
FAILURE DETECTION AND RANDOMIZATION:
A HYBRID APPROACH TO SOLVE CONSENSUS�

MARCOS KAWAZOE AGUILERAyz AND SAM TOUEGyx

Abstract. We present a consensus algorithm that combines unreliable failure detection and randomization, two
well-known techniques for solving consensus in asynchronous systems with crash failures. This hybrid algorithm
combines advantages from both approaches: it guarantees deterministic termination if the failure detector is accurate,
and probabilistic termination otherwise. In executions with no failures or failure detector mistakes, the most likely
ones in practice, consensus is reached in only two asynchronous rounds.

Key words. Algorithms, reliability, agreement problem, asynchronous systems, Byzantine Generals’ problem,
consensusproblem, crash failures, failure detection, fault-tolerance, message passing, processor failures, randomized
algorithms

AMS subject classifications. 68Q22 Parallel and distributed algorithms; 68M15 Reliability and testing

1. Introduction.

1.1. Motivation. A well-known result by Fischer, Lynch and Paterson is thatconsensus
cannot be solved in asynchronous systems with failures, even if communication is reliable,
at most one process may fail, and it can only fail by crashing [14]. Since this seminal paper,
there has been intense research seeking to “circumvent” this negative result (e.g., [4, 5, 6, 7,
10, 13, 22]).

One promising approach is the use of unreliable failure detection [2, 3, 6, 7, 11, 16, 17,
18, 19, 20, 21, 23]. Roughly speaking, this approach assumes that each process has access
to a local failure detector module that gives some (possibly inaccurate) information on which
processes may have failed. It turns out that consensus can be solved with unreliable failure
detectors that make an infinite number of mistakes, provided that they satisfy some minimum
properties [6, 7].

In particular, [7] presents a consensus algorithm with the following features. Even if the
information provided by the failure detectors is completely wrong, the algorithm never vio-
lates safety, i.e., no two processes ever decide differently. During “good” periods, when the
failure detectors are reasonably accurate, processes reach consensus within few asynchronous
rounds; on the other hand, when a “bad” period occurs, i.e., when failure detectors lose their
accuracy, the consensus algorithm may stop making progress until the bad period is over.
Such an algorithm is useful because in practice good periods tend to be long while bad ones
tend to be rare and short. However, long bad periods do occasionally occur, and each time
this happens the consensus algorithm of [7] can be delayed for a long time.

In this paper, we seek an algorithm that terminates quickly when failure detection is ac-
curate (i.e., during good periods) and that makes progress and terminates, albeit more slowly,
even if failure detection is inaccurate (i.e., during bad periods). We achieve this goal by
combining failure detection withrandomization — another technique that was used to solve
consensus in asynchronous systems [4]. In this hybrid approach, randomization “kicks in” as
a back-up to failure detection when failure detectors are inaccurate. Further discussion of the
relative merits of failure detection, randomization, and this hybrid approach is postponed to
x 7.

�Research partially supported by NSF grants CCR-9402896 and CCR-9711403, by ARPA/ONR grant N00014-
96-1-1014, and by an Olin Fellowship.

yComputer Science Department, Cornell University, Ithaca, NY, 14853-7501
zEmail address:aguilera@cs.cornell.edu
xEmail address:sam@cs.cornell.edu

1

2 MARCOS KAWAZOE AGUILERA AND SAM TOUEG

The idea of combining randomization and failure detection to solve consensus in asyn-
chronous systems first appeared in [12]. A related idea, namely, combining randomiza-
tion and deterministic algorithms to solve consensus insynchronous systems was explored
in [15, 25]. A brief comparison with our results is given inx 8.

1.2. Main Result. We focus on two of the major techniques to circumvent the impossi-
bility of consensus in asynchronous systems: randomization and unreliable failure detection.
The first one assumes that each process has a local random number generator (denotedR-
oracle) that providesrandom bits [4]. The second technique assumes that each process has a
local failure detector module (denotedFD-oracle) that providesa list of processes suspected
to have crashed [7]. Each approach has some advantages over the other, and we seek to
combine advantages from both.

With a randomized consensus algorithm, every process can query its local R-oracle, and
use the oracle’s random bit to determine its next step. With such an algorithm, termination
is achieved with probability1, within a finite expected number of steps (for a survey of ran-
domized consensus algorithms see [8]).

With a failure-detector based consensus algorithm, every process can query its local FD-
oracle (which provides a list of processes that are suspected to have crashed) to determine the
process’s next step. Consensus can be solved with FD-oracles that make an infinite number
of mistakes. In particular, consensus can be solved with FD-oracles that satisfy two proper-
ties, strong completeness andeventual weak accuracy. Roughly speaking, the first property
states that every process that crashes is eventually suspected by every correct process, and
the second one states that some correct process is eventually not suspected. These properties
define the weakest class of failure detectors that can be used to solve consensus [6].

In this paper we describe a hybrid consensus algorithm with the following properties.
Every process has access to both an R-oracle and an FD-oracle. If the FD-oracle satisfies the
above two properties, the algorithm solves consensus (no matter how the R-oracle behaves).
If the FD-oracle loses its accuracy property, but the R-oracle works, the algorithm still solves
consensus, albeit “only” with probability 1. In executions with no failures or failure detector
mistakes, the most likely ones in practice, an optimized version of this algorithm reaches
consensus in only two asynchronous rounds.

2. Informal Model. Our model of asynchronous computation is patterned after the one
in [14], and its extension in [6]. We only sketch its main features here. We considerasyn-
chronous distributed systems in which there is no bound on message delay, clock drift, or the
time necessary to execute a step. To simplify the presentation of our model, we assume the
existence of a discrete global clock. This is merely a fictional device: the processes do not
have access to it. We take the rangeT of the clock’s ticks to be the set of natural numbersN.

The system consists of a set ofn processes, � = fp0; p1; : : : ; pn�1g. Every pair of
processes is connected by a reliable communication channel. Up tof processes can fail by
crashing. A failure pattern indicates which processes crash, and when, during an execution.
Formally, afailure pattern F is a function fromN to 2�, whereF (t) denotes the set of
processes that have crashed through timet. Once a process crashes, it does not “recover”,
i.e., 8t : F (t) � F (t + 1). We definecrashed(F) =

S
t2N

F (t) andcorrect(F) = � �
crashed(F). If p 2 crashed(F) we sayp crashes (in F) and ifp 2 correct(F) we sayp is
correct (in F).

Each process has access to two oracles: a failure detector, henceforth denoted theFD-
oracle, and a random number generator, henceforth denoted theR-oracle. When a process
queries its FD-oracle, it obtains a list of processes.� When it queries its R-oracle it obtains a

�In general, the output of a failure detector is not restricted to be a list of processes [6, 1].

A HYBRID APPROACH TO SOLVECONSENSUS 3

bit. The properties of these oracles are described in the two next sections.
A distributed algorithmA is a collection ofn deterministic automata (one for each pro-

cess in the system) that communicate by sending messages through reliable channels. The
execution ofA occurs insteps as follows. For every timet 2 T , at most one process takes
a step. Each step consists of receiving a message; querying the FD-oracle; querying the R-
oracle; changing state; and optionally sending a message to one process. We assume that
messages are never lost. That is, if a process does not crash, it eventually receives every
message sent to it.

A schedule is a sequencefsjgj2N of processes and a sequenceftjgj2N of strictly in-
creasing times. A schedule indicates which processes take a step and when: for eachj,
processsj takes a step at timetj . A schedule isconsistent (with respect to a failure pattern
F) if a process does not take a step after it has crashed (inF). A schedule isfair (with respect
to a failure pattern F) if each process that is correct (inF) takes an infinite number of steps.
We consider only schedules that are consistent and fair.

2.1. FD-oracles. Every processp has access to a local FD-oracle module that outputs
a list of processes that are suspected to have crashed. If some processq belongs to such list,
we say thatp suspects q.y FD-oracles can make mistakes: it is possible for a processp to
be suspected by another even thoughp did not crash, or for a process to crash and never be
suspected. FD-oracles can be classified according to properties that limit the extent of such
mistakes. We focus on one of the eight classes of FD-oracles defined in [7], namely, the class
of Eventually Strong failure detectors, denoted�S. An FD-oracle belongs to�S if and only
if it satisfies two properties:
Strong completeness: Eventually every process that crashes is permanently suspected by

every correct process (formally,9t 2 T ; 8p 2 crashed(F); 8q 2 correct(F); 8t0 �
t : p 2 FDt

0

q
, whereFDt

0

q
denotes the output ofq’s FD-oracle module at timet 0).

Eventual weak accuracy: There is a time after which some correct process is never sus-
pected by any correct process (formally,9t 2 T ; 9p 2 correct(F); 8t0 � t; 8q 2
correct(F) : p 62 FDt

0

q
).

It is known that�S is the weakest class of FD-oracles that can be used to solve consen-
sus [6].

2.2. R-oracles. Each process has access to a local R-oracle module that outputs one
bit each time it is queried. We say that the R-oracle israndom if it outputs an independent
random bit for each query. For simplicity, we assume a uniform distribution, i.e., a random
R-oracle outputs0 and1, each with probability1=2.

2.3. Adversary Power. When designing fault-tolerant algorithms, we often assume that
an intelligent adversary has some control on the behavior of the system, e.g., the adversary
may be able to control the occurrence and the timing of process failures, the message de-
lays, and the scheduling of processes. Adversaries may have limitations on their computing
power and on the information that they can obtain from the system. Different algorithms are
designed to defeat different types of adversaries [8].

We now describe the adversary that our hybrid algorithm defeats. The adversary has un-
bounded computational power, and full knowledge of all process steps that already occurred.
In particular, it knows the contents of all past messages, the internal state of all processes
in the system,z and all the previous outputs of both the R-oracle and FD-oracle. With this

yIn general, processes do not have to agree on the list of suspects at any one time or ever.
zThis is in contrast to the assumptions made by several algorithms, e.g., those that use cryptographic techniques.

4 MARCOS KAWAZOE AGUILERA AND SAM TOUEG

information, at any time in the execution, the adversary can dynamically select which pro-
cess takes the next step, which message this process receives (if any), and which processes (if
any) crash. The adversary, however, operates under the following restrictions: the final sched-
ule must be consistent and fair, every message sent to a correct process must be eventually
received, and at mostf processes may crash over the entire execution.

In addition to the above power, we allow the adversary to initially selectone of the two
oracles to control, and possibly corrupt. If the adversary selects to control the R-oracle, it
can predict and even determine the bits output by that oracle. For example, the adversary
can force some local R-oracle module to always output0, or it can dynamically adjust the
R-oracle’s output according to what the processes have done so far.

If the adversary selects to control the FD-oracle, it can ensure that the FD-oracle does
not satisfy eventual weak accuracy. In other words, atany time the adversary can includeany
process (whether correct or not) in the output of the local FD-oracle module of any process.
The adversary, however, does not have the power to disrupt the strong completeness property
of the FD-oracle. This is not a limitation in practice: most failure detectors are based on
time-outs and eventually detect all process crashes.

If the adversary does not control the R-oracle then the R-oracle is random. If the adver-
sary does not control the FD-oracle then the FD-oracle is in�S. We stress that the algorithm
doesnot know which one of the two oracles (FD-oracle or R-oracle) is controlled by the
adversary.

3. The Consensus Problem. In theuniform binary consensus problem every processp
has someinitial value vp 2 f0; 1g, and mustdecide on a value such that:
Uniform agreement: If processesp andp0 decidev andv0, respectively, thenv = v

0;
Uniform validity: If some process decidesv, thenv is the initial value of some process;
Termination: Every correct process eventually decides some value.

For probabilistic consensus algorithms, Termination is weakened to
Termination with probability 1: With probability 1, every correct process eventually decides

some value.

4. Hybrid Consensus Algorithm. The hybrid consensus algorithm shown in Figure 4.1
combines Ben-Or’s algorithm [4] with failure-detection and the rotating coordinator paradigm
used in [7]. With this paradigm, we assume that all processes havea priori knowledge that
during phasek, one selected process, namelypk mod n, is the coordinator. The algorithm
works under the assumption that a majority of processes are correct (i.e.,n > 2f). It is
easy to see that this requirement is necessary for any algorithm that solves consensus in
asynchronous systems with crash failures, even if all processes have access to a random R-
oracle and an FD-oracle that belongs to�S.

In the hybrid algorithm, every message contains a tag (R, P , S or E), a phase number,
and a value which is either 0 or 1 (for messages taggedP orS, it could also be “?”). Messages
taggedR are calledreports; those tagged withP are calledproposals; those with tagS
are calledsuggestions [to the coordinator]; those with tagE are calledestimates [from the
coordinator]. Whenp sends(R; k; v), (P; k; v) or (S; k; v) we say thatp reports, proposes
or suggests v in phasek, respectively. When the coordinator sends(E; k; v) we say that the
coordinator sends estimatev in phasek.

Each execution of thewhile loop is called aphase, and each phase consists of four
asynchronous rounds. In the first round (lines 4 to 7), processes report to each other their
current estimate (0 or 1) for a decision value.

In the second round (lines 8 to 13), if a process receives a majority of reports for the
same value then it proposes that value to all processes, otherwise it proposes “?”. Note that

A HYBRID APPROACH TO SOLVECONSENSUS 5

Every processp executes the following:

0 procedure consensus(vp) fvp is the initial value of processpg

x vp fx is p’s current estimate of the decision valueg
k 0

while truedo
k k + 1 fk is the current phase numberg

5 c pk mod n fc is the current coordinatorg
send (R; k; x) to all processes

wait for messages of the form(R;k; �) from n� f processes f“�” can be 0 or 1g
if received more thann=2 (R;k; v) with the samev
then send (P;k; v) to all processes

10 else send (P; k; ?) to all processes

wait for messages of the form(P; k; �) fromn � f processes f“�” can be 0, 1 or ?g
if received at leastf + 1 (P; k; v) with the samev 6= ? then decidev
if at least one(P; k; v) with v 6= ? then x v else x ?
send (S; k; x) to c

15 if p = c then
wait for messages of the form(S; k; �) fromn � f processes
if received at least one(S;k; v) with v 6= ?
then send (E;k; v) to all processes
else

20 random bit R-oracle fquery R-oracleg
send (E;k; random bit) to all processes

wait until receive(E;k; v coord) from c or c 2 FD-oracle fquery FD-oracleg
if received(E;k; v coord)

then x v coord

25 else if x = ? then x R-oracle fquery R-oracleg

FIG. 4.1.Hybrid consensus algorithm

it is impossible for one process to propose 0 and another process to propose 1 in the same
phase. At the end of the second round, if a process receivesf+1 proposals for the same value
different than ?, then it decides that value. If it receives at least one value different than ?,
then it adopts that value as its new estimate, otherwise it adopts ? for estimate.

In the third round (lines 14 to 16), processes suggest their estimate to the current coordi-
nator.

In the fourth round (lines 17 to 25), if the coordinator receives a value different than ?
then it sends that value as its estimate. Otherwise, the coordinator queries the R-oracle, and
sends the random value that it obtains as its estimate. Processes wait until they receive the
coordinator’s estimate or until their FD-oracle suspects the coordinator. If a process receives
the coordinator’s estimate, it adopts it. Otherwise, if its current estimate is ?, it adopts a
random value obtained from its R-oracle.

To simplify the presentation, the algorithm in Figure 4.1 does not include a halt statement.
Moreover, once a correct process decides a value, it will keep deciding the same value in all
subsequent phases. However, it is easy to modify the algorithm so that every process decides
at most once, and halts at most one round after deciding.

5. Proof of Correctness. The hybrid algorithm shown in Figure 4.1 always satisfies
the safety properties of consensus. This holds no matter how the FD-oracle or the R-oracle
behave, that is, even if these oracles are totally under the control of the adversary. On the
other hand, the algorithm satisfies liveness properties only if the FD-oracle satisfies strong

6 MARCOS KAWAZOE AGUILERA AND SAM TOUEG

completeness. Strong completeness is easy to achieve in practice: most failure-detectors
use time-out mechanisms, and every process that crashes eventually causes a time-out, and
therefore a permanent suspicion.

Assume that there is a majority of correct processes (i.e.,n > 2f). We show the follow-
ing:

THEOREM 5.1.
(Safety) The hybrid algorithm always satisfies uniform validity and uniform agreement.
(Liveness) Suppose that the FD-oraclesatisfies strong completeness.

� If the FD-oraclesatisfies eventual weak accuracy, i.e., it is in �S, then the
algorithm satisfies termination.

� If the R-oracleis random then the algorithm satisfies termination with proba-
bility 1.

Proof. We say thatprocess p starts phase k if processp completes at leastk� 1 iterations of
thewhile loop. We say thatprocess p reaches line n in phase k if processp starts phasek and
p executes past linen� 1 in that phase. We say thatv is k-locked if every process that starts
phasek does so with its variablex set tov. When ambiguities may arise, a local variable of
a processp is subscripted byp, e.g.,xp is the local variablex of processp.

We first show the safety properties.
LEMMA 5.2. Suppose k > 0. Then (1) it is impossible for a process to propose 0

and another one to propose 1 in the same phase k; and (2) it is impossible for a process to
suggest 0 and another to suggest 1 in the same phase k.

Proof. We prove (1) by contradiction: suppose that two processesp andq propose0
and1, respectively, in phasek. Thus,p received more thann=2 reports for0 andq received
more thann=2 reports for1 in phasek. But then there is a process that reports0 to p and1 to
q in phasek, and this is impossible. This proves (1).

Now (2) follows from (1) since if a process suggestsv 6= ? in phasek, thenv was
proposed in phasek.

LEMMA 5.3. If some process decides v in phase k > 0, then v is (k + 1)-locked.
Proof. Suppose some processp decidesv in phasek > 0 (note thatv 6= ?), and letq be

any process that starts phasek+1. From the algorithm,p receives at leastf+1 proposals forv
in phasek (line 12). Letr be any process that suggests a value in line 14 of phasek. Before
suggesting (line 14),r waits forn�f proposals in line 11. Becausep receivesf+1 proposals
for v, r must have received at least one proposal forv. Moreover, by Lemma 5.2,r does not
receive any proposals for�v. x Sor setsxr to v in line 13 and suggestsv in phasek. Thus, (1)
q setsxq to v in line 13, and (2) the coordinator of phasek can only receive suggestions forv.
In particular, the coordinator does not receive ?. So, if the coordinator sends an estimate in
phasek (line 18), that estimate is alsov. If q receives that estimate (line 22), thenq resets
xq to v in line 24. Otherwiseq does not modifyx q (becausexq is different than ?). In either
case,q starts phasek + 1 with xq = v.

LEMMA 5.4. If a value v is k-locked for some k > 0, then every process that reaches
line 13 in phase k decides v in phase k.

Proof. Supposev is k-locked for somek > 0. Then, all reports sent in line 6 of phasek
are forv. Sincen� f > n=2, every process that proposes some value in phasek proposesv
in line 9. Consider a processp that reaches line 13 in phasek. Clearly,p receivesn � f

proposals (line 11) forv in phasek. Sincen� f � f + 1, p decidesv in phasek.

xWe denote by�v the binary complement of bitv.

A HYBRID APPROACH TO SOLVECONSENSUS 7

COROLLARY 5.5. If some process decides v in phase k > 0, then every process that
reaches line 13 in phase k + 1 decides v in phase k + 1.

Proof. By Lemma 5.3 and Lemma 5.4.
COROLLARY 5.6. (Uniform agreement) If some processes p and p

0 decide v and v
0 in

phase k > 0 and k0 > 0, respectively, then v = v
0.

Proof. For k = k
0 the result follows from Lemma 5.2 and the fact that a process can

decide a value in a phase only if that value was proposed in the same phase. Assume that
k < k

0. Sincep0 decides in phasek0 thenp0 reaches line 13 in every phaser, k < r � k
0.

Sincep decidesv in phasek, by Corollary 5.5p0 decidesv in phasek+1 � k
0. By additional

applications of Corollary 5.5, we conclude thatp
0 decidesv in phasek0. Each process can

decide at most once per phase, sov = v
0.

COROLLARY 5.7. (Uniform validity) If some process p decides v, then v is the initial
value of some process.

Proof. Notev 2 f0; 1g. If the initial values of all processes are not identical, thenv is
clearly the initial value of some process. Now, suppose all processes have the same initial
valuew. Thus,w is1-locked. From Lemma 5.4,p decidesw, and from Corollary 5.6,w = v.

From now on we assume that the FD-oracle satisfies strong completeness, and proceed
to prove the liveness properties.

LEMMA 5.8. Every correct process starts every phase k > 0.
Proof. The detailed proof is by a simple but tedious induction onk. We describe only

the central idea here. In each phase, there are fourwait statements that can potentially block
processes (lines 7, 11, 16, 22). It is not possible for a correct process to be blocked forever in
any of the first threewait statements, because at leastn � f processes are correct and send
the messages that this process is waiting for. Consider the fourthwait statement. Either the
coordinatorc sends its estimate to all processes orc crashes. In the first case, every correct
process receives this estimate. In the second case,c eventually appears on the list of suspects,
i.e., c 2 FD-oracle (because theFD-oracle satisfies strong completeness). So no correct
process waits forever at the fourthwait statement of a phase.

COROLLARY 5.9. If a value v is k-locked for some k > 0, then every correct process
decides v in phase k.

Proof. Immediate from Lemmata 5.4 and 5.8.
COROLLARY 5.10.If some process decides v in phase k > 0, then every correct process

decides v in phase k + 1 (and thus in all subsequent phases).
Proof. Immediate from Corollary 5.5 and Lemma 5.8.
LEMMA 5.11. (Termination) If the FD-oraclesatisfies eventual weak accuracy then

every correct process decides.
Proof. If the FD-oracle satisfies eventual weak accuracy then there is a timet0 after

which (1) some correct processpm is never suspected by any correct process and (2) only
correct processes take steps (faulty ones crash beforet0). Let ki be the value of variablek
of processpi at time t0. Let k̂ be the smallest phase aftermaxifkig such thatpm is the
coordinator of phasêk. Let q andr be arbitrary processes that start phasek̂ + 1. Note that
this occurs after timet0, and so neitherq norr suspect the coordinatorpm in phasêk. Thus,
q andr setxq andxr to pm’s estimate in line 24. Since this estimate is different from ? and
unique for phasêk, we havexq = xr = v for somev 6= ? at the beginning of phasêk + 1.
Sov is (k̂ + 1)-locked. Therefore, by Corollary 5.9, all correct processes decidev in phase
k̂ + 1.

We now proceed to show that if the R-oracle is random, then the algorithm satisfies
termination with probability 1. Fork > 0, let � k be the first time that any process receives

8 MARCOS KAWAZOE AGUILERA AND SAM TOUEG

function FavorableToss(r; u): bit fevaluated only at timeu � �k wherek = 2rg

k 2r fk is the first phase in epochrg

if some valuev 2 f0;1g is k-major at time�k then return v

if by timeu no process receivedn� f proposals in phasek + 1 then return 0 fu < � k+1g

if before time�k+1: fhereu � �k+1g
(a) 1 isk-major, and
(b) less thann=2 processes R-got a value in phasek, and
(c) the coordinator did not query the R-oracle in line 20 of phasek

then return 1

else return 0

FIG. 5.1.Favorable coin toss algorithm

n� f proposals in phasek. From Lemma 5.8, for everyk > 0, some process receivesn� f

proposals in phasek, and so�k is well-defined. Note that in our algorithm no process queries
the R-oracle in phasek before time�k.

A process starts a phase with its variablex set to either0 or 1 (never to ?). For each
k > 0, we say that a valuev 2 f0; 1g is k-major at time t if by time t more thann=2
processes have started phasek with their variablex set tov. Clearly, for eachk > 0 and all
timest andt0, it is impossible for 0 to bek-major att, and 1 to bek-major att 0.

We say thata process p R-gets v in phase k at time t if either:
1. In phasek at timet, p obtainsv from the R-oracle in line 25 and setsxp to v; or
2. In phasek, the coordinator obtainsv from the R-oracle in line 20, sendsv as its

estimate to all processes,p receives this estimate and setsxp to v in line 24 at timet.
Intuitively, a processp R-getsv if p setsxp to v, andp obtainedv from an R-oracle query

(directly, or indirectly through the coordinator).
LEMMA 5.12. For every k � 1, if at time t a process p starts phase k + 1 with xp set to

some value v 2 f0; 1g, then v is k-major at time t or p R-gets v in phase k.
Proof. Consider phasek. Supposep did not R-getv. Let t0 be the last timep updates

xp in phasek. Note thatt0 < t. Then, at timet0, either (a)p receives the estimate from the
coordinator, and the coordinator obtained that estimate from one of its non-? suggestions;
or (b) p setsxp in line 13. In both cases, more thann=2 processes must have reportedv in
phasek before timet0. Therefore, more thann=2 processes have started phasek by time t0

(and thus by timet) with their variablex set tov.
An immediate consequence of Lemma 5.12 is that for everyk � 1, if v is neverk-major

and no process R-getsv in phasek then�v is (k + 1)-locked.
For the rest of the proof, we group pairs of phases intoepochs as follows: epoch r

consists of phases2r and2r + 1.{ We will define the concept of a “lucky” epoch — one in
which processes toss coins that cause the termination of the algorithm (no matter what the
adversary does). To do so, we first define functionFavorableToss(r; u) given in Figure 5.1.
We say thatepoch r is lucky if, for every processp and any timeu, if p queries the R-oracle
in epochr at timeu, thenp obtainsFavorableToss(r; u) from the R-oracle. Note that ifp
queries the R-oracle in epochr at timeu, this occurs after at least one process receivesn� f

proposals in phase2r. Thus,�2r � u, so the value ofFavorableToss(r; u) depends only on
what occurred in the system up to timeu.

LEMMA 5.13. If the R-oracle is random then the probability that some epoch is lucky

{Phase1 is not part of any epoch.

A HYBRID APPROACH TO SOLVECONSENSUS 9

is 1.

Proof. The result is immediate from the following observation: for everyr � 1, (a) the
probability that epochr is lucky is at least2�(2n+2) (because in each phase there are at most
n+ 1 queries to the R-oracle, and the R-oracle is random), and (b) for anyr

0 6= r, the events
“epochr is lucky” and “epochr0 is lucky” are independent (because epochsr andr0 consist
of disjoint sets of phases).

LEMMA 5.14.For every r � 1, if epoch r is lucky then some value is (2r+1)-locked or
(2r + 2)-locked.

Proof. Throughout the proof of this lemma, fix some arbitraryr � 1 and assume that
epochr is lucky. Letk = 2r; recall that epochr consists of phasesk andk+ 1. Since epoch
r is lucky, if any process R-gets a valuev at timet and in phasej = k or j = k + 1, then
v = FavorableToss(r; u) for some timeu, �j � u � t (valuev was obtained either directly
from the R-oracle or indirectly through the coordinator).

Case 1: Suppose some valuev is k-major at time�k. By the definition ofFavorableToss, for
anyu such that�k � u, FavorableToss(r; u) = v. So, if a process R-gets a value in
phasek, that value isv. Note that�v is notk-major at any time. By Lemma 5.12,v
is (k + 1)-locked.

Case 2: Now assume that no value isk-major at time�k.
Case 2.1: Suppose that no value isk-major before time�k+1. Then for anyu, �k � u,

we haveFavorableToss(r; u) = 0. By Lemma 5.12, every processp that starts
phasek + 1 before time�k+1 does so withxp set to some value thatp R-got in
phasek, and such value can only be0. So all reports (and thus all proposals) sent
in phasek + 1 before time�k+1 are for0. From the definition of�k+1, there are at
leastn � f such proposals for0 in phasek + 1. By an argument similar to the one
in the proof of Lemma 5.3, value0 is (k + 2)-locked.

Case 2.2: Now assume some valuev is k-major before time�k+1.
Case 2.2.1: Supposev = 0. Since1 is neverk-major, then for any timeu such that�k � u,

we haveFavorableToss(r; u) = 0. So all processes that R-get a value in phasek

R-get 0. By Lemma 5.12, value0 is (k + 1)-locked.
Case 2.2.2: Now assumev = 1. For any timeu, �k � u < �k+1, we have

FavorableToss(r; u) = 0. LetS be the processes that R-get a value in phasek before
time�k+1; clearly, all processes inS R-get 0.

Case 2.2.2.1: SupposejSj � n=2. Then for any timeu, �k � u, FavorableToss(r; u) = 0.
So, all processes that R-get in phasek + 1 R-get 0. Note thatjSj � n=2 implies
that1 can never be(k + 1)-major. By Lemma 5.12, value0 is (k + 2)-locked.

Case 2.2.2.2: Now assume thatjSj < n=2.
Case 2.2.2.2.1: Suppose that the coordinator of phasek does not query the R-oracle in line

20 of phasek before time�k+1. Then for anyu such that�k+1 � u, we have
FavorableToss(r; u) = 1. So, if the coordinator queries the R-oracle in line 20 of
phasek it obtains1 from the R-oracle. Therefore, all processes that R-get a value at
or after time�k+1 in phasek R-get1. Thus, exactlyjSj < n=2 processes R-get 0 in
phasek. Since 1 isk-major, from Lemma 5.12 we conclude that value0 can never
be(k + 1)-major. Since no process queries the R-oracle in phasek + 1 before time
�k+1, all processes that R-get a value in phasek+1 R-get1. By Lemma 5.12, value
1 is (k + 2)-locked.

Case 2.2.2.2.2: Now assume that the coordinator of phasek queries the R-oracle in line 20
of phasek before time�k+1. Then the coordinator obtains0 from the R-oracle. So,
for anyu � �k, we haveFavorableToss(r; u) = 0. Since the coordinator queries
the R-oracle in line 20, it receivedn � f suggestions for ? in line 16, and this

10 MARCOS KAWAZOE AGUILERA AND SAM TOUEG

c p0 fp0 is the first coordinatorg
if p = c then send (E;0; vp) to all processes fif p is the first coordinatorg

wait until receive(E;0; v coord) from c or c 2FD-oracle fquery FD-oracleg
if received(E;0; v coord)

then send (P; 0; v coord) to all processes
else send (P; 0;?) to all processes

wait for messages of the form(P;0; �) from n� f processes f“�” can be 0, 1 or ?g
if received at leastf + 1 (P; 0; v) with the samev 6= ? then decidev
if received at least one(P; 0; v) with v 6= ? then x v

FIG. 6.1.Optimization for the hybrid algorithm

occurred before time�k+1. Thus,n � f processes have set their variablex to ? in
line 13 in phasek before time�k+1. Note that if any such process starts phasek+1,
then it R-gets a value in phasek, and that value is0, and thus such process starts
phasek + 1 with its variablex set to0. Therefore at mostn� (n � f) = f < n=2

processes start phasek+ 1 with their variablex set to1. So1 can never be(k+ 1)-
major. All processes that R-get in phasek + 1 R-get 0. By Lemma 5.12, value0 is
(k + 2)-locked.

LEMMA 5.15. (Termination with probability 1) If the R-oracle is random then the prob-
ability that all correct processes decide is 1.

Proof. Immediate from Lemmata 5.13 and 5.14, and Corollary 5.9.
The proof of Theorem 5.1 is now complete: uniform validity and uniform agreement

were shown in Corollary 5.7 and Corollary 5.6, respectively. Termination was proved in
Lemma 5.11, and termination with probability 1 was shown in Lemma 5.15.Theorem 5:1

From the proof of Lemma 5.13, it is easy to see that the expected number of rounds
for termination isO(22n). However, it can be shown that, as in [4], termination is reached
in constant expected number of rounds iff = O(

p
n). In x 7, we outline a similar hybrid

algorithm that terminates in constant expected number of rounds even forf = O(n).

6. An Optimization. The algorithm in Figure 4.1 was designed to be simple rather than
efficient, because our main goal here is to demonstrate the viability of a “robust” hybrid
approach (one in which termination can occur in more than one way: by “good” failure
detection or by “good” random draws). The following optimization suggests that such hybrid
algorithms can also be efficient in practice.

In many systems, failures are rare, and failure detectors can be tuned to seldom make
mistakes (i.e., erroneous suspicions). The algorithm in Figure 4.1 can be optimized to perform
particularly well in such systems. The optimized version ensures that all correct processes
decide by the end of two asynchronous rounds when the first coordinator does not crash and
no process erroneously suspects it.k

This optimization is obtained by inserting some extra code between lines 2 and 3 of the
hybrid algorithm. This code, given in Figure 6.1, consists of a phase (phase0) with two
asynchronous rounds. In the first round,p0 sends a message to all processes; in the second
round, every process sends a message to all processes. We claim that: (1) the optimization
code preserves the correctness of the original algorithm; and (2) processes decide quickly in
the absence of failures and erroneous suspicions. To see (1) note that:

kActually, decision occurs in two rounds even if up ton � 2f � 1 processes erroneously suspect it.

A HYBRID APPROACH TO SOLVECONSENSUS 11

1. No correct process blocks during the execution of the optimization code (phase0),
i.e., all correct processes start phase1;

2. Any processp that starts phase1 does so withxp set to the initial value of some
process;

3. If some process decidesv in phase0 thenv is 1-locked. Thus, (by Corollary 5.9) all
correct processes decidev in phase1.

To see (2), note that ifp0 is correct and no process suspectsp0, then all processes wait
for its estimatev and proposev in phase 0; so every process receivesn � f proposals forv
and thus decidesv in phase0. Thus we have:

THEOREM 6.1. Theorem 5.1 holds for the optimized hybrid algorithm. Moreover, in
executions with no crashes or false suspicions, all processes decide in two rounds.

7. Discussion. In practice, many systems are well-behaved most of the time: few fail-
ures actually occur, and most messages are received within some predictable time. Failure-
detector based algorithms (whether “pure” ones like in [7] or hybrid ones like in this paper)
are particularly well-suited to take advantage of this: (time-out based) failure detectors can
be tuned so that the algorithms perform optimally when the system behaves as predicted, and
performance degrades gracefully as the system deviates from its “normal” behavior (i.e., if
failures occur or messages take longer than expected). For example, the optimized version
of our hybrid algorithm solves consensus in only two asynchronous rounds in the executions
that are most likely to occur in practice, namely, runs with no failures or erroneous suspicions.

The above discussion suggests that using this hybrid approach is better than using the
randomized approach alone. In fact, randomized consensus algorithms for asynchronous
systems tend to be inefficient in practical settings.�� Typically, their performance depends
more on “luck” (e.g., many processes happen to start with the same initial value or happen to
draw the same random bit) than on how “well-behaved” the underlying system is (e.g., on the
number of failures that actually occur during execution). The fact that randomized algorithms
are extremely “robust”, i.e., they do not depend on how the system behaves, may also be an
inherent source of inefficiency.

Note that our hybrid algorithm terminates with probability1 even if the FD-oracle is
completely inaccurate (in fact even if every process suspects every other process all the time).
So it is more robust than algorithms that are simply failure-detector based.

An important remark is now in order about the expected termination time of our hybrid
algorithm. We developed this algorithm by combining Ben-Or’s randomized algorithm [4]
with the failure detection ideas in [7]. We selected Ben-Or’s algorithm because it is the
simplest, and thus the most appropriate to illustrate this approach, even though its expected
number of rounds is exponential inn for f = O(n). By starting from an efficient randomized
algorithm, due to Choret al. [9], we can obtain a hybrid algorithm that terminates in constant
expected number of rounds, as we now briefly explain.

Roughly speaking, the randomized asynchronous consensus algorithm in [9] is obtained
from Ben-Or’s algorithm by replacing each coin toss with the toss of a “weakly global coin”
computed by acoin toss procedure. We can do exactly the same: replace the coin tosses
of the algorithm in Figure 4.1 with those obtained by using thecoin toss procedure. More
precisely, in each phase, every process: (a) invokes this procedure between the second and
third rounds (i.e., between lines 13 and 14) to obtain a random bit, and (b) uses this random
bit rather than querying the R-oracle (in lines 20 and 25).yy

��Algorithms that assume that processesa priori agree on a long sequence of random bits [22, 24] are more
efficient than others. But this assumption may be too strong for some systems.

yyAs in [9], another simple modification is necessary: the addition of a “synchronization round” just before the
coin toss procedure. In this round, processes broadcast “wait” messages, then wait untiln � f such messages are

12 MARCOS KAWAZOE AGUILERA AND SAM TOUEG

As in [9], this modified hybrid algorithm terminateszz in constant expected number of
rounds forf � n (3 �

p
5) = 2 � 0:38n. But also as in [9], and in contrast to the algorithm

in x 4, it assumes that the adversary cannot see the internal state of processes or the content of
messages. With the optimization of Figure 6.1, this modified hybrid algorithm also terminates
in two rounds in failure-free and suspicion-free runs.

8. Related Work. The idea of combining randomization with a deterministic consensus
algorithm appeared in [15], and was further developed in [25]. These works, however, assume
that the system issynchronous and do not use failure detectors.

Dolev and Malki were the first to combine randomization and unreliable failure detection
to solve consensus in asynchronous systems with process crashes [12]. That work differs from
ours in many respects:

1. In contrast to our algorithm, those in [12] require that both R-oracle and FD-oracle
always work correctly.

2. In our hybrid algorithm, safety is always preserved: even if the failure detector
continuously misbehaves, no two processes ever decide differently. In contrast, with the
hybrid algorithms given in [12], if at any point the failure detector loses its accuracy property,
processes may decide differently.

3. Our goal is to use randomization to improve failure-detector based algorithms: We
use randomization as a “back-up” to ensure termination in the occasional “bad” periods when
the failure detector loses its accuracy property.
Two goals of [12] are to use failure detection to increase the resiliency of randomized Con-
sensus algorithms, and to ensure their deterministic termination. The hybrid Consensus al-
gorithms given in [12] achieve the first goal, by increasing the resiliency fromf < n=2 to
f < n, but not the second one. It is stated, however, that a future version of the paper will
give an algorithm that achieves both goals.

4. The two hybrid algorithms in [12] use failure detectors that are stronger than�S (the
failure detector that we use). The first algorithm — which supposes that the same sequence
of random bits is shared by all the processes, as in [22] — assumes that some correct process
is never suspected by any process. The second algorithm — which drops the assumption of a
common sequence of bits — assumes that
(n) correct processes are never suspected by any
process. Both algorithms reach consensus in constant expected time.

Acknowledgement. We are grateful to Vassos Hadzilacos: some of our proofs are based
on his lecture notes. We would also like to thank the anonymous referees for their valuable
comments.

REFERENCES

[1] M. K. A GUILERA, W. CHEN, AND S. TOUEG, Heartbeat: a timeout-free failure detector for quiescent
reliable communication, in Proceedings of the 11th International Workshop on Distributed Algorithms,
Lecture Notes on Computer Science, Springer-Verlag, Sept. 1997. A full version is also available as
Technical Report 97-1631, Computer Science Department, Cornell University, Ithaca, New York, May
1997.

[2] M. K. A GUILERA, W. CHEN, AND S. TOUEG, Quiescent reliable communication and quiescent consensus
in partitionable networks, Tech. Report 97-1632, Department of Computer Science, Cornell University,
June 1997.

[3] O. BABAOĞLU, R. DAVOLI , AND A. M ONTRESOR, Failure detectors, group membership and view-
synchronous communication in partitionable asynchronoussystems (preliminary version), Technical Re-

received.
zzProvided, of course, that the FD-oracle satisfies strong completeness.

A HYBRID APPROACH TO SOLVECONSENSUS 13

port UBLCS-95-18, Department of Computer Science, University of Bologna, Bologna, Italy, November
1995.

[4] M. B EN-OR, Another advantage of free choice: completely asynchronous agreement protocols, in Proceed-
ings of the Second ACM Symposium on Principles of Distributed Computing, Aug. 1983, pp. 27–30.

[5] G. BRACHA AND S. TOUEG, Resilient consensus protocols, in Proceedings of the Second ACM Symposium
on Principles of Distributed Computing, Aug. 1983, pp. 12–26. An extended and revised version ap-
peared as “Asynchronous consensus and broadcast protocols” in theJournal of the ACM, 32(4):824-840,
October 1985.

[6] T. D. CHANDRA, V. HADZILACOS, AND S. TOUEG, The weakest failure detector for solving consensus,
Journal of the ACM, 43 (1996), pp. 685–722.

[7] T. D. CHANDRA AND S. TOUEG, Unreliable failure detectors for reliable distributed systems, Journal of the
ACM, 43 (1996), pp. 225–267.

[8] B. CHOR AND C. DWORK, Randomization in Byzantine Agreement, Advances in Computer Research (JAI
Press Inc.), 4 (1989), pp. 443–497.

[9] B. CHOR, M. MERRITT, AND D. B. SHMOYS, Simple constant-time consensus protocols in realistic failure
models, Journal of the ACM, 36 (1989), pp. 591–614.

[10] D. DOLEV, C. DWORK, AND L. STOCKMEYER,On the minimal synchronism needed for distributed consen-
sus, J. Assoc. Comput. Mach., 34 (1987), pp. 77–97.

[11] D. DOLEV, R. FRIEDMAN, I. KEIDAR, AND D. MALKHI , Failure detectors in omission failure environ-
ments, Tech. Report TR96-1608, Department of Computer Science, Cornell University, Ithaca, New
York, September 1996.

[12] D. DOLEV AND D. MALKI , Consensus made practical, Tech. Report CS94-7, The Hebrew University of
Jerusalem, Mar. 1994.

[13] C. DWORK, N. A. LYNCH, AND L. STOCKMEYER,Consensus in the presence of partial synchrony, J. Assoc.
Comput. Mach., 35 (1988), pp. 288–323.

[14] M. J. FISCHER, N. A. LYNCH, AND M. S. PATERSON, Impossibility of distributed consensus with one faulty
process, J. Assoc. Comput. Mach., 32 (1985), pp. 374–382.

[15] O. GOLDREICH AND E. PETRANK, The best of both worlds: guaranteeing termination in fast randomized
Byzantine Agreement protocols, Information Processing Letters, 36 (1990), pp. 45–49.

[16] R. GUERRAOUI AND A. SCHIPER, Non blocking atomic commitment with an unreliable failure detector, in
Proceedings of the 14th IEEE Symposium on Reliable Distributed Systems, Bad Neuenahr, Germany,
September 1995, pp. 41–50.

[17] , Consensus service: a modular approach for building agreement protocols in distributed systems,
in Proceedings of the 26th IEEE International Symposium on Fault-Tolerant Computing, June 1996,
pp. 168–177.

[18] M. HURFIN, A. MOSTEFAOUI, AND M. RAYNAL , Consensus in asynchronous systems where processes can
crash and recover, Tech. Report 1144, Institut de Recherche en Informatique et Syst`emes Aléatoires,
Université de Rennes, Nov. 1997.

[19] W.-K. LO AND V. HADZILACOS,Using failure detectors to solve consensus in asynchronousshared-memory
systems, in Proceedings of the Eighth International Workshop on Distributed Algorithms, 1994, pp. 284–
295.

[20] D. MALKHI AND M. REITER, Unreliable intrusion detection in distributed computations, in Proceedings of
the 10th IEEE Computer Security Foundations Workshop, June 1997, pp. 116–124.

[21] R. OLIVEIRA , R. GUERRAOUI, AND A. SCHIPER, Consensus in the crash-recover model, Tech. Report
97-239, Département d’Informatique, Ecole Polytechnique F´edérale, Lausanne, Switzerland, Aug. 1997.

[22] M. RABIN , Randomized Byzantine Generals, in Proceedings of the Twenty-Fourth Symposium on Founda-
tions of Computer Science, Nov. 1983, pp. 403–409.

[23] A. SCHIPER, Early consensus in an asynchronous system with a weak failure detector, Distributed Comput-
ing, 10 (1997), pp. 149–157.

[24] S. TOUEG, Randomized Byzantine Agreements, in Proceedings of the Third ACM Symposium on Principles
of Distributed Computing, Aug. 1984, pp. 163–178.

[25] A. ZAMSKY, A randomized Byzantine Agreement protocol with constant expected time and guaranteed ter-
mination in optimal (deterministic) time, in Proceedings of the Fifteenth ACM Symposium on Principles
of Distributed Computing, May 1996, pp. 201–208.

