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Abstract

We study the problem of achieving reliable communication with quiescent algorithms (i.e., algo-
rithms that eventually stop sending messages) in asynchronous systems with process crashes and lossy
links. We first show that it is impossible to solve this problem in purely asynchronous systems (with no
failure detectors). We then show that, among failure detectors that output lists of suspects, the weakest
one that can be used to solve this problem is 3P , a failure detector that cannot be implemented. To
overcome this difficulty, we introduce an implementable failure detector called Heartbeat and show that
it can be used to achieve quiescent reliable communication. Heartbeat is novel: in contrast to typical
failure detectors, it does not output lists of suspects and it is implementable without timeouts. With
Heartbeat, many existing algorithms that tolerate only process crashes can be transformed into quiescent
algorithms that tolerate both process crashes and message losses. This can be applied to consensus,
atomic broadcast, k-set agreement, atomic commitment, etc.

1 Introduction

1.1 Motivation

We focus on the problem of quiescent reliable communication in asynchronous message-passing systems
with process crashes and lossy links. To illustrate this problem consider a system of two processes, a sender
s and a receiver r, connected by an asynchronous bidirectional link. Process s wishes to send some message
m to r. Suppose first that no process may crash, but the link between s and r may lose messages (in both
directions). If we put no restrictions on message losses it is obviously impossible to ensure that r receives
m. An assumption commonly made to circumvent this problem is that the link is fair: if a message is sent
infinitely often then it is received infinitely often.

With such a link, s could repeatedly send copies of m forever, and r is guaranteed to eventually receive
m. This is impractical, since s never stops sending messages. The obvious fix is the following protocol: (a)
s sends a copy of m repeatedly until it receives ack(m) from r, and (b) upon each receipt of m, r sends
ack(m) back to s. Note that this protocol is quiescent: eventually no process sends or receives messages.

∗Research partially supported by NSF grant CCR-9402896 and CCR-9711403, by ARPA/ONR grant N00014-96-1-1014, and
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The situation changes if, in addition to message losses, process crashes may also occur. The protocol
above still works, but it is not quiescent anymore: for example, if r crashes before sending ack(m), then s
will send copies of m forever. Is there a quiescent protocol ensuring that if neither s nor r crashes then r

eventually receives m? It turns out that the answer is no, even if one assumes that the link can only lose a
finite number of messages.

Since process crashes and message losses are common types of failures, this negative result is an obsta-
cle to the design of fault-tolerant distributed systems. In this paper, we explore the use of unreliable failure
detectors to circumvent this obstacle. Roughly speaking, unreliable failure detectors provide (possibly erro-
neous) hints on the operational status of processes. Each process can query a local failure detector module
that provides some information about which processes have crashed. This information is typically given in
the form of a list of suspects.

In general, failure detectors can make mistakes: a process that has crashed is not necessarily suspected
and a process may be suspected even though it has not crashed. Moreover, the local lists of suspects dynam-
ically change and lists of different processes do not have to agree (or even eventually agree). Introduced
in [CT96], the abstraction of unreliable failure detectors has been used to solve several important problems
such as consensus, atomic broadcast, group membership, non-blocking atomic commitment, and leader
election [BDM97, Gue95, HMR97, LH94, OGS97, SM95].

Our goal is to use unreliable failure detectors to achieve quiescence, but before we do so we must
address the following important question. Note that any reasonable implementation of a failure detector
in a message-passing system is itself not quiescent: a process being monitored by a failure detector must
periodically send a message to indicate that it is still alive, and it must do so forever (if it stops sending
messages it cannot be distinguished from a process that has crashed). Given that failure detectors are not
quiescent, does it still make sense to use them as a tool to achieve quiescent applications (such as quiescent
reliable broadcast, consensus, or group membership)?

The answer is yes, for two reasons. First, a failure detector is intended to be a basic system service that
is shared by many applications during the lifetime of the system, and so its cost is amortized over all these
applications. Second, failure detection is a service that needs to be active forever — and so it is natural that
it sends messages forever. In contrast, many applications (such as a single RPC call or the reliable broadcast
of a single message) should not send messages forever, i.e., they should be quiescent. Thus, there is no
conflict between the goal of building quiescent applications and the use of a non-quiescent failure detection
service as a tool to achieve this goal.

1.2 Achieving Quiescent Reliable Communication Using Failure Detectors

How can we use an unreliable failure detector to achieve quiescent reliable communication in the presence
of process and link failures? This can be done with the eventually perfect failure detector 3P [CT96].
Intuitively, 3P satisfies the following two properties: (a) if a process crashes then there is a time after
which it is permanently suspected, and (b) if a process does not crash then there is a time after which it is
never suspected. Using 3P , the following obvious algorithm solves our sender/receiver example: (a) while
s has not received ack(m) from r, it periodically does the following: s queries 3P and sends a copy of m
to r if r is not currently suspected; (b) upon each receipt of m, r sends ack(m) back to s. Note that this
algorithm is quiescent: eventually no process sends or receives messages.

So 3P is sufficient to achieve quiescent reliable communication. But is it necessary? In the first part of
the paper, we show that among all failure detectors that output lists of suspects, 3P is indeed the weakest
one that can be used to solve this problem. Unfortunately, 3P is not implementable (this would violate a
known impossibility result [FLP85, CT96]). Thus, at a first glance, it seems that achieving quiescent reliable
communication requires a failure detector that cannot be implemented. In the second part of the paper, we
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show that this is not so.
In fact, we show that quiescent reliable communication can be achieved with a failure detector that is

implementable in systems with process crashes and lossy links. This new failure detector, called heartbeat
and denoted HB, is very simple. Roughly speaking, the failure detector module of HB at a process p outputs
a vector of counters, one for each neighbor q of p. If neighbor q does not crash, its counter at p increases with
no bound. If q crashes, its counter eventually stops increasing. The basic idea behind an implementation
of HB is the obvious one: each process periodically sends an I-am-alive message (a “heartbeat”) and every
process receiving a heartbeat increases the corresponding counter.1

HB should not be confused with existing failure detectors (some of which, such as those in Ensemble and
Phoenix, have modules that are also called heartbeat [vR97, Cha97]): HB does not output lists of suspects
and its implementation does not use any timeout mechanism. Even though existing failure detectors are also
based on the repeated sending of a heartbeat, they use timeouts on these heartbeats in order to output lists of
processes considered to be up or down; applications can only see these lists. In contrast, HB simply counts
the total number of heartbeats received from each process, and shows these “raw” counters to applications
without any further processing or interpretation.

A remark is now in order regarding the practicality of HB. As we mentioned above, HB outputs a vector
of unbounded counters. In practice, these unbounded counters are not a problem for the following reasons.
First, they are in local memory and not in messages — our HB implementations use bounded messages.
Second, if we bound each local counter to 64 bits, and assume a rate of one heartbeat per nanosecond, which
is orders of magnitude higher than currently used in practice, then HB will work for more than 500 years.

1.3 Detailed Outline of the Results

We focus on two types of reliable communication mechanisms: quasi reliable send and receive, and reliable
broadcast. Roughly speaking, a pair of send/receive primitives is quasi reliable if it satisfies the following
property: if processes s and r are correct (i.e., they do not crash), then r receives a message from s exactly
as many times as s sent that message to r. Reliable broadcast [HT93] ensures that if a correct process
broadcasts a message m then all correct processes deliver m; moreover, all correct processes deliver the
same set of messages. Our goal is to obtain quiescent implementations of these primitives in networks that
do not partition permanently. More precisely, we consider networks in which processes may crash and links
may lose messages but every pair of correct processes are connected through some fair path, i.e., a path
containing only fair links and correct processes.

We first show that, in purely asynchronous systems (with no failure detectors), there is no quiescent
implementation of quasi reliable send/receive or of reliable broadcast in such networks (even if we assume
that links can lose only a finite number of messages). We then show that the weakest failure detector with
bounded output size2 that can be used to solve these problems is 3P — which is not implementable.

To overcome this difficulty, we introduce HB, a failure detector that outputs unbounded counters, and
show that HB is strong enough to achieve quiescent reliable communication, but weak enough to be imple-
mentable. We consider two types of networks. In the first type, all links are bidirectional and fair. In the
second one, some links are unidirectional, and some links have no restrictions on message losses, i.e., they
are not fair. Examples of such networks are unidirectional rings that intersect. For the first type of networks,
a common one in practice, the implementation of HB and the reliable communication algorithms are very
simple and efficient. The algorithms for the second type are significantly more complex.

We then consider two stronger types of communication primitives, namely, reliable send and receive,
and uniform reliable broadcast, and give quiescent implementations that use HB. These implementations

1As we will see, however, in some types of networks the actual implementation is not as easy.
2Note that a list of suspects has bounded size.
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assume that a majority of processes are correct (a result in [BCBT96] shows that this assumption is neces-
sary).

We conclude the paper by showing how HB can be used to extend previous work in order to solve
problems with algorithms that are both quiescent and tolerant of process crashes and messages losses. First,
we explain how HB can be used to transform many existing algorithms that tolerate process crashes into
quiescent algorithms that tolerate both process crashes and message losses (fair links). This transformation
can be applied to the algorithms for consensus in [AT96, Ben83, BT85, CT96, CMS89, FM90, Rab83],
for atomic broadcast in [CT96], for k-set agreement in [Cha93], for atomic commitment in [Gue95], for
approximate agreement in [DLP+86], etc. Next, we show that HB can be used to extend the work in
[BCBT96] to obtain the following result. Let P be a problem. Suppose P is correct-restricted (i.e., its
specification refers only to the behavior of correct processes) or a majority of processes are correct. If
P is solvable with a quiescent protocol that tolerates only process crashes, then P is also solvable with a
quiescent protocol that tolerates process crashes and message losses.3

To summarize, in this paper:

1. We explore the use of unreliable failure detectors to achieve quiescent reliable communication in
the presence of process crashes and lossy links — a problem that cannot be solved without failure
detection.

2. We show that the weakest failure detector with bounded output size that can be used to solve this
problem is3P — which is not implementable.

3. To overcome this obstacle, we introduce HB: this failure detector can be used to achieve quiescent
reliable communication and it is implementable. In contrast to common failure detectors [BDM97,
CT96, Gue95, GLS95, LH94, SM95], HB does not output a list of suspects, and it can be implemented
without timeouts.

4. We show that HB can be used to extend existing algorithms for many fundamental problems (e.g.,
consensus, atomic broadcast, k-set agreement, atomic commitment, approximate agreement) to toler-
ate message losses. It can also be used to extend the results of [BCBT96].

Result (2) above implies that failure detectors with bounded output size are either (a) too weak to achieve
quiescent reliable communication, or (b) not implementable. Thus, failure detectors that output lists of
processes, which are commonly used in practice, are not always the best ones to solve a problem: their
power or applicability is limited. To the best of our knowledge, this is the first work that shows that failure
detectors with bounded output size have inherent limitations.

The problem of achieving reliable communication despite failures has been extensively studied, espe-
cially in the context of data link protocols (see Chapter 22 of [Lyn96] for a compendium). Our work differs
from previous results because we seek quiescent algorithms in systems where processes and links can fail
(and this requires the use of unreliable failure detectors). The works that are the closest to ours are due to
Moses et al. [MR89] and Basu et al. [BCBT96]. The main goal of [MR89] is to achieve quiescent reliable
communication with algorithms that garbage collect old messages in systems with lossy links (the issue of
garbage collection is only briefly considered here). The algorithms in [MR89], however, are not resilient
to process crashes. The protocols in [BCBT96] tolerate both process crashes and lossy links but they are
not quiescent (and they do not use failure detectors). In Section 10, we use HB to extend the results of
[BCBT96] and obtain quiescent protocols.

The paper is organized as follows. Our model is given in Section 2. Section 3 defines the reliable
communication primitives that we focus on. In Section 4, we show that, without failure detectors, quiescent

3The link failure model in [BCBT96] is slightly different from the one used here (cf. Section 10).
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reliable communication is impossible. In Section 5, we prove that 3P is the weakest failure detector with
bounded output size that can be used to solve this problem (this proof is under a simplifying assumption; the
proof without this assumption is given in the Appendix). We then define the heartbeat failure detector HB in
Section 6. In Section 7, we show how to use HB to achieve quiescent reliable communication. In Section 8,
we show how to implement HB. In Section 9, we consider two stronger types of communication primitives
and give quiescent implementations that use HB. In Section 10, we explain how HB can be used to extend
several previous results. We conclude the paper with some remarks about message buffering, quiescence
versus termination, models of lossy links, and the generalization of our results to partitionable networks.

2 Model

We consider asynchronous message-passing distributed systems in which there are no timing assumptions.
In particular, we make no assumptions on the time it takes to deliver a message, or on relative process
speeds. Processes can communicate with each other by sending messages through unidirectional links. We
do not assume that the network is completely connected or that the links are bidirectional. The system
can experience both process failures and link failures. Processes can fail by crashing, and links can fail by
dropping messages. The model, based on the one in [CHT96], is described next.

A network is a directed graph G = (Π,Λ) where Π = {1, . . . , n} is the set of processes, and Λ ⊆ Π×Π
is the set of links. If there is a link from process p to process q, we denote this link by p → q, and if, in
addition, q 
= p we say that q is a neighbor of p. The set of neighbors of p is denoted by neighbor(p).

We assume the existence of a discrete global clock — this is merely a fictional device to simplify the
presentation and processes do not have access to it. We take the range T of the clock’s ticks to be the set of
natural numbers.

2.1 Failures and Failure Patterns

Processes can fail by crashing, i.e., by halting prematurely. A process failure pattern FP is a function from
T to 2Π. Intuitively, FP (t) denotes the set of processes that have crashed through time t. Once a process
crashes, it does not “recover”, i.e., ∀t : FP (t) ⊆ FP (t + 1). We say p crashes in FP if p ∈ FP (t) for some
t; otherwise we say p is correct in FP .

Some links in the network are fair. Roughly speaking, a fair link p → q may intermittently drop
messages, and may do so infinitely often, but it must satisfy the following “fairness” property: if p repeatedly
sends some message to q and q does not crash, then q eventually receives that message. Link properties are
made precise in Section 2.5.

A link failure pattern FL is a subset of the set of links Λ. Intuitively, FL is the set of links that may fail
to satisfy the above fairness property. If p → q 
∈ FL, we say that p → q is fair in FL.

A failure pattern F = (FP , FL) combines a process failure pattern and a link failure pattern, and
correct proc(F ) and crashed proc(F ) denote the set of processes that are correct and crashed in FP , re-
spectively.

2.2 Network Connectivity

The following definitions are with respect to a given failure pattern F = (FP , FL). We say that a path
(p1, . . . , pk) in the network is fair if processes p1, . . . , pk are correct and links p1 → p2, . . . , pk−1 → pk are
fair. We assume that every pair of distinct correct processes is connected through a fair path. This precludes
permanent network partitions.
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2.3 Failure Detectors

Each process has access to a local failure detector module that provides (possibly incorrect) information
about the failure pattern that occurs in an execution. A failure detector history H with range R is a function
from Π × T to R. H(p, t) is the output value of the failure detector module of process p at time t. A failure
detector D is a function that maps each failure pattern F to a set of failure detector histories with range RD
(where RD denotes the range of the output of D). D(F ) denotes the set of possible failure detector histories
permitted by D for the failure pattern F .

We now define the eventually perfect failure detector3P [CT96].4 Each failure detector module of3P
outputs a set of processes that are suspected to have crashed, i.e., R3P = 2Π. For each failure pattern F ,
3P(F ) is the set of all failure detector histories H with range R3P that satisfy the following properties:

• Strong Completeness: Eventually every process that crashes is permanently suspected by every correct
process. More precisely:

∃t ∈ T , ∀p ∈ crashed proc(F ), ∀q ∈ correct proc(F ), ∀t′ ≥ t : p ∈ H(q, t′)

• Eventual Strong Accuracy: There is a time after which correct processes are not suspected by any
correct process. More precisely:

∃t ∈ T , ∀t′ ≥ t, ∀p, q ∈ correct proc(F ) : p 
∈ H(q, t′)

Sometimes we need to consider systems without failure detectors. For convenience, we model such
systems by assuming that their failure detectors always output nil. More precisely, the nil failure detector
D⊥ is the one where the failure detector modules of all processes always output ⊥, independent of the failure
pattern. A system without failure detectors is one whose failure detector is D⊥.

2.4 Runs of Algorithms

An algorithm A is a collection of n deterministic automata, one for each process in the system. Computation
proceeds in atomic steps of A. In each step, a process may: receive a message from a process, get an external
input, query its failure detector module, undergo a state transition, send a message to a neighbor, and issue
an external output.

A run of algorithm A using failure detector D is a tuple R = (F,HD, I, S, T ) where F is a failure
pattern, HD ∈ D(F ) is a history of failure detector D for failure pattern F , I is an initial configuration of
A, S is an infinite sequence of steps of A, and T is an infinite list of increasing time values indicating when
each step in S occurs.

A run must satisfy some properties for every process p: If p has crashed by time t, i.e., p ∈ FP (t), then
p does not take a step at any time t′ ≥ t; if p is correct, i.e., p ∈ correct proc(F ), then p takes an infinite
number of steps; if p takes a step at time t and queries its failure detector, then p gets HD(p, t) as a response.

2.5 Link Properties

Each run R = (F,HD, I, S, T ) must also satisfy some “link properties”. First, no link creates or duplicates
messages. More precisely, for every link p → q ∈ Λ:

• Uniform Integrity: For all k ≥ 1, if q receives a message m from p exactly k times by time t, then p

sent m to q at least k times before time t;

4In [CT96],3P denotes a class of failure detectors.
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Moreover, every fair link transports any message that is repeatedly sent through it. More precisely, for every
link p → q 
∈ FL:

• Fairness: If p sends a message m to q an infinite number of times and q is correct, then q receives m

from p an infinite number of times.

Note that any link, whether fair or not, may lose (or not lose) messages arbitrarily during any finite
period of time. In particular, a fair link may lose all the messages sent during any finite period of time, while
a link that is not fair may behave perfectly during that time.

2.6 Environments and Problem Solving

The correctness of an algorithm may depend on certain assumptions on the “environment”, e.g., the max-
imum number of processes that may crash. For example, a consensus algorithm may need the assumption
that a majority of processes is correct. Formally, an environment E is a set of failure patterns. Unless oth-
erwise stated, the only restriction that we put on the environment in this paper is that every pair of distinct
correct processes is connected through a fair path.

A problem P is defined by properties that sets of runs must satisfy. An algorithm A solves problem P
using a failure detector D in environment E if the set of all runs R = (F,HD, I, S, T ) of A using D where
F ∈ E satisfies the properties required by P .

Let C be a class of failure detectors. An algorithm A solves a problem P using C in environment E if for
all D ∈ C, A solves P using D in E . An algorithm implements C in environment E if it implements some
D ∈ C in E .

3 Quiescent Reliable Communication

In this paper, we focus on quasi reliable send and receive, and reliable broadcast, because these communica-
tion primitives are sufficient to solve many problems (see Section 10.1). Stronger types of communication
primitives — reliable send and receive, and uniform reliable broadcast — are briefly considered in Section
9.

3.1 Quasi Reliable Send and Receive

Consider any two distinct processes s and r. We define quasi reliable send and receive from s to r in terms
of two primitives, qr-sends,r and qr-receiver,s. We say that process s qr-sends message m to process r
if s invokes qr-sends,r(m). We assume that if s is correct, it eventually returns from this invocation. We
allow process s to qr-send the same message m more than once through the same link. We say that process
r qr-receives message m from process s if r returns from the invocation of qr-receiver,s(m). Primitives
qr-sends,r and qr-receiver,s satisfy the following properties:

• Uniform Integrity: For all k ≥ 1, if r qr-receives m from s exactly k times by time t, then s qr-sent
m to r at least k times before time t.

• Quasi No Loss5: For all k ≥ 1, if both s and r are correct, and s qr-sends m to r exactly k times by
time t, then r eventually qr-receives m from s at least k times.

5A stronger property, called No Loss, is used in Section 9.1 to define reliable send and receive.
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Intuitively, Quasi No Loss together with Uniform Integrity implies that if s and r are correct, then r
qr-receives m from s exactly as many times as s qr-sends m to r.

We want to implement quasi reliable send/receive primitives using the communication service provided
by the network links. Informally, such an implementation is quiescent if it sends only a finite number of
messages when qr-sends,r is invoked a finite number of times.6

3.2 Reliable Broadcast

Reliable broadcast [BT85] is defined in terms of two primitives: broadcast(m) and deliver(m). We say
that process p broadcasts message m if p invokes broadcast(m). We assume that every broadcast message
m includes the following fields: the identity of its sender, denoted sender(m), and a sequence number, de-
noted seq(m). These fields make every message unique. We say that q delivers message m if q returns from
the invocation of deliver(m). Primitives broadcast and deliver satisfy the following properties[HT93]:

• Validity: If a correct process broadcasts a message m, then it eventually delivers m.

• Agreement: If a correct process delivers a message m, then all correct processes eventually deliver m.

• Uniform Integrity: For every message m, every process delivers m at most once, and only if m was
previously broadcast by sender(m).

Validity and Agreement imply that if a correct process broadcasts a message m, then all correct processes
eventually deliver m.

We want to implement reliable broadcast using the communication service provided by the network
links. Informally, such an implementation is quiescent if it sends only a finite number of messages when
broadcast is invoked a finite number of times.

3.3 Relating Reliable Broadcast and Quasi Reliable Send and Receive

From a quiescent implementation of quasi reliable send and receive one can easily obtain a quiescent imple-
mentation of reliable broadcast, and vice-versa.

Remark 1 From any quiescent implementation of reliable broadcast, we can obtain a quiescent implemen-
tation of the quasi reliable primitives qr-sendp,q and qr-receiveq,p for every pair of processes p and q.

Remark 2 Suppose that every pair of correct processes is connected through a path of correct processes.
If we have a quiescent implementation of quasi reliable primitives qr-sendp,q and qr-receiveq,p for all
processes p and q ∈ neighbor(p), then we can obtain a quiescent implementation of reliable broadcast.

To implement reliable broadcast from qr-send and qr-receive one can use a simple diffusion algorithm
(e.g., see [HT93]).

4 Impossibility of Quiescent Reliable Communication

We now show that in a system without failure detectors, quiescent reliable communication cannot be
achieved. This holds even if the network is completely connected and only a finite number of messages
can be lost.

6 A quiescent implementation of qr-sends,r and qr-receiver,s is allowed to send a finite number of messages even if no
qr-sends,r is invoked at all (e.g., some messages may be sent as part of an “initialization phase”).
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Theorem 1 Consider a system without failure detectors where every pair of processes is connected by a
fair link and at most one process may crash. Let s and r be any two distinct processes. There is no quiescent
implementation of quasi reliable send and receive from s to r. This holds even if we assume that only a finite
number of messages can be lost.

Proof. 7 Assume, by contradiction, that there exists a quiescent implementation I of quasi reliable
qr-sends,r and qr-receiver,s. The basic intuition behind the proof is to construct a run R1 where s qr-sends
a message to r, but r crashes. Since the implementation of qr-send and qr-receive is quiescent, only a finite
number of messages are sent to r in R1. We then construct a similar run R2 where s qr-sends a message
to r, r does not crash, but the finite number of messages sent to r are lost. Runs R1 and R2 are indistin-
guishable from the point of view of r, so r never qr-receives the message — a contradiction. It turns out
that to construct run R1, we need another run R0. This is because we allow the quiescent implementation
of qr-send and qr-receive to send a finite number of “initialization” messages (see Footnote 6). We now
describe runs R0, R1 and R2 in more details.

In run R0, s qr-sends no messages, all processes are correct, processes take steps in round-robin fashion
and every time a process takes a step it receives the earliest message sent to it that it did not yet receive.
Since I is quiescent, there is a time t0 after which no messages are sent or received. By the Uniform Integrity
property of qr-send and qr-receive, process r never qr-receives any message.

Run R1 is identical to run R0 up to time t0; at time t0 + 1, s qr-sends M to r, and r crashes; after time
t0 + 1, no processes crash, and every time a process takes a step, it receives the earliest message sent to it
that it did not yet receive. Since I is quiescent, there is a time t1 > t0 after which no messages are sent or
received.

In run R2, r behaves exactly as in run R0 (in particular, r does not crash and r receives a message m in
R2 whenever it receives m in R0); all other processes behave exactly as in run R1 (in particular, a process
p 
= r receives a message m in R2 whenever it receives m in R1). Note that, in R2, if messages are sent to
or from r after time t0, then they are never received.

We now show that in R2 all links satisfy the Uniform Integrity property. Assume that for some k ≥ 1,
some process q receives m from some process p k times by time t. There are several cases. (1) If q = r
then r receives m from p k times in R0 by time t (since r behaves in the same way in R0 and R2). In R0,
by the Uniform Integrity property of the links p sent m to r at least k times before time t. This happens by
time t0, since there are no sends in R0 after time t0. Note that by time t0, p behaves exactly in the same way
in R0, R1 and R2. Thus p sent m to r at least k times before time t in R2. (2) If q 
= r and p = r, then q

receives m from r k times in R1 by time t (since q behaves in the same way in R1 and R2). In R1, by the
Uniform Integrity property of the links, r sent m to q at least k times before time t. This happens by time
t0, since r crashes at time t0 + 1 in R1. By time t0, r behaves exactly in the same way in R0, R1 and R2.
Thus r sent m to q at least k times before time t in R2. (3) If q 
= r and p 
= r, then q receives m from p

k times in R1 by time t (since q behaves in the same way in R1 and R2). In R1, by the Uniform Integrity
property of the links, p sent m to q at least k times before time t. Note that p behaves exactly in the same
way in R1 and R2. Thus p sent m to q at least k times in R2 before time t. Therefore, in R2 all links satisfy
the Uniform Integrity property.

We next show that in R2 all links satisfy the Fairness property, and in fact only a finite number of
messages are lost. Note that r sends only a finite number of messages in R0 (since it does not send messages
after time t0), and every process p 
= r sends only a finite number of messages in R1 (since it does not send
messages after time t1). So, by construction of R2, all processes send only a finite number of messages in
R2. Therefore, only a finite number of messages are lost, and in R2 all links satisfy the Fairness property.

7This theorem is actually a corollary of Theorem 32 and the fact that the eventually perfect failure detector 3P cannot be
implemented. The proof of Theorem 32, however, uses some complex arguments that obscure the intuition behind Theorem 1. We
prefer to give a self-contained and direct proof that does not use Theorem 32.
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We conclude that R2 is a possible run of I in a network with fair links that lose only a finite number
of messages. Note that in R2: (a) both s and r are correct; (b) s qr-sends M to r; and (c) r does not
qr-receive M . This violates the Quasi No Loss property of qr-sends,r and qr-receiver,s, and so I is not
an implementation of qr-sends,r and qr-receiver,s — a contradiction. 2

Theorem 1 and Remark 1 immediately imply:

Corollary 2 There is no quiescent implementation of reliable broadcast in a network where a process may
crash and links may lose a finite number of messages.

The above results show that quiescent reliable communication cannot be achieved in a system without
failure detectors. The rest of this paper explores the use of failure detectors to solve this problem.

5 The Weakest Failure Detector with Bounded Output Size for Quiescent
Reliable Communication

In practice, and in much of the previous literature, the output of a failure detector is just a set of processes
suspected to have failed. One such failure detector, namely 3P , can be used to achieve quiescent reliable
communication. However, 3P is not implementable in asynchronous systems. Can we achieve quiescent
reliable communication with a failure detector that outputs a set of suspects and is implementable?

In this section we show that the answer is no. In fact, we prove a stronger result: Among all failure
detectors with bounded output size (these include all failure detectors that output a set of suspects) the
weakest one for achieving quiescent reliable communication is 3P — which is not implementable. In
contrast, if we do not bound the output size, quiescent reliable communication can be solved with HB —
which is implementable. This shows that failure detectors with bounded output size have some inherent
limitations.

We prove our result with respect to a problem that we call Single-Shot Reliable Send and Receive.
This problem is weaker than quasi reliable send and receive, and reliable broadcast, and thus our result
immediately applies to those problems as well.

In Section 5.1, we explain what it means for a failure detector to be weaker than another one. Section 5.2
defines the Single-Shot Reliable Send and Receive problem. We then proceed to prove our main result under
some reasonable simplifying assumption. We first give a rough outline of this proof (Section 5.3), and then
the proof itself (Sections 5.4 and 5.5). In the Appendix, we give the full proof without the simplifying
assumption.

5.1 Failure Detector Transformations

Failure detectors can be compared via algorithmic transformations [CT96, CHT96]. A transformation algo-
rithm TD→D′ uses failure detector D to emulate D′, as we now explain. At each process p, the algorithm
TD→D′ maintains a variable D′

p that emulates the output of D′ at p. Let HD′ be the history of all the D′

variables in a run R of TD→D′ , i.e., HD′(p, t) is the value of D′
p at time t in run R. Algorithm TD→D′

transforms D into D′ in environment E if and only if for every F ∈ E and every run R = (F,HD, I, S, T )
of TD→D′ using D, we have HD′ ∈ D′(F ). Intuitively, since TD→D′ is able to use D to emulate D′, D
provides at least as much information about process failures as D′ does, and we say that D′ is weaker than
D in E .

Note that, in general, TD→D′ need not emulate all the failure detector histories of D′ (in environment E);
what we do require is that all the failure detector histories it emulates be histories of D′ (in that environment).
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5.2 Single-Shot Reliable Send and Receive

The Single-Shot Reliable Send and Receive problem is defined in terms of two communication primitives,
called s-send and s-receive. Each process can s-send a single bit once to one process of its choice, if it
wishes to do so (but it is also possible that no process in the system ever s-sends any bit). The s-send and
s-receive primitives must satisfy the following property. For any two correct processes p and q, and any
b ∈ {0, 1}: p s-sends b to q if and only if q s-receives b from p.

An implementation I of s-send and s-receive is quiescent if it sends only a finite number of messages
throughout the network.

5.3 Intuitive Overview of the Simple Proof

Let D be a failure detector with bounded output size, i.e., the range of D is finite. Suppose D can be used to
solve the Single-Shot Reliable Send and Receive problem with a quiescent algorithm I (I is also called the
implementation of s-send and s-receive). We show that D can be transformed to 3P .

The proof that follows makes the simplifying assumption that I does not have an “initialization phase”
that requires the sending of messages. In other words, we assume that I is such that if no process ever
s-sends any bit, then no process ever sends any messages. This reasonable assumption allows us to simplify
the proof and illustrate the basic ideas. In the appendix, we give the full proof.

Since the range of D is finite, then for every failure detector history H of D: (a) each failure detector
module outputs some values infinitely often (these are the “limit values”), and (b) there is a time after which
it outputs only limit values. Let v be a limit value for process p and H . A crucial observation is that with
H it is possible to construct runs such that whenever p takes a step it always gets v from its failure detector
module. It is easy to generalize the notion of a limit value for p to a limit vector for a set of processes P :
A vector f (with a value for every process in the system) is a limit vector for P and H if, for each process
p in P , the failure detector module of p outputs f (p) infinitely often in H . Note that with H it is possible
to construct runs such that whenever a process p in P takes a step, it obtains f (p) from its failure detector
module. We say that vector f hints that P is the set of all correct processes, if f could occur as a limit vector
for P when P is the set of correct processes (more precisely, f is a limit vector for P in a history H ∈ D(F )
where correct proc(F ) = P ).

Consider a failure detector history H that can occur when P is the set of all correct processes. Let f be
any limit vector for P and H . Clearly, f hints that P is the set of all correct processes. Can f also hint that a
proper subset P ′ of P is the set of all correct processes? The answer is no. As we argue next, this is because
with D, a process in P ′ should be able to s-send a bit to a process q in P \P ′ and to do so quiescently using
I.

Suppose, for contradiction, that f hints that P ′ is the set of all correct processes. Then we can construct
a run R1 of I where (a) P ′ is indeed the set of all correct processes, (b) processes in P ′ are scheduled
such that whenever they take steps they get f from their failure detector module, (c) some process p in P ′

s-sends a bit b to some process q in P \ P ′, and (d) processes in P \ P ′ never take a step. Because the
implementation I is quiescent, in R1 eventually all processes in P ′ (including p) stop sending messages —
they give up on trying to transmit b to q.

Since f also hints that P is the set of correct processes, we can create another run R2 of I where (a) P
is the set of correct processes, (b) processes in P are scheduled such that whenever they take steps they get
f from their failure detector module, (c) p s-sends b to q, (d) messages sent between processes in P ′ and
processes in P \P ′ are lost. Note that from the point of view of processes in P ′, run R2 is indistinguishable
from run R1. Thus, in R2 eventually all processes in P ′ stop sending messages — they give up on trying
to transmit b to q. So, in R2 process q never receives any messages, and thus it does not s-receive b
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from p. Since p and q are correct in R2, the implementation I of s-send and s-receive is incorrect — a
contradiction. Thus, f cannot hint that P ′ is the set of all correct processes.

Let EP be the set of all vectors that hint that P is the set of correct processes (this set is determined
by D). The algorithm that transforms D to 3P uses a predetermined “table of hints” containing, for each
possible P , the set EP .

The transformation algorithm works as follows. Each process p periodically sends its current failure
detector output to every process, and maintains two variables: f and Order . Vector f stores the last failure
detector value received from each process, and Order is an ordered set of processes. Whenever p receives
a failure detector value from another process q, it records that value in f (q) and moves q to the front of
Order . Let P be the set of correct processes in this run. Note that: (a) eventually f is a limit vector for P ,
and (b) the correct processes percolate to the front of Order (processes that crash end up at the tail), so that
eventually P is some prefix of Order .

To satisfy the properties of3P , p must eventually output the complement of P . By (b) above, eventually
P is the largest prefix of Order that contains correct processes. To find this maximal prefix, p repeatedly
uses its current value of f and the predetermined table of hints, as follows. For each prefix P ′ of Order ,
in order of increasing size, p checks if f hints that P ′ is the set of all correct processes, i.e., f ∈ EP ′ , and
if so p outputs the complement of P ′. This works because, as we argued above, any limit vector f for P :
(1) hints that P is the set of all correct processes, and (2) cannot hint that a proper subset P ′ of P is the set
of all correct processes. This concludes the overview of the proof (the reader should understand why the
argument above breaks down without the simplifying assumption).

We next give the actual proof. The transformation algorithm TD→3P uses a table which is determined
a priori from D (this is the “table of hints” in our intuitive explanation). We first define this table and
show some of its properties (Section 5.4). We then describe and prove the correctness of the transformation
algorithm TD→3P that uses this table (Section 5.5).

5.4 The Predetermined Table

Let E be an environment and D be any failure detector with finite range R = {v1, v2, . . . , v	}. Let I be
a quiescent implementation of s-send and s-receive that uses D in environment E . Assume that if no
process s-sends any bit then I does not send any messages (this simplifying assumption is removed in the
Appendix).

Given vj ∈ R, a process p ∈ Π, and a failure detector history H with range R, we say that vj is a limit
value for p and H if, for infinitely many t, H(p, t) = vj . Let f be an assignment of failure detector values
to every process in Π, i.e., f : Π −→ R. Let P be a non-empty set of processes. We say that f is a limit
vector for P and H if for all p ∈ P , f (p) is a limit value for p and H . The set of all limit vectors for P and
H is denoted LP (H). Let ED,E

P = {f | ∃F ∈ E, ∃H ∈ D(F ) : P = correct proc(F ) and f ∈ LP (H)}.
Roughly speaking, ED,E

P is the set of limit vectors that could occur when P is the set of correct processes.
The table used by the transformation algorithm TD→3P consists of all the sets ED,E

P where P ranges
over all non-empty subset of processes. Note that this table is finite. We omit the superscript D, E from
ED,E

P whenever it is clear from the context.

Lemma 3 Let F ∈ E , P = correct proc(F ) and H ∈ D(F ). Assume P 
= ∅. If f ∈ LP (H) then f ∈ EP

and f 
∈ EP ′ for every P ′ such that ∅ ⊂ P ′ ⊂ P .
Proof. Let f ∈ LP (H). The fact that f ∈ EP is immediate from the definition of EP . Let P ′ be such
that ∅ ⊂ P ′ ⊂ P . Suppose, for contradiction, that f ∈ EP ′ . Then there exists a failure pattern F ′ ∈ E and
H ′ ∈ D(F ′) such that P ′ = correct proc(F ′) and f ∈ LP ′(H ′).

We now obtain a contradiction by using the quiescent implementation I of s-send and s-receive. Let p
be a process in P ′ and q be a process in P \P ′. We construct two runs, R1 and R2 of I using D, as follows:
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• Run R1 has failure pattern F ′ and failure detector history H′. Initially p s-sends some bit b to q.
Processes in P ′ take steps and those in Π \ P ′ do not. Processes in P ′ take steps in round-robin
fashion such that every time a process r ∈ P ′ takes a step, it obtains f (r) from its failure detector
module (since f ∈ LP ′(H ′), f (r) is a limit value for r and H ′). Moreover, every process in P ′

receives every message sent to it.

Since I is quiescent, there is a time t1 after which no messages are sent or received. Assume without
loss of generality that at time t1 all processes in P ′ took the same number k of steps (otherwise,
choose another time t′1 > t1). Note that all messages in R1 are sent within the finite period of time
[0, t1]. Thus, the fact that all processes in P ′ receive all the messages sent to them is consistent with
the link failure pattern of F ′ (even if in F ′ some of the links are not fair).

• Run R2 has failure pattern F and failure detector history H . Initially, processes in R2 behave as in
R1: p s-sends some bit b to q; moreover, each process in P ′ take the same k steps as in R1, and
process in Π \ P ′ do not take any steps. More precisely, processes in P ′ take steps in round-robin
fashion such that every time a process r ∈ P ′ takes a step, it obtains f (r) from its failure detector
module (since f ∈ LP (H) and r ∈ P ′ ⊂ P , f (r) is a limit value for r and H). Moreover, every
process in P ′ receives every message sent to it, and all messages sent to processes in Π \ P ′ are lost.
This goes on until each process in P ′ takes k steps, exactly as in R1.8

Let t2 be the time when this happens. After t2, processes in P take steps in round-robin fashion such
that every time a process r ∈ P ′ takes a step, it obtains f (r) from its failure detector module (it does
not matter what a process r ∈ P \ P ′ gets from its failure detector module, as long as it is compatible
with H). Moreover, after t2 no process s-sends any bit. This completes the description of run R2.

Note that at time t2, each process in P ′ is in the same state as in run R1 at time t1. Moreover, each
process in P \ P ′ is in its initial state. By a simple induction argument we can show that after time t2
in R2: (a) processes in P ′ continue to behave as in R1, (b) processes in P \ P ′ behave as if they were
in a run of I in which no process ever s-sends any bit, and (c) no process sends any message (this
induction uses the simplifying assumption that in a run in which there are no s-sends, no process
sends any message). Therefore, in R2, process q (which is in P \ P ′) never receives any messages.
This implies that q does not s-receive b from p.

Note that in R2: (a) both p and q are correct; (b) p s-sends b to q; and (c) q does not s-receive b from p.
Thus, I is not a correct implementation of s-send and s-receive — a contradiction. 2

5.5 The Transformation Algorithm

The algorithm TD→D′ that transforms D to an eventually perfect failure detector D′ = 3P in environment
E is shown in Fig. 1. TD→D′ uses the table of sets EP (for all non-empty subsets of processes P ) that has
been determined a priori from the given D and E . It also uses an implementation of qr-send and qr-receive
between every pair of processes. A simple implementation is by repeated retransmissions and diffusion (it
does not have to be quiescent).

All variables are local to each process. Vector f stores the last failure detector value that p qr-received
from each process; Order is an ordered set that records the order in which the last failure detector value
from each process was qr-received; D′

p denotes the output of the eventually perfect failure detector that p
is simulating (a set of processes that p currently suspects).

8This behavior of the links is consistent with F because for any finite period of time, any link (whether fair or not in F ) may
lose or not lose any message.
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1 For every process p:
2

3 Initialization:
4 for all q ∈ Π do f [q] ← ⊥
5 Order ← ∅
6 D′

p ← ∅
7 { For each ∅ ⊂ P ⊆ Π, the set ED,E

P is determined a priori from D and E }
8

9 cobegin
10 || Task 1:
11 repeat periodically
12 v ← Dp {query D}
13 for all q ∈ Π do qr-send v to q
14

15 || Task 2:
16 upon qr-receive w from q do {upon receipt of a failure detector value from q}
17 f [q] ← w
18 Order ← q || (Order \ {q}) {process q is moved to the front of Order}
19 if for some k ≥ 1, f ∈ ED,E

Order[1..k] then
20 let k0 be the smallest such k
21 D′

p ← Π \ Order [1..k0] {suspect processes not in Order [1..k0]}
22 coend

Figure 1: Transformation of D to an eventually perfect failure detector D′ in environment E

In Task 1, each process p periodically qr-sends the output of its failure detector module Dp to every
process q. Upon the qr-receipt of a failure detector value from process q in Task 2, process p enters it into
f [q], and moves q to the front of Order . Then, p checks if there is some prefix Order [1..k] of Order such
that f ∈ EOrder [1..k]. If there is, it sets D′ to the complement of the smallest such prefix.

We now show that the failure detector constructed by this algorithm, namely D′, is an eventually perfect
failure detector. Consider a run of this algorithm with failure pattern F ∈ E and failure detector history
H ∈ D(F ), such that correct proc(F ) 
= ∅. Let t be the number of processes that crash in F , i.e.,
t = |Π \ correct proc(F )|. Henceforth, p denotes a correct process in F and variables f and Order are
local to p.

Lemma 4 There is a time after which (1) Order [1..n−t] = correct proc(F ), and (2) f ∈ LOrder [1..n−t](H).9

Proof. Part (1) is clear from the way Order is updated, the fact that p keeps qr-receiving failure detector
values from every correct process, and the fact that p eventually stops qr-receiving messages from processes
that crash. Part (2) of the lemma follows from part (1) and the fact that the range R of D is finite. 2

Corollary 5 There is a time after which (1) f ∈ EOrder [1..n−t] and (2) for all 1 ≤ k < n − t, f 
∈
EOrder [1..k].

Proof. By Lemma 4, there is a time t0 after which f ∈ LOrder [1..n−t](H) and Order [1..n − t] =
correct proc(F ). So after time t0, by Lemma 3, f ∈ EOrder[1..n−t]. This shows (1). Let k be such

9This does not mean that eventually the values of variables f and Order at p stop changing. It means that, although they may
continue to change forever, eventually the predicates (1) and (2) are true forever at p.
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that 1 ≤ k < n − t. After t0, ∅ ⊂ Order [1..k] ⊂ correct proc(F ), and f ∈ Lcorrect proc(F )(H). So, by
Lemma 3, f 
∈ EOrder [1..k]. This shows (2). 2

Corollary 6 There is a time after which D′
p = Π \ correct proc(F ).

Proof. By Corollary 5 and the algorithm, there is a time after which the k0 selected in line 20 is always
n − t. Now apply Lemma 4 part (1). 2

By Corollary 6, we have:

Theorem 7 Consider an asynchronous system subject to process crashes and message losses. Suppose
failure detector D with finite range can be used to solve the Single-Shot Reliable Send and Receive problem
in environment E , and that the implementation is quiescent. Assume further that if no process ever s-sends
any bit then this implementation does not send any messages. Then D can be transformed (in environment
E) to the eventually perfect failure detector3P .

Theorems 7 and 32 imply that if we restrict ourselves to failure detectors that output a set of suspects,
we cannot achieve quiescent reliable communication with a failure detector that can be implemented. Thus,
we next introduce HB, a failure detector that does not output a set of suspects. HB can be used to achieve
quiescent reliable communication and it is implementable.

6 Definition of HB
A heartbeat failure detector D has the following features. The output of D at each process p is a list
(p1, n1), (p2, n2), . . . , (pk, nk), where p1, p2, . . . , pk are the neighbors of p, and each nj is a nonnegative
integer. Intuitively, nj increases while pj has not crashed, and stops increasing if pj crashes. We say that
nj is the heartbeat value of pj at p. The output of D at p at time t, namely H(p, t), will be regarded as a
vector indexed by the set {p1, p2, . . . , pk}. Thus, H(p, t)[pj ] is nj . The heartbeat sequence of pj at p is the
sequence of the heartbeat values of pj at p as time increases. D satisfies the following properties:

• HB-Completeness: At each correct process, the heartbeat sequence of every neighbor that crashes is
bounded:

∀F,∀H ∈ D(F ),∀p ∈ correct proc(F ),∀q ∈ crashed proc(F ) ∩ neighbor (p),
∃K ∈ N,∀t ∈ T : H(p, t)[q] ≤ K

• HB-Accuracy:

– At each process, the heartbeat sequence of every neighbor is nondecreasing:

∀F,∀H ∈ D(F ),∀p ∈ Π,∀q ∈ neighbor (p),∀t ∈ T : H(p, t)[q] ≤ H(p, t + 1)[q]

– At each correct process, the heartbeat sequence of every correct neighbor is unbounded:

∀F,∀H ∈ D(F ),∀p ∈ correct proc(F ),∀q ∈ correct proc(F ) ∩ neighbor (p),
∀K ∈ N,∃t ∈ T : H(p, t)[q] > K

The class of all heartbeat failure detectors is denoted HB. By a slight abuse of notation, we sometimes use
HB to refer to an arbitrary member of that class.

It is easy to generalize the definition of HB so that the failure detector module at each process p outputs
the heartbeat of every process in the system [ACT], rather than just the heartbeats of the neighbors of p, but
we do not need this generality here.
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correct process process that crashes

(a) simple network case (b) general network case

link is fair link is not fair

Figure 2: Examples of the simple and general network cases

7 Quiescent Reliable Communication Using HB
The communication networks that we consider are not necessarily completely connected, but we assume
that every pair of correct processes is connected through a fair path. We first consider a simple type of such
networks, in which every link is assumed to be bidirectional10 and fair (Fig. 2a). This assumption, a common
one in practice, allows us to give efficient and simple algorithms. We then drop this assumption and treat a
more general type of networks, in which some links may be unidirectional and/or not fair (Fig. 2b). For both
network types, we give quiescent reliable communication algorithms that use HB. Our algorithms have the
following feature: processes do not need to know the entire network topology or the number of processes in
the system; they only need to know the identity of their neighbors.

In our algorithms, Dp denotes the current output of the failure detector D at process p.

7.1 The Simple Network Case

We assume that all links in the network are bidirectional and fair (Fig. 2a). In this case, the algorithms are
very simple. We first give a quiescent implementation of quasi reliable qr-sends,r and qr-receiver,s for
the case r ∈ neighbor(s). For s to qr-send a message m to r, it repeatedly sends m to r every time the
heartbeat of r increases, until s receives ack (m) from r. Process r qr-receives m from s the first time it
receives m from s, and r sends ack(m) to s every time it receives m from s.

From this implementation, and Remark 2 in Section 3.3, we can obtain a quiescent implementation of
reliable broadcast. Then, from Remark 1, we can obtain a quiescent implementation of quasi reliable send
and receive for every pair of processes.

10In our model, this means that link p → q is in the network if and only if link q → p is in the network. In other words,
q ∈ neighbor(p) if and only if p ∈ neighbor(q).
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7.2 The General Network Case

In this case (Fig. 2b), some links may be unidirectional, e.g., the network may contain several unidirectional
rings that intersect with each other. Moreover, some links may not be fair (and processes do not know which
ones are fair).

Achieving quiescent reliable communication in this type of network is significantly more complex than
before. For instance, suppose that we seek a quiescent implementation of quasi reliable send and receive. In
order for the sender s to qr-send a message m to the receiver r, it has to use a diffusion mechanism, even
if r is a neighbor of s (since the link s → r may not be fair). Because of intermittent message losses, this
diffusion mechanism needs to ensure that m is repeatedly sent over fair links. But when should this repeated
send stop? One possibility is to use an acknowledgement mechanism. Unfortunately, the link in the reverse
direction may not be fair (or may not even be part of the network), and so the acknowledgement itself has to
be diffused. But diffusing the acknowledgements quiescently and reliably introduces a “chicken and egg”
problem. We now explain how our algorithms avoid this problem.

We give a quiescent implementation of reliable broadcast in Figure 3. This implementation can be used
to obtain quasi reliable send and receive between every pair of processes (see Remark 1 in Section 3.3). For
each message m that is broadcast, each process p maintains a variable gotp[m] containing a set of processes.
Intuitively, a process q is in gotp[m] if p has evidence that q has delivered m. All the messages sent by a
process p in the reliable broadcast algorithm are of the form (m, got msg, path) where got msg is the
current value of gotp[m], and path is the sequence of processes that this copy of (m, got msg , path) has
traversed so far.

In order to reliably broadcast a message m, p first delivers m; then p initializes variable gotp[m] to {p}
and forks task diffuse(m); finally p returns from the invocation of broadcast(m). The task diffuse(m)
runs in the background. In this task, p periodically checks if, for some neighbor q 
∈ gotp[m], the heartbeat
of q at p has increased and, if so, p sends (m, gotp[m], p) to all neighbors whose heartbeat increased —
even to those who are already in gotp[m].11 The task terminates when all neighbors of p are contained in
gotp[m].

Upon the receipt of a message (m, got msg , path), process p first checks if it has already delivered m
and, if not, it delivers m and forks task diffuse(m). Then p adds the contents of got msg to gotp[m] and
appends itself to path . Finally, p forwards the new message (m, gotp[m], path) to all its neighbors that
appear at most once in path .

The code consisting of lines 19 through 27 is executed atomically.12 Each concurrent execution of the
diffuse task (lines 9 to 17) has its own copy of all the local variables in this task.

We now outline the proof that, for the general network case, Fig. 3 is a quiescent implementation of
reliable broadcast that uses HB. The first few lemmata are obvious.

Lemma 8 (Uniform Integrity) For every message m, every process delivers message m at most once, and
only if m was previously broadcast by sender(m).

Lemma 9 (Validity) If a correct process broadcasts a message m, then it eventually delivers m.

Lemma 10 For any processes p and q, (1) if at some time t, q ∈ gotp[m] then q ∈ gotp[m] at every time
t′ ≥ t; (2) When gotp[m] is initialized, p ∈ gotp[m]; (3) if q ∈ gotp[m] then q delivered m.

Lemma 11 For every m and path , there is a finite number of distinct messages of the form (m, ∗, path).

11It may appear that p does not need to send this message to processes in gotp[m], since they already got m! But with this
“optimization” the algorithm is no longer quiescent; in the proof of Lemma 15 we will indicate exactly where the sending to every
neighbor whose heartbeat increased is necessary.

12A process p executes a region of code atomically if at any time there is at most one thread of p in this region.
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1 For every process p:
2

3 To execute broadcast(m):
4 deliver(m)
5 got [m] ← {p}
6 fork task diffuse(m)
7 return
8

9 task diffuse(m):
10 for all q ∈ neighbor (p) do prev hb[q] ← −1
11 repeat periodically
12 hb ← Dp { query the heartbeat failure detector }
13 if for some q ∈ neighbor (p), q 
∈ got [m] and prev hb[q] < hb[q] then
14 for all q ∈ neighbor (p) such that prev hb[q] < hb[q] do
15 send (m, got [m], p) to q
16 prev hb ← hb
17 until neighbor (p) ⊆ got [m]
18

19 upon receive (m, got msg, path) from q do
20 if p has not previously executed deliver(m) then
21 deliver(m)
22 got [m] ← {p}
23 fork task diffuse(m)
24 got [m] ← got [m] ∪ got msg
25 path ← path · p
26 for all q such that q ∈ neighbor (p) and q appears at most once in path do
27 send (m, got [m], path ) to q

Figure 3: General network case — quiescent implementation of broadcast and deliver using HB

Lemma 12 If some process sends a message of the form (m, ∗, path), then no process appears more than
twice in path .

Lemma 13 Suppose link p → q is fair, and p and q are correct processes. If p delivers a message m, then
q eventually delivers m.

Proof. Suppose, by contradiction, that p delivers m and q never delivers m. Since p delivers m and it is
correct, it forks task diffuse(m). Since q does not deliver m, by Lemma 10 part (3) q never belongs to
gotp[m]. Since p is correct, this implies that p executes the loop in lines 11–17 an infinite number of times.
Since q is a correct neighbor of p, the HB-Accuracy property guarantees that the heartbeat sequence of q
at p is nondecreasing and unbounded. Thus, the condition in line 13 evaluates to true an infinite number
of times. Therefore, p executes line 14 an infinite number of times, and so p sends a message of the form
(m, ∗, p) to q an infinite number of times. By Lemma 11, there exists a subset g0 ⊆ Π such that p sends
message (m, g0, p) infinitely often to q. So, by the Fairness property of link p → q, q eventually receives
(m, g0, p). Therefore, q delivers m. This contradicts the assumption that q does not deliver m. 2

Lemma 14 (Agreement) If a correct process p delivers a message m, then every correct process q eventu-
ally delivers m.
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Proof (Sketch). By successive applications of Lemma 13 over any fair path from p to q. 2

We now show that the algorithm in Fig. 3 is quiescent. In order to do so, we focus on a single invocation
of broadcast and show that it causes the sending of only a finite number of messages. This implies that
the implementation sends only a finite number of messages when broadcast is invoked a finite number of
times.

Let m be a message and consider an invocation of broadcast(m). This invocation can only cause the
sending of messages of form (m, ∗, ∗). Thus, all we need to show is that every process eventually stops
sending messages of this form.

Lemma 15 Let p be a correct process and q be a correct neighbor of p. If p forks task diffuse(m), then
eventually condition q ∈ gotp[m] holds forever.
Proof. By Lemma 10 part (1), we only need to show that eventually q belongs to gotp[m]. Suppose, by
contradiction, that q never belongs to gotp[m]. Let (p1, p2, . . . , pk′) be a simple fair path13 from p to q with
p1 = p and pk′ = q. Let (pk′ , pk′+1, . . . , pk) be a simple fair path from q to p with pk = p. For 1 ≤ j < k,
let Pj = (p1, p2, . . . , pj). Note that a process can appear at most twice in Pk. Thus, for 1 ≤ j < k, process
pj+1 appears at most once in Pj .

We claim that for each j ∈ {1, . . . , k − 1}, there is a set gj containing {p1, p2, . . . , pj} such that pj

sends (m, gj, Pj) to pj+1 an infinite number of times. For j = k − 1, this claim together with the Fairness
property of link pk−1 → pk immediately implies that pk = p eventually receives (m, gk−1, Pk−1). Upon the
receipt of such a message, p adds the contents of gk−1 to its variable gotp[m]. Since gk−1 contains pk′ = q,
this contradicts the fact that q never belongs to gotp[m].

We show the claim by induction on j. For the base case note that, since q never belongs to gotp[m]
and q is a neighbor of p1 = p, then p1 executes the loop in lines 11–17 an infinite number of times. Since
q is a correct neighbor of p1, the HB-Accuracy property guarantees that the heartbeat sequence of q at p1

is nondecreasing and unbounded. Thus, the condition in line 13 evaluates to true an infinite number of
times. So p1 executes line 14 infinitely often. Since p2 is a correct neighbor of p1, its heartbeat sequence is
nondecreasing and unbounded, and so p1 sends messages of the form (m, ∗, p1) to p2 an infinite number of
times.14 By Lemma 11, there is some g1 such that p1 sends (m, g1, p1) to p2 an infinite number of times.
Note that Lemma 10 parts (1) and (2) implies that p1 ∈ g1. This shows the base case.

For the induction step, suppose that for j < k − 1, pj sends (m, gj, Pj) to pj+1 an infinite number of
times, for some gj containing {p1, p2, . . . , pj}. By the Fairness property of link pj → pj+1, pj+1 receives
(m, gj, Pj) from pj an infinite number of times. Since pj+2 is a neighbor of pj+1 and appears at most once
in Pj+1, each time pj+1 receives (m, gj, Pj), it sends a message of the form (m, ∗, Pj+1) to pj+2. It is easy
to see that each such message is (m, g, Pj+1) for some g that contains both gj and pj+1. By Lemma 11,
there exists gj+1 ⊆ Π such that gj+1 contains {p1, p2, . . . , pj+1} and pj+1 sends (m, gj+1, Pj+1) to pj+2

an infinite number of times. 2

Corollary 16 If a correct process p forks task diffuse(m), then eventually p stops sending messages in task
diffuse(m).
Proof. For every neighbor q of p, there are two cases. If q is correct then eventually condition q ∈ gotp[m]
holds forever by Lemma 15. If q crashes, then the HB-Completeness property guarantees that the heartbeat
sequence of q at p is bounded, and so eventually condition prev hbp[q] ≥ hbp[q] holds forever. Therefore,
there is a time after which the guard in line 13 is always false. Hence, p eventually stops sending messages
in task diffuse(m). 2

13A path is simple if all processes in that path are distinct.
14This is where the proof uses the fact that p sends message containing m to all its neighbors whose heartbeat increased — even

to those (such as p2) that may already be in gotp[m] (cf. line 14 of the algorithm).
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Lemma 17 (Quiescence) Eventually every process stops sending messages of the form (m, ∗, ∗).

Proof. Suppose, for a contradiction, that the lemma is not true. Then there exists a process p such that p
never stops sending messages of the form (m, ∗, ∗). By Lemma 12, the third component of a message of the
form (m, ∗, ∗) ranges over a finite set of values. Therefore, there is some fixed path such that p sends an
infinite number of messages of the form (m, ∗, path).

Now let path0 to be the shortest path such that there exists some process p0 that sends messages of the
form (m, ∗, path0) an infinite number of times. Note that p0 must be correct. Corollary 16 shows that there
is a time after which p0 stops sending messages in its task diffuse(m). Since p0 only sends a message in
task diffuse(m) or in line 27, then p0 sends messages of the form (m, ∗, path0) in line 27 an infinite number
of times. For each (m, ∗, path0) that p0 sends in line 27, p0 must have previously received a message of the
form (m, ∗, path1) such that path0 = path1 · p0. So p0 receives a message of the form (m, ∗, path1) an
infinite number of times. By the Uniform Integrity property of the links, some process p1 sends a message
of form (m, ∗, path1) to p0 an infinite number of times. But path1 is shorter than path0 — a contradiction
to the minimality of path0. 2

From Lemmata 8, 9, 14, and 17 we have:

Theorem 18 For the general network case, the algorithm in Fig. 3 is a quiescent implementation of reliable
broadcast that uses HB.

From this theorem and Remark 1 in Section 3.3 we have:

Corollary 19 In the general network case, quasi reliable send and receive between every pair of processes
can be implemented with a quiescent algorithm that uses HB.

8 Implementations of HB
We now give implementations of HB for the two types of communication networks that we considered in
the previous sections. These implementations do not use timeouts.

8.1 The Simple Network Case

We assume all links in the network are bidirectional and fair (Fig. 2a). In this case, the implementation is
obvious. Each process periodically sends a HEARTBEAT message to all its neighbors; upon the receipt of
such a message from process q, p increases the heartbeat value of q.

8.2 The General Network Case

In this case some links are unidirectional and/or not fair (Fig. 2b). The implementation is more complex than
before because each HEARTBEAT has to be diffused, and this introduces the following problem: when a
process p receives a HEARTBEAT message it has to relay it even if this is not the first time p receives such
a message. This is because this message could be a new “heartbeat” from the originating process. But this
could also be an “old” heartbeat that cycled around the network and came back, and p must avoid relaying
such heartbeats.

The implementation is given in Fig. 4. Every process p executes two concurrent tasks. In the first task,
p periodically sends message (HEARTBEAT, p) to all its neighbors. The second task handles the receipt of
messages of the form (HEARTBEAT, path). Upon the receipt of such message from process q, p increases
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1 For every process p:
2

3 Initialization:
4 for all q ∈ neighbor (p) do Dp[q] ← 0
5

6 cobegin
7 || Task 1:
8 repeat periodically
9 for all q ∈ neighbor (p) do send (HEARTBEAT, p) to q
10

11 || Task 2:
12 upon receive (HEARTBEAT, path ) from q do
13 for all q such that q ∈ neighbor (p) and q appears in path do
14 Dp[q] ← Dp[q] + 1
15 path ← path · p
16 for all q such that q ∈ neighbor (p) and q does not appear in path do
17 send (HEARTBEAT, path) to q
18 coend

Figure 4: General network case — implementation of HB

the heartbeat values of all its neighbors that appear in path . Then p appends itself to path and forwards
message (HEARTBEAT, path) to all its neighbors that do not appear in path .

We now show that, for the general network case, the algorithm in Fig. 4 implements HB.

Lemma 20 At every process p, the heartbeat sequence of every neighbor q is nondecreasing.

Proof. Obvious. 2

Lemma 21 At each correct process p, the heartbeat sequence of every correct neighbor q is unbounded.

Proof (Sketch). It is possible that link q → p is not fair or not even in the network. However, there is a
simple fair path P = (p1, . . . , pk) from q to p with p1 = q and pk = p. Process p1 = q sends its heartbeat
to all its neighbors infinitely often. Since the links p1 → p2, . . ., pk−1 → pk are fair and each pj is correct,
the heartbeats of q are relayed infinitely often through that path, and pk = p receives them infinitely often.
2

Corollary 22 (HB-Accuracy) At each process the heartbeat sequence of every neighbor is nondecreasing,
and at each correct process the heartbeat sequence of every correct neighbor is unbounded.

Proof. From Lemmata 20 and 21. 2

The proofs of the next two Lemmata are obvious.

Lemma 23 If some process p sends (HEARTBEAT, path) then (1) p is the last process in path and (2) no
process appears twice in path.

Lemma 24 Let p, q be processes, and path be a non-empty sequence of processes. If p receives message
(HEARTBEAT, path · q) an infinite number of times, then q receives message (HEARTBEAT, path) an
infinite number of times.
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Lemma 25 (HB-Completeness) At each correct process, the heartbeat sequence of every neighbor that
crashes is bounded.

Proof (Sketch). Let p be a correct process and let q be a neighbor of p that crashes. Suppose that the
heartbeat sequence of q at p is not bounded. Then p increments Dp[q] an infinite number of times. So, for an
infinite number of times, p receives messages of the form (HEARTBEAT, ∗) with a second component that
contains q. By Lemma 23 part (2), the second component of a message of the form (HEARTBEAT, ∗) ranges
over a finite set of values. Thus there exists a path containing q such that p receives (HEARTBEAT, path)
an infinite number of times.

Let path = (p1, . . . , pk). Then, for some j ≤ k, pj = q. If j = k then, by the Uniform Integrity
property of the links and by Lemma 23 part (1), q sends (HEARTBEAT, path) to p an infinite number of
times. This contradicts the fact that q crashes. If j < k then, by repeated applications of Lemma 24, we
conclude that pj+1 receives message (HEARTBEAT, (p1, . . . , pj)) an infinite number of times. Therefore,
by the Uniform Integrity property of the links and Lemma 23 part (1), pj sends (HEARTBEAT, (p1, . . . , pj))
to pj+1 an infinite number of times. Since pj = q, this contradicts the fact that q crashes. 2

By Corollary 22 and the above lemma, we have:

Theorem 26 For the general network case, the algorithm in Fig. 4 implements HB.

9 Stronger Communication Primitives

Quasi reliable send and receive and reliable broadcast are sufficient to solve many problems (see Sec-
tion 10.1). However, stronger types of communication primitives, namely, reliable send and receive, and
uniform reliable broadcast, are sometimes needed. We now give quiescent implementations of these primi-
tives for systems with process crashes and message losses.

Let t be the number of processes that may crash. [BCBT96] shows that if t ≥ n/2 (i.e., half of the
processes may crash) these primitives cannot be implemented, even if we assume that links may lose only a
finite number of messages and we do not require that the implementation be quiescent.

We now show that if t < n/2 then there are quiescent implementations of these primitives for the two
types of network considered in this paper. The implementations that we give here are simple and modular
but are inefficient (in terms of number of messages sent). More efficient ones can be obtained by modifying
the algorithms in Sections 7.1 and 7.2. Hereafter, we assume that t < n/2.

9.1 Reliable Send and Receive

Consider any two distinct processes s and r. We define reliable send and receive from s to r in term of
two primitives: r-sends,r and r-receiver,s. We require that if a correct process invokes r-send it eventually
returns from this invocation. If a process s returns from the invocation of r-sends,r(m) we say that s
completes the r-send of message m to r. With quasi reliable send and receive, it is possible that s completes
the qr-send of m to r, then s crashes, and r never qr-receives m (even though it does not crash). In contrast,
with reliable send and receive primitives, if s completes the r-send of message m to a correct process r then
r eventually r-receives m (even if s crashes). More precisely, reliable send and receive satisfy the following
properties:

• Uniform Integrity: For all k ≥ 1, if r r-receives m from s exactly k times by time t, then s r-sent m
to r at least k times before time t.
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1 For process s:
2

3 Initialization:
4 seq ← 0 { seq is the current sequence number }
5

6 To execute r-sends,r(m):
7 seq ← seq + 1
8 lseq ← seq
9 broadcast(m, lseq, s, r)
10 wait until qr-received (ACK, lseq) from t + 1 processes
11 return
12

13 For every process p:
14

15 upon deliver(m, lseq, s, r) do
16 qr-sendp,s(ACK, lseq)
17 if p = r then r-receiver,s(m)

Figure 5: Quiescent implementation of r-sends,r and r-receiver,s for n > 2t

• No Loss: For all k ≥ 1, if r is correct and s completes the r-send of m to r exactly k times by time t,
then r eventually r-receives m from s at least k times.15

A quiescent implementation of r-send and r-receive can be obtained using a quiescent implementation
of reliable broadcast and of qr-send/qr-receive between every pair of processes. Roughly speaking, when
s wishes to r-send m to r, it broadcasts a message that contains m, s, r and a fresh sequence number, and
then waits to qr-receive t + 1 acknowledgements for that message before returning from this invocation of
r-send. When a process p delivers this broadcast message, it qr-sends an acknowledgement back to s, and
if p = r then it also r-receives m from s. This algorithm is shown in Figure 5 (the code consisting of lines 7
and 8 is executed atomically).

9.2 Uniform Reliable Broadcast

The Agreement property of reliable broadcast states that if a correct process delivers a message m, then all
correct processes eventually deliver m. This requirement allows a faulty process (i.e., one that subsequently
crashes) to deliver a message that is never delivered by the correct processes. This behavior is undesirable
in some applications, such as atomic commitment in distributed databases [BT93, Gra78, Had86]. For such
applications, a stronger version of reliable broadcast is more suitable, namely, uniform reliable broadcast
which satisfies Uniform Integrity, Validity (Section 3.2) and:

• Uniform Agreement [NT90]: If any process delivers a message m, then all correct processes eventually
deliver m.

A quiescent implementation of uniform reliable broadcast can be obtained using quiescent implementa-
tions of reliable broadcast, and of quasi reliable send and receive between every pair of processes. Roughly

15The No Loss and Quasi No Loss properties are very similar to the Strong Validity and Validity properties in Section 6 of
[HT93].
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speaking, when p wishes to uniform-broadcast m, it broadcasts m. Upon the delivery of m, each process r
qr-sends an acknowledgement to every process, waits for the qr-receipt of such acknowledgements from
t + 1 processes, and then uniform-delivers m.

10 Using HB to Extend Previous Work

HB can be used to extend previous work in order to solve problems with algorithms that are both quiescent
and tolerant of process crashes and messages losses.

10.1 Extending Existing Algorithms to Tolerate Link Failures

HB can be used to transform many existing algorithms that tolerate process crashes into quiescent algo-
rithms that tolerate both process crashes and message losses. For example, consider the randomized con-
sensus algorithms of [Ben83, CMS89, FM90, Rab83], the failure-detector based ones of [AT96, CT96], the
probabilistic one of [BT85], and the algorithms for atomic broadcast in [CT96], k-set agreement in [Cha93],
atomic commitment in [Gue95], and approximate agreement in [DLP+86]. All these algorithms tolerate
process crashes. Moreover, it is easy to verify that the only communication primitives that they actually
need are quasi reliable send and receive, and/or reliable broadcast. Thus, in systems where HB is available,
all these algorithms can be made to tolerate both process crashes and message losses (with fair links) by
simply plugging in the quiescent communication primitives given in Section 7.16 The resulting algorithms
tolerate message losses and are quiescent.

10.2 Extending Results of [BCBT96]

Another way to solve problems with quiescent algorithms that tolerate both process crashes and message
losses is obtained by extending the results of [BCBT96]. That work addresses the following question: given
a problem that can be solved in a system where the only possible failures are process crashes, is the problem
still solvable if links can also fail by losing messages? One of the models of lossy links considered in
[BCBT96] is called fair lossy. Roughly speaking, a fair lossy link p → q satisfies the following property: If
p sends an infinite number of messages to q and q is correct, then q receives an infinite number of messages
from p (see Section 11.3 for a brief comparison between fair lossy and fair links).

[BCBT96] establishes the following result: any problem P that can be solved in systems with process
crashes can also be solved in systems with process crashes and fair lossy links, provided P is correct-
restricted17 or a majority of processes are correct. For each of these two cases, [BCBT96] shows how to
transform any algorithm that solves P in a system with process crashes, into one that solves P in a system
with process crashes and fair lossy links. The algorithms that result from these transformations, however,
are not quiescent: each transformation requires processes to repeatedly send messages forever.

Given HB, we can modify the transformations in [BCBT96] to ensure that if the original algorithm is
quiescent then so is the transformed one. Roughly speaking, the modification consists of (1) adding message
acknowledgements; (2) suppressing the sending of a message from p to q if either (a) p has received an
acknowledgement for that message from q, or (b) the heartbeat of q has not increased since the last time
p sent a message to q; and (3) modifying the meaning of the operation “append Queue1 to Queue2” so
that only the elements in Queue1 that are not in Queue2 are actually appended to Queue2. The results in
[BCBT96], combined with the above modification, show that if a problem P can be solved with a quiescent

16This can also be done to algorithms that require reliable send/receive or uniform reliable broadcast by plugging in the imple-
mentations given in Section 9, provided a majority of processes are correct.

17Intuitively, a problem P is correct-restricted if its specification does not refer to the behavior of faulty processes [BN92, Gop92].
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(quiescent and terminating)

instance #1 of atomic commitment

Reliable Communication
(quiescent, non-terminating)

Failure Detection

(non-quiescent, non-terminating)

instance #1 of consensus

Applications

Instance #2 of consensus

Figure 6: Layering that separates applications, reliable communication, and failure detection.

algorithm in a system with crash failures only, and either P is correct-restricted or a majority of processes
are correct, then P is solvable with a quiescent algorithm that uses HB in a system with crash failures and
fair lossy links.

11 Concluding Remarks

11.1 About Message Buffering

We now address the issue of message buffering in the implementation of quasi reliable send and receive,
and of reliable broadcast (Section 7). Soon after a process p crashes, its heartbeat ceases everywhere and
processes stop sending messages to p. However, they do have to keep the messages they intended to send to
p, just in case p is merely very slow, and the heartbeat of p resumes later on. In theory, they have to keep
these messages forever. In practice, however, the system will eventually decide that p is indeed useless and
will “remove” p (e.g., via a Group Membership protocol). All the stored messages addressed to p can then
be discarded. The removal of p may take a long time,18 but the heartbeat mechanism ensures that processes
stop sending messages to p soon after p actually crashes, and much before its removal.

11.2 Quiescence versus Termination

In this paper, we considered reliable communication protocols that tolerate process crashes and message
losses, and focused on achieving quiescence. What about achieving termination? A terminating protocol
guarantees that every process eventually reaches a halting state from which it cannot take further actions. A
terminating protocol is obviously quiescent, but the converse is not necessarily true. For example, consider
the protocol described at the beginning of Section 1. In this protocol, (a) s sends a copy of m repeatedly

18In some group membership protocols, the timeout used to remove a process is on the order of minutes: killing a process is
expensive and so timeouts are set conservatively.

25



until it receives ack(m) from r, and then it halts; and (b) upon each receipt of m, r sends ack(m) back
to s. In the absence of process crashes this protocol is quiescent. However, the protocol is not terminating
because r never halts: r remains (forever) ready to reply to the receipt of a possible message from s.

Can we use HB to obtain reliable communication protocols that are terminating? The answer is no, even
for systems with no process crashes, as we now explain. Consider a system with message losses (fair links)
and no process crashes. [KT88] proves that for any terminating protocol P , and any initial configuration
of P , there are runs of P in which all processes halt without receiving any message. This implies that a
terminating protocol cannot solve the reliable communication problem (in systems with fair links).

To deal with this problem, we propose a layering that allows applications to terminate. This layering,
shown in Fig. 6, separates applications, reliable communication, and failure detection. At the lowest level,
there are failure detectors, such as HB. Of course, these are neither quiescent nor terminating. At the
middle level, there are reliable communication protocols, such as those that we described in Sections 3
and 9. These communication protocols are quiescent (thanks to the failure detectors at the lower level) but
not terminating. Finally, at the top level, there are applications, such as concurrent instances of consensus,
atomic broadcast, atomic commitment protocols, etc. Applications are both quiescent and terminating:
they achieve termination thanks to the reliable communication layer. For example, consider an instance of
consensus. Once a process decides, it delegates the task of broadcasting the decision value to the reliable
communication layer, and then it terminates (without waiting for the broadcast to terminate). Since every
correct process eventually decides and terminates, this instance of consensus terminates.

If necessary, termination in the reliable communication layer can also be achieved in practice, as we now
explain. A reliable communication protocol is unable to terminate when processes cannot determine whether
a non-responsive process has crashed or it is only very slow. However, as we mentioned in our discussion
of message buffering, a process that actually crashes is eventually removed by the operating system or a
group membership protocol (and the remaining processes are notified accordingly). When this happens, the
communication protocol can terminate. Note that with the heartbeat mechanism quiescence can be achieved
long before termination (this is because when a process crashes, it may take a relatively long time to decide
that it actually crashed, but its heartbeat count at other processes stops increasing almost immediately).

As a final remark, we note that some communication protocols, such as standard data link protocols, are
inherently non-terminating: they are shared communication services that are always “ready” for message
transmission. The reliable communication protocols (in our middle level) could also be viewed in the same
way, namely, as non-terminating shared services that are always ready for message transmission.

11.3 Fair Links versus Fair Lossy Links

Fair links and fair lossy links are two typical models of lossy links considered in the literature.19 Roughly
speaking, a fair link guarantees that for every m, if p sends m to q an infinite number of times, and q is
correct, then q receives m an infinite number of times. On the other hand, a fair lossy link guarantees that if
p sends an infinite number of messages to q, and q is correct, then q receives an infinite number of messages
from p. Fair lossy links and fair links differ in a subtle way. For instance, if process p sends the infinite
sequence of distinct messages m1,m2,m3, . . . to q and p → q is fair lossy, then q is guaranteed to receive
an infinite subsequence, whereas if p → q is fair, q may receive nothing (because each distinct message is
sent only once). On the other hand, if p sends the infinite sequence m1,m2,m1,m2, . . . and p → q is fair
lossy, q may never receive a copy of m2 (while it receives m1 infinitely often), whereas if p → q is fair, q is
guaranteed to receive an infinite number of copies of both m1 and m2.

In this paper, we chose the fair links model. A natural question is whether our results still hold with
fair lossy links instead. It turns out that the answer is yes, as we now explain. First note that Theorems 1,

19In [Lyn96], these links correspond to the Strong and Weak Loss Limitation properties, respectively.

26



7 and 32 still hold because their proofs rely only on the fact that lossy links may lose (or not lose) mes-
sages arbitrarily during any finite period of time — a behavior allowed by fair lossy links. Moreover, the
algorithms in Sections 7 and 8 can be easily modified to work with fair lossy links through the use of pig-
gybacking; namely, every time a process wishes to send a message, it piggybacks all the messages that it
previously sent.20 Finally, the algorithms in Section 9 are still correct because they do not directly use the
communication links; rather, they rely only on the communication algorithms of Section 7.

11.4 Quiescent versus Non-Quiescent Transformations

We proved that if D is a failure detector with finite range that can be used to solve quiescent reliable com-
munication, then D can be transformed to 3P . Our transformation is not quiescent: to “extract” 3P out
of D, processes keep on sending messages forever. This, however, does not invalidate the two facts that we
wanted to show, namely:

1. D encodes at least as much information as 3P .

2. D cannot be implemented (this follows from the transformation from D to 3P , and the fact that 3P
cannot be implemented).

This shows that finite-range failure detectors have some inherent limitation (because there is a failure detec-
tor with infinite range, namely HB, that can be used to solve quiescent reliable communication such that (1)
HB does not encode 3P and (2) HB can be implemented).

Even though a non-quiescent transformation was sufficient to establish our results, quiescent transforma-
tions are necessary when comparing the power of failure detectors to solve tasks with quiescent algorithms,
as we now explain. If D can be transformed to D′, we can conclude that D is (at least) as powerful as D′

in terms of task solving (intuively, a task is a relation between inputs and outputs [BMZ88, HS93]). If the
transformation from D to D′ is not quiescent, however, D may not be as powerful as D′ in terms of solving
tasks quiescently: there may be a task that can be solved quiescently with D′ but not with D. On the other
hand, if the transformation from D to D′ is quiescent, we can conclude that D is (at least) as powerful as
D′ in terms of solving tasks with quiescent algorithms. The study of quiescent transformations is a new and
interesting subject of research.

11.5 Extension to Partitionable Networks

In this paper, we considered networks that do not partition: we assumed that every pair of correct processes
are reachable from each other through fair paths. In a subsequent paper [ACT], we drop this assumption
and consider partitionable networks. We first generalize the definition of HB and show how to implement
it in such networks. We then consider generalized versions of reliable communication and of consensus for
partitionable networks, and use HB to solve these problems with quiescent protocols (to solve consensus
we also use a generalization of the Eventually Strong failure detector [CT96]).
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Appendix

A Removing the Simplifying Assumption from Theorem 7

We now give an extended, more complex proof of Theorem 7 without the simplifying assumption.
Let E be an environment and D be any failure detector with finite range R = {v1, v2, . . . , v	}. Let I be

a quiescent implementation of s-send and s-receive that uses D in environment E .
As in the simpler proof in Section 5, the transformation algorithm TD→3P uses a finite table that is

predetermined from D. We first define this table and show some of its properties (Section A.1). We then
describe and prove the correctness of the transformation algorithm TD→3P that uses this table (Section A.2).

A.1 The Predetermined Table

For the definitions in this proof, let:

• vj be a failure detector value, i.e., vj ∈ R
• p be a process, i.e., p ∈ Π
• F be a failure pattern
• H be a failure detector history with range R
• f be an assignment of failure detector values to every process in Π, i.e., f : Π −→ R
• P and P0 be non-empty set of processes
• p0, p1, . . . , pm−1 be the processes in P (where m = |P | and p0 < p1 < . . . < pm−1)

Definition 1 We say that vj is a limit value for p and H if, for infinitely many t, H(p, t) = vj . 2

Definition 2 We say that f is a limit vector for P and H if for all p ∈ P , f (p) is a limit value for p and H .
The set of all limit vectors for P and H is denoted LP (H). 2

Definition 3 RRIRounds(P, f ) is defined as follows.
Consider the round-robin execution of implementation I in which: (a) processes in P take steps forever

in a round-robin fashion21 and processes in Π \ P do not take any steps, (b) no process ever s-sends any
bit, (c) every time a process p ∈ P queries its failure detector module, p gets f (p), (d) every time a process
p ∈ P takes a step, p receives the earliest message sent to it that it did not yet receive (thus, every p ∈ P
eventually receives each message sent to it), and (e) all messages sent to processes in Π \ P are lost.22

There are two possible cases in the above round-robin execution of I:

• Every process eventually stops sending messages. In this case, after some number k of round-robin
rounds, no process ever receives any messages. We say that “round-robin initialization (r.r.i.) occurs
in k rounds”, and define RRIRounds(P, f ) = k.

• Some process never stops sending messages. In this case, we define RRIRounds(P, f ) = ∞. 2

Intuitively, we say that F and H allow round-robin initialization for P and f if the following holds:
(a) in the above execution with P and f , r.r.i. occurs in k rounds for some k, and (b) there is a schedule
compatible with F and H that allows this k-round r.r.i. More precisely:

21That is, p0 takes the first step, then p1 takes a step, and so on, so that the j-th step is taken by process p(j−1) mod m.
22It is possible that this is not a valid execution of I using D in environment E .
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Definition 4 We say that F and H allow round-robin initialization (r.r.i.) for P and f if (a) RRIRounds(P, f ) =
k for some k, and (b) if there are times t0 < t1 < . . . < tmk−1 such that for every 0 ≤ j ≤ mk − 1, (1)
pj mod m is not crashed at time tj , i.e., pj mod m 
∈ F (tj) and (2) the failure detector module of pj mod m at
time tj outputs f (pj mod m), i.e., H(pj mod m, tj) = f (pj mod m). 2

Definition 5 LP,P0(F,H) = {f | f ∈ LP (H) and F and H allow r.r.i. for P0 and f}. 2

Definition 6 ED,E
P,P0

= {f | ∃F ∈ E, ∃H ∈ D(F ) : P = correct proc(F ) and f ∈ LP,P0(F,H)}. 2

Roughly speaking, ED,E
P,P0

is the set of limit vectors f that could occur when P is the set of correct processes
and it is possible to have r.r.i. for P0 and f .

The table used by the transformation algorithm TD→3P consists of all the sets ED,E
P,P0

where P and P0

range over all non-empty subset of processes. Note that this table is finite. We omit the superscript D, E
from ED,E

P,P0
whenever it is clear from the context.

Lemma 27 Let F ∈ E , P = correct proc(F ), H ∈ D(F ) and f ∈ LP (H). Assume P 
= ∅. Then
RRIRounds(P, f ) < ∞.

Proof. We can construct a run R of implementation I using D with F ∈ E , such that all processes behave
exactly as in the round-robin execution of I that was used to define RRIRounds(P, f ). To see this, note
that since F ∈ E , P = correct proc(F ), H ∈ D(F ) and f ∈ LP (H), we can find times for the round-robin
steps of correct processes such that, for each time u at which a process p takes a step, the output H(p, u)
of its failure detector module is f (p). Since I is quiescent, there is a time after which no process sends any
message in run R. Thus, RRIRounds(P, f ) < ∞. 2

Lemma 28 Let F ∈ E , P = correct proc(F ), H ∈ D(F ). Assume P 
= ∅ and let P0 be such that
P ⊆ P0 ⊆ Π. If f ∈ LP,P0(F,H) then f ∈ EP,P0 and f 
∈ EP ′,P0

for all P ′ such that ∅ ⊂ P ′ ⊂ P .

Proof. Let f ∈ LP,P0(F,H). The fact that f ∈ EP,P0 is immediate from the definition of EP,P0 . Let P ′

be such that ∅ ⊂ P ′ ⊂ P . Suppose, for contradiction, that f ∈ EP ′,P0 . Then there exists a failure pattern
F ′ ∈ E and H ′ ∈ D(F ′) such that P ′ = correct proc(F ′) and f ∈ LP ′,P0

(F ′, H ′).
We now obtain a contradiction by using the quiescent implementation I. Let p be a process in P ′ and

q be a process in P \ P ′. We construct three runs of I, namely, R0, R1 and R2. Roughly speaking, each
one of these runs starts with an r.r.i. for P0 and f . After this initialization, in R0 nothing else happens, in
R1 process p s-sends some bit to q but q crashes, and in R2 process p s-sends the same bit to q and q is
correct. We will reach a contradiction by arguing that in R2 process q behaves as in R0, and thus it never
s-receives any bit from p — this violates the defining property of s-send and s-receive.

Runs R0, R1 and R2 are defined as follows:23

• Run R0 has failure pattern F and failure detector history H . Since f ∈ LP,P0(F,H), f ∈ LP (H),
and F and H allow r.r.i. for P0 and f . R0 consists initially of a r.r.i. for P0 and f . More precisely,
initially: (a) processes in P0 take steps in a round-robin fashion and processes in Π \ P0 do not take
any steps, (b) no process s-sends any bit, (c) every time a process r ∈ P0 queries its failure detector
module, r gets f (r), (d) every time a process r ∈ P0 takes a step, r receives the earliest message sent
to it that it did not yet receive, and (e) all messages sent to processes in Π \ P0 are lost. This goes on

23In each one of these runs, we will require that for a certain finite period of time, some messages are lost while others are not.
As we explained in our model (Section 2.5), this behavior is consistent with any link failure pattern.
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until each process in P0 has taken RRIRounds(P0, f ) steps. Let t0 be the time when this happens.
After t0, processes in P take steps in a round-robin fashion such that every time a process r ∈ P
takes a step, it obtains f (r) from its failure detector module (this is possible because f ∈ LP (H));
moreover, no process s-sends any bit.

Note that since both p and q are in P = correct proc(F ), and p does not s-send any bit to q, it must
be that q does not s-receive any bit from p. Furthermore, after time t0, no processes send or receive
any messages.

• Run R1 has failure pattern F ′ and failure detector history H′. Since f ∈ LP ′,P0(F
′, H ′), f ∈

LP ′(H ′), and F ′ and H ′ allow r.r.i. for P0 and f . Initially, processes in R1 behave as in R0, i.e., R1

starts with a r.r.i. for P0 and f . Then, execution proceeds as follows: (a) p s-sends some bit b to q,
(b) processes in P ′ take steps in round-robin fashion and processes in Π \ P ′ take no steps, (c) every
time a process r ∈ P ′ takes a step, it obtains f (r) from its failure detector module, (d) every time a
process r ∈ P ′ takes a step, r receives the earliest message sent to it that it did not yet receive, (e) all
messages sent to processes in Π \ P ′ are lost.

Note that, since implementation I is quiescent, there is a time t1 after which no messages are sent or
received. Assume without loss of generality that at time t1 every process in P ′ took the same number
k of steps (otherwise, choose another time t′1 > t1).

• Run R2 has failure pattern F and failure detector history H . Initially, processes in R2 behave as in
R1: R2 starts with a r.r.i. for P0 and f , and then p s-sends b to q and execution continues as in R1,
until each process in P ′ has taken k steps (this is possible because f ∈ LP (H) and P ′ ⊆ P ).

Let t2 be the time when this happens. After t2, execution proceeds as follows: (a) no process s-sends
any bit, (b) processes in P take steps in round-robin fashion and processes in Π \ P take no steps,
(c) every time a process r ∈ P takes a step, it obtains f (r) from its failure detector module (this is
possible because f ∈ LP (H)).

Note that at time t2, each process in P ′ is in the same state as in run R1 at time t1, and each process
in P \ P ′ is in the same state as in run R0 at time t0. A simple induction on the steps taken shows
that, in R2, (1) processes in P ′ have the same behavior as in run R1; (2) processes in P \ P ′ have the
same behavior as in run R0; (3) no messages are sent or received after time t2. Since q ∈ P \ P ′ and
q does not s-receive any bit from p in R0, it does not s-receive any bit from p in R2.

In summary, in R2: (a) both p and q are correct; (b) p s-sends b to q; and (c) q does not s-receive b from p.
Thus, I is not a correct implementation of s-send and s-receive — a contradiction. 2

A.2 The Transformation Algorithm

The algorithm TD→D′ that transforms D to an eventually perfect failure detector D′ = 3P in environment
E is shown in Fig. 7. TD→D′ uses the table of sets EP,P0 (for all non-empty subsets P and P0 of processes)
that has been determined a priori from the given D and E . It also uses an implementation of qr-send and
qr-receive between every pair of processes. A simple implementation is by repeated retransmissions and
diffusion (it does not have to be quiescent).

All variables are local to each process. Sequences is a finite set of finite sequences of pairs (p, v) where
p ∈ Π is a process and v ∈ R is a failure detector value. It stores possible schedules that could have
resulted from F and H . Vector f stores the last failure detector value that p qr-received from each process.
Order is an ordered set that records the order in which the last failure detector value from each process
was qr-received. D′

p denotes the output of the eventually perfect failure detector that p is simulating (a
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set of processes that p currently suspects). AllowsRRI is a boolean function that takes three parameters:
a set Sequences, a set P = {p0, p1, . . . , pm−1} ⊆ Π (where p0 < p1 < . . . < pm−1), and a vector f . It
returns true if and only if for some sequence s ∈ Sequences, there exists a subsequence of s that consists of
RRIRounds(P, f ) repetitions of (p0, f (p0)), (p1, f (p1)), . . . , (pm−1, f (pm−1)).

In Task 1, each process p periodically queries its failure detector module, appends a new pair to each
sequence in Sequences and then qr-sends Sequences and the output of its failure detector module Dp to
every process. Upon the qr-receipt of (Sequences′, v′) from process q in Task 2, process p enters v′ into
f [q], moves q to the front of Order , and updates Sequences. Then, p uses the function AllowsRRI to check
whether there is some k such that r.r.i. could have occurred for Order [1..k] and f . If there is, it sets k0 to the
largest such k, and then checks if for some k′, f ∈ EOrder [1..k′],Order [1..k0]. If so, it sets k1 to the smallest
such k′, and sets D′ to the complement of Order [1..k1].

1 For every process p:
2

3 Initialization:
4 for all q ∈ Π do f [q] ← ⊥
5 Order ← ∅
6 Sequences ← {λ}
7 D′

p ← ∅
8 { For each ∅ ⊂ P,P0 ⊆ Π, the set ED,E

P,P0
is determined a priori from D and E }

9

10 cobegin
11 || Task 1:
12 repeat periodically
13 v ← Dp {query D}
14 append (p, v) to each sequence in Sequences
15 for all q ∈ Π do qr-send (Sequences , v) to q
16

17 || Task 2:
18 upon qr-receive (Sequences ′, v′) from q do
19 f [q] ← v′

20 Order ← q || (Order \ {q}) {process q is moved to the front of Order}
21 Sequences ← Sequences ∪ Sequences ′

22 if for some k ≥ 1, AllowsRRI (Sequences ,Order [1..k], f) then
23 let k0 be the largest such k

24 if for some k′ ≥ 1, f ∈ ED,E
Order [1..k′],Order[1..k0]

then
25 let k1 be the smallest such k ′

26 D′
p ← Π \ Order [1..k1] {suspect processes not in Order [1..k1]}

27 coend

Figure 7: Transformation of D to an eventually perfect failure detector D′

We now show that the failure detector constructed by this algorithm, namely D′, is an eventually perfect
failure detector. Consider a run of this algorithm with failure pattern F ∈ E and failure detector history
H ∈ D(F ), such that correct proc(F ) 
= ∅. Let t be the number of processes that crash in F , i.e.,
t = |Π \ correct proc(F )|. Henceforth, p denotes a correct process in F , and f , Order , and Sequences are
variables local to p.
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Lemma 29 There is a time t0 after which (1) Order [1..n−t] = correct proc(F ), (2) f ∈ LOrder [1..n−t](H)
and (3) AllowsRRI (Sequences,Order [1..n − t], f ).24

Proof. Note that p eventually stops qr-receiving messages from processes that crash, and p never stops
qr-receiving messages from correct processes. From the way Order is updated, there is a time t1 after
which (1) holds.

Let P = correct proc(F ). Variable f ranges over a finite number of values, so there are functions
f1, f2, . . . , fN : Π → R such that (a) for every 1 ≤ j ≤ N , variable f is equal to fj an infinite number
of times, and (b) there is a time t2 after which the predicate f ∈ {f1, f2, . . . , fN} holds. We now show
that for every 1 ≤ j ≤ N , fj ∈ LP (H), and there is a time τj after which AllowsRRI (Sequences, P, fj)
holds. Together with (1) and (b), this implies that after time t0 = max{t1, t2, τ1, τ2, . . . , τN}, both (2) and
(3) hold.

Let 1 ≤ j ≤ N . We first claim that each process q ∈ P obtains fj(q) from D in line 13 an infi-
nite number of times — this immediately implies fj ∈ LP (H). To show the claim, note that process p

qr-receives a message from q and updates f [q] an infinite number of times. Together with (a), this implies
that p qr-receives a message containing fj(q) from q an infinite number of times, and this implies the claim.

We now show that there is a time τj after which AllowsRRI (Sequences, P, fj) holds. Since fj ∈
LP (H), by Lemma 27, RRIRounds(P, fj) = k for some k < ∞. Let p0 < p1 < . . . < pm−1 be the
processes in P . By the claim, at some time u0, p0 obtains fj(p0) from D in line 13. After doing so, p0

appends (p0, fj(p0)) to all sequences in Sequences and qr-sends a message containing Sequences to all
processes. At some time u′

1 > u0, p1 qr-receives this message and updates Sequences. By the claim, at
some time u1 > u′

1, p1 obtains fj(p1) from D in line 13. After doing so, p1 appends (p1, fj(p1)) to all
sequences in Sequences and so p1 obtains a sequence containing (p0, fj(p0)) before (p1, fj(p1)). We can
repeat this argument for all the processes in P in a round-robin order, for k + 1 rounds, and conclude that
eventually AllowsRRI (Sequences, P, fj) holds. 2

Lemma 30 There is a time t1 after which for every m0 ≥ n − t such that AllowsRRI (Sequences,
Order [1..m0], f ) holds: (1) f ∈ EOrder[1..n−t],Order[1..m0] and (2) for all 1 ≤ m1 < n − t, f 
∈
EOrder [1..m1],Order [1..m0].

Proof. By Lemma 29, there is a time t0 after which (a) Order [1..n − t] = correct proc(F ), and (b) f ∈
LOrder [1..n−t](H). Let t1 = t0. Suppose that at some time t′1 > t1, AllowsRRI (Sequences,Order [1..m0], f )
holds for some m0 ≥ n − t. This implies that F and H allow r.r.i. for Order [1..m0] and f . From (b),
f ∈ LOrder [1..n−t],Order[1..m0](F,H) holds at time t′1. By Lemma 28, f ∈ EOrder[1..n−t],Order[1..m0].

Let 1 ≤ m1 < n − t. By (a), ∅ ⊂ Order [1..m1] ⊂ correct proc(F ) ⊆ Order [1..m0] holds
at time t′1. Note that f ∈ LOrder [1..n−t],Order[1..m0](F,H) holds at time t′1. By Lemma 28, f 
∈
EOrder [1..m1],Order [1..m0]. 2

Corollary 31 There is a time after which D′
p = Π \ correct proc(F ).

Proof. By Lemma 29 part (3), there is a time t0 after which every time p qr-receives some message, the if
in line 22 evaluates to true and the k0 selected in line 23 is at least n − t. After time t0, by Lemma 30, there
is a time after which: every time p qr-receives some message, the if in line 24 evaluates to true and the k1

selected in line 25 is n − t. Now apply Lemma 29 part (1). 2

By Corollary 31, we have:

24This does not mean that eventually the values of variables f , Sequences, and Order at p stop changing. It means that, although
they may continue to change forever, eventually the predicates (1), (2) and (3) are true forever at p.
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Theorem 32 Consider an asynchronous system subject to process crashes and message losses. Suppose
failure detector D with finite range can be used to solve the Single-Shot Reliable Send and Receive problem
in environment E , and that the implementation is quiescent. Then D can be transformed (in environment E)
to the eventually perfect failure detector 3P .

36


