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Abstract

We study the problem of achieving reliable communication with quiescent algorithms (i.e., algo-
rithms that eventually stop sending messages) in asynchronous systems with process crashes and lossy
links. We first show that it isimpossible to solve this problem in purely asynchronous systems (with no
failure detectors). We then show that, among failure detectors that output lists of suspects, the weakest
one that can be used to solve this problem is P, a failure detector that cannot be implemented. To
overcome this difficulty, we introduce an implementable failure detector called Heartbeat and show that
it can be used to achieve quiescent reliable communication. Heartbeat is novel: in contrast to typical
failure detectors, it does not output lists of suspects and it is implementable without timeouts. With
Heartbeat, many existing algorithms that tolerate only process crashes can be transformed into quiescent
algorithms that tolerate both process crashes and message losses. This can be applied to consensus,
atomic broadcast, k-set agreement, atomic commitment, etc.

1 Introduction

1.1 Motivation

We focus on the problem of quiescent reliable communication in asynchronous message-passing systems
with process crashes and lossy links. To illustrate this problem consider a system of two processes, a sender
s and areceiver r, connected by an asynchronous bidirectional link. Process s wishesto send some message
m to r. Suppose first that no process may crash, but the link between s and » may |ose messages (in both
directions). If we put no restrictions on message losses it is obviously impossible to ensure that » receives
m. An assumption commonly made to circumvent this problem is that the link isfair: if amessageis sent
infinitely often then it is received infinitely often.

With such alink, s could repeatedly send copies of m forever, and r is guaranteed to eventually receive
m. Thisisimpractical, since s never stops sending messages. The obvious fix is the following protocol: (a)
s sends a copy of m repeatedly until it receives ack(m) from r, and (b) upon each receipt of m, r sends
ack(m) back to s. Note that this protocol is quiescent: eventually no process sends or receives messages.

*Research partially supported by NSF grant CCR-9402896 and CCR-9711403, by ARPA/ONR grant N00014-96-1-1014, and
by an Olin Fellowship. An extended abstract of part of this paper appeared in the Proceedings of the 11th International Workshop
on Distributed Algorithms, September 1997.



The situation changes if, in addition to message losses, process crashes may also occur. The protocol
above still works, but it is not quiescent anymore: for example, if r crashes before sending ack(m), then s
will send copies of m forever. Is there a quiescent protocol ensuring that if neither s nor » crashes then »
eventually receives m? It turns out that the answer is no, even if one assumes that the link can only lose a
finite number of messages.

Since process crashes and message |osses are common types of failures, this negative result is an obsta-
cleto the design of fault-tolerant distributed systems. In this paper, we explore the use of unreliable failure
detectorsto circumvent this obstacle. Roughly speaking, unreliable failure detectors provide (possibly erro-
neous) hints on the operational status of processes. Each process can query alocal failure detector module
that provides some information about which processes have crashed. Thisinformation istypicaly given in
the form of alist of suspects.

In general, failure detectors can make mistakes: a process that has crashed is not necessarily suspected
and a process may be suspected even though it has not crashed. Moreover, thelocal listsof suspects dynam-
icaly change and lists of different processes do not have to agree (or even eventually agree). Introduced
in [CT96], the abstraction of unreliable failure detectors has been used to solve several important problems
such as consensus, atomic broadcast, group membership, non-blocking atomic commitment, and |leader
election [BDM97, Gue9d5, HMR97, LH94, OGS97, SM95].

Our goal is to use unreliable failure detectors to achieve quiescence, but before we do so we must
address the following important question. Note that any reasonable implementation of a failure detector
in a message-passing system is itself not quiescent: a process being monitored by a failure detector must
periodicaly send a message to indicate that it is till alive, and it must do so forever (if it stops sending
messages it cannot be distinguished from a process that has crashed). Given that failure detectors are not
quiescent, does it still make senseto use them as atool to achieve quiescent applications (such as quiescent
reliable broadcast, consensus, or group membership)?

The answer is yes, for two reasons. First, afailure detector isintended to be abasic system service that
is shared by many applications during the lifetime of the system, and so its cost is amortized over all these
applications. Second, failure detection is a service that needs to be active forever — and so it is natural that
it sends messages forever. In contrast, many applications (such as asingle RPC call or the reliable broadcast
of a single message) should not send messages forever, i.e., they should be quiescent. Thus, there is ho
conflict between the goal of building quiescent applications and the use of a non-quiescent failure detection
service asatool to achieve this goal.

1.2 Achieving Quiescent Reliable Communication Using Failure Detector s

How can we use an unreliable failure detector to achieve quiescent reliable communication in the presence
of process and link failures? This can be done with the eventually perfect failure detector &P [CT96].
Intuitively, OP satisfies the following two properties: (@) if a process crashes then there is a time after
which it is permanently suspected, and (b) if a process does not crash then there is atime after which it is
never suspected. Using &P, the following obvious algorithm solves our sender/receiver example: (a) while
s has not received ack(m) from r, it periodically does the following: s queries &P and sends a copy of m
to r if r isnot currently suspected; (b) upon each receipt of m, r sends ack(m) back to s. Note that this
algorithm is quiescent: eventually no process sends or receives messages.

So &P issufficient to achieve quiescent reliable communication. But is it necessary? In thefirst part of
the paper, we show that among all failure detectors that output lists of suspects, ¢P isindeed the weakest
one that can be used to solve this problem. Unfortunately, <P is not implementable (this would violate a
known impossibility result [FLP85, CT96]). Thus, at afirst glance, it seemsthat achieving quiescent reliable
communication requires a failure detector that cannot be implemented. In the second part of the paper, we



show that thisis not so.

In fact, we show that quiescent reliable communication can be achieved with a failure detector that is
implementable in systems with process crashes and lossy links. This new failure detector, called heartbeat
and denoted H 3, isvery simple. Roughly speaking, the failure detector module of H 3 at a process p outputs
avector of counters, one for each neighbor ¢ of p. If neighbor ¢ doesnot crash, its counter at p increaseswith
no bound. If ¢ crashes, its counter eventually stops increasing. The basic idea behind an implementation
of HB isthe obvious one: each process periodically sends an I-am-alive message (a* heartbeat”) and every
process receiving a heartbeat increases the corresponding counter.!

"H BB should not be confused with existing failure detectors (some of which, such asthosein Ensemble and
Phoenix, have modules that are also called heartbeat [VR97, Cha97]): H does not output lists of suspects
and itsimplementation does not use any timeout mechanism. Even though existing failure detectors are also
based on the repeated sending of a heartbeat, they use timeouts on these heartbeats in order to output lists of
processes considered to be up or down; applications can only see these lists. In contrast, H5 simply counts
the total number of heartbeats received from each process, and shows these “raw” counters to applications
without any further processing or interpretation.

A remark isnow in order regarding the practicality of HB3. Aswe mentioned above, H 3 outputs avector
of unbounded counters. In practice, these unbounded counters are not a problem for the following reasons.
First, they are in local memory and not in messages — our H 3 implementations use bounded messages.
Second, if we bound each local counter to 64 bits, and assume arate of one heartbeat per nanosecond, which
is orders of magnitude higher than currently used in practice, then H B will work for more than 500 years.

1.3 Detailed Outline of the Results

We focus on two types of reliable communication mechanisms. quasi reliable send and receive, and reliable
broadcast. Roughly speaking, a pair of send/receive primitives is quasi reliable if it satisfies the following
property: if processes s and r are correct (i.e., they do not crash), then r receives a message from s exactly
as many times as s sent that message to . Reliable broadcast [HT93] ensures that if a correct process
broadcasts a message m then al correct processes deliver m; moreover, all correct processes deliver the
same set of messages. Our goal isto obtain quiescent implementations of these primitives in networks that
do not partition permanently. More precisely, we consider networks in which processes may crash and links
may |ose messages but every pair of correct processes are connected through some fair path, i.e., a path
containing only fair links and correct processes.

We first show that, in purely asynchronous systems (with no failure detectors), there is no quiescent
implementation of quasi reliable send/receive or of reliable broadcast in such networks (even if we assume
that links can lose only a finite number of messages). We then show that the weakest failure detector with
bounded output size? that can be used to solve these problems is &P — which is not implementable.

To overcome this difficulty, we introduce H 3, afailure detector that outputs unbounded counters, and
show that H 5 is strong enough to achieve quiescent reliable communication, but weak enough to be imple-
mentable. We consider two types of networks. In the first type, all links are bidirectional and fair. In the
second one, some links are unidirectional, and some links have no restrictions on message losses, i.e., they
are not fair. Examples of such networks are unidirectional ringsthat intersect. For thefirst type of networks,
acommon one in practice, the implementation of 3 and the reliable communication algorithms are very
simple and efficient. The algorithms for the second type are significantly more complex.

We then consider two stronger types of communication primitives, namely, reliable send and receive,
and uniform reliable broadcast, and give quiescent implementations that use H/5. These implementations

' Aswe will see, however, in some types of networks the actual implementation is not as easy.
ZNote that alist of suspects has bounded size.



assume that a majority of processes are correct (aresult in [BCBT96] shows that this assumption is neces-
sary).

We conclude the paper by showing how HB5 can be used to extend previous work in order to solve
problems with algorithms that are both quiescent and tolerant of process crashes and messages|osses. First,
we explain how HB can be used to transform many existing algorithms that tolerate process crashes into
quiescent algorithms that tolerate both process crashes and message losses (fair links). This transformation
can be applied to the algorithms for consensus in [AT96, Ben83, BT85, CT96, CMS89, FM90, Rab83],
for atomic broadcast in [CT96], for k-set agreement in [Cha93], for atomic commitment in [Gued5], for
approximate agreement in [DLP*86], etc. Next, we show that 7B can be used to extend the work in
[BCBT96] to obtain the following result. Let P be a problem. Suppose P is correct-restricted (i.e., its
specification refers only to the behavior of correct processes) or a majority of processes are correct. |If
P is solvable with a quiescent protocol that tolerates only process crashes, then P is also solvable with a
quiescent protocol that tolerates process crashes and message |osses.?

To summarize, in this paper:

1. We explore the use of unreliable failure detectors to achieve quiescent reliable communication in
the presence of process crashes and lossy links — a problem that cannot be solved without failure
detection.

2. We show that the weakest failure detector with bounded output size that can be used to solve this
problem is &P — which is not implementable.

3. To overcome this obstacle, we introduce HB: this failure detector can be used to achieve quiescent
reliable communication and it is implementable. In contrast to common failure detectors [BDM97,
CT96, Gueds, GL S95, LH94, SM95], HB does not output alist of suspects, and it can be implemented
without timeouts.

4. \We show that HB can be used to extend existing algorithms for many fundamental problems (e.g.,
consensus, atomic broadcast, k-set agreement, atomic commitment, approximate agreement) to toler-
ate message losses. It can also be used to extend the results of [BCBT96].

Result (2) above implies that failure detectors with bounded output size are either (a) too weak to achieve
quiescent reliable communication, or (b) not implementable. Thus, failure detectors that output lists of
processes, which are commonly used in practice, are not always the best ones to solve a problem: their
power or applicability islimited. To the best of our knowledge, thisis the first work that shows that failure
detectors with bounded output size have inherent limitations.

The problem of achieving reliable communication despite failures has been extensively studied, espe-
cialy in the context of datalink protocols (see Chapter 22 of [Lyn96] for a compendium). Our work differs
from previous results because we seek quiescent algorithms in systems where processes and links can fail
(and this requires the use of unreliable failure detectors). The works that are the closest to ours are due to
Moses et al. [MR89] and Basu et al. [BCBT96]. The main goal of [MR89] isto achieve quiescent reliable
communication with algorithms that garbage collect old messages in systems with lossy links (the issue of
garbage collection is only briefly considered here). The agorithms in [MR89], however, are not resilient
to process crashes. The protocols in [BCBT96] tolerate both process crashes and lossy links but they are
not quiescent (and they do not use failure detectors). In Section 10, we use H 3 to extend the results of
[BCBT96] and obtain quiescent protocols.

The paper is organized as follows. Our model is given in Section 2. Section 3 defines the reliable
communication primitives that we focus on. In Section 4, we show that, without failure detectors, quiescent

3The link failure model in [BCBT96] is dightly different from the one used here (cf. Section 10).
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reliable communication isimpossible. In Section 5, we prove that P isthe weakest failure detector with
bounded output sizethat can be used to solve this problem (this proof isunder asimplifying assumption; the
proof without this assumption isgiven in the Appendix). We then define the heartbeat failure detector H5 in
Section 6. In Section 7, we show how to use H5 to achieve quiescent reliable communication. In Section 8,
we show how to implement H 5. In Section 9, we consider two stronger types of communication primitives
and give quiescent implementations that use H 5. In Section 10, we explain how H 5 can be used to extend
several previous results. We conclude the paper with some remarks about message buffering, quiescence
versus termination, models of lossy links, and the generalization of our resultsto partitionable networks.

2 Modd

We consider asynchronous message-passing distributed systems in which there are no timing assumptions.
In particular, we make no assumptions on the time it takes to deliver a message, or on relative process
speeds. Processes can communicate with each other by sending messages through unidirectional links. We
do not assume that the network is completely connected or that the links are bidirectional. The system
can experience both process failures and link failures. Processes can fail by crashing, and links can fail by
dropping messages. The model, based on the one in [CHT96], is described next.

A network isadirected graph G = (II, A) whereIl = {1,...,n} istheset of processes, and A C IIxII
isthe set of links. If there isalink from process p to process ¢, we denote thislink by p — ¢, and if, in
addition, ¢ # p we say that g isaneighbor of p. The set of neighbors of p isdenoted by neighbor(p).

We assume the existence of a discrete global clock — thisis merely afictional device to simplify the
presentation and processes do not have accessto it. We take the range 7 of the clock’s ticksto be the set of
natural numbers.

2.1 Failures and Failure Patterns

Processes can fail by crashing, i.e., by halting prematurely. A process failure pattern Fp isafunction from
T to 2'L. Intuitively, Fp(t) denotes the set of processes that have crashed through time ¢. Once a process
crashes, it does not “recover”, i.e,, Vt : Fp(t) C Fp(t+1). Wesay p crashesin Fp if p € Fp(t) for some
t; otherwise we say p iscorrectin Fp.

Some links in the network are fair. Roughly spesking, a fair link p — ¢ may intermittently drop
messages, and may do so infinitely often, but it must satisfy thefollowing “fairness’ property: if p repeatedly
sends some message to ¢ and g does not crash, then ¢ eventually receives that message. Link properties are
made precise in Section 2.5.

A link failure pattern I, is asubset of the set of links A. Intuitively, £, isthe set of links that may fail
to satisfy the above fairness property. If p — ¢ & Fr,, we say that p — g isfair in Fr.

A failure pattern ' = (F'p, F1,) combines a process failure pattern and a link failure pattern, and
correct_proc(F) and crashed_proc(F’) denote the set of processes that are correct and crashed in Fp, re-
spectively.

2.2 Network Connectivity

The following definitions are with respect to a given failure pattern F = (Fp, F). We say that a path
(p1,--.,pr) inthenetwork isfair if processespy, .. ., py arecorrect and linksp; — pa, ..., pr—1 — pi ae
fair. We assume that every pair of distinct correct processesis connected through afair path. This precludes
permanent network partitions.



2.3 Failure Detectors

Each process has access to a local failure detector module that provides (possibly incorrect) information
about the failure pattern that occursin an execution. A failure detector history H with range R isafunction
fromII x 7 to R. H(p,t) isthe output value of the failure detector module of processp at time¢. Afailure
detector D isafunction that maps each failure pattern F' to a set of failure detector historieswith range Rp
(where Rp denotesthe range of the output of D). D(F') denotes the set of possible failure detector histories
permitted by D for the failure pattern F'.

We now define the eventually perfect failure detector &P [CT96].* Each failure detector module of &P
outputs a set of processes that are suspected to have crashed, i.e., Rop = 2. For each failure pattern F,
OP(F) isthe set of all failure detector histories H with range R that satisfy the following properties:

e Srong Completeness: Eventually every processthat crashesis permanently suspected by every correct
process. More precisely:

3t € T,Vp € crashed_proc(F),¥q € correct_proc(F),¥t' >t:p € H(q,t)

e Eventual Strong Accuracy: There is atime after which correct processes are not suspected by any
correct process. More precisely:

It € T,Vt' > t,Vp,q € correct_proc(F) : p & H(q,t")

Sometimes we need to consider systems without failure detectors. For convenience, we model such
systems by assuming that their failure detectors always output nil. More precisely, the nil failure detector
D, istheonewherethefailure detector modules of al processes awaysoutput L, independent of thefailure
pattern. A systemwithout failure detectorsis one whose failure detector isD | .

24 Runsof Algorithms

Anagorithm A isacollection of n deterministic automata, one for each processin the system. Computation
proceedsin atomic steps of A. In each step, aprocess may: receive a message from aprocess, get an external
input, query its failure detector module, undergo a state transition, send a message to a neighbor, and issue
an externa output.

A run of algorithm A using failure detector D isatuple R = (F, Hp, I,S,T) where F' is afailure
pattern, Hp € D(F') isahistory of failure detector D for failure pattern F', I is an initial configuration of
A, S isaninfinite sequence of stepsof A, and T isan infinitelist of increasing time values indicating when
each step in S occurs.

A run must satisfy some properties for every process p: If p has crashed by timet, i.e,, p € Fp(t), then
p does not take a step at any timet’ > ¢; if p iscorrect, i.e., p € correct_proc(F'), then p takes an infinite
number of steps; if p takes astep at time ¢ and queriesitsfailure detector, then p gets Hp(p, t) asaresponse.

25 Link Properties

Eachrun R = (F, Hp, I, S,T) must also satisfy some “link properties’. First, no link creates or duplicates
messages. More precisaly, for every link p — g € A:

e Uniform Integrity: For all k£ > 1, if q receives amessage m from p exactly k times by time ¢, then p
sent m to g at least k times before time¢;

4In[CT96], ©P denotes aclass of failure detectors.



Moreover, every fair link transports any message that is repeatedly sent through it. More precisealy, for every
link p — ¢ & Fp:

e Fairness: If p sends a message m to ¢ an infinite number of times and ¢ is correct, then ¢ receives m
from p an infinite number of times.

Note that any link, whether fair or not, may lose (or not lose) messages arbitrarily during any finite
period of time. In particular, afair link may lose all the messages sent during any finite period of time, while
alink that is not fair may behave perfectly during that time.

2.6 Environments and Problem Solving

The correctness of an algorithm may depend on certain assumptions on the “environment”, e.g., the max-
imum number of processes that may crash. For example, a consensus algorithm may need the assumption
that a majority of processesis correct. Formally, an environment £ is a set of failure patterns. Unless oth-
erwise stated, the only restriction that we put on the environment in this paper is that every pair of distinct
correct processes is connected through afair path.

A problem P isdefined by properties that sets of runs must satisfy. An algorithm A solves problem P
using afailure detector D in environment £ if the set of all runs R = (F, Hp, I, S,T') of A using D where
F € & sdtisfiesthe properties required by P.

Let C beaclassof failure detectors. An algorithm A solvesaproblem P using C in environment £ if for
al D € C, Asolves P using D in £. An agorithm implements C in environment £ if it implements some
DecCiné.

3 Quiescent Reliable Communication

In this paper, we focus on quasi reliable send and receive, and reliable broadcast, because these communica-
tion primitives are sufficient to solve many problems (see Section 10.1). Stronger types of communication
primitives — reliable send and receive, and uniform reliable broadcast — are briefly considered in Section
0.

3.1 Quas Reliable Send and Receive

Consider any two distinct processes s and r. We define quasi reliable send and receive from s to » in terms
of two primitives, qr-send;, and gr-receive, ;. We say that process s qr-sends message m to process r
if s invokes qr-send, .(m). We assume that if s is correct, it eventually returns from this invocation. We
alow process s to gr-send the same message m more than once through the same link. We say that process
r qr-receives message m from process s if r returns from the invocation of qr-receive, ;(m). Primitives
gr-send, ,. and qr-receive, ; satisfy the following properties:

e UniformIntegrity: For al k£ > 1, if » gr-receives m from s exactly k times by time ¢, then s gr-sent
m tor at least k times before timet.

e Quasi No Loss’: For al k > 1, if both s and r are correct, and s qr-sends m to r exactly k times by
timet, then r eventualy gr-receives m from s at least k times.

5A stronger property, called No Loss, is used in Section 9.1 to define reliable send and receive.



Intuitively, Quasi No Loss together with Uniform Integrity implies that if s and r are correct, then r
gr-receives m from s exactly as many times as s qr-sendsm to r.

We want to implement quasi reliable send/receive primitives using the communication service provided
by the network links. Informally, such an implementation is quiescent if it sends only a finite number of
messages when gr-sends . isinvoked afinite number of times.®

3.2 Rdiable Broadcast

Reliable broadcast [BT85] is defined in terms of two primitives: broadcast(m) and deliver(m). We say
that process p broadcasts message m if p invokes broadcast(m). We assume that every broadcast message
m includes the following fields: the identity of its sender, denoted sender(m), and a sequence number, de-
noted seq(m). These fields make every message unique. We say that ¢ delivers message m if ¢ returnsfrom
the invocation of deliver(m). Primitives broadcast and deliver satisfy the following propertiesfHT93]:

o Validity: If acorrect process broadcasts a message m, then it eventually delivers m.
e Agreement: If acorrect process delivers amessage m, then al correct processes eventually deliver m.

e Uniform Integrity: For every message m, every process delivers m at most once, and only if m was
previously broadcast by sender(m).

Validity and Agreement imply that if a correct process broadcasts a message m, then all correct processes
eventually deliver m.

We want to implement reliable broadcast using the communication service provided by the network
links. Informally, such an implementation is quiescent if it sends only a finite number of messages when
broadcast isinvoked afinite number of times.

3.3 Relating Reliable Broadcast and Quasi Reliable Send and Receive

From a quiescent implementation of quasi reliable send and receive one can easily obtain a quiescent imple-
mentation of reliable broadcast, and vice-versa.

Remark 1 Fromany quiescent implementation of reliable broadcast, we can obtain a quiescent implemen-
tation of the quasi reliable primitives gr-send,, , and gr-receive, ,, for every pair of processes p and gq.

Remark 2 Suppose that every pair of correct processes is connected through a path of correct processes.
If we have a quiescent implementation of quasi reliable primitives qr-send,, , and gr-receive, , for all
processes p and q € neighbor(p), then we can obtain a quiescent implementation of reliable broadcast.

To implement reliable broadcast from gr-send and gr-receive one can use a ssimple diffusion algorithm
(e.0., see[HT93)).
4 Impossibility of Quiescent Reliable Communication

We now show that in a system without failure detectors, quiescent reliable communication cannot be
achieved. This holds even if the network is completely connected and only a finite number of messages
can belost.

5 A quiescent implementation of gr-send. .. and gr-receive,. . is allowed to send a finite number of messages even if no
gr-send; - isinvoked at all (e.g., some messages may be sent as part of an “initiaization phase”).
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Theorem 1 Consider a system without failure detectors where every pair of processes is connected by a
fair link and at most one process may crash. Let s and r be any two distinct processes. Thereisno quiescent
implementation of quasi reliable send and receive from s to . Thisholds even if we assumethat only a finite
number of messages can be lost.

Proof. 7 Assume, by contradiction, that there exists a quiescent implementation I of quasi reliable
gr-send . and gr-receive, ;. Thebasicintuition behind the proof isto construct arun R; where s gr-sends
amessageto r, but r crashes. Sincetheimplementation of gr-send and gr-receive isquiescent, only afinite
number of messages are sent to r in R;. We then construct a similar run Ry where s gr-sends a message
to r, r does not crash, but the finite number of messages sent to r are lost. Runs R; and R, are indistin-
guishable from the point of view of r, so r never gr-receives the message — a contradiction. It turns out
that to construct run Ry, we need another run Ry. This is because we allow the quiescent implementation
of gr-send and gr-receive to send afinite number of “initialization” messages (see Footnote 6). We now
describeruns Ry, R; and Rs in more details.

Inrun Ry, s qr-sends no messages, all processes are correct, processes take stepsin round-robin fashion
and every time a process takes a step it receives the earliest message sent to it that it did not yet receive.
Since I isquiescent, thereisatimet after which no messagesare sent or received. By the Uniform Integrity
property of gr-send and gr-receive, processr never gr-receives any message.

Run R, isidentical torun Ry up totimety; attimety + 1, s gr-sends M to r, and r crashes; after time
to + 1, no processes crash, and every time a process takes a step, it receives the earliest message sent to it
that it did not yet receive. Since I is quiescent, thereisatimet; > ty after which no messages are sent or
received.

In run Ry, r behaves exactly asin run Ry (in particular, » does not crash and r receives a message m in
Ry whenever it receives m in Ry); al other processes behave exactly asin run Ry (in particular, a process
p # r receives amessage m in R, whenever it receivesm in R;). Notethat, in Ro, if messages are sent to
or from r after time ¢(, then they are never received.

We now show that in R, all links satisfy the Uniform Integrity property. Assume that for some k& > 1,
some process ¢ receives m from some process p k times by time ¢. There are several cases. (1) If ¢ = r
then r receives m from p k timesin Ry by timet (since r behaves in the same way in Ry and Rs). In Ry,
by the Uniform Integrity property of the links p sent m to r at least k times before time ¢. This happens by
timet, sincethere are no sendsin Ry after timety. Note that by time ¢y, p behaves exactly in the same way
in Ry, R; and Ry. Thus p sent m to r at least k times beforetimet in Ry. (2) If ¢ £ rand p = r, then g
receives m from r k timesin R, by timet (since g behaves in the sameway in R, and Ry). In Ry, by the
Uniform Integrity property of the links, » sent m to ¢ at least k times before time ¢. This happens by time
to, Since r crashesat timety + 1 in R;. By timety, r behaves exactly in the sasmeway in Ry, R1 and Rs.
Thus r sent m to ¢ at least k times beforetime ¢ in Rs. (3) If ¢ # r and p # r, then ¢ receives m from p
k timesin R; by timet (since g behavesin the sasmeway in Ry and R»). In Ry, by the Uniform Integrity
property of the links, p sent m to ¢ at least k times before time t. Note that p behaves exactly in the same
way in R; and Ro. Thusp sent m to ¢ at least k timesin R, before timet. Therefore, in Ry al links satisfy
the Uniform Integrity property.

We next show that in Ry all links satisfy the Fairness property, and in fact only a finite number of
messages are lost. Note that » sends only afinite number of messagesin Ry (since it does not send messages
after time ), and every process p # r sends only afinite number of messagesin R; (since it does not send
messages after time ¢1). So, by construction of R, all processes send only a finite number of messagesin
Rs. Therefore, only afinite number of messages are lost, and in R» all links satisfy the Fairness property.

"This theorem is actually a corollary of Theorem 32 and the fact that the eventually perfect failure detector O cannot be
implemented. The proof of Theorem 32, however, uses some complex arguments that obscure the intuition behind Theorem 1. We
prefer to give a self-contained and direct proof that does not use Theorem 32.



We conclude that R, is a possible run of 7 in a network with fair links that lose only a finite number
of messages. Note that in Rs: () both s and r are correct; (b) s gqr-sends M to r; and (c) » does not
gr-receive M. This violates the Quasi No Loss property of qr-send, , and gr-receive, ;, and so I is not
an implementation of qr-send, , and qr-receive,. ; — a contradiction. O

Theorem 1 and Remark 1 immediately imply:

Corollary 2 Thereis no quiescent implementation of reliable broadcast in a network where a process may
crash and links may lose a finite number of messages.

The above results show that quiescent reliable communication cannot be achieved in a system without
failure detectors. The rest of this paper explores the use of failure detectors to solve this problem.

5 The Weakest Failure Detector with Bounded Output Size for Quiescent
Reliable Communication

In practice, and in much of the previous literature, the output of a failure detector isjust a set of processes
suspected to have failed. One such failure detector, namely &P, can be used to achieve quiescent reliable
communication. However, &P is not implementable in asynchronous systems. Can we achieve quiescent
reliable communication with a failure detector that outputs a set of suspects and isimplementable?

In this section we show that the answer is no. In fact, we prove a stronger result: Among all failure
detectors with bounded output size (these include al failure detectors that output a set of suspects) the
weakest one for achieving quiescent reliable communication is &P — which is not implementable. In
contrast, if we do not bound the output size, quiescent reliable communication can be solved with HB —
which is implementable. This shows that failure detectors with bounded output size have some inherent
limitations.

We prove our result with respect to a problem that we call Sngle-Shot Reliable Send and Receive.
This problem is weaker than quasi reliable send and receive, and reliable broadcast, and thus our result
immediately applies to those problems as well.

In Section 5.1, we explain what it meansfor afailure detector to be weaker than another one. Section 5.2
definesthe Single-Shot Reliable Send and Receive problem. We then proceed to prove our main result under
some reasonable simplifying assumption. We first give arough outline of this proof (Section 5.3), and then
the proof itself (Sections 5.4 and 5.5). In the Appendix, we give the full proof without the smplifying
assumption.

5.1 Failure Detector Transfor mations

Failure detectors can be compared via algorithmic transformations [CT96, CHT96]. A transformation algo-
rithm T'p_, uses failure detector D to emulate D’, as we now explain. At each process p, the algorithm
Tp_.p maintains a variable D,, that emulates the output of D' a p. Let Hp be the history of all the D’
variablesin arun R of Tp_.p, i.e., Hp/(p,t) is the value of Dz’g a timet inrun R. Algorithm Tp_,p
transforms D into D’ in environment £ if and only if for every F' € £ and every run R = (F, Hp, I,S,T)
of Tp_.p using D, we have Hp: € D/(F). Intuitively, since Tp_.p is able to use D to emulate D', D
provides at least as much information about process failures as D’ does, and we say that D’ is weaker than
Diné&.

Notethat, in general, T'»_.p need not emulate all the failure detector histories of D’ (in environment &);
what we do requireisthat all thefailure detector historiesit emulatesbe historiesof D’ (in that environment).
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5.2 Single-Shot Reliable Send and Receive

The Single-Shot Reliable Send and Receive problem is defined in terms of two communication primitives,
called s-send and s-receive. Each process can s-send a single bit once to one process of its choice, if it
wishesto do so (but it is also possible that no processin the system ever s-sends any bit). The s-send and
s-receive primitives must satisfy the following property. For any two correct processes p and ¢, and any
b€ {0,1}: ps-sendsb to q if and only if ¢ s-receivesb from p.

Animplementation Z of s-send and s-receive isquiescent if it sends only afinite number of messages
throughout the network.

5.3 Intuitive Overview of the Simple Proof

Let D be afailure detector with bounded output size, i.e., the range of D isfinite. Suppose D can be used to
solve the Single-Shot Reliable Send and Receive problem with a quiescent algorithm Z (Z isaso called the
implementation of s-send and s-receive). We show that D can be transformed to &P

The proof that follows makes the simplifying assumption that Z does not have an “initialization phase”
that requires the sending of messages. In other words, we assume that 7 is such that if no process ever
s-sendsany bit, then no process ever sends any messages. Thisreasonabl e assumption allows usto simplify
the proof and illustrate the basic ideas. In the appendix, we give the full proof.

Since the range of D isfinite, then for every failure detector history H of D: (a) each failure detector
module outputs some valuesinfinitely often (these arethe“limit values’), and (b) thereisatime after which
it outputs only limit values. Let v be alimit value for process p and H. A crucial observation is that with
H itispossibleto construct runs such that whenever p takes astep it aways gets v from its failure detector
module. It is easy to generalize the notion of alimit value for p to alimit vector for a set of processes P:
A vector f (with avalue for every processin the system) is alimit vector for P and H if, for each process
p in P, the failure detector module of p outputs f(p) infinitely often in H. Note that with H it is possible
to construct runs such that whenever a process p in P takes a step, it obtains f(p) from its failure detector
module. We say that vector f hintsthat P isthe set of all correct processes, if f could occur asalimit vector
for P when P isthe set of correct processes (more precisely, f isalimit vector for P inahistory H € D(F)
where correct_proc(F') = P).

Consider afailure detector history H that can occur when P isthe set of al correct processes. Let f be
any limit vector for P and H. Clearly, f hintsthat P isthe set of all correct processes. Can f also hint that a
proper subset P’ of P isthe set of all correct processes? The answer isno. Aswe argue next, thisisbecause
with D, aprocessin P’ should be ableto s-send abit to aprocess¢ in P\ P’ and to do so quiescently using
7.

Suppose, for contradiction, that f hintsthat P’ isthe set of all correct processes. Then we can construct
arun Ry of Z where (a) P’ isindeed the set of all correct processes, (b) processes in P’ are scheduled
such that whenever they take stepsthey get f from their failure detector module, (c) some process p in P/
s-sends a hit b to some process ¢ in P\ P’, and (d) processesin P \ P’ never take a step. Because the
implementation Z is quiescent, in R eventually all processesin P’ (including p) stop sending messages —
they give up on trying to transmit b to q.

Since f aso hintsthat P isthe set of correct processes, we can create another run Ry of Z where (a) P
isthe set of correct processes, (b) processesin P are scheduled such that whenever they take steps they get
f from their failure detector module, (c) p s-sends b to ¢, (d) messages sent between processesin P’ and
processesin P\ P’ arelost. Note that from the point of view of processesin P’, run Rz isindistinguishable
from run Ry. Thus, in Ry eventualy all processesin P’ stop sending messages — they give up on trying
to transmit b to q. So, in Ry process g never receives any messages, and thus it does not s-receive b
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from p. Since p and ¢ are correct in R,, the implementation Z of s-send and s-receive isincorrect — a
contradiction. Thus, f cannot hint that P’ isthe set of all correct processes.

Let Ep be the set of al vectors that hint that P is the set of correct processes (this set is determined
by D). The algorithm that transforms D to &P uses a predetermined “table of hints’ containing, for each
possible P, the set E'p.

The transformation algorithm works as follows. Each process p periodically sends its current failure
detector output to every process, and maintains two variables: f and Order. Vector f storesthe last failure
detector value received from each process, and Order is an ordered set of processes. Whenever p receives
a failure detector value from another process ¢, it records that value in f(q) and moves g to the front of
Order. Let P be the set of correct processesin thisrun. Note that: (a) eventually f isalimit vector for P,
and (b) the correct processes percolate to the front of Order (processesthat crash end up at the tail), so that
eventually P issome prefix of Order.

To satisfy the properties of &P, p must eventually output the complement of P. By (b) above, eventually
P isthe largest prefix of Order that contains correct processes. To find this maximal prefix, p repeatedly
uses its current value of f and the predetermined table of hints, as follows. For each prefix P’ of Order,
in order of increasing size, p checksif f hintsthat P’ isthe set of all correct processes, i.e., f € Ep:, and
if so p outputs the complement of P’. This works because, as we argued above, any limit vector f for P:
(1) hintsthat P isthe set of al correct processes, and (2) cannot hint that a proper subset P’ of P isthe set
of al correct processes. This concludes the overview of the proof (the reader should understand why the
argument above breaks down without the simplifying assumption).

We next give the actual proof. The transformation algorithm 1p_.op uses a table which is determined
a priori from D (this is the “table of hints’ in our intuitive explanation). We first define this table and
show some of its properties (Section 5.4). We then describe and prove the correctness of the transformation
algorithm Tp_,op that usesthistable (Section 5.5).

5.4 ThePredetermined Table

Let £ be an environment and D be any failure detector with finite range R = {vy,v2,...,v}. LetZ be
a quiescent implementation of s-send and s-receive that uses D in environment £. Assume that if no
process s-sends any bit then Z does not send any messages (this simplifying assumption is removed in the
Appendix).

Givenv; € R, aprocessp € II, and afailure detector history H with range R, we say that v; isa limit
value for p and H if, for infinitely many ¢, H(p,t) = v;. Let f be an assignment of failure detector values
to every processinIl, i.e, f : I — R. Let P be a non-empty set of processes. We say that f isa limit
vector for P and H if for al p € P, f(p) isalimit value for p and H. The set of all limit vectorsfor P and
H isdenoted Lp(H). Let Eg’g ={f|3F € £&,3H € D(F) : P = correct_proc(F') and f € Lp(H)}.
Roughly speaking, E?g isthe set of limit vectors that could occur when P isthe set of correct processes.

The table used by the transformation algorithm Tp_.op consists of all the sets E?’g where P ranges
over al non-empty subset of processes. Note that this table is finite. We omit the superscript D, £ from
Eg’g whenever it is clear from the context.

Lemma3 Let F € &, P = correct_proc(F) and H € D(F). Assume P # 0. If f € Lp(H) then f € Ep
and f ¢ Ep for every P’ suchthat) c P’ c P.
Proof. Let f € Lp(H). Thefact that f € Ep isimmediate from the definition of Ep. Let P’ be such
that ) ¢ P’ C P. Suppose, for contradiction, that f € Ep,. Then there exists afallure pattern F’ € £ and
H' € D(F') suchthat P’ = correct_proc(F')and f € Lp/(H').

We now obtain a contradiction by using the quiescent implementation Z of s-send and s-receive. Let p
beaprocessin P’ and g beaprocessin P\ P’. We construct two runs, R; and R, of Z using D, asfollows:
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e Run R, has failure pattern I and failure detector history H’. Initialy p s-sends some bit b to g.
Processes in P’ take steps and those in IT \ P’ do not. Processesin P’ take steps in round-robin
fashion such that every time a process r € P’ takes a step, it obtains f(r) from its failure detector
module (since f € Lp/(H'), f(r) isalimit value for » and H’). Moreover, every process in P’
receives every message sent to it.

Since Z is quiescent, thereisatimet; after which no messages are sent or received. Assume without
loss of generality that at time ¢, all processes in P’ took the same number & of steps (otherwise,
choose another time ¢} > ¢;). Note that all messagesin R; are sent within the finite period of time
[0,t1]. Thus, the fact that all processesin P’ receive all the messages sent to them is consistent with
the link failure pattern of F” (even if in F’ some of the links are not fair).

e Run Ry has failure pattern F' and failure detector history H. Initialy, processesin Ry behave asin
R1: p s-sends some bit b to ¢; moreover, each process in P’ take the same k steps asin Ry, and
processin IT \ P’ do not take any steps. More precisely, processes in P’ take steps in round-robin
fashion such that every time a process » € P’ takes a step, it obtains f(r) from its failure detector
module (since f € Lp(H) andr € P’ C P, f(r) isalimit value for » and H). Moreover, every
processin P’ receives every message sent to it, and all messages sent to processesin I\ P’ arelost.
This goes on until each processin P’ takes k steps, exactly asin R

Let to be the time when this happens. After ¢o, processesin P take steps in round-robin fashion such
that every time aprocessr € P’ takesastep, it obtains f(r) from its failure detector module (it does
not matter what aprocessr € P\ P’ getsfrom itsfailure detector module, aslong asit is compatible
with H). Moreover, after £, no process s-sends any bit. This completes the description of run R,.

Note that at time ¢, each processin P’ isin the same state asin run R, at timet¢;. Moreover, each
processin P\ P’ isinitsinitia state. By a simple induction argument we can show that after time ¢,
in Ry: (8) processesin P’ continue to behave asin Ry, (b) processesin P\ P’ behave asif they were
inarun of Z in which no process ever s-sends any bit, and (c) no process sends any message (this
induction uses the simplifying assumption that in a run in which there are no s-sends, no process
sends any message). Therefore, in Ry, process g (whichisin P\ P’) never receives any messages.
Thisimpliesthat ¢ does not s-receive b from p.

Note that in Ry: (&) both p and ¢ are correct; (b) p s-sends b to ¢; and (c) ¢ does not s-receive b from p.
Thus, Z is not a correct implementation of s-send and s-receive — a contradiction. O

55 The Transformation Algorithm

The algorithm T'r_. that transforms D to an eventually perfect failure detector D' = P in environment
EisshowninFig. 1. Tp_,p usesthe table of sets E'p (for al non-empty subsets of processes P) that has
been determined a priori from the given D and £. It also uses an implementation of qr-send and gr-receive
between every pair of processes. A simple implementation is by repeated retransmissions and diffusion (it
does not have to be quiescent).

All variables are local to each process. Vector f storesthe last failure detector value that p gr-received
from each process; Order is an ordered set that records the order in which the last failure detector value
from each process was qr-received; D]’D denotes the output of the eventually perfect failure detector that p
issimulating (a set of processesthat p currently suspects).

8This behavior of the links is consistent with F* because for any finite period of time, any link (whether fair or not in F) may
lose or not lose any message.
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For every process p:

Initialization:
forall g € I1do f[g] — L
Order «— ()
D, 0
{ Foreach) c P C 11, theset E1® isdetermined a priori from D and £ }

© w0 o 0~ W N P

cobegin
|| Task 1:
repeat periodically
ve—TD, {query D}
for all ¢ e ITdoqr-send v to g

N
5 @ N B O

|| Task 2:
upon qgr-receive w from ¢ do {upon receipt of afailure detector value from ¢}
flal —w
Order «— q || (Order \ {q}) {process q is moved to the front of Order }
if forsomek > 1, f € ngier[l..k] then
let kg bethe smallest such &

D,, « 11\ Order|[1..ko] {suspect processesnot in Order[1..ko]}

NN R R R R R
B O © ® N o O

coend

INd
N

Figure 1: Transformation of D to an eventually perfect failure detector 7’ in environment £

In Task 1, each process p periodicaly gr-sends the output of its failure detector module D, to every
process q. Upon the gr-receipt of afailure detector value from process ¢ in Task 2, process p entersit into
f[q], and moves q to the front of Order. Then, p checksif thereis some prefix Order[1..k] of Order such
that f € Eopger1.n- If thereis, it sets D’ to the complement of the smallest such prefix.

We now show that the failure detector constructed by this algorithm, namely 7, is an eventually perfect
failure detector. Consider a run of this algorithm with failure pattern £ € £ and failure detector history
H € D(F), such that correct_proc(F) # 0. Let t be the number of processes that crash in F, i.e,
t = |IT\ correct_proc(F)|. Henceforth, p denotes a correct process in F' and variables f and Order are
local to p.

Lemma 4 Thereisatimeafter which (1) Order|[l..n—t] = correct_proc(F),and (2) f € LOrder[l..n—t](H)-g

Proof. Part (1) isclear from the way Order is updated, the fact that p keeps gr-receiving failure detector
valuesfrom every correct process, and the fact that p eventually stops gr-receiving messagesfrom processes
that crash. Part (2) of the lemma follows from part (1) and the fact that the range R of D isfinite. O

Corollary 5 There is a time after which (1) f € Eopgerin—g and (2) foral 1 < k& <n -1t f ¢
EOrder[l..k}-

Proof. By Lemma 4, there is a time o after which f € Lopgeri.n—y(H) and Order[l.n — t] =
correct_proc(F'). So &fter time to, by Lemma 3, f € Eopger1.n—g- This shows (1). Let k be such

9This does not mean that eventually the values of variables f and Order at p stop changing. It means that, although they may
continue to change forever, eventually the predicates (1) and (2) are true forever at p.
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that 1 < k < n —t. After to, 0 C Order[l1..k] C correct_proc(F), and f € Lopect_proc(r)(H). S0, by
Lemma3, f & Eorger(1..k- Thisshows (2). O

Corollary 6 Thereisatimeafter which D;, =TI\ correct_proc(F).

Proof. By Corollary 5 and the algorithm, there is a time after which the ky selected in line 20 is always
n — t. Now apply Lemma 4 part (1). a

By Corollary 6, we have:

Theorem 7 Consider an asynchronous system subject to process crashes and message losses. Suppose
failure detector D with finite range can be used to solve the Single-Shot Reliable Send and Receive problem
in environment £, and that the implementation is quiescent. Assume further that if no process ever s-sends
any bit then this implementation does not send any messages. Then D can be transformed (in environment
&) to the eventually perfect failure detector &P

Theorems 7 and 32 imply that if we restrict ourselves to failure detectors that output a set of suspects,
we cannot achieve quiescent reliable communication with a failure detector that can be implemented. Thus,
we next introduce H B, afailure detector that does not output a set of suspects. H3 can be used to achieve
quiescent reliable communication and it isimplementable.

6 Definition of HB

A heartbeat failure detector D has the following features. The output of D at each process p is alist
(p1,m1), (p2,n2), ..., (Pk, Nk ), Where p1, po, ..., p are the neighbors of p, and each n; is a nonnegative
integer. Intuitively, n; increases while p; has not crashed, and stops increasing if p; crashes. We say that
n; isthe heartbeat value of p; at p. The output of D at p at time ¢, namely H (p,t), will be regarded as a
vector indexed by the set {p1,p2, ..., pr}. Thus, H(p, t)[p;] isn;. The heartbeat sequence of p; at p isthe
sequence of the heartbeat values of p; at p astimeincreases. D satisfiesthe following properties:

e HB-Completeness: At each correct process, the heartbeat sequence of every neighbor that crashesis
bounded:

VF,YH € D(F),¥p € correct_proc(F),Yq € crashed_proc(F) N neighbor(p),
JK eNVteT:H(p,t)[g <K
e HB-Accuracy:
— At each process, the heartbeat sequence of every neighbor is hondecreasing:
VF,YH € D(F),¥p € I1,Vq € neighbor (p),Vt € T : H(p,t)[q] < H(p,t + 1)[q]
— At each correct process, the heartbeat sequence of every correct neighbor is unbounded:

VF,VYH € D(F),Vp € correct_proc(F),Vq € correct_proc(F) N neighbor(p),
VK e N,3t €T : H(p,t)[qg] > K

The class of all heartbeat failure detectors is denoted H 3. By a dight abuse of notation, we sometimes use
‘H B to refer to an arbitrary member of that class.

It is easy to generalize the definition of H 53 so that the failure detector module at each process p outputs
the heartbeat of every processin the system [ACT], rather than just the heartbeats of the neighbors of p, but
we do not need this generality here.
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(a) simple network case (b) general network case

link is fair link is not fair correct process process that crashes

Figure 2: Examples of the ssmple and general network cases

7 Quiescent Reliable Communication Using H3

The communication networks that we consider are not necessarily completely connected, but we assume
that every pair of correct processes is connected through afair path. We first consider a simple type of such
networks, inwhich every link is assumed to be bidirectional ' and fair (Fig. 24). This assumption, acommon
one in practice, allows usto give efficient and simple algorithms. We then drop this assumption and treat a
more general type of networks, in which some links may be unidirectional and/or not fair (Fig. 2b). For both
network types, we give quiescent reliable communication algorithms that use H 8. Our agorithms have the
following feature: processes do not need to know the entire network topology or the number of processesin
the system; they only need to know the identity of their neighbors.
In our algorithms, D,, denotes the current output of the failure detector D at process p.

7.1 The Simple Network Case

We assume that all links in the network are bidirectional and fair (Fig. 2a). In this case, the algorithms are
very simple. We first give a quiescent implementation of quasi reliable gr-send,,. and qr-receive,. ; for
the case r € neighbor(s). For s to gr-send a message m to r, it repeatedly sends m to r every time the
heartbeat of r increases, until s receives ack(m) from r. Process r qr-receives m from s the first time it
receives m from s, and r sends ack(m) to s every timeit receives m from s.

From this implementation, and Remark 2 in Section 3.3, we can obtain a quiescent implementation of
reliable broadcast. Then, from Remark 1, we can obtain a quiescent implementation of quasi reliable send
and receive for every pair of processes.

101n our model, this means that link p — ¢ is in the network if and only if link ¢ — p is in the network. In other words,
q € neighbor(p) if and only if p € neighbor(q).
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7.2 The General Network Case

Inthis case (Fig. 2b), some links may be unidirectional, e.g., the network may contain several unidirectional
rings that intersect with each other. Moreover, some links may not be fair (and processes do not know which
ones arefair).

Achieving quiescent reliable communication in this type of network is significantly more complex than
before. For instance, suppose that we seek a quiescent implementation of quasi reliable send and receive. In
order for the sender s to gr-send a message m to the receiver r, it has to use a diffusion mechanism, even
if r isaneighbor of s (sincethelink s — r may not be fair). Because of intermittent message losses, this
diffusion mechanism needsto ensure that m isrepeatedly sent over fair links. But when should this repeated
send stop? One possibility isto use an acknowledgement mechanism. Unfortunately, the link in the reverse
direction may not befair (or may not even be part of the network), and so the acknowledgement itself hasto
be diffused. But diffusing the acknowledgements quiescently and reliably introduces a “chicken and egg”
problem. We now explain how our algorithms avoid this problem.

We give a quiescent implementation of reliable broadcast in Figure 3. Thisimplementation can be used
to obtain quasi reliable send and receive between every pair of processes (see Remark 1 in Section 3.3). For
each message m that isbroadcast, each process p maintainsavariable got,, [m] containing aset of processes.
Intuitively, a process ¢ isin got,[m] if p has evidence that q has delivered m. All the messages sent by a
process p in the reliable broadcast agorithm are of the form (m, got_msg, path) where got_msg is the
current value of got,[m], and path is the sequence of processes that this copy of (m, got_msg, path) has
traversed so far.

In order to reliably broadcast amessage m, p first delivers m; then p initidizes variable got,,[m] to {p}
and forks task diffuse(m); finaly p returns from the invocation of broadcast(m). The task diffuse(m)
runs in the background. In thistask, p periodically checksif, for some neighbor ¢ ¢ got,[m], the heartbeat
of ¢ a p has increased and, if so, p sends (m, got,[m], p) to al neighbors whose heartbeat increased —
even to those who are already in gotp[m].“ The task terminates when al neighbors of p are contained in
got,[m].

Upon the receipt of a message (m, got_msg, path), process p first checks if it has aready delivered m
and, if not, it delivers m and forks task diffuse(m). Then p adds the contents of got_msg to got,[m] and
appends itself to path. Finaly, p forwards the new message (m, got,[m], path) to al its neighbors that
appear at most oncein path.

The code consisting of lines 19 through 27 is executed atomically.!? Each concurrent execution of the
diffusetask (lines9 to 17) hasits own copy of all the local variablesin this task.

We now outline the proof that, for the general network case, Fig. 3 is a quiescent implementation of
reliable broadcast that uses H5. The first few lemmata are obvious.

Lemma 8 (Uniform Integrity) For every message m, every process delivers message m at most once, and
only if m was previously broadcast by sender(m).

Lemma 9 (Validity) If a correct process broadcasts a message m, then it eventually delivers m.

Lemma 10 For any processesp and ¢, (1) if at sometimet, ¢ € got,[m] then ¢ € got,[m] at every time
t' > t; (2) When got,,[m] isinitialized, p € got,[m]; (3) if ¢ € got,[m] then ¢ delivered m.

Lemma 11 For every m and path, thereisa finite number of distinct messages of the form (m, x, path).

11t may appear that p does not need to send this message to processes in got,[m], since they aready got m! But with this
“optimization” the algorithm is no longer quiescent; in the proof of Lemma 15 we will indicate exactly where the sending to every
neighbor whose heartbeat increased is necessary.

12 A process p executes aregion of code atomically if at any time there is at most one thread of p in this region.
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For every process p:

To execute broadcast(m):
deliver(m)
got[m] — {p}
fork task diffuse(m)
return

© 0w N o g » W N P

task diffuse(m):
for all ¢ € neighbor(p) do prev_hblq] — —1
repeat periodically
hb — D, { query the heartbeat failure detector }
if for someq € neighbor(p), g € got[m] and prev_hblg] < hb|q] then
for all ¢ € neighbor (p) such that prev_hblg] < hblg] do
send (m, got[m],p) toq
prev_hb < hb
until neighbor(p) C got[m]

P L O
© ® N o O b ® N R~ O

upon receive (m, got -msg, path) from ¢ do

if p has not previously executed deliver(m) then
deliver(m)
got[m] — {p}
fork task diffuse(m)

got|m] — got[m] U got_msg

path — path - p

for all ¢ suchthat ¢ € neighbor(p) and ¢ appearsat most oncein path do
send (m, got[m], path) to ¢

NRRRBRNRS

Figure 3: General network case — quiescent implementation of broadcast and deliver using H3

Lemma 12 If some process sends a message of the form (m, *, path), then no process appears more than
twicein path.

Lemma 13 Supposelink p — ¢ isfair, and p and ¢ are correct processes. If p delivers a message m, then
q eventually deliversm.

Proof. Suppose, by contradiction, that p delivers m and ¢ never delivers m. Since p delivers m and it is
correct, it forks task diffuse(m). Since g does not deliver m, by Lemma 10 part (3) ¢ never belongs to
got,[m]. Since p is correct, thisimplies that p executes the loop in lines 1117 an infinite number of times.
Since ¢ is a correct neighbor of p, the HB3-Accuracy property guarantees that the heartbeat sequence of ¢
at p is nondecreasing and unbounded. Thus, the condition in line 13 evaluates to true an infinite number
of times. Therefore, p executes line 14 an infinite number of times, and so p sends a message of the form
(m, %, p) to ¢ an infinite number of times. By Lemma 11, there exists a subset go C II such that p sends
message (m, go, p) infinitely often to ¢q. So, by the Fairness property of link p — ¢, ¢ eventualy receives
(m, go, p). Therefore, ¢ delivers m. This contradicts the assumption that ¢ does not deliver m. |

Lemma 14 (Agreement) |f a correct process p delivers a message m, then every correct process g eventu-
ally deliversm.
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Proof (Sketch). By successive applications of Lemma 13 over any fair path from p to q. O

We now show that the algorithm in Fig. 3isquiescent. In order to do so, we focus on asingle invocation
of broadcast and show that it causes the sending of only a finite number of messages. This implies that
the implementation sends only a finite number of messages when broadcast is invoked afinite number of
times.

Let m be amessage and consider an invocation of broadcast(m). Thisinvocation can only cause the
sending of messages of form (m, x,*). Thus, all we need to show is that every process eventualy stops
sending messages of thisform.

Lemma 15 Let p be a correct process and ¢ be a correct neighbor of p. If p forks task diffuse(m), then
eventually condition g € got,[m] holds forever.

Proof. By Lemma 10 part (1), we only need to show that eventualy ¢ belongs to got,[m]. Suppose, by
contradiction, that ¢ never belongsto got,,[m]. Lét (p1,p2, . . ., pr) beasimple fair path'3 from p to ¢ with
p1 =pandpy = q. Let (pp, P41, - - -, pr) beasimple fair path from ¢ to p withp, = p. For 1 < j < k,
let P; = (p1,p2,...,p;). Notethat aprocess can appear at most twicein Py,. Thus, for 1 < j < k, process
Pj+1 appears at most once in P;.

We claim that for each j € {1,...,k — 1}, thereisa set g; containing {p1,p2,...,p;} such that p;
sends (m, g;, P;) to p; 41 aninfinite number of times. For j = k — 1, this claim together with the Fairness
property of link p,_1 — px immediately impliesthat p, = p eventually receives (m, gi_1, Pr—1). Upon the
receipt of such amessage, p adds the contents of g, toitsvariable got,[m]. Since g1 contains py = ¢,
this contradicts the fact that ¢ never belongsto got,,[m].

We show the claim by induction on j. For the base case note that, since ¢ never belongs to got,[m]
and ¢ isaneighbor of p; = p, then p; executes the loop in lines 11-17 an infinite number of times. Since
q is acorrect neighbor of p;, the HB-Accuracy property guarantees that the heartbeat sequence of ¢ at p;
is nondecreasing and unbounded. Thus, the condition in line 13 evaluates to true an infinite number of
times. So p; executes line 14 infinitely often. Since ps isa correct neighbor of py, its heartbeat sequence is
nondecreasing and unbounded, and so p; sends messages of the form (m, *, p1) to p2 an infinite number of
times.!* By Lemma 11, there is some ¢; such that p; sends (m, g1,p1) t0 p2 an infinite number of times.
Note that Lemma 10 parts (1) and (2) impliesthat p; € g;. This shows the base case.

For the induction step, suppose that for j < k — 1, p; sends (m, g;, P;) t0 pj41 an infinite number of
times, for some g; containing {p1, p2, ..., p;}. By the Fairness property of link p; — pj+1, pj+1 receives
(m, gj, P;) from p; an infinite number of times. Since p;» isaneighbor of p;,; and appears at most once
in P, eachtimep;, receives (m, g;, P;), it sends amessage of the form (m, , Pj11) to pj1o. Itiseasy
to see that each such message is (m, g, Pj+1) for some g that contains both g; and p;;1. By Lemma 11,
there exists g; 41 C II such that g;41 contains {p1,p2, ..., pj+1} and p;1 sends (m, gj+1, Pj+1) 10 pj4o
an infinite number of times. O

Corollary 16 If a correct process p forkstask diffuse(m), then eventually p stops sending messagesin task
diffuse(m).

Proof. For every neighbor ¢ of p, there are two cases. If ¢ is correct then eventually condition ¢ € got,[m]
holds forever by Lemma 15. If ¢ crashes, then the H5-Completeness property guarantees that the heartbeat
sequence of ¢ a p is bounded, and so eventually condition prev_hb,[q] > hb,[q] holds forever. Therefore,
there is atime after which the guard in line 13 is aways false. Hence, p eventually stops sending messages
intask diffuse(m). O

13 A pathissimpleif all processes in that path are distinct.
14 This iswhere the proof uses the fact that p sends message containing m to al its neighbors whose heartbeat increased — even
to those (such as p,) that may aready bein got,,[m] (cf. line 14 of the algorithm).

19



Lemma 17 (Quiescence) Eventually every process stops sending messages of the form (m, , x).

Proof. Suppose, for a contradiction, that the lemmalis not true. Then there exists a process p such that p
never stops sending messages of the form (m, «, x). By Lemma 12, the third component of a message of the
form (m, x, %) ranges over afinite set of values. Therefore, there is some fixed path such that p sends an
infinite number of messages of the form (m, x, path).

Now let path, to be the shortest path such that there exists some process p that sends messages of the
form (m, *, path) an infinite number of times. Note that po must be correct. Corollary 16 shows that there
is atime after which py stops sending messages in its task diffuse(m). Since po only sends a message in
task diffuse(m) or inline 27, then py sends messages of the form (m, x, path) inline 27 an infinite number
of times. For each (m, *, path) that pg sendsin line 27, py must have previously received a message of the
form (m, x, path,) such that path, = path, - py. SO po receives a message of the form (m, x, path,) an
infinite number of times. By the Uniform Integrity property of the links, some process p; sends a message
of form (m, x, path;) to po an infinite number of times. But path, is shorter than path, — a contradiction
to the minimality of path,. a

From Lemmata 8, 9, 14, and 17 we have:

Theorem 18 For the general network case, the algorithmin Fig. 3 isa quiescent implementation of reliable
broadcast that uses HB.

From this theorem and Remark 1 in Section 3.3 we have:

Corallary 19 Inthe general network case, quasi reliable send and receive between every pair of processes
can be implemented with a quiescent algorithm that uses H 5.

8 Implementations of HB

We now give implementations of H 3 for the two types of communication networks that we considered in
the previous sections. These implementations do not use timeouts.

8.1 The Simple Network Case

We assume all links in the network are bidirectional and fair (Fig. 2a). In this case, the implementation is
obvious. Each process periodically sendsa HEARTBEAT messageto al its neighbors; upon the receipt of
such a message from process g, p increases the heartbeat value of q.

8.2 The General Network Case

In this case some links are unidirectional and/or not fair (Fig. 2b). Theimplementation ismore complex than
before because each HEARTBEAT has to be diffused, and this introduces the following problem: when a
process p receives a HEARTBEAT messageit hasto relay it even if thisisnot thefirst time p receives such
amessage. Thisis because this message could be a new “heartbeat” from the originating process. But this
could also be an “old” heartbeat that cycled around the network and came back, and p must avoid relaying
such heartbeats.

The implementation is given in Fig. 4. Every process p executes two concurrent tasks. In the first task,
p periodically sends message (HEARTBEAT, p) to all itsneighbors. The second task handles the receipt of
messages of the form (HEARTBEAT, path). Upon the receipt of such message from process ¢, p increases

20



For every process p:

Initialization:
for all ¢ € neighbor(p) doD,q] « 0

cobegin
|| Task 1:
repeat periodically
for all ¢ € neighbor (p) do send (HEARTBEAT, p) to ¢

© 0w N o g » W N P

=
o

|| Task 2:
upon receive (HEARTBEAT, path) from ¢ do
for all g suchthat ¢ € neighbor(p) and q appearsin path do
Dylq] — Dyplq] +1
path — path - p
for all g suchthat ¢ € neighbor(p) and ¢ does not appear in path do
send (HEARTBEAT, path) to g

N
N o o h N R

coend

=
©

Figure 4. General network case — implementation of H3

the heartbeat values of all its neighbors that appear in path. Then p appends itself to path and forwards
message (HEARTBEAT, path) to all its neighbors that do not appear in path.
We now show that, for the general network case, the algorithm in Fig. 4 implements HE.

Lemma 20 At every process p, the heartbeat sequence of every neighbor ¢ is nhondecreasing.
Proof. Obvious. O

Lemma 21 At each correct process p, the heartbeat sequence of every correct neighbor ¢ isunbounded.
Proof (Sketch). It is possible that link ¢ — p isnot fair or not even in the network. However, there is a
simplefair path P = (py, ..., px) from g to p with p; = ¢ and p;, = p. Processp; = ¢ sendsits heartbeat
to all its neighbors infinitely often. Sincethelinks py — po, ..., pr—1 — pi arefair and each p; is correct,
the heartbeats of ¢ are relayed infinitely often through that path, and p;, = p receives them infinitely often.
O

Corollary 22 (HB-Accuracy) At each processthe heartbeat sequence of every neighbor is nondecreasing,
and at each correct process the heartbeat sequence of every correct neighbor is unbounded.

Proof. From Lemmata 20 and 21. O

The proofs of the next two Lemmata are obvious.

Lemma 23 If some process p sends (HEARTBEAT, path) then (1) p isthe last processin path and (2) no
process appearstwicein path.

Lemma 24 Let p, g be processes, and path be a non-empty sequence of processes. If p receives message
(HEARTBEAT, path - ¢) an infinite number of times, then ¢ receives message (HEARTBEAT, path) an
infinite number of times.
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Lemma 25 (HB-Completeness) At each correct process, the heartbeat sequence of every neighbor that
crashesis bounded.

Proof (Sketch). Let p be a correct process and let ¢ be a neighbor of p that crashes. Suppose that the
heartbeat sequence of ¢ at p isnot bounded. Then p increments D, [¢] an infinite number of times. So, for an
infinite number of times, p receives messages of the form (HEARTBEAT, ) with a second component that
contains . By Lemma23 part (2), the second component of amessage of theform (HEARTBEAT, ) ranges
over afinite set of values. Thus there exists a path containing ¢ such that p receives (HEARTBEAT, path)
an infinite number of times.

Let path = (p1,...,px). Then, for some j < k, p; = ¢. If j = k then, by the Uniform Integrity
property of the links and by Lemma 23 part (1), ¢ sends (HEARTBEAT, path) to p an infinite number of
times. This contradicts the fact that ¢ crashes. If j < k then, by repeated applications of Lemma 24, we
conclude that p; receives message (HEARTBEAT, (p1,...,p;)) aninfinite number of times. Therefore,
by the Uniform Integrity property of thelinksand Lemma 23 part (1), p; sends (HEARTBEAT, (p1,...,p;))
to p;4+1 an infinite number of times. Since p; = ¢, this contradicts the fact that ¢ crashes. O

By Corollary 22 and the above lemma, we have:

Theorem 26 For the general network case, the algorithmin Fig. 4 implements H .

9 Stronger Communication Primitives

Quasi reliable send and receive and reliable broadcast are sufficient to solve many problems (see Sec-
tion 10.1). However, stronger types of communication primitives, namely, reliable send and receive, and
uniform reliable broadcast, are sometimes needed. We now give quiescent implementations of these primi-
tives for systems with process crashes and message | osses.

Let ¢ be the number of processes that may crash. [BCBT96] shows that if ¢ > n/2 (i.e, half of the
processes may crash) these primitives cannot be implemented, even if we assume that links may lose only a
finite number of messages and we do not require that the implementation be quiescent.

We now show that if ¢ < n/2 then there are quiescent implementations of these primitives for the two
types of network considered in this paper. The implementations that we give here are simple and modular
but are inefficient (in terms of number of messages sent). More efficient ones can be obtained by modifying
the algorithms in Sections 7.1 and 7.2. Hereafter, we assumethat t < n/2.

9.1 Rediable Send and Receive

Consider any two distinct processes s and ». We define reliable send and receive from s to » in term of
two primitives: r-send, , and r-receive, ;. We require that if a correct processinvokes r-send it eventually
returns from this invocation. If a process s returns from the invocation of r-send,,(m) we say that s
completesthe r-send of message m to . With quasi reliable send and receive, it ispossible that s completes
theqr-send of m tor, then s crashes, and r never gr-receivesm (even though it does not crash). In contrast,
with reliable send and receive primitives, if s completesther-send of message m to acorrect process» then
r eventually r-receivesm (evenif s crashes). More precisely, reliable send and receive satisfy the following
properties:

e UniformIntegrity: For al k£ > 1, if  r-receives m from s exactly k timesby time ¢, then s r-sent m
to r at least £ times before time ¢.
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For process s:

Initialization:
seq — 0 { seq isthe current sequence number }

To executer-send; - (m):
seq «— seq + 1
lseq — seq
broadcast(m, lseq, s, 1)
wait until gr-received (ACK, Iseq) from ¢ 4 1 processes
return

© 0w N o g » W N P

I
w N B O

For every process p:

i
I

upon deliver(m, lseq, s,r) do
gr-send, s(ACK, lseq)
if p = r then r-receive, ;(m)

PR e
N o o

Figure 5: Quiescent implementation of r-send, ,. and r-receive, ; for n > 2t

e NolLoss: Foral k& > 1,if r iscorrect and s completesthe r-send of m to r exactly k timesby timet,
then » eventually r-receivesm from s at least k times.!®

A guiescent implementation of r-send and r-receive can be obtained using a quiescent implementation
of reliable broadcast and of gr-send/qgr-receive between every pair of processes. Roughly speaking, when
s wishesto r-send m to r, it broadcasts a message that contains m, s, r and a fresh sequence number, and
then waitsto gr-receive ¢ + 1 acknowledgements for that message before returning from this invocation of
r-send. When aprocess p delivers this broadcast message, it qr-sends an acknowledgement back to s, and
if p = rthenit asor-receivesm from s. Thisalgorithm isshown in Figure 5 (the code consisting of lines 7
and 8 is executed atomicaly).

9.2 Uniform Reliable Broadcast

The Agreement property of reliable broadcast statesthat if a correct process delivers a message m, then all
correct processes eventualy deliver m. This requirement allows afaulty process (i.e., one that subsequently
crashes) to deliver a message that is never delivered by the correct processes. This behavior is undesirable
in some applications, such as atomic commitment in distributed databases [BT93, Gra78, Had86]. For such
applications, a stronger version of reliable broadcast is more suitable, namely, uniform reliable broadcast
which satisfies Uniform Integrity, Validity (Section 3.2) and:

e UniformAgreement [NT90]: If any processdeliversamessagem, then al correct processes eventually
deliver m.

A quiescent implementation of uniform reliable broadcast can be obtained using quiescent implementa-
tions of reliable broadcast, and of quasi reliable send and receive between every pair of processes. Roughly

5The No Loss and Quasi No Loss properties are very similar to the Strong Validity and Validity properties in Section 6 of
[HT93].
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speaking, when p wishesto uniform-broadcast m, it broadcasts m. Upon the delivery of m, each process r
gr-sends an acknowledgement to every process, waits for the gr-receipt of such acknowledgements from
t + 1 processes, and then uniform-delivers m.

10 Using HB to Extend Previous Work

‘HB can be used to extend previous work in order to solve problems with algorithms that are both quiescent
and tolerant of process crashes and messages | 0sses.

10.1 Extending Existing Algorithmsto Tolerate Link Failures

‘HB can be used to transform many existing algorithms that tolerate process crashes into quiescent algo-
rithms that tolerate both process crashes and message losses. For example, consider the randomized con-
sensus algorithms of [Ben83, CM S89, FM 90, Rab83], the failure-detector based ones of [AT96, CT96], the
probabilistic one of [BT85], and the algorithms for atomic broadcast in [CT96], k-set agreement in [Cha93],
atomic commitment in [Gue95], and approximate agreement in [DLP*86]. All these algorithms tolerate
process crashes. Moreover, it is easy to verify that the only communication primitives that they actually
need are quasi reliable send and receive, and/or reliable broadcast. Thus, in systemswhere H B is available,
al these algorithms can be made to tolerate both process crashes and message losses (with fair links) by
simply plugging in the quiescent communication primitives given in Section 7.1 The resulting algorithms
tolerate message losses and are quiescent.

10.2 Extending Resultsof [BCBT96]

Another way to solve problems with quiescent algorithms that tolerate both process crashes and message
lossesis obtained by extending the results of [BCBT96]. That work addresses the following question: given
aproblem that can be solved in asystem where the only possible failures are process crashes, isthe problem
still solvable if links can also fail by losing messages? One of the models of lossy links considered in
[BCBT96] iscalled fair lossy. Roughly speaking, afair lossy link p — ¢ satisfiesthe following property: If
p sends an infinite number of messagesto ¢ and ¢ is correct, then ¢ receives an infinite number of messages
from p (see Section 11.3 for a brief comparison between fair lossy and fair links).

[BCBT96] establishes the following result: any problem P that can be solved in systems with process
crashes can also be solved in systems with process crashes and fair lossy links, provided P is correct-
restricted'” or a majority of processes are correct. For each of these two cases, [BCBT96] shows how to
transform any algorithm that solves P in a system with process crashes, into one that solves P in a system
with process crashes and fair lossy links. The algorithms that result from these transformations, however,
are not quiescent: each transformation requires processes to repeatedly send messages forever.

Given H B, we can modify the transformations in [BCBT96] to ensure that if the original algorithm is
guiescent then so isthe transformed one. Roughly speaking, the modification consists of (1) adding message
acknowledgements; (2) suppressing the sending of a message from p to ¢ if either (a) p has received an
acknowledgement for that message from ¢, or (b) the heartbeat of ¢ has not increased since the last time
p sent a message to ¢; and (3) modifying the meaning of the operation “append Queue; to Queues” SO
that only the elementsin Queue; that are not in Queuey are actually appended to Queues. The resultsin
[BCBT96], combined with the above modification, show that if a problem P can be solved with a quiescent

16This can also be done to algorithms that require reliable send/receive or uniform reliable broadcast by plugging in the imple-
mentations given in Section 9, provided amajority of processes are correct.
7 ntuitively, aproblem P is correct-restricted if its specification does not refer to the behavior of faulty processes [BN92, Gop92].
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Applications
(quiescent and terminating)

(i nstance #1 of consensus ]

(I nstance #2 of consensus j [i nstance #1 of atomic commitment)

Reliable Communication
(quiescent, non-terminating)

Failure Detection

(non-quiescent, non-terminating)

Figure 6: Layering that separates applications, reliable communication, and failure detection.

algorithm in a system with crash failures only, and either P is correct-restricted or a mgjority of processes
are correct, then P is solvable with a quiescent algorithm that uses H 8 in a system with crash failures and
fair lossy links.

11 Concluding Remarks

11.1 About Message Buffering

We now address the issue of message buffering in the implementation of quasi reliable send and receive,
and of reliable broadcast (Section 7). Soon after a process p crashes, its heartbeat ceases everywhere and
processes stop sending messagesto p. However, they do have to keep the messages they intended to send to
p, Just in case p is merely very slow, and the heartbeat of p resumes later on. In theory, they have to keep
these messages forever. In practice, however, the system will eventually decide that p isindeed useless and
will “remove’ p (e.g., viaa Group Membership protocol). All the stored messages addressed to p can then
be discarded. The removal of p may take along time,'® but the heartbeat mechanism ensures that processes
stop sending messagesto p soon after p actually crashes, and much before its removal.

11.2 Quiescence versus Termination

In this paper, we considered reliable communication protocols that tolerate process crashes and message
losses, and focused on achieving quiescence. What about achieving termination? A terminating protocol
guarantees that every process eventually reaches a halting state from which it cannot take further actions. A
terminating protocol is obviously quiescent, but the converse is not necessarily true. For example, consider
the protocol described at the beginning of Section 1. In this protocol, (a) s sends a copy of m repeatedly

¥1n some group membership protocols, the timeout used to remove a process is on the order of minutes: killing a process is
expensive and so timeouts are set conservatively.
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until it receives ack(m) from r, and then it halts; and (b) upon each receipt of m, r sends ack(m) back
to s. In the absence of process crashes this protocol is quiescent. However, the protocol is not terminating
because r never halts. r remains (forever) ready to reply to the receipt of a possible message from s.

Can we use H 5 to obtain reliable communication protocol s that are terminating? The answer is no, even
for systemswith no process crashes, aswe now explain. Consider a system with message losses (fair links)
and no process crashes. [KT88] proves that for any terminating protocol P, and any initial configuration
of P, there are runs of P in which all processes halt without receiving any message. This implies that a
terminating protocol cannot solve the reliable communication problem (in systemswith fair links).

To deal with this problem, we propose a layering that allows applications to terminate. This layering,
shown in Fig. 6, separates applications, reliable communication, and failure detection. At the lowest level,
there are failure detectors, such as HB. Of course, these are neither quiescent nor terminating. At the
middle level, there are reliable communication protocols, such as those that we described in Sections 3
and 9. These communication protocols are quiescent (thanks to the failure detectors at the lower level) but
not terminating. Finally, at the top level, there are applications, such as concurrent instances of consensus,
atomic broadcast, atomic commitment protocols, etc. Applications are both quiescent and terminating:
they achieve termination thanks to the reliable communication layer. For example, consider an instance of
consensus. Once a process decides, it delegates the task of broadcasting the decision value to the reliable
communication layer, and then it terminates (without waiting for the broadcast to terminate). Since every
correct process eventually decides and terminates, this instance of consensus terminates.

If necessary, termination in the reliable communication layer can also be achieved in practice, aswe now
explain. A reliable communication protocol isunableto terminate when processes cannot determine whether
a non-responsive process has crashed or it is only very slow. However, as we mentioned in our discussion
of message buffering, a process that actually crashes is eventually removed by the operating system or a
group membership protocol (and the remaining processes are naotified accordingly). When this happens, the
communication protocol can terminate. Note that with the heartbeat mechanism quiescence can be achieved
long before termination (this is because when a process crashes, it may take arelatively long time to decide
that it actually crashed, but its heartbeat count at other processes stops increasing almost immediately).

Asalfinal remark, we note that some communication protocols, such as standard data link protocols, are
inherently non-terminating: they are shared communication services that are always “ready” for message
transmission. The reliable communication protocols (in our middle level) could aso be viewed in the same
way, namely, as non-terminating shared services that are aways ready for message transmission.

11.3 Fair Linksversus Fair Lossy Links

Fair links and fair lossy links are two typical models of lossy links considered in the literature.'® Roughly
speaking, a fair link guarantees that for every m, if p sends m to ¢ an infinite number of times, and ¢ is
correct, then g receives m an infinite number of times. On the other hand, afair lossy link guarantees that if
p sends an infinite number of messagesto ¢, and ¢ is correct, then ¢ receives an infinite number of messages
from p. Fair lossy links and fair links differ in a subtle way. For instance, if process p sends the infinite
sequence of distinct messages my, mo, mg, ... t0 g and p — ¢ isfair lossy, then ¢ is guaranteed to receive
an infinite subsequence, whereas if p — ¢ isfair, ¢ may receive nothing (because each distinct message is
sent only once). On the other hand, if p sends the infinite sequence my, mo, m1, ma, ... and p — ¢ isfair
lossy, ¢ may never receive acopy of mso (while it receives m infinitely often), whereasif p — q isfair, g is
guaranteed to receive an infinite number of copies of both m; and ms.

In this paper, we chose the fair links model. A natural question is whether our results still hold with
fair lossy links instead. It turns out that the answer is yes, as we now explain. First note that Theorems 1,

191 [Lyn98], these links correspond to the Strong and Weak Loss Limitation properties, respectively.
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7 and 32 till hold because their proofs rely only on the fact that lossy links may lose (or not lose) mes-
sages arbitrarily during any finite period of time — a behavior alowed by fair lossy links. Moreover, the
algorithms in Sections 7 and 8 can be easily modified to work with fair lossy links through the use of pig-
gybacking; namely, every time a process wishes to send a message, it piggybacks all the messages that it
previously sent.2? Finally, the algorithms in Section 9 are still correct because they do not directly use the
communication links; rather, they rely only on the communication algorithms of Section 7.

11.4 Quiescent versus Non-Quiescent Transfor mations

We proved that if D is afailure detector with finite range that can be used to solve quiescent reliable com-
munication, then D can be transformed to <P, Our transformation is not quiescent: to “extract” OP out
of D, processes keep on sending messages forever. This, however, does not invalidate the two facts that we
wanted to show, namely:

1. D encodes at least as much information as OP.

2. D cannot be implemented (this follows from the transformation from D to &P, and the fact that OGP
cannot be implemented).

This shows that finite-range failure detectors have some inherent limitation (because there is afailure detec-
tor with infinite range, namely H3, that can be used to solve quiescent reliable communication such that (1)
‘H B does not encode P and (2) H 1B can be implemented).

Even though a non-quiescent transformation was sufficient to establish our results, quiescent transforma-
tions are necessary when comparing the power of failure detectors to solve tasks with quiescent algorithms,
aswe now explain. If D can be transformed to 7', we can conclude that D is (at least) as powerful as D’
in terms of task solving (intuively, atask is a relation between inputs and outputs [BMZ88, HS93]). If the
transformation from D to D’ is not quiescent, however, D may not be as powerful as D’ in terms of solving
tasks quiescently: there may be atask that can be solved quiescently with D’ but not with D. On the other
hand, if the transformation from D to D’ is quiescent, we can conclude that D is (at least) as powerful as
D’ interms of solving tasks with quiescent algorithms. The study of quiescent transformationsis anew and
interesting subject of research.

115 Extension to Partitionable Networks

In this paper, we considered networks that do not partition: we assumed that every pair of correct processes
are reachable from each other through fair paths. In a subsequent paper [ACT], we drop this assumption
and consider partitionable networks. We first generalize the definition of H5 and show how to implement
it in such networks. We then consider generalized versions of reliable communication and of consensus for
partitionable networks, and use HB to solve these problems with quiescent protocols (to solve consensus
we also use a generalization of the Eventually Strong failure detector [CT96]).
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Appendix

A Removing the Simplifying Assumption from Theorem 7

We now give an extended, more complex proof of Theorem 7 without the simplifying assumption.

Let £ be an environment and D be any failure detector with finiterange R = {vy,va,...,v;}. LetZ be
a quiescent implementation of s-send and s-receive that uses D in environment £.

As in the smpler proof in Section 5, the transformation algorithm 7p_.«p uses a finite table that is
predetermined from D. We first define this table and show some of its properties (Section A.1). We then
describe and prove the correctness of the transformation algorithm Tp_.p that usesthistable (Section A.2).

A.1 ThePredetermined Table

For the definitions in this proof, let:

e v; be afailure detector value, i.e., v; € R

p beaprocess, i.e,p € I1

F be afailure pattern

H be afailure detector history with range R

f bean assignment of failure detector values to every processinIl,i.e, f: Il — R
P and P, be non-empty set of processes

P0,P1, - - -, Pm—1 bethe processesin P (wherem = |P|and py < p1 < ... < pm—1)

Definition 1 We say that v; isalimit value for p and H if, for infinitely many ¢, H(p,t) = v;. O

Definition 2 We say that f isalimit vector for P and H if for al p € P, f(p) isalimit valuefor p and H.
The set of all limit vectorsfor P and H isdenoted Lp(H). 0

Definition 3 RRIRounds(P, f) isdefined as follows.

Consider the round-robin execution of implementation Z in which: (a) processesin P take stepsforever
in a round-robin fashion?! and processesin IT \ P do not take any steps, (b) no process ever s-sends any
bit, (c) every timeaprocessp € P queriesitsfailure detector module, p gets f(p), (d) every time a process
p € P takes a step, p receives the earliest message sent to it that it did not yet receive (thus, every p € P
eventually receives each message sent to it), and (€) all messages sent to processesin I1 \ P arelost.??

There are two possible cases in the above round-robin execution of Z:

e Every process eventually stops sending messages. In this case, after some number % of round-robin
rounds, no process ever receives any messages. We say that “round-robin initialization (r.r.i.) occurs
in k rounds’, and define RRIRounds(P, f) = k.

e Some process never stops sending messages. In this case, we define RRIRounds (P, f) = oc. O
Intuitively, we say that F' and H alow round-robin initialization for P and f if the following holds:

() in the above execution with P and f, r.r.i. occurs in k rounds for some k, and (b) there is a schedule
compatible with 7" and H that alowsthis k-round r.r.i. More precisely:

*'That is, po takesthefirst step, then p; takes astep, and so on, so that the j-th step is taken by Process p; - 1) mod .-
22|t is possible that thisis not a valid execution of Z using D in environment £.
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Definition 4 Wesay that F'and H allow round-robin initialization (r.r.i.) for P and f if (&) RRIRounds(P, f) =
k for some k, and (b) if there aretimesty < t1 < ... < t,1_1 Suchthat for every 0 < 57 < mk — 1, (1)
Pj mod m 1S NOt crashed at time ¢;, i.€., pj moda m & F(t;) and (2) the failure detector module of p; mod m at

timetj OUtpUtSf(pj mod m)- i-e-- H(pj mod matj) = f(pj mod m) O
Definition5 Lpp, (F,H) ={f | f € Lp(H) and F and H alow r.r.i. for Py and f}. a
Definition 6 Elgﬁo ={f|3F €& 3H € D(F) : P = correct_proc(F') and f € Lpp,(F,H)}. O

Roughly speaking, Egﬁo isthe set of limit vectors f that could occur when P isthe set of correct processes
and it ispossibleto haver.r.i. for Py and f.

The table used by the transformation algorithm Tp_.«p consists of all the sets E?ﬁo where P and P,
range over al non-empty subset of processes. Note that this table is finite. We omit the superscript D, £
from Ef, whenever it is clear from the context.

Lemma?27 Let F € &, P = correct_proc(F), H € D(F)and f € Lp(H). Assume P # (). Then
RRIRounds(P, f) < oc.

Proof. We can construct arun R of implementation Z using D with F' € £, such that al processes behave
exactly as in the round-robin execution of 7 that was used to define RRIRounds(P, f). To see this, note
thatsince F' € €, P = correct_proc(F'), H € D(F)and f € Lp(H), wecan find timesfor the round-robin
steps of correct processes such that, for each time u at which a process p takes a step, the output H (p, u)
of itsfailure detector module is f(p). Since Z is quiescent, there is atime after which no process sends any
messagein run R. Thus, RRIRounds(P, f) < oo. a

Lemma28 Let FF € &, P = correct_proc(F), H € D(F). Assume P # () and let Py be such that
PC PR CILIffeLpp(F,H)then f € Epp, and f & Ep: p, for all P’ suchthat) c P' C P.

Proof. Let f € Lpp,(F,H). Thefactthat f € Epp, isimmediate from the definition of Ep p,. Let P’
be such that ) ¢ P’ C P. Suppose, for contradiction, that f € Eps p,. Then there exists a failure pattern
F' € £and H' € D(F') suchthat P' = correct_proc(F') and f € Lp: p,(F',H').

We now obtain a contradiction by using the quiescent implementation Z. Let p be aprocessin P’ and
q beaprocessin P\ P’. We construct three runs of Z, namely, Ry, R; and Ry. Roughly speaking, each
one of these runs startswith an r.r.i. for Py and f. After thisinitialization, in Ry nothing else happens, in
R process p s-sends some hit to ¢ but ¢ crashes, and in R, process p s-sends the same bitto g and ¢ is
correct. We will reach a contradiction by arguing that in Ry process ¢ behaves asin Ry, and thus it never
s-receives any bit from p — this violates the defining property of s-send and s-receive.

Runs Ry, R; and R, are defined asfollows:?3

e Run Ry hasfailure pattern £ and failure detector history H. Since f € Lpp,(F,H), f € Lp(H),
and F and H dlow r.ri. for Py and f. Ry consistsinitially of ar.r.i. for Py and f. More precisaly,
initially: (a) processesin P, take stepsin around-robin fashion and processesin IT \ F, do not take
any steps, (b) no process s-sends any bit, (C) every timeaprocessr € Py queriesits failure detector
module, r gets f(r), (d) every time aprocessr € P, takes astep, r receives the earliest message sent
toit that it did not yet receive, and (€) al messages sent to processesin I \ Py arelost. This goes on

231n each one of these runs, we will require that for a certain finite period of time, some messages are lost while others are not.
Aswe explained in our model (Section 2.5), this behavior is consistent with any link failure pattern.
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until each processin Py has taken RRIRounds(Py, f) steps. Let ty be the time when this happens.
After ¢y, processesin P take steps in a round-robin fashion such that every time a process r € P
takes a step, it obtains f(r) from its failure detector module (this is possible because f € Lp(H));
moreover, No process s-sends any bit.

Note that since both p and ¢ arein P = correct_proc(F'), and p does not s-send any bit to g, it must
be that ¢ does not s-receive any bit from p. Furthermore, after time t,, no processes send or receive

any messages.

e Run R, has failure pattern F’ and failure detector history H'. Since f € Lp: p,(F',H'), f €
Lp:/(H'),and F’ and H' dlow r.r.i. for Py and f. Initialy, processesin R, behave asin Ry, i.e., R;
startswith ar.r.i. for Py and f. Then, execution proceeds as follows: (a) p s-sends some hit b to ¢,
(b) processesin P’ take stepsin round-robin fashion and processesin IT \ P’ take no steps, (C) every
time aprocessr € P’ takes a step, it obtains f(r) from its failure detector module, (d) every time a
processr € P’ takes astep, r receives the earliest message sent to it that it did not yet receive, () all
messages sent to processesin IT \ P’ arelost.

Note that, since implementation Z is quiescent, thereisatimet; after which no messages are sent or
received. Assume without loss of generality that at timet; every processin P’ took the same number
k of steps (otherwise, choose another time ¢} > ¢1).

e Run Ry has failure pattern F' and failure detector history H. Initialy, processesin R, behave asin
Ry: Ry startswith ar.r.i. for Py and f, and then p s-sends b to ¢ and execution continues asin Ry,
until each processin P’ hastaken k steps (thisispossible because f € Lp(H) and P’ C P).

Let ¢4 be the time when this happens. After ¢5, execution proceeds asfollows: (a) no process s-sends
any bit, (b) processesin P take steps in round-robin fashion and processesin IT \ P take no steps,
(c) every time aprocess r € P takes a step, it obtains f(r) from its failure detector module (thisis
possible because f € Lp(H)).

Note that at time ¢, each processin P’ isin the same state asin run R, at time ¢, and each process
in P\ P’ isinthe same state asin run Ry at time ¢y. A simple induction on the steps taken shows
that, in Ry, (1) processesin P’ have the same behavior asin run Ry; (2) processesin P\ P’ havethe
same behavior asin run Ry; (3) no messages are sent or received after time¢s. Sinceq € P\ P’ and
q does not s-receive any bit from p in Ry, it does not s-receive any bit from pin R,.

In summary, in Ry: (@) both p and ¢ are correct; (b) p s-sendsb to ¢; and (c) ¢ does not s-receive b from p.
Thus, 7 is not a correct implementation of s-send and s-receive — a contradiction. O

A.2 The Transformation Algorithm

The algorithm T'r_.p that transforms D to an eventually perfect failure detector D' = P in environment
EisshowninFig. 7. Tp_.p» usesthetable of sets Ep p, (for al non-empty subsets P and 1% of processes)
that has been determined a priori from the given D and £. It aso uses an implementation of gr-send and
gr-receive between every pair of processes. A simple implementation is by repeated retransmissions and
diffusion (it does not have to be quiescent).

All variables are local to each process. Sequences isalfinite set of finite sequences of pairs (p, v) where
p € Il isaprocess and v € R is afailure detector value. It stores possible schedules that could have
resulted from F' and H. Vector f storesthelast failure detector value that p gr-received from each process.
Order is an ordered set that records the order in which the last failure detector value from each process
was gr-received. D;/o denotes the output of the eventually perfect failure detector that p is smulating (a
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set of processes that p currently suspects). AllowsRRI is a boolean function that takes three parameters:
aset Sequences, aset P = {po,p1,...,pm—1} C Il (Wherepy < p1 < ... < pm—1), and avector f. It
returns true if and only if for some sequence s € Sequences, there exists a subsequence of s that consists of
RRIRounds(P, f) repetitions of (po, f(po)), (p1, f(P1))s- s (Pm—1, [ (Pm—1))-

In Task 1, each process p periodically queries its failure detector module, appends a new pair to each
sequence in Sequences and then gr-sends Sequences and the output of its failure detector module D, to
every process. Upon the gr-receipt of (Sequences’,v’) from process ¢ in Task 2, process p enters v’ into
f[q], moves ¢ to thefront of Order, and updates Sequences. Then, p usesthe function AllowsRRI to check
whether thereis some & such that r.r.i. could have occurred for Order|[1..k] and f. If thereis, it setsk to the
largest such k, and then checksiif for some &', f € Eorger(1..1], 0rder(1..ko]- 1T SO, it SEtS k1 to the smallest
such &/, and sets D’ to the complement of Order[1..k;].

1 For every process p:

2

3 Initialization:

4 forall g € I1do f[g] — L

5 Order «— 0

6 Sequences «— {\}

7 D, 0

8 { Foreach() C P, Py C 11, theset E 1, is determined a priori from D and £ }

9

10 cobegin

1 || Task 1:

12 repeat periodically

13 v—D, {query D}
14 append (p, v) to each sequencein Sequences

15 for all ¢ € IT do gr-send (Sequences,v) to g

16

17 || Task 2:

18 upon gr-receive (Sequences’,v’) from ¢ do

1 fla] <

20 Order «— q || (Order \ {q}) {process q is moved to the front of Order }
2 Sequences +— Sequences U Sequences’

2 if for somek > 1, AllowsRRI(Sequences, Order[1..k], f) then

23 let ko bethelargest such k&

24 if for some £’ 21, f € Eg;fler[l..k’],O'rder[l..kg] then

2 let k1 bethe smallest such &’

% D, « I\ Order|[1..k;] {suspect processesnot in Order[1..k1]}
27 coend

Figure 7: Transformation of D to an eventually perfect failure detector D/

We now show that the failure detector constructed by this algorithm, namely 7, is an eventually perfect
failure detector. Consider arun of this algorithm with failure pattern F' € £ and failure detector history
H € D(F), such that correct_proc(F) # 0. Let t be the number of processes that crash in F, i.e,
t = |IT\ correct_proc(F)|. Henceforth, p denotes acorrect processin F', and f, Order, and Sequences are
variableslocal to p.



Lemma 29 Thereisatimet, after which (1) Order[1..n—t] = correct_proc(F), (2) f € Lorder(1..n—yq(H)
and (3) AllowsRRI (Sequences, Order[1..n — t], f).2*

Proof. Note that p eventually stops gr-receiving messages from processes that crash, and p never stops
gr-receiving messages from correct processes. From the way Order is updated, there is a time ¢; after
which (1) holds.

Let P = correct_proc(F'). Variable f ranges over a finite number of values, so there are functions
fi, fa,..., fv : I = R such that (a) for every 1 < j < N, variable f is equal to f; an infinite number
of times, and (b) there is atime ¢, after which the predicate f € {fi, fo,..., fv} holds. We now show
that for every 1 < j < N, f; € Lp(H), and thereisatime 7; after which AllowsRRI (Sequences, P, f;)
holds. Together with (1) and (b), thisimplies that after time ty = max{t1, t2, 71,72, ..., 75}, both (2) and
(3) hold.

Let1 < j < N. Wefirst claim that each process ¢ € P obtains f;(q) from D in line 13 an infi-
nite number of times — this immediately implies f; € Lp(H). To show the claim, note that process p
gr-receives a message from ¢ and updates f[q] an infinite number of times. Together with (&), thisimplies
that p gr-receives amessage containing f;(q) from ¢ aninfinite number of times, and thisimpliesthe claim.

We now show that there is a time 7; after which AllowsRRI (Sequences, P, f;) holds. Since f; €
Lp(H), by Lemma 27, RRIRounds(P, f;) = k for some k < oco. Let py < p1 < ... < pp—1 bethe
processes in P. By the claim, at some time u, po obtains f;(pg) from D in line 13. After doing so, py
appends (po, fj(po)) to al sequences in Sequences and gr-sends a message containing Sequences to al
processes. At sometime u} > wg, p1 gr-receives this message and updates Sequences. By the claim, at
sometime u; > uy, p; obtains f;(p1) from D in line 13. After doing so, p; appends (pi1, fj(p1)) to al
sequences in Sequences and so p; obtains a sequence containing (po, f;(po)) before (p1, fj(p1)). We can
repeat this argument for all the processesin P in around-robin order, for £ + 1 rounds, and conclude that
eventually AllowsRRI (Sequences, P, f;) holds. O

Lemma 30 There is a time t; after which for every mo > n — t such that AllowsRRI (Sequences,
Order[l..mo], f) holds: (1) f € Eorder[i.n—t],0rder(1.mo] @D (2) for all 1 < my < n—t, f &
EOrder[l..ml],Order[l..mo]'
Proof. By Lemma 29, thereisatime ¢, after which () Order[l..n — t] = correct_proc(F'),and (b) f €
Lorgerft.n—4)(H). Lett; = to. Supposethat at sometimety > t1, AllowsRRI (Sequences, Order[1..mg], f)
holds for some my > n — ¢. Thisimpliesthat F' and H alow r.r.i. for Order[l..mo] and f. From (b),
fe LOrder[l..n—t],Order[l..mo](F7 H) hOldSﬂttimetll. By Lemma2s, f € EOTdeT[l..n—tLOrder[l..mo]'

Letl < my < n—t By (@), 0 C Order[l.mi] C correct_proc(F) C Order[l..mg] holds
a time t;. Note that f € Lorger(i..n—t],0rder[1..mo](F; H) holds a time ¢;. By Lemma 28, f ¢
EOrder[l..ml],Order[l..mo]- U

Corollary 31 Thereisa timeafter which D}, = I\ correct_proc(F').

Proof. By Lemma 29 part (3), thereisatimet, after which every time p qr-receives some message, the if
in line 22 evaluates to true and the &k selected in line 23 isat least n — ¢. After timetq, by Lemma 30, there
isatime after which: every time p gr-receives some message, theif in line 24 evaluates to true and the k4
selected inline 25isn — ¢t. Now apply Lemma 29 part (1). O

By Corollary 31, we have:

24This does not mean that eventually the values of variables f, Sequences, and Order at p stop changing. It meansthat, although
they may continue to change forever, eventually the predicates (1), (2) and (3) are true forever at p.
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Theorem 32 Consider an asynchronous system subject to process crashes and message losses. Suppose
failure detector D with finite range can be used to solve the Sngle-Shot Reliable Send and Receive problem
in environment £, and that the implementation is quiescent. Then D can be transformed (in environment &)
to the eventually perfect failure detector &P
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