receives m from aprocess g, it startstask diffuse(m) if it has not done so already.

Theorem 1. Consider an asynchronous distributed system with process crashes and fair links, and with
environment £. The algorithmin Figure 2 implements URB using © in £.

The proof is straightforward and can be found in Appendix A.

7 TheWeakest Failure Detector for Uniform Reliable Broadcast

We now show that, in any environment, a failure detector D that can be used to solve URB can be trans-
formed to ©. We first give a rough outline of how the transformation works, and then give the detailed
transformation agorithm and its proof.



7.1 Outline of the Transformation Algorithm

Let £ be an environment, D be afailure detector that can be used to solve URB in &, and A, be the URB
algorithm that uses D. Intuitively, the algorithm that transforms D into © in € works asfollows.

Processes periodically query their failure detector D and exchange information about the values of D that
they see. Using this information, processes construct a directed acyclic graph (DAG) that represents a
“sampling” of the failure detector output and some temporal relationships between the values sampled.
To illustrate this, suppose that gy queries its failure detector D for the ky-th time and sees value dy; ¢
then reliably broadcasts the message [qo, do, ko] (it can use A,,; to do so). When a process ¢; receives
[90, do, ko), it can add vertice [qo, do, ko) to its (current) version of the DAG. When ¢, later queries D and
sees the value d; (say thisisits k;-th query), it adds vertice [q1, d1, k1] and edge [qo, do, ko] — [q1, d1, k1]
to its DAG: This edge indicates that gy saw dg (inits kq-th query) before ¢; saw d; (inits k;-th query). By
periodically sending its current version of the DAG to all processes, and incorporating all the DAGs that it
receivesinto its own DAG, a process can construct an ever increasing DAG that includes the failure detector
values seen by processes and some of their temporal relationships.

Consider arun of the transformation algorithm above in which the failure pattern is F' € £, and the failure
detector history is H € D(F). Inthisrun, aprocess p can useits DAG to simulateruns of A, with failure
pattern F' and failure detector history H. These are runs that could have occurred if processeswere running
A instead of the transformation algorithm.

To illustrate this, let p be a process, and consider a path in its DAG, say [qo, do, kol, [q1,d1, k1], - ..,
[qe, dg, k). In the transformation algorithm, process p uses this path to simulate a run R, of A4. In
R, qo takes the 0-th step, ¢; takes the 1-st step, ¢o takes the 2-nd step, and so on. In the 0-th step, qo
broadcasts mg. Moreover, for every j, inthe j-th step process ¢; sees failure detector value d; and receives
the oldest message sent to it that it has not yet received (if there are no such messages, it receives nothing).
It turns out that, if failure pattern F' has some correct process, then process p can extract from R, alist
of processesthat contains at least one such a correct process. To see how, consider the step of R,,,, when a
process first delivers m, and suppose this isthe k-th step. Then, among processes {qo, . . . , g} (those that
took steps before the delivery of my), there is at least one that never crashesin F'. If that were not the case,
we could construct another run R%2¢ of A,,,, with failure pattern F and failure detector history H, where
(1) up to the k-th step, processesbehave asin R, (2) after the k-th step, processes {qo, - . . , i } al crash,
and all messages sent by these processes to other processesare lost and (3) from the (k + 1)-st step onwards,
the correct processes (in F) take steps in around-robin fashion. Note that in RZ‘jd, (1) process g delivers
my at the k-th step, (2) correct processes (in F') only take steps after the k-th step, (3) these processes never
receive amessage sent by k-th step, and so (4) correct processes (in £') never deliver mg — acontradiction.
Thus, thelist {qo, . .. , qx} contains at least one correct process (in F'), and so p can achieve the ©-accuracy
property by outputting thislist.

Thelist {qo, ..., qx} that p generates, however, may contain processes that crash (in F'). Thus, to achieve
©-completeness, p must continuously repeat the simulation above to generate new {qo, . . . , gx } lists, such
that eventually the lists contain only correct processes (in F'). In order to guarantee that, p must ensure that
the path [qo, do, ko, [q1,d1, k1], - - . , [qe, de, k¢] that it usesto extract {qo, . .. , g} eventually includes only
vertices of processes that do not crash. That will be true if al the processes that crash in F', do so before
qo obtains dy at its ko-th step. Therefore, process p can achieve ©-completeness (as well as ©-accuracy)
by simply periodically reselecting a new path [qo, do, kol, [q1, d1, k1], - - - , [qe, de, k] SO that [qo, do, ko] isa
“recent” verticein its DAG.



7.2 TheAlgorithm Tp_.¢ and Its Proof

Having given an outline of the transformation algorithm, we now explain it in more detail. In what fol-
lows, let S be a sequence of pairs consisting of a process name and a failure detector value, that is,
S := ([g0,d0), [q1,d1],- - ,[qx,dk]). Let mo be an arbitrary fixed message. Given S, we can simulate
an execution of 4, in which (1) process qq initialy invokes broadcast(mg) and (2) for j = 0,... , k, the
j-th step of A, is taken by process g;; in that step, ¢; obtains d; from its local failure detector module,
and receives the oldest message addressed to it that it has not yet received (if there are no such messages,
it receives nothing). We define Delivered(S) to be true if process g; delivers my in the k-th step of this
simulation.

The detailed algorithm T»_, g that transforms D to © isgiven in Figure 3. Aswe explained in the outline,
each process p maintains a directed acyclic graph DAG,,, whose nodes are triples [¢, d, seq]. The transfor-
mation algorithm has three tasks; in the first task, a process p periodically queriesitslocal failure detector,
creates anew node [p, d, curr] in DAG,, and adds an edge from all other nodesin DAG),, to this new node.
Then, p uses A, to broadcasts its new DAG ), to all processes. In the second task, upon the delivery of
DAG, from a process ¢, process p merges its own DAG), with DAG,. In the third task, process p loops
forever. In the loop, p first waits until its Task 1 adds a new node to DAG),, and then waits until there isa
path starting at this new node that truthifies Delivered. Once p finds such a path, it sets the output of D’ to
the set of all processesthat appear in the path. Then, process p restarts the loop.

Let £ be an environment, D be afailure detector that can be used to solve URB in &£, and A,,,, be the URB
algorithm that uses D. Consider a run Ry.,s Of the transformation algorithm of Figure 3, and we let C
be the set of correct processes in this run. In order to differentiate between the suspicions of D and of 7,
we henceforth prefix the word “trust” by the failure detector to which it refers. For example, we say “p
D'-trusts’.

Lemma 2. If thereis a correct process then, at every time, every process p D’-trusts at least one correct
process.

Proof. Initialy, p sets D}, to I1, so clearly if thereisacorrect process ¢, then p D'-trusts q.

Now suppose p sets D}’, toaset Sinline 27 a time ¢. In order to obtain a contradiction, assume that S
contains no correct process, i.e.,, SN C = . Attimet, DAG), contains a path P = ([qo, do, seqq], - - - ,
[qr, ., seqy]) suchthat (1) go = p, (2) Delivered([qo, do], - - - , [qr, dx]) = true, and (3) {qo, ... ,qx} = S.
Since DAG,, contains P, we claim that there existsa of run R of A,,,;, in environment € such that

e the set of correct processesis C, and
e processp = qq initialy invokes broadcast(my), and

o forj =0,...,k, the j-th step istaken by process ¢;; in that step, ¢; obtains d; from itslocal failure
detector module, and receives the oldest message addressed to it that it has not yet received (if there
are no such messages, it receives nothing), and

o after the k-th step, (1) the set of messages sent by the k-th step and not yet received are lost and (2)
processes in C' take steps in round-robin fashion, obtain some value from their failure detector, and
receive the oldest message not yet received that was sent after the k-th step

To see why the claims holds, note that DAG,, was constructed in arun Ry, With failure detector D in
environment &; since DAG), contains P, then in this run the following happened in chronological order: (1)
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For every process p:

Initialization:
DAG « 0
curr «— —1
D, 11 { trust all processes }

cobegin
|| Task 1:
whiletruedo
d — D,
curr «— curr +1
add to DAG thenode [p, d, curr] and edgesfrom all other nodesto [p, d, curr]
broadcast(DAG) { use URB algorithm to broadcast }

© 00 N o o B~ W N P
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|| Task 2:
upon deliver(DAG,) from g do
DAG — DAG U DAG,

P
S © ©® N o

|| Task 3:
while true do
next < curr + 1
wait until DAG contains a node of the form [p, *, next]

nNNN
W N P

2 wait until DAG containsapath P = ([qo, do, seqq]s - - - , [k, dk, Seq;,]) such that

25 (1) go = p and seq, = next and

2 (2) Delivered([qo,do], - - - , [qr, dk]) istrue

27 D, —{qo;--- ,qr} { al processesin this path }

coend

N
©

Figure 3: Transformationof Dto D' = ©

qo took astep and obtained dy from itslocal failure detector; (2) ¢; took astep and obtained d; from itslocal
failure detector; (3) ¢- took a step and obtained dy from itslocal failure detector; and so on. Note that C' is
the set of correct processin Rirqns. Thus, thereisarun ngf{f of A, with D in environment £ in which
qo broadcasts my, such that: (1) C' isthe set of correct processes, (2) for j = 0, ... ,k, inthe j-th step, ¢;
obtains d; from itslocal failure detector and receives the oldest message addressed to it that it has not yet
received; (3) messages sent by the k-th step that were not received by the k-th step are lost; (4) after the k-th
step, processes in C' take steps in a round-robin fashion, obtain some value from their failure detector, and
receive the oldest message not yet received that was sent after the k-th step. Thisisavalid run in our model
because the correct processes C' take an infinite number of steps, and only afinite number of message are
lost (the lost message are those that are sent, but not received by the k-th step). This shows the claim.

Now consider run RZ‘;‘;. Up to the k-th step, no processin C takes a step (since only processesin S take a
step, and SN C = ) by assumption). At the k-th step, process g, delivers my, since Delivered(|[qo, dol, - - - ,
[qk, di]) = true. After the k-th step, only processesin C' # () take a step, and they never receive a message
sent by the k-th step. It is easy to see that processes in C do not deliver mg. Since g delivers mg and

processesin C are correct, R%%¢ violates the Uniform Agreement property of URB — acontradiction. O

Lemma 3. If p isa correct process and at some time DAG , contains a path P, then eventually for every
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correct process ¢, DAG ), contains path P - [g, d, seq] for some d and seg.

Proof. Suppose DAG,, contains a path P. Eventually p broadcasts DAG,, and since p and ¢ are correct,
eventually ¢ delivers that broadcast and incorporates P into DAG,, (if it is not aready there). After that,
in Task 1, ¢ queries its failure detector, obtains a value d, and adds to DAG, a new node [g, d, seq] with
incoming edges from all other nodes. When that happens, DAG, contains the path P - [g, d, seq]. Then
q broadcasts DAG,. Since both p and ¢ are correct, eventually p delivers that broadcast and incorporates
P -[q,d, seq] into DAG),. O

Lemma 4. If p isacorrect processthen p does not block forever in lines 23 or 24.

Proof. Let p be a correct process. Then p does not block forever in line 23, since eventually its Task 2
adds to DAG), a node of the form [p, x, next]. To see that p does not block forever in line 24, let seq
be the value of next, when p starts line 24, and let dy be such that [p, dy, seq,] belongs to DAG,, (such
a dy exists because p has just executed past line 23). We claim that eventually DAG), contains a path
P = ([p,do, seqq], [q1,d1, seq], ..., [qk, dk, seqi]) such that Delivered([p, do], [q1,d1], ..., [qk, di]) IS
true. This claim immediately implies that p does not block forever in line 24.

To show the claim, let r = |C|, qo = p and q1, ... , qc|—1 bethe processesin C'\ {p} in some arbitrary
order. In order to obtain a contradiction, suppose that at every time, any path P in DAG), whosefirst nodeis
[p, do, seq] satisfies Delivered(P) = false. We now define inductively an increasing sequence Py, P, . ..
of paths that are all eventually in DAG,,. Let P, be the singleton path ([p, do, seq,]) and note that DAG,
contains Py. For j > 1, given that P;_; isin DAG,, by Lemma 3 eventually DAG,, contains a path
Pj—1+ [@jmod|c|, dj, seq;] for some d; and seq;. We set P; to be such a path.

We can now construct arun R? , of A,,;, using D in environment £, where:

e the set of correct processesis C, and
e process qq initialy invokes broadcast(my), and

e for j > 0, the (j + 1)-th step is taken by process g;mod|c|; iN that Step, g;moa|c| Obtains d; from
its local failure detector module, and receives the oldest message addressed to it that it has not yet
received (if there are no such messages, it receives nothing).

Note that R , is avalid run of A,,;, using D in environment £. Since ¢ is correct in RV, it must
eventually deliver my, say at some step k. Therefore, we have that Delivered(Py) = true. This contradicts
the assumption that Delivered(P) = false for every path P in DAG), whosefirst node s [p, do, seqy]. O

Lemma 5. Thereisa time after which correct processes do not D’-trust any process that crashes.

Proof. Let p be a correct process and ¢ be a process that crashes. We now show that there is a time after
which p does not D’-trusts q. Let ¢, be thetimewhen g crashes. Let currf,o bethevalue of curr, at timet,.

We claim that for any seq > currg,o + 1, DAG, can never contain a path whose first node is [p, *, seq]
and that has a subsequent node of the form [q, *, x|. To see why, note that for any path P = ([p, do, seq],
[q1,d1, seqq], - .., [qk, dk, seqi]) in DAG,, it must be the case that after time ¢, p obtains dy from D,
and adds node [p, do, seq] to DAG,, which happens no later than p broadcasts a DAG,, containing node
[p, do, seq], which happens no later than ¢ deliversa DA G, containing node [p, do, seq].
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Note that there is an edge [p, do, seq] — [q1,d1, seq,] in DAG,, and so there must be such an edge in
DAG,, (thisisbecausefor any process ¢, an edge of the form [«, x, %] — [q, *, *] must appear DAG, before
it appearsin the DAG of any other process). Therefore, ¢, delivers a DAG, containing node [p, do, seq] no
later than ¢; addsnode [¢1, d1, seq,] to DAG, . Moreover, through asimilar reasoning, we have that for any
J 1< j <k, g; addsnode [g;,d;, seq;] to DAG,; no later than p adds this same node to DA G, which
happens no later than ¢;.+1 added node [g;+1, dj+1, seq; 1] 1o DAG

qj+1"

With all that, we conclude that for any j : 0 < j < k, ¢; added node [g;, d;, seq;] to DAG;, after time to.
Since ¢ crashes at time ¢y, we conclude that ¢ # ¢;. Thus DAG,, can never contain a path whose first node
is [p, %, seq] and that has a subsequent node of the form [g, *, «].

Now lett; > ¢, bethe timewhen p reachesline 27 with next,, setto curr};o + 1. Notethat eventually apath
isselected in line 24 after time ¢1. By the claim, no path selected after time ¢; contains a node of the form
[q, %, *]. Thus, after time ¢, p does not D'-trust q. O

We can now prove our main result.

Theorem 6. Consider an asynchronous distributed system with process crashes and fair links, and with
environment £. Suppose failure detector D can be used to solve URB in £. Then D can be transformed in £
to the © failure detector.

Proof. By Lemma 2, D’ satisfies ©-accuracy, and by Lemma5, D’ satisfies ©-completeness. Therefore the
algorithm in Figure 3 transforms D to ©. O

8 Onthe Natureand Power of Failure Detectors

Aswe mentioned in the introduction, to understand the meaning of a statement such as“D is the weakest
failure detector...”, or “D isnecessary...”, we need to know the universe of failure detectors under considera-
tion. For such minimality resultsto be significant, the universe of failure detectors should be reasonable. In
particular, it should not include failure detectors that provide information that have nothing to do with fail-
ures, e.g., hints on which messages have been broadcast, information about the internal state of processes,
etc. To seewhy, suppose that a“failure detector” is allowed to indicate whether a message m was broadcast;
then processes could use it solve the URB problem without ever sending any messages! Similarly, with the
Consensus problem, if a“failure detector” could peek at theinitial value of a process and provide thisvalue
to all processes, processes could use it to solve Consensus without messages and without ¢V [CHT96].
Thus, afailure detector should be defined as an oracle that provides information about failures only.

In[HR99], it isnot clear what information failure detectors are allowed to provide: On one hand, the formal
model defines failure detectors as generic oracles;® on the other hand, their behavior isimplicitly restricted
by a closure axiom (on the set of runs of the system) that is introduced later in the paper.” The difficulty
is that this axiom is technical and quite complex; furthermore, it does not mention failure detectors and it
captures other assumptions that are not related to failure detection (e.g., the fact that processes are using
a full-information protocol). Thus, the nature and power of the failure detectors that actually satisfy this
axiom, and the universe of failure detectors under consideration, are not entirely clear.

SEven though the definition of afailure detector states that it must output aset S of processes, and that S should be “interpreted”
as processes suspected of being faulty, there is nothing in the definition to enforce this interpretation: the model does not tie the
output S to the crashes that occur in arun. Thus, the formal definition allows a failure detector to use its output S to encode
information that has nothing to do with failures.

"This axiom, A4, is given in Appendix B.
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For every process p:

Initialization:
D, 11 { trust all processes }
got «— )

cobegin
|| Task 1:
while true do send (I-am-alive) to all processes

© 00 N o g A W N P

=
o

|| Task 2:
upon receive (I-am-alive) from ¢ do
got « got U {q}

=
U ORI R

|| Task 3:
whiletruedo
if there exists .S, k such that
(1) p got event suspect(S, k) (from G7),
(2 k> |S| —n+min(f,n—1),and
(3) got containsII \ S
then D}, « got; got < { trust processesin got }

NN R R R e
B O © ©® N o O

coend

INd
N

Figure 4: Transformation of G/ to D’ = © in &7,

9 Relation between G/ and ©

[HR99] shows that failure detector G is necessary and sufficient to solve URB in environment £/ (recall
that £/ isthe set of all failure patternsin which at most f processes crash: in a system with environment £/
any subset of up to f processes may crash, and these crashes can occur at any time).

We now show that in environment £/, © is at least as weak as G/, that is, it is possible to transform G/ to
O in &7. The transformation agorithm is given in Figure 4. Initially, each process p setsits failure detector
output to IT (trust al processes). There are three concurrent tasks. In thefirst task, p repeatedly sends“1-am-
alive’ to all processesin the system. In the second task, when p receives one such message from process g,
it adds ¢ to the set got. Inthethird task, process p loops forever. In each iteration, p checks whether at some
time G/ has output a pair (S, k) such that k& > |S| — n + min(f,n — 1) and got contains the complement
of S. Inthat case, p setsits failure detector output to got, and then resets got to the empty set.

We now show that the algorithm in Figure 4 transforms G into © in systems with process crashes and link
failures, and environment £7. To do so, consider arun of this algorithm in such a system.

Lemma 7. If there is a correct process then, at every time, every process D’-trusts at least one correct
process.

Proof. Assume that thereis a correct process, and let p be any process. Initially, p D’-trusts all processes,
so clearly there exists some correct process that is D’-trusted by p. Now assume that p sets its failure
detector output in line 21, and consider the value of some pair (S, k) that truthifies lines 18 and 19. Then,
in environment £/, the definition of G impliesthat IT \ S contains at |east one correct process. Thus, by
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condition (3), got,, contains some correct process, and so when p sets D’ in line 21, p D'-trusts at least one
COrrect process. O

Lemma 8. If p isa correct process then p executesline 21 infinitely often.

Proof. In order to obtain a contradiction, assume that p executes line 21 only finitely often, and let ¢4,
be the time when p executes this line for the last time (if p never executes this line, let t5,, = 0). Let
C' be the set of correct processes. After time tg,,,;, p never resets got to the empty set. Since p receives
messages from correct processes infinitely often, then eventually got contains C' after timet,,;. Moreover,
by definition of G/, eventually p gets an f-useful event suspect(S, k). That meansthat S containsII \ C
and condition (2) inline 19 holds. Thus C containsII \ S. Since got contains C' after time ¢4, then got
contains IT \ S after time ¢g,,,;, and so condition (3) in line 20 holds. Thus, after time tg,,,;, p executes
line 21 — acontradiction. O

Lemma 9. Thereisa time after which correct processes do not D’-trust any process that crashes.

Proof. Let p be a correct process. Let t; be the time when the last process crashes, and let ¢; > ¢y be
the time after which no messages sent by t( are received (such atime ¢; exists because of the Uniform
Integrity property of links and the fact that only a finite number of messages are sent by #;). Then, after
t1 al messages received were sent by correct processes. By Lemma 8, there existsatimet, > t; when p
executes line 21. Note that after time ¢o, variable got contains only correct processes. Let t3 > to be next
time when p executes line 21 (such atime t3 exists by Lemma 8). Then, after t3 p does not D’-trust any
process that crashes. O

Theorem 10. The algorithm in Figure 4 transforms G/ into © in systems with process crashes and link
failures, and environment £/,

Proof. Lemmata 7 and 9 show that D’ satisfies ©-accuracy and ©-completeness, respectively. O

10 Related Work

The difference between the concepts of Agreement and Uniform Agreement wasfirst pointed out in [Had86]
in a comparison of Consensus versus Atomic Commitment. The term “Uniform” was introduced in [GT89,
NT90], where it was studied in the context of Reliable Broadcast. In these papers, it is shown that with send
and receive omission failures, URB can be solved if and only if amajority of processes are correct.

[BCBT96] consider systems with process crashes and fair (lossy) links, and addresses the following ques-
tion: given any problem P that can be solved in a system where the only possible failures are process
crashes, is P ill solvable if links can also fail by losing messages? [BCBT96] shows that if P can be
solved in systems with only process crashes, then P can also be solved in systems with process crashes and
fair links, provided that (a) P is correct-restricted®, or (b) amajority of processes are correct (i.e., n. > 2f).
Asacorollary of thisresult (and the fact that URB is solvable in systemswith only process crashes), we get
that URB is solvable in systemswith f < n/2 process crashes and fair links.

[HR99] is the first paper to consider solving URB in systems with fair linksand f > n/2. Asmentioned
above, this cannot be done without failure detectors, and [HR99] determined that failure detector G/ is

8| ntuitively, aproblem P is correct-restricted if its specification does not refer to the behavior of faulty processes [BN92, Gop92].
Note that URB is not correct-restricted.
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necessary and sufficient to solve this problem in £7. A discussion of the differences between [HR99] and
this paper was given in Section 1.

11 Concluding Remarks

In some environments, URB can be solved without failure detectors at all, and this seems to contradict the
fact that © isthe weakest failure detector for URB in any environment. There is no contradiction, however,
because in such environments © can be implemented.

For example, aswe saw in the previous section, URB can be solved without failure detectors in an environ-
ment &,,,; Where amajority of processes are correct. This does not contradict Theorem 6 because © can be
implemented in &,,,;, aswe now explain.

To implement © in &,,4;, processes periodically send an “I-am-alive” message to all processes, and each
process p keeps alist of processes Order,,. Thislist records the order in which the last “[-am-alive” message
from each processisreceived. More precisely, Order,, isinitialy an arbitrary permutation of the processes,
and when p receives an “l-am-Alive” message from ¢, p moves ¢ to the front of Order. To obtain ©, a
process p repeatedly outputs the first [(n 4 1)/2] processesin Order), as the set of trusted processes. It is
easy to see why this implementation works. any process that crashes stops sending “1-am-alive’” messages
and soon moves towards the end of Order,. Since at most [ (n — 1)/2] processes crash, all processes that
crash are eventually among the last | (n — 1)/2| processesin Order, — o they do not appear among the
first [(n + 1)/2] processes. Thus our implementation satisfies ©-completeness. To seethat it also satisfies
©-accuracy, note that among the first [(n + 1)/2] processesin Order,, there is always at |east one correct
process (since no majority of processes can crashin &;,,,;).

In general, from the transformation algorithm in Figure 3, the following obviously holds:

Remark 1. Consider an asynchronous distributed system with process crashes and fair links, and with
environment £. If URB can be solved in £ without any failure detectorsthen © can beimplemented in £.
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Appendix
A Proof of Theorem 1

We now prove that the algorithm in Figure 2 implements URB in any system with process crashes and link
failures, and with any environment. Consider arun of the algorithm using D = © in any environment.

Lemma 11. If a correct process p starts task diffuse(m) then eventually all correct processes start task

diffuse(m).

Proof. Let ¢ beacorrect process. Intask diffuse(m), process p repeatedly sendsm to al processes, includ-
ing ¢. By the Fairness property of links, eventually ¢ receives m from p, and startstask diffuse(m) if it has
not done so already. O

Lemma 12. If a correct process p starts diffuse(m) then p eventually deliversm.

Proof. Let ¢ be a correct process, we first argue that eventualy ¢ € got,[m] holds forever. Indeed, by
Lemma1l, g eventualy startstask diffuse(m). In that task, ¢ sends m to p an infinite number of times. By
the Fairness property of links, p eventually receives m from ¢ and adds g to got,[m]. Once that happens, ¢
remainsin got,[m] forever.

We conclude that eventually every correct processisin got,[m| forever. By the ©-completeness property,
there is atime after which the output d of D,, contains only correct processes. Therefore, eventually d C
got,[m], and p delivers m. O

Corallary 13. If a correct process p broadcasts a message m then p eventually delivers m.

Corollary 14. If some process p delivers a message m then all correct processes eventually deliver m.

Proof. If there are no correct processes, the corollary is vacuously true, so assume there is some correct
process. If p delivers m then for some d, (1) p obtained d from D, and (2) d C got,[m]. By (1) and the
©-accuracy property, d contains at |east one correct process q. By (2), ¢ € got,[m]. Itis easy to show that
thisimpliesthat ¢ started task diffuse(m). Since q is correct, by Lemma 11 al correct processes start task
diffuse(m). By Lemma 12, al correct processes deliver m. O

Lemma 15. For every message m, every process delivers m at most once, and only if m was previously
broadcast by sender(m).

Proof. From the code of the algorithm: (@) a process only delivers a message m if it has not done so
previoudly, and so every process delivers m at most once; and (b) a process can only deliver m if it starts
task diffuse(m). By the Uniform Integrity property of links, it is easy to show that a process only starts
diffuse(m) if m was previously broadcast by sender(m). O

Theorem 16. Consider an asynchronous distributed system with process crashes and fair links, and with
environment £. The algorithmin Figure 2 implements URB using © in €.

Proof. Validity, Uniform Agreement and Uniform Integrity follow from Corollary 13, Corollary 14 and
Lemma 15, respectively. O
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B The A4 Axiom of [HR99]

The axiom that implicitly restricts the behavior of failure detectorsin [HR99] is:

(A4) If p isastable formula local to some process p in R that is insensitive to failure by p and there is
some S C Proc such that (R,7,t) = A,cq 7Kg, then there exists a point (1, ¢) such that (a)
ro(t) = rq(t) for g € S, (b) for ¢ ¢ S, thereis a prefix h of r,(t) (not necessarily strict) such that
ro(t) iséither hoor h - crashy, and g (t) = h - crashg only if crashy € ry(t), (€) (R, 7', t) = —p.

In this definition, R isasystem (a set of runs), Proc isthe set of processesin the system (in our paper, this
is denoted II). The notation (R, ,t) = ¢ means that formula ¢ istrue at point (r,¢) in system R, where
risaruninR and t isatime. Roughly speaking, r,(t) isthe prefix of run r at ¢ up to time¢ (for details,
see [HR99]). crash, is an event that isin ¢’s history if ¢ crashes. The alowed formulas ¢ are primitive
propositions, closed off under Boolean combinations, [J, and the epistemic operators £, for each process p.
Among the primitive propositions are send,,(q, msg), recv,(p, msg), crash(p), doy(a), and init,(a).® A
formula ¢ local to g issaid to be insensitiveto failure by ¢ if for al runsr, v’ € R, if r{(t') = ry(t) - crashy,
then (R, r,t) E ¢ iff (R,7,t') = .

®Recall than in [HR99], broadcast and deliver correspond to init and do, respectively.
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