
Failure Detection and Consensus
in the Crash-Recovery Model∗

Marcos Kawazoe Aguilera Wei Chen Sam Toueg

Department of Computer Science
Upson Hall, Cornell University
Ithaca, NY 14853-7501, USA.

aguilera,weichen,sam@cs.cornell.edu

July 27, 1999

Abstract

We study the problems of failure detection and consensus in asynchronous systems in which processes
may crash and recover, and links may lose messages. We first propose new failure detectors that are
particularly suitable to the crash-recovery model. We next determine under what conditions stable storage
is necessary to solve consensus in this model. Using the new failure detectors, we give two consensus
algorithms that match these conditions: one requires stable storage and the other does not. Both algorithms
tolerate link failures and are particularly efficient in the runs that are most likely in practice — those with
no failures or failure detector mistakes. In such runs, consensus is achieved within 3δ time and with 4n
messages, where δ is the maximum message delay and n is the number of processes in the system.

1 Introduction

The problem of solving consensus in asynchronous systems with unreliable failure detectors (i.e., failure de-
tectors that make mistakes) was first investigated in [3, 2]. But these works only considered systems where
process crashes are permanent and links are reliable (i.e., they do not lose messages). In real systems, how-
ever, processes may recover after crashing and links may lose messages. In this paper, we focus on solving
consensus with failure detectors in such systems, a problem that was first considered in [4, 10, 7] (a brief
comparison with these works is in Section 1.3).

Solving consensus in a system where process may recover after crashing raises two new problems; one regards
the need for stable storage and the other is about the failure detection requirements:

• Stable Storage: When a process crashes, it loses all its local state. One way to deal with this problem
is to assume that parts of the local state are recorded into stable storage, and can be restored after each
recovery. However, stable storage operations are slow and expensive, and must be avoided as much as
possible. Is stable storage always necessary when solving consensus? If not, under which condition(s)
can it be completely avoided?

• Failure Detection: In the crash-recovery model, a process may keep on crashing and recovering indefi-
nitely (such a process is called unstable). How should a failure detector view unstable processes? Note

∗Research partially supported by NSF grant CCR-9402896 and CCR-9711403, by ARPA/ONR grant N00014-96-1-1014, and by
an Olin Fellowship.

that an unstable process may be as useless to an application as one that permanently crashes (and in
fact it could be even more disruptive). For example, an unstable process can be up just long enough to
be considered operational by the failure detector, and then crash before “helping” the application, and
this could go on repeatedly. Thus, it is natural to require that a failure detector satisfies the following
completeness property: Eventually every unstable process is permanently suspected.1

But implementing such a failure detector is inherently problematic even in a perfectly synchronous
system. Intuitively, this is because, at any given point in time, no implementation can predict the future
behavior of a process p that has crashed in the past but is currently “up”. Will p continue to repeatedly
crash and recover? Or will it stop crashing?

In summary, our goal here is to solve consensus in the crash-recovery model (with lossy links). As a crucial
part of this problem, we first need to find reasonable failure detectors that can be used for this task. We also
need to determine if and when stable storage is necessary.

1.1 Failure Detectors for the Crash-Recovery Model

We first focus on the problem of failure detection in the crash-recovery model. Previous solutions require
unstable processes to be eventually suspected forever [10, 7].2 We first prove that this requirement has a
serious drawback: it forces failure detector implementations to have undesirable behaviors even in perfectly
synchronous systems. More precisely, consider a synchronous round-based system with no message losses,3

where up to nu processes may be unstable. In this system, every implementation of a failure detector with
the above requirement has runs with the following undesirable behavior: there is a round after which (a)
all processes are permanently up, but (b) the failure detector incorrectly suspects nu of them forever (see
Theorem 1). Note that these permanent mistakes are not due to the usual causes, namely, slow processes
or message delays. Instead, they are entirely due to the requirement on unstable processes (which involves
predicting the future).

To avoid the above problem, we propose a new type of failure detector that is well-suited to the crash-recovery
model. This failure detector does not output lists of processes suspected to be crashed or unstable. Instead, it
outputs a list of processes deemed to be currently up, with an associated epoch number for each such process.
If a process is on this list we say it is trusted.

The epoch number of a process is a rough estimate of the number of times it crashed and recovered in the past.
We distinguish two types of processes: bad ones are those that are unstable or crash permanently, and good
ones are those that never crash or eventually remain up. We first propose a simple failure detector, denoted
3Se, with the following two properties. Roughly speaking (precise definitions are in Section 3):

• Completeness: For every bad process b, at every good process there is a time after which either b is
never trusted or the epoch number of b keeps on increasing.

• Accuracy: Some good process is eventually trusted forever by all good processes, and its epoch number
stops changing.

Note that the completeness property of 3Se does not require predicting the future (to determine if a process
is unstable), and so it does not force implementations to have anomalous behaviors. To illustrate this, in
Appendix B we give an implementation of 3Se for some models of partial synchrony: this implementation
ensures that if all processes are eventually up forever they will be eventually trusted forever.

1In fact, this property is assumed in [10, 7].
2In [4], crash-recovery is regarded as a special case of omission failures, and the algorithm is not designed to handle unstable

processes that can send and receive messages to and from good processes.
3In such a system, processes execute in synchronized rounds, and all messages are received in the round they are sent.

2

Failure detector 3Se, however, does not put any restriction on how the bad processes view the system. In
particular, the accuracy property allows unstable processes to repeatedly “suspect” all processes.4 This is
problematic because, in contrast to processes that permanently crash, unstable processes may continue to
take steps, and so their incorrect suspicions may prevent the progress of some algorithms. For example, in the
rotating coordinator consensus algorithms of [3, 4, 7] if a process kept suspecting all processes then consensus
would never be reached.

From the above it is clear that sometimes it is better to have a failure detector with:

• Strong Accuracy: Some good process is eventually trusted forever by all good and unstable processes,
and its epoch number stops changing.

Such a failure detector is denoted 3Su. In this paper, we show how to transform any 3Se into 3Su in an
asynchronous system provided that a majority of processes are good.

1.2 On the Necessity of Stable Storage in the Crash-Recovery Model

Can consensus be solved in the crash-recovery model without stable storage, and if so, how? To answer this
question, assume during each execution of consensus, at least na processes are guaranteed to remain up, and
at most nb processes are bad.

Clearly, if na < 1 then consensus cannot be solved without stable storage: it is possible that all processes crash
and recover during execution, and the entire state of the system (including previous proposals and possible
decisions) can be lost forever. On the other hand, if na > n/2, i.e., a majority of processes are guaranteed
to remain up, then solving consensus without stable storage is easy: If a process crashes we exclude it from
participating in the algorithm even if it recovers (except that we allow it to receive the decision value). This
essentially reduces the problem to the case where process crashes are permanent and a majority of processes
do not crash (and then an algorithm such as the one in [3] can be used).

Is it possible to solve consensus without stable storage if 1 ≤ na ≤ n/2? We show that:

• If na ≤ nb then consensus cannot be solved without stable storage even using 3P (the eventually
perfect failure detector defined in Section 5).

• If na > nb then consensus can be solved without stable storage using 3Se (which is weaker than 3P).

This last result is somewhat surprising because with na > nb, a majority of processes may crash and com-
pletely lose their state (including the consensus values they may have previously proposed and/or decided).
To illustrate this with a concrete example, suppose n = 10, na = 3 and nb = 2. In this case, up to 7 processes
— more than half of the processes — may crash and lose their state, and yet consensus is solvable with a
failure detector that is weaker than 3P. Prima facie, this seems to contradict the fact that if a majority of
processes may crash then consensus cannot be solved even with 3P [3]. There is no contradiction, however,
since [3] assumes that all process crashes are permanent, while in our case some of the processes that crash
do recover: even though they completely lost their state, they can still provide some help.

What if stable storage is available? In this case, we show that consensus can be solved with 3Su, provided
that a majority of processes are good (this majority requirement is weaker than na > nb). Note that if the
good processes are not a majority, then consensus cannot be solved even with 3P [3].

In addition to crashes and recoveries, the two consensus algorithms that we give (with and without stable
storage) also tolerate message losses, provided that links are fair lossy, i.e., if p sends messages to a good
process q infinitely often, then q receives messages from p infinitely often.

4Intuitively, this is because an unstable process may fail to receive “I am alive” messages sent by other processes since all messages
that “arrive” at a process while it is down are lost.

3

1.3 Related Work

The problem of solving consensus with failure detectors in systems where processes may recover from crashes
was first addressed in [4] (with crash-recovery as a form of omission failures) and more recently studied in
[10, 7].

In [4, 10, 7], the question of whether stable storage is always necessary is not addressed, and all the algorithms
use stable storage: in [4, 10], the entire state of the algorithm is recorded into stable storage at every state
transition; in [7], only a small part of the state is recorded, and writing to stable storage is done at most once
per round. In this paper, we determine when stable storage is necessary, and give two matching consensus
algorithms — with and without stable storage. In the one that uses stable storage, only a small part of the state
is recorded and this occurs twice per round.

The algorithms in [10, 7] use failure detectors that require that unstable processes be eventually suspected
forever. The algorithm in [4] is not designed to deal with unstable processes which may intermittently
communicate with good ones.

1.4 Summary of Results

We study the problems of failure detection and consensus in asynchronous systems with process crashes and
recoveries, and lossy links.

1. We show that the failure detectors that have been previously proposed for the crash-recovery model with
unstable processes have inherent drawbacks: Their completeness requirement force implementations to
have anomalous behaviors even in synchronous systems.

2. We propose new failure detectors that avoid the above drawbacks.

3. We determine under what conditions stable storage is necessary to solve consensus in the crash-recovery
model.

4. We give two consensus algorithms that match these conditions, one uses stable storage and the other
does not. Both algorithms tolerate message losses, and are particularly efficient in the runs that are
most likely in practice — those with no failures or failure detector mistakes, and message delays are
bounded. In such runs, consensus is achieved within 3δ time and with 4n messages, where δ is the
maximum message delay and n is the number of processes in the system.

1.5 Roadmap

The paper is organized as follows. Our model is given in Section 2. In Section 3 we show that existing
failure detectors for the crash-recovery model have limitations, and then introduce our new failure detectors,
namely 3Se and3Su. We define the Consensus problem in Section 4. In Section 5, we determine under what
conditions consensus requires stable storage. We then give two matching consensus algorithms: one does
not require stable storage (Section 6), and the other uses stable storage (Section 7). In Section 8, we briefly
consider the performance of these algorithms. The issue of repeated consensus is discussed in Section 9. In
Section 10, we show how to transform 3Se into 3Su.

2 Model

We consider asynchronous message-passing distributed systems in which there are no timing assumptions. In
particular, we make no assumptions on the time it takes to deliver a message, or on relative process speeds.

4

We assume that every process is connected with every other process through a communication link. Links
can fail by intermittently dropping messages. A process can fail by crashing and it may subsequently recover.
When a process crashes it loses all of its state. However, it may use local stable storage to save (and later
retrieve) parts of its state.

We assume the existence of a discrete global clock — this is merely a fictional device to simplify the presen-
tation and processes do not have access to it. We take the range T of the clock’s ticks to be the set of natural
numbers.

2.1 Processes and Process Failures

The system consists of a set of n processes, Π = {1, 2, . . . , n}. Processes can crash and may subsequently
recover. A failure pattern F is a function from T to 2Π. Intuitively, F (t) denotes the set of processes that are
not functioning at time t. We say process p is up at time t (in F) if p 	∈ F (t) and p is down at time t (in F)
if p ∈ F (t). We say that p crashes at time t if p is up at time t − 1 and p is down at time t.5 We say that p
recovers at time t ≥ 1 if p is down at time t− 1 and p is up at time t. A process p can be classified (according
to F) as always-up, eventually-up, eventually-down and unstable as follows:

Always-up: Process p never crashes.

Eventually-up: Process p crashes at least once, but there is a time after which p is permanently up.

Eventually-down: There is a time after which process p is permanently down.

Unstable: Process p crashes and recovers infinitely many times.

A process is good (in F) if it is either always-up or eventually-up. A process is bad (in F) if it is not good
(it is either eventually-down or unstable). We denote by good(F), bad(F) and unstable(F) the set of good,
bad and unstable processes in F , respectively. Henceforth, we consider only failure patterns with at least one
good process.

2.2 Failure Detectors

Each process has access to a local failure detector module that provides (possibly incorrect) information about
the failure pattern that occurs in an execution. A process can query its local failure detector module at any
time. A failure detector history H with range R is a function from Π × T to R. H(p, t) is the output value
of the failure detector module of process p at time t. A failure detector D is a function that maps each failure
pattern F to a set of failure detector histories with range RD (where RD denotes the range of the failure
detector output of D). D(F) denotes the set of possible failure detector histories permitted by D for the
failure pattern F .

2.3 Stable Storage

When a process crashes, it loses all its volatile state, but we assume that when it recovers, it knows that it
is recovering from a crash. Moreover, a process may use a stable storage device to store and retrieve a set
of variables. These two stable storage operations cannot be executed atomically with certain other actions.
For example, a process cannot store a variable in stable storage and then send a message or issue an external
output, in a single atomic step. The actions that a process can execute in an atomic step are detailed in the
next section.

5We say that p crashes at time t = 0 if p is down at time 0.

5

2.4 Runs of Algorithms

An algorithm A is a collection of n deterministic automata, one for each process in the system. Computation
proceeds in atomic steps of A. There are two types of steps: a crash step and a normal step. In a crash step,
the state of a process is changed to a specially designated state called the crash state (thus the process “loses
its state”). In a normal step, a process:

1. First executes one of the following actions, according to its state: (a) store a set of variables into local
stable storage, (b) retrieve a set of variables from local stable storage, (c) send a message to some
process, or (d) issue an external output.6

2. Then it attempts to execute each one of the following actions: (a) receive a message from a process,
(b) get an external input, and (c) query its failure detector;

3. Finally, it changes state.

An initial configuration of algorithm A consists of the initial state of the automaton for each process. A
run of algorithm A using failure detector D is a tuple R = (F,HD, I, S, T) where F is a failure pattern,
HD ∈ D(F) is a history of failure detector D for failure pattern F , I is an initial configuration of A, S is an
infinite sequence of steps of A, and T is an infinite list of non-decreasing time values indicating when each
step in S occurs.

A run must satisfy the following properties: (1) a process takes at most one step at each time t; (2) a process
takes a normal step at time t only if it is up at t; (3) a process takes a crash step at time t if and only if it
crashes at t; (4) a good process takes an infinite number of normal steps; (5) if a process p takes a step at time
t and queries its failure detector, then it obtains HD(p, t) as a response; (6) when a process retrieves a variable
from stable storage, it obtains the last value that it stored for that variable (or ⊥ if it never stored the variable).

Note that if a process p recovers from a crash, its first step is from the special crash state. Since this state is
different from all other states, p “knows” that it is recovering from a crash.

2.5 Link Properties

We consider links that do not create messages, or duplicate messages infinitely often. More precisely, each
run R = (F,HD, I, S, T) must satisfy the following “link properties”. For all processes p and q:

• No Creation: If q receives a message m from p at time t, then p sent m to q before time t.

• Finite Duplication: If p sends a message m to q only a finite number of times, then q receives m from
p only a finite number of times.

Links may intermittently drop messages, but they must satisfy the following fairness property:

• Fair Loss: If p sends messages to a good process q an infinite number of times, then q receives messages
from p an infinite number of times.

6Note that a process cannot both access the stable storage and send a message (or issue an external output) in the same atomic
step.

6

2.6 Environments and Problem Solving

The correctness of an algorithm may depend on certain assumptions on the “environment”, e.g., the maximum
number of processes that may be bad. For example, a consensus algorithm may need the assumption that a
majority of processes is good. Formally, an environment E is a set of failure patterns.

A problem P is defined by properties that sets of runs must satisfy. An algorithm A solves problem P using
a failure detector D in environment E if the set of all runs R = (F,HD, I, S, T) of A using D where F ∈ E
satisfies the properties required by P .

Let C be a class of failure detectors. An algorithm A solves a problem P using C in environment E if for all
D ∈ C, A solves P using D in E . An algorithm implements C in environment E if it implements some D ∈ C
in E .

3 Failure Detectors for the Crash-Recovery Model

In this section, we first consider the failure detectors that were previously proposed for solving consensus in
the crash-recovery model, and then propose a new type of failure detector for this model.

3.1 Limitations of Existing Failure Detectors

To solve consensus in the crash-recovery model, Oliveira et al. [10] and Hurfin et al. [7] assume that processes
have failure detectors that output lists of processes suspected to be bad, and that these failure detectors satisfy
the following property:

• Strong Completeness: Eventually every bad process is permanently suspected by all good processes.

Since bad processes include unstable ones, enforcing this requirement is problematic even in synchronous
systems, as we now explain. Consider a system S in which processes take steps at perfectly synchronized
rounds. In each round, a process is either up, in which case it sends a message to every process, or down, in
which case it does nothing in the round. In S at most nu processes are unstable, i.e., alternate between being
up and down infinitely often. Links do not lose messages, and all messages sent in a round are received at the
end of that round. In system S, it is trivial to implement a failure detector that is almost perfect: by suspecting
every process from which no message was received in the current round, each process suspects exactly every
process that was down in this round.

Now suppose we want to implement in S a failure detector that satisfies Strong Completeness (and possibly
only this property). In Theorem 1, we show that any such implementation has undesirable behaviors: in some
executions where all processes are good, some of them will eventually be suspected forever. Note that these
mistakes are entirely due to the above requirement on unstable processes, not to the lack of synchrony.

Theorem 1 Let I be any implementation of a failure detector that satisfies Strong Completeness in S. For
every set of processes G of size at most nu, there is a run of I in S such that (a) all processes are good, but
(b) eventually all processes in G are permanently suspected by all processes in Π \G.

Intuitively, the main idea of the proof is as follows. Suppose a process u crashes for a long time. Then
at some time t, to satisfy Strong Completeness, the implementation I is forced to suspect u (because no
implementation can predict whether u will recover in the future). Suppose that u recovers after time t and
stays up. If I keeps suspecting u forever, then this is a run in which a good process, namely u, is suspected
forever (as we want to show in the theorem). Suppose, instead, that I trusts u again at some later point. In

7

this case, we can crash u again for a long time. By Strong Completeness, I is again forced to suspect u. Now
u recovers again and stays up, and either I keeps suspecting u forever (this is a run in which a good process
u is suspected forever), or it trusts u again. We can repeat the above argument ad infinitum to obtain a run in
which (a) u crashes and recovers infinitely often (it is unstable) and (b) I trust u an infinite number of times
— a violation of Strong Completeness.

The proof of Theorem 1 follows immediately from Lemma 2 below. Note that in the round-model of execu-
tion, the only “non-determinism” is due to possible process failures and the times at which they occur. Thus,
for each failure pattern F ,7 there is only one run of I in S, and we denote it by R(F). A G-crash failure
pattern is a failure pattern in which only processes in G crash.

Lemma 2 For every setG of size at most nu, there is aG-crash failure pattern prefix P such that the following
holds. For every G-crash extension F of P in which all processes in G crash and recover at least one more
time, in run R(F) eventually all processes in G are permanently suspected by all processes in Π \G.

Proof. Let G be any set of size |G| ≤ nu. Assume by contradiction that for every G-crash failure pattern
prefix P , there exists a G-crash extension F of P in which all processes in G crash and recover at least one
more time, such that in run R(F) there is some process p ∈ Π \ G that trusts some process p′ ∈ G infinitely
often.

We now construct inductively an increasing sequence {Pi} of failure pattern prefixes. Let P0 be the failure
pattern prefix of length 0. Given Pi, by assumption we can find a G-crash extension Fi in which all processes
in G crash and recover at least one more time, such that in run R(Fi) there is some process pi ∈ Π \ G that
trusts some process p′i ∈ G infinitely often. Let ti be the length of Pi and let ti+1 > ti be some time such that
between times ti and ti+1 in R(Fi): (1) each process in G crashes and recovers at least once and (2) pi trusts
p′i at least once. We define Pi+1 to be the prefix of Fi of length ti+1.

Define P := limi→∞ Pi. Then in R(P), every process in G crashes an infinite number of times, no process in
Π \G crashes, and some process in Π \G trusts some process in G an infinite number of times. This violates
the Strong Completeness property of I . 2

3.2 Failure Detectors with Epoch Numbers

Theorem 1 shows that if we require Strong Completeness then incorrect suspicions are inevitable even in
synchronous systems. Although many algorithms are designed to tolerate such failure detector mistakes, the
erroneous suspicions of some good processes may hurt the performance of these algorithms. For example, the
erroneous suspicions of good coordinators can delay the termination of the consensus algorithms in [3, 4, 10,
7]. Thus, requiring Strong Completeness should be avoided if possible.

In this section, we propose a new type of failure detectors that are well-suited to the crash-recovery model:
Although they do not require unstable processes to be eventually suspected forever, they do provide enough
information to cope with unstable processes.

At each process p, the output of such a failure detector consists of two items, 〈trustlist , epoch〉, where trustlist
is a set of processes and epoch is a vector of integers indexed by the elements of trustlist. Intuitively, q ∈
trustlist if p believes that q is currently up, and epoch[q] is p’s rough estimate of how many times q crashed
and recovered so far (it is called the epoch number of q at p). Let H(p, t) denote the output of p’s failure
detector module at time t. If q ∈ H(p, t).trustlist , we say that p trusts q at time t, otherwise we say that p
suspects q at time t.

7In the round-model S, a failure pattern indicates for each round which processes are up and which ones are down; a process
crashes in round k, if it is up in round k − 1 and down in round k; a process recovers in round k, if it is down in round k − 1 and up
in round k.

8

We first define 3Se to be the class of failure detectors D that satisfy the following properties:

• Monotonicity: At every good process, eventually the epoch numbers are nondecreasing8 . More pre-
cisely:

∀F, ∀H ∈ D(F), ∀g ∈ good(F), ∀p ∈ Π, ∃T ∈ T , ∀t, t′ > T :
[p ∈ H(g, t).trustlist ∧ p ∈ H(g, t′).trustlist ∧ t < t′] ⇒
H(g, t).epoch [p] ≤ H(g, t′).epoch [p]

• Completeness: For every bad process b and for every good process g, either eventually g permanently
suspects b or b’s epoch number at g is unbounded. More precisely:

∀F, ∀H ∈ D(F), ∀b ∈ bad(F), ∀g ∈ good(F) : [∃T ∈ T , ∀t > T, b 	∈ H(g, t).trustlist]
∨ [∀M ∈ N, ∃t ∈ T , b ∈ H(g, t).trustlist ∧H(g, t).epoch[b] > M]

• Accuracy: For some good process K and for every good process g, eventually g permanently trusts K
and K’s epoch number at g stops changing. More precisely:

∀F, ∀H ∈ D(F), ∃K ∈ good(F), ∀g ∈ good(F), ∃M ∈ N, ∃T ∈ T , ∀t > T :
K ∈ H(g, t).trustlist ∧H(g, t).epoch[K] = M

A simple implementation of 3Se for some models of partial synchrony is given in Appendix B. This
implementation does not have the limitations associated with Strong Completeness. Moreover, it does not use
stable storage.

Note that 3Se imposes requirements only on the failure detector modules of good processes. In particular,
the accuracy property of 3Se allows unstable processes to suspect all good processes. This is problematic
because unstable processes can continue to take steps, and their incorrect suspicions may hinder the progress
of some algorithms. Thus, we extend the accuracy property so that it also applies to unstable processes, as
follows:

• Strong Accuracy: For some good process K: (a) for every good process g, eventually g permanently
trusts K and K’s epoch number at g stops changing; and (b) for every unstable process u, eventually
whenever u is up, u trusts K and K’s epoch number at u stops changing. More precisely:

∀F, ∀H ∈ D(F), ∃K ∈ good(F) : [∀p ∈ good(F), ∃M ∈ N, ∃T ∈ T , ∀t > T,
K ∈ H(p, t).trustlist ∧H(p, t).epoch [K] = M] ∧
[∀u ∈ unstable(F), ∃M ∈ N, ∃T ∈ T , ∀t > T, u 	∈ F (t) ⇒
K ∈ H(u, t).trustlist ∧H(u, t).epoch[K] = M]

The class of failure detectors that satisfy Monotonicity, Completeness, and Strong Accuracy is denoted 3Su.
For convenience, we sometimes use 3Se or 3Su to refer to an arbitrary member of the corresponding class.

3Se and 3Su are closely related: In Section 10 we show that one can transform 3Se into 3Su provided that
a majority of processes are good (this transformation does not require stable storage).

8We require the monotonicity of epoch numbers to hold only eventually and only at good processes so that the failure detector can
be implemented without stable storage.

9

4 Consensus with Crash-Recovery

With consensus, each process proposes a value and processes must reach a unanimous decision on one of the
proposed values. The following properties must be satisfied:

• Uniform Validity: If a process decides v then some process previously proposed v.

• Agreement: Good processes do not decide different values.

• Termination: If all good processes propose a value, then they all eventually decide.

A stronger version of consensus, called uniform consensus [9], requires:

• Uniform Agreement: Processes do not decide different values.

The above specification allows a process to decide more than once. However, with Agreement, a good process
cannot decide two different values. Similarly, with Uniform Agreement, no process (whether good or bad)
can decide two different values.

The algorithms that we provide solve uniform consensus, and the lower bounds that we prove hold even for
consensus.

When processes have access to stable storage, a process proposes v, or decides v, by writing v into corre-
sponding local stable storage locations. By checking these locations, a process that recovers from a crash can
determine whether it previously proposed (or decided) a value.

When processes do not have access to stable storage, proposing and deciding v occur via an external input and
output containing v, and so when a process recovers it cannot determine whether it has previously proposed or
decided a value. Thus it is clear that if stable storage is not available and all processes may crash and recover,
consensus cannot be solved. In many systems, however, it is reasonable to assume that in each execution of
consensus there is a minimum number of processes that do not crash. In such systems, consensus is solvable
without stable storage provided certain conditions are met, as we will see next.

5 On the Necessity of Stable Storage for Consensus

In this section, we determine some necessary conditions for solving consensus without stable storage. Con-
sider a system in which at least na processes are always-up and at most nb are bad. Our first result is that
if na ≤ nb then it is impossible to solve consensus without stable storage, even in systems where there are
no unstable processes, links are reliable, and processes can use an eventually perfect failure detector 3P.
Informally, for the crash-recovery model,3P outputs a tag ∈ {AU,EU,UN,ED} for each process such that:

• There is a time after which at each process the tag of every process p is AU, EU, UN, or ED iff p is
always-up, eventually-up, unstable, or eventually-down, respectively.

Note that 3P is stronger than the other failure detectors in this paper and in [10, 7].

Theorem 3 If na ≤ nb consensus cannot be solved without stable storage even in systems where there are no
unstable processes, links do not lose messages, and processes can use 3P.

This result is tight in the sense that if na > nb then we can solve consensus without stable storage using a
failure detector that is weaker than 3P (see Section 6).

10

process is down

decide v′

G′

G

t

no steps taken

p

no steps taken

t+ t′ + 1

making progress

making progress

Legend:

decide v

Figure 1: A run constructed to prove Theorem 4

The impossibility result of Theorem 3 assumes that processes do not use any stable storage at all. Thus, if
a process crashes it cannot “remember” its previous proposal and/or decision value. Suppose stable storage
is available, but to minimize the cost of accessing it, we want to use it only for storing (and retrieving) the
proposed and decision values. Is na > nb still necessary to solve consensus? It turns out that if nb > 2, the
answer is yes:

Theorem 4 Suppose that each process can use stable storage only for storing and retrieving its proposed and
decision values. If na ≤ nb and nb > 2 then consensus cannot be solved even in systems where there are no
unstable processes, links do not lose messages, and processes can use 3P.

Theorems 3 and 4 have similar proofs, and so we only give a detailed proof of Theorem 4 here. The main
idea of this proof is as follows. For a contradiction, assume that there is a consensus algorithm that does not
use stable storage (except for saving the proposed and decision values) and works for na ≤ nb and nb > 2.
Let G be a subset of nb processes. Consider a run in which initially processes in G are very slow, i.e., they do
not take steps for a while (see Fig. 1). From the point of view of the other processes, all the processes in G
could be bad, so eventually some process p not in G decides some value v. Let t be the time when p decides
v, and let G′ be a subset of nb processes that contains p and is disjoint from G. At time t, every process that
is not in G or G′ crashes and recovers (i.e., it loses its intermediate state and restarts in a recovery state; at
this point it “remembers” only its own proposed value). Note that at time t, processes not in G′ do not know
about the decision value v (and processes in G have not taken any step yet). From time t, all messages still in
transit at time t are delayed, and all the processes in G′ stop taking steps for a long time. From the point of
view of processes not in G′, it could be that: (1) all the nb processes in G′ are bad, (2) all the processes not in
G or G′ are eventually up, and (3) all the nb processes in G are always up (this scenario is consistent with the
assumption that na ≤ nb). Thus, the processes not in G′ must decide without input from G′, and in particular
without the knowledge that p has decided v. Let v′ be the decision of the processes not in G′.

It remains to show that v could be different from v′ (a contradiction). Proving this is not simple because:
(1) the processes not in G or G′ participate in the decision of both v and v′, (2) for both decisions, they

11

propose the same values (each process stores its proposed value in stable storage, and so when it recovers it
proposes the same value), and (3) the processes not in G or G′ could be a (large) majority of the processes.
By Lemma 5, however, we can indeed find some assignment of proposed values to processes, and sets G and
G′, such that v 	= v′ (this lemma uses the fact that nb > 2).

We now prove Theorem 4 in detail.

Consider a system with na ≤ nb, nb > 2, and such that links do not lose messages. Assume for a contradiction
that there is a consensus algorithm A that (1) uses stable storage only for storing and retrieving its proposed
and decision values; and (2) uses failure detector 3P. Henceforth, in all runs of A that we consider, processes
always propose a value in {0, 1} at the beginning of the run.

Definition 1 LetR be a set of runs ofA. By the properties of consensus, in every run inR, all good processes
eventually decide the same value. We say that R is 0-valent (resp. 1-valent) if in every run in R, the good
processes decide 0 (resp. 1). We say that R is bivalent if R is neither 0-valent nor 1-valent, i.e., R has a run
in which the good processes decide 0 and a run in which the good processes decide 1.

In the next definitions, let V be an assignment of proposed values, one for each process, and Gau and Gbad be
disjoint subsets of size nb of processes.

Definition 2 R(V,Gbad) is defined to be the set of runs of A such that (1) the value proposed by each process
is given by V ; (2) processes in Gbad crash at the beginning and never recover; and (3) processes not in Gbad

never crash.

Note that in any run in R(V,Gbad), processes in Gbad are bad, and the other processes are always-up.

Definition 3 R(V,Gau, Gbad) is defined to be the set of runs of A such that (1) the value proposed by each
process is given by V ; (2) processes in Gbad crash at the beginning and never recover; (3) processes in Gau

never crash; and (4) processes not in Gau ∪Gbad crash at the beginning, recover right afterwards, and never
crash again.

Note that in any run in R(V,Gau, Gbad), processes in Gau are always-up,9 processes in Gbad are bad, and the
other processes are eventually-up.

Lemma 5 There exists V and disjoint subsets of processes G and G′ of size nb such that (1) in some run
r ∈ R(V,G), the first good process to decide is in G′; (2) in some run r′ ∈ R(V,G,G′), the decision value
of the good processes is different from the decision value of the good processes in r.

Proof. There are two cases. For the first case, assume that there is V and a set G of size nb such that R(V,G)
is bivalent. Then, for i = 0, 1 we can find a run ri in R(V,G) in which good processes decide i. Let pi be the
first good process to decide in ri and let G′ be any subset of size nb that is disjoint from G and contains p0
and p1. Let r′ be any run in R(V,G,G′). If good processes in r′ decide 0, let r := r1; else let r := r0. Then
clearly r and r′ satisfy conditions (1) and (2) of the lemma.

For the other case, assume that for every V̄ and every set Ḡ of size nb, R(V̄ , Ḡ) is either 0-valent or 1-
valent. Let G = {n − nb + 1, . . . , n}. For i = 0, 1, . . . , n, let Vi be the assignment of proposed values such
that the proposed value for processes 1, 2, . . . , i is 1, and for processes i + 1, . . . , n, it is 0. Then clearly

9This is possible because |Gau| = nb ≥ na.

12

R(V0, G) is 0-valent. Moreover, for any run in R(Vn−nb
, G), all processes that ever take any steps propose 1,

so R(Vn−nb
, G) is 1-valent. Therefore, for some j ∈ {0, . . . , n − nb − 1} we have that R(Vj , G) is 0-valent

and R(Vj+1, G) is 1-valent.

Let r0 ∈ R(Vj , G) and r1 ∈ R(Vj+1, G). Note that good processes in r0 decide 0, and in r1 good processes
decide 1. For i = 0, 1, let pi be the first good process to decide in ri and let G′ be any subset of size nb

that is disjoint from G and contains p0, p1 and j + 1 (here we are using the fact that nb > 2). Note that
the only difference between Vj and Vj+1 is the proposed value of process j + 1. Moreover, j + 1 ∈ G′,
so that process j + 1 never takes any steps in any runs in R(Vj, G,G′) or in R(Vj+1, G,G

′). Therefore,
R(Vj , G,G

′) = R(Vj+1, G,G
′). Let r′ ∈ R(Vj , G,G

′). If good processes in r′ decide 0, let r := r1 and
V := Vj+1; otherwise, let r := r0 and V := Vj . Then clearly r and r′ satisfy conditions (1) and (2) of the
lemma. 2

Proof of Theorem 4 (Sketch). Let V , G, G′, r and r′ be as in Lemma 5. Let p (resp. p′) be the first good
process to decide in r (resp. r′), let t (resp. t′) be the time when this decision happens and let v (resp. v′) be
the decision value. Then v 	= v′ and p ∈ G′. We now construct a new run r′′ of A as follows. The proposed
value of processes is given by V . Initially processes inG do not take any steps and processes in Π \G behave
as in run r. This goes on until time t (when p decides v). Messages sent and not received by time t are delayed
until after time t + t′ + 1. At time t + 1, all processes in G′ stop taking steps, and processes not in G ∪ G′

crash. At time t+ 2, processes not in G ∪G′ recover. Note that at time t+ 2, the state of all processes not in
G′ are as in run r′ at time 1 (this is because processes could not use stable storage to keep intermediate states
of the computation). From time t + 2 to time t+ t′ + 1, processes not in G′ behave as in run r′ from time 1
to t′. Thus, at time t + t′ + 1, process p′ decides v′. After time t + t′ + 1, (1) all processes take steps in a
round-robin fashion, (2) all messages ever sent are received, (3) the failure detector behaves perfectly, i.e., at
every process the tag of processes in G ∪G′ is AU and the tag of processes not in G ∪G′ is EU.

Note that r′′ is a run of A in which all processes are good. Moreover, p decides v and p′ decides v′ 	= v. This
violates the agreement property of consensus. 2

We now briefly outline the proof of Theorem 3. Let na ≤ nb. If nb = 0 then na = 0 and it is easy to see
that there can be no consensus algorithm (since all processes may lose their proposed values by crashing at
the beginning). So let nb > 0. Assume for a contradiction that there is a consensus algorithm A that does not
use stable storage (and uses 3P).

Lemma 6 There exists V and disjoint subsets of processes G and G′ of size nb such that the decision value
of good processes in some run r ∈ R(V,G) is different from the decision value of good processes in some run
r′ ∈ R(V,G,G′).

Proof. The proof is similar to the proof of Lemma 5. 2

The rest of the proof of Theorem 3 uses Lemma 6 and otherwise is similar to the proof of Theorem 4.

6 Solving Consensus without Stable Storage

It turns out that if na > nb, consensus can be solved without stable storage using 3Se. This is somewhat
surprising since na > nb allows a majority of processes to crash (and thus lose all their states). Note that the
requirement of na > nb is “tight”: in the previous section, we proved that if na ≤ nb consensus cannot be
solved without stable storage even with 3P, a failure detector that is stronger than 3Se.

The consensus algorithm that uses 3Se is given in Appendix A. In this section, we present a more efficient
algorithm that uses a minor variant of 3Se, denoted 3S′

e. The only difference between 3Se and 3S′
e is that

while the accuracy property of3Se requires thatK be a good process (see Section 3.2), the accuracy property

13

For every process p:

1 Initialization:
2 Rp ← ∅; decisionvaluep ← ⊥; for all q ∈ Π \ {p} do xmitmsg [q]← ⊥
3 To s-send m to q:
4 if q �= p then xmitmsg [q]← m; send m to q else simulate receive m from p

5 Task retransmit:
6 repeat forever
7 for all q ∈ Π \ {p} do if xmitmsg [q] �= ⊥ then send xmitmsg [q] to q

8 upon receive m from q do
9 if m = RECOVERED then Rp ← Rp ∪ {q}
10 if m = (decisionvalue , DECIDE) and decisionvaluep = ⊥ then
11 decisionvaluep ← decisionvalue ; decide(decisionvaluep)
12 terminate task {skip round, 4phases, participant, coordinator, retransmit}
13 if m �= (−, DECIDE) and decisionvaluep �= ⊥ then send (decisionvaluep, DECIDE) to q

14 upon propose(vp): {p proposes vp via an external input containing vp}
15 (rp, estimatep, tsp)← (1, vp, 0); fork task {4phases, retransmit}
16 Task 4phases:
17 cp ← (rp mod n) + 1; fork task {skip round, participant}
18 if p = cp then fork task coordinator

19 Task coordinator:
20 {Stage 1: Phase NEWROUND}
21 c seqp ← 0
22 repeat
23 PrevRp ← Rp; c seqp ← c seqp + 1
24 s-send (rp, c seqp, NEWROUND) to all
25 wait until [received (rp, c seqp, estimateq,
26 tsq , ESTIMATE) from
27 max(nb + 1, n− nb − |Rp|) processes]
28 until Rp = PrevRp

29 t← largest tsq such that p received
30 (rp, c seqp, estimateq, tsq , ESTIMATE)
31 estimatep ← select one estimateq such that
32 p received (rp, c seqp, estimateq, t, ESTIMATE)
33 tsp ← rp

44 Task participant:
45 {Stage 1: Phase ESTIMATE}
46 s-send (rp, WAKEUP) to cp

47 max seqp ← 0
48 repeat
49 if received (rp, seq , NEWROUND) from cp

50 for some seq > max seqp then
51 s-send (rp, seq , estimatep, tsp, ESTIMATE) to cp

52 max seqp ← seq
53 until [received (rp, seq , estimatecp , NEWESTIMATE)
54 from cp for some seq]
55 if p �= cp then
56 (estimatep, tsp)← (estimatecp , rp)

34 {Stage 2: Phase NEWESTIMATE}
35 c seqp ← 0
36 repeat
37 PrevRp ← Rp; c seqp ← c seqp + 1
38 s-send (rp, c seqp, estimatep,
39 NEWESTIMATE) to all
40 wait until [received (rp, c seqp, ACK) from
41 max(nb + 1, n− nb − |Rp|) processes]
42 until Rp = PrevRp

43 s-send (estimatep, DECIDE) to all

57 {Stage 2: Phase ACK}
58 max seqp ← 0
59 repeat forever
60 if received (rp, seq , estimatecp , NEWESTIMATE)
61 from cp for some seq > max seqp then
62 s-send (rp, seq , ACK) to cp

63 max seqp ← seq

64 Task skip round:
65 d← Dp {query 3S′

e}
66 if cp ∈ d.trustlist \ Rp then
67 repeat d′ ← Dp {query 3S′

e}
68 until [cp �∈ d′.trustlist \Rp or d.epoch [cp] < d′.epoch [cp] or received some message (r, . . .) such that r > rp)]
69 terminate task {4phases, participant, coordinator} {abort current round}
70 repeat d← Dp until d.trustlist \ Rp �= ∅ {query 3S′

e}
71 rp ← the smallest r > rp such that [(r mod n) + 1] ∈ d.trustlist \Rp and r ≥ max{r′| p received (r′, . . .)}
72 fork task 4phases {go to a higher round}
73 upon recovery:
74 decisionvaluep ← ⊥; for all q ∈ Π \ {p} do xmitmsg [q]← ⊥; fork task retransmit
75 s-send RECOVERED to all

Figure 2: Solving Consensus without Stable Storage using 3S′e

14

of 3S ′
e additionally requires that K be an always-up process if such a process exists. It is worth noting that

the implementation of 3Se in Appendix B also implements 3S′e.

The consensus algorithm that we give here always satisfies the Uniform Agreement and Validity properties of
uniform consensus for any choice of na and nb, and if na > nb then it also satisfies the Termination property.

This algorithm, shown in Fig. 2, is based on the rotating coordinator paradigm [3] and uses 3S′e. It must deal
with unstable processes and link failures. More importantly, since more than half of the processes may crash
and completely lose their states, and then recover, it must use new mechanisms to ensure the “locking” of the
decision value (so that successive coordinators do not decide differently).10 We first explain how the algorithm
deals with unstable processes and link failures, and then describe the algorithm and the new mechanisms for
locking the decision value.

How does a rotating coordinator algorithm cope with an unstable coordinator? In [10, 7] the burden is entirely
on the failure detector: it is postulated that every unstable process is eventually suspected forever. In our
algorithm, the failure detector is not required to suspect unstable processes: they can be trusted as long as
their epoch number increases from time to time — a requirement that is easy to enforce. If the epoch number
of the current coordinator increases at a process, this process simply abandons this coordinator and goes to
another one.

To deal with the message loss problem, each process p has a task retransmit that periodically retransmits
the last message sent to each process (only the last message really matters, just as in [4, 6, 7]). This task is
terminated once p decides.

We now describe the algorithm in more detail. When a process recovers from a crash, it stops participating
in the algorithm, except that it periodically broadcasts a RECOVERED message until it receives the decision
value. When a process p receives a RECOVERED message from q, it adds q to a set Rp of processes known to
have recovered.

Processes proceed in asynchronous rounds, each one consisting of two stages. In the first stage, processes
send a WAKEUP message to the coordinator c so that c can start the current round (if it has not done so yet).
The coordinator c broadcasts a NEWROUND message to announce a new round, and each process sends its
current estimate of the decision value — together with a timestamp indicating in which round it was obtained
— to c. Then c waits for estimates from max(nb + 1, n − nb − |Rc|) processes — this is the maximum
number of estimates that c can wait for without fear of blocking forever, because more than nb processes are
always-up and respond, and at most nb + |Rc| processes have crashed and do not respond. Then c checks
whether during the collection of estimates it detected the recovery of a process that never recovered before
(Rc 	= PrevRc). If so, c restarts the first stage from scratch.11 Otherwise, c chooses the estimate with the
largest timestamp as its new estimate and proceeds to the second stage.

In the second stage, c broadcasts its new estimate; when a process receives this estimate, it changes its own
estimate and sends an ACK to c. Process cwaits for ACK messages from max(nb+1, n−nb−|Rc|) processes.
As before, c restarts this stage from scratch if during the collection of ACKs it detected the recovery of a
process that never recovered before (Rc 	= PrevRc). Finally c broadcasts its estimate as the decision value
and decides accordingly. Once a process decides, it enters a passive state in which, upon receipt of a message,
the process responds with the decision value.

A round r can be interrupted by task skip round (which runs in parallel with tasks coordinator and partici-
pant): a process p aborts its execution of round r if (1) it suspects the coordinator c of round r, or (2) it trusts

10The standard technique for locking a value is to ensure that a majority of processes “adopt” that value. This will not work here:
a majority of processes may crash and recover, and so all the processes that adopted a value may later forget the value they adopted.

11An obvious optimization is for c to check during the collection of estimates whether Rc �= PrevRc. If so it can restart the first
stage right away.

15

c but detects an increase in the epoch number of c, or (3) it detects a recovery of c, or (4) it receives a message
from a round r′ > r. When p aborts round r, it jumps to the lowest round r′ > r such that (1) p trusts the
coordinator c′ of round r′, (2) p has not detected a recovery of c′ (c′ 	∈ Rp) and (3) p has not (yet) received
any message with a round number higher than r′.

The code in lines 31–33 is executed atomically, i.e., it cannot be interrupted, except by a crash. As an obvious
optimization, the coordinator of round 1 can skip phase NEWROUND and simply set its estimate to its own
proposed value. We omit this optimization from the code.

The correctness of the algorithm relies on the following crucial property: if the coordinator sends a decision
for v in some round, then value v has previously been “locked”, i.e., in any later round, a coordinator can
only choose v as its new estimate. This property is ensured by two mechanisms: (1) the coordinator uses
max(nb + 1, n− nb − |Rp|) as a threshold to collect estimates and ACKs, and (2) the coordinator restarts the
collection of estimates and ACKs from scratch if it detects a new recovery (Rc 	= PrevRc).

The importance of mechanism (2) is illustrated in Fig. 3: it shows a bad scenario (a violation of the cru-
cial property above) that could occur if this mechanism is omitted. The system consists of four processes
{c, p, p′, c′}. Assume that nb = 1 and there are at least na = 2 processes that are always up. At point A,
the coordinator c of round r sends its estimate 0 to all, and at B, it receives ACKs from itself and p. At F , p′

recovers from a crash and sends a RECOVERED message to all. At G, c has received one RECOVERED mes-
sage from p′ (so |Rc| = 1) and two ACKs. Since max(nb + 1, n − nb − |Rc|) = 2, c completes its collection
of ACKs (this is the maximum number of ACKs that c can wait for without fear of blocking), and c sends a
decision for 0 to all in round r. Meanwhile, at C , p recovers from a crash and sends a RECOVERED message
to all, and c′ receives this message before D. At D, c′ becomes the coordinator of round r′ > r and sends a
NEWROUND message to all. At E, c′ has received two estimates for 1, one from itself and one from p′. Since
it has also received one RECOVERED message from p, c′ completes its collection of estimates, and chooses 1
as its new estimate for round r′ — even though c sends a decision for 0 in an earlier round.

The proof of the algorithm shows that mechanism (2) prevents this and other similar bad scenarios. In this
example, if c had used mechanism (2), then at G it would have restarted the collection of ACKs from scratch
because PrevRc = ∅ 	= {p′} = Rc.12

Theorem 7 The algorithm of Fig. 2 satisfies the Uniform Validity and Uniform Agreement properties of uni-
form consensus. If at most nb processes are bad, and more than nb processes are always up, then it also
satisfies the Termination property.

The proof follows.

Definition 4 We say that p is in round r at time t if p does not crash by time t and the value of variable rp at
time t is r. A process p starts round r when p assigns r to variable rp.

Lemma 8 (Uniform Validity) If a process decides v then some process previously proposed v.

Proof. Trivial. 2

Lemma 9 Suppose that in some round r the coordinator c s-sends (est , DECIDE) in line 43. In every round
r′ ≥ r, if the coordinator c′ selects a new estimate value est′ in line 31, then est = est′.

12It is not sufficient to use the restarting mechanism only for collecting ACKs: a symmetric example shows that this mechanism
must also be used for collecting estimates.

16

A B G
c

p

p′

c′

F

C

D E

Legend:

message sent and received message sent but delayed for a long time process is down

Remarks:
- c is the coordinator in round r; c′ is the coordinator in round r′ > r

- C: p sends RECOVERED to all
- B: c received (r, ACK) from c and p

- D: c′ sends (r′, NEWROUND) to all

- E: c′ received (r′, 1, ts , ESTIMATE) from c′ and p′,

- F : p′ sends RECOVERED to all
and c′ selects 1 as the new estimate

- G: c sends (0, DECIDE) to all

- A: c sends (r, 0, NEWESTIMATE) to all

Figure 3: A bad scenario that can occur if mechanism (2) is not used.

Proof. The proof is by induction on the round number r′. The claim trivially holds for r′ = r. Now assume
that the claim holds for all r′, r ≤ r′ < k. Let c′ be the coordinator of round k. We will show that the claim
holds for r′ = k, i.e., if c′ selects a new estimate value est′ in line 31 in round k, then est′ = est .

Since c s-sends (est , DECIDE) in line 43 in round r, c executes the wait statement in line 40 only finitely
often in round r. Similarly, since c′ executes line 31 in round k, c′ executes the wait statement in line 25 only
finitely often in round k. Thus the following definitions are valid:

• seqA, the value of c seqc just after c executes the wait statement in line 40 for the last time in round r.

• A, the subset of processes from which c has received (r, seqA, ACK) by the time c exits the wait
statement in line 40 for the last time in round r.

• RA, the value of set Rc just after c executes the wait statement in line 40 for the last time in round r.

• seqE , the value of c seqc′ just after c′ executes the wait statement in line 25 for the last time in round k.

• E, the subset of processes from which c′ has received messages of the form (k, seqE , *, *, ESTIMATE)
by the time c′ exits the wait statement in line 25 for the last time in round k.

• RE , the value of set Rc′ just after c′ executes the wait statement in line 25 for the last time in round k.

We first claim that (1) processes in RA crash before c starts s-sending (r, seqA, est , NEWESTIMATE) to any
process in round r (line 38). Indeed, just after c executes line 40 for the last time in round r, we have that
RA = Rc (by the definition ofRA) and Rc = PrevRc (by the condition in line 42). Therefore, PrevRc = RA.
But all processes in PrevRc crashed before c starts s-sending (r, seqA, est , NEWESTIMATE). So the claim
follows.

17

Note that (2) |A| ≥ nb + 1 (this is due to the guard in line 40). We now show that A ∩ RA = ∅. By the
previous claim, if a process p ∈ RA then p crashes before c starts s-sending (r, seqA, est , NEWESTIMATE),
which happens before any process s-sends (r, seqA, ACK) to c. So p crashes before any process s-sends
(r, seqA, ACK) to c. Since after a process crashes (and recovers) it can s-send only RECOVERED or DECIDE

messages, it follows that p 	∈ A. Thus, A ∩RA = ∅.

So, |A ∪RA| = |A|+ |RA|. By the threshold used to collect ACKs in lines 40-41, we have |A| ≥ max(nb +
1, n − nb − |RA|), and thus (3) |A ∪RA| ≥ n− nb.

By analogous arguments we can show that (4) |E| ≥ nb + 1 and (5) |E ∪RE | ≥ n− nb.

We now show that E ∩ A 	= ∅. Suppose, for contradiction, that E ∩ A = ∅. By (3) and (4), we have
E ∩ (A ∪ RA) 	= ∅. Since E ∩ A = ∅, we have E ∩ RA 	= ∅. Let p ∈ E ∩ RA. Clearly, c′ starts
s-sending (k, seqE , NEWROUND) to processes before p receives such a message, which happens before p
s-sends a message of the form (k, seqE , *, *, ESTIMATE) to c′ (p s-sends such message because p ∈ E),
which happens before p crashes (since after a process crashes and recovers, it can s-send only RECOVERED

or DECIDE messages), which happens before c starts s-sending (r, seqA, est , NEWESTIMATE) to processes
(this follows from the fact that p ∈ RA and Claim (1)). From all this, we conclude that c′ starts s-sending (k,
seqE , NEWROUND) before c starts s-sending (r, seqA, est , NEWESTIMATE).

By (2) and (5), we have A∩ (E∪RE) 	= ∅. By an argument analogous to the above one, we can conclude that
c starts s-sending (r, seqA, est , NEWESTIMATE) before c′ starts s-sending (k, seqE , NEWROUND). This is
a contradiction. Hence, we conclude that E ∩A 	= ∅.

Let p ∈ E ∩ A. By the definition of A, p s-sends (r, seqA, ACK) to c in round r. Before doing so, p
updates tsp to r (line 33 or 56). By the definition of E, for some est′′ and ts ′′, p s-sends (k, seqE , est ′′, ts ′′,
ESTIMATE) to c′ in line 51 in round k. Since k > r and the value of tsp is nondecreasing, we have ts′′ ≥ r.
Moreover, it is easy to see that c′ does not receive any messages of the form (k, *, *, ts , ESTIMATE) with
ts ≥ k. So, the timestamp t that c′ selects in line 29 in round k is such that r ≤ t < k. Let q be the process
whose estimate value est′ is selected in line 31 in round k. Then in round k, q s-sends (k, seqE , est ′, t,
ESTIMATE). We claim that in round t, q updates estimateq to est ′ in line 31 or 56. Indeed, in round t, q
updates estimateq to some value est′′′ and q updates tsq to t. After that, q does not change estimateq and
tsq before round k (because otherwise in round k, tsq would be different from t and q would not s-sends
(k, seqE , est ′, t, ESTIMATE)). Therefore est′ = est ′′′.

Since q updates estimateq to est ′ in round t (line 31 or 56), it is easy to see that the coordinator of round t
selects est ′ as the new estimate value in line 31. By the induction hypothesis, we have est′ = est . This shows
the induction step. 2

Lemma 10 If processes c and c′ s-send (est , DECIDE) and (est ′, DECIDE) in line 43 in rounds r and r′,
respectively, then est = est′.

Proof. Assume without loss of generality that r′ ≥ r. Since line 43 is executed only by the coordinator, c and
c′ are the coordinators of rounds r and r′, respectively. Since c′ s-sends (est ′, DECIDE) in line 43 in round
r′, c′ selects est′ in line 31. By Lemma 9, est = est ′. 2

Lemma 11 (Uniform Agreement) No two processes decide differently.

Proof. Suppose that processes p and p′ decide on values est and est′, respectively. Process p decides est
in line 11 after receiving message (est , DECIDE). By a simple induction, some process must have s-sent
message (est , DECIDE) in line 43. Similarly, process p′ decides est′ in line 11, and so some process must
have s-sent message (est′, DECIDE) in line 43. By Lemma 10, est = est′. 2

18

Lemma 12 A process can start only finitely many rounds.

Proof. In order to obtain a contradiction, suppose that there are processes that start infinitely many rounds.
Let P be the set of all such processes. P contains only always-up processes, since a process that crashes does
not start any rounds ever again (even if it recovers). For any process p ∈ P and any round r ≥ 1, p eventually
starts a round higher than r. Let r+p be the lowest round higher than r that p starts and let r−p be the highest
round lower than or equal to r that p starts. Then 1 ≤ r−p ≤ r < r+p .

By the Accuracy property of 3S′e, we can find a time T and an always-up process K such that after T , K is
never suspected by any good process and the epoch number of K at every good process stops changing.

Let r be a round such that (1) K is the coordinator of round r, and (2) no process in Π \ P starts a round
higher than r, and (3) for every p ∈ P , p starts round r−p after time T . Such round clearly exists because
processes in Π \ P start only finitely many rounds and processes in P start infinitely many rounds.

Let p be the first process to start a round higher than r. By (2), p ∈ P and by the definition of r−p and r+p , p
selects round r+p when it executes line 71 in round r−p . This implies that r−p = r: indeed, if r−p < r then p
does not select round r+p in line 71; instead, it selects a round number that is at most r since (a) p trusts the
coordinator K of round r (by (3) and the definitions of T and K), and (b) K 	∈ Rp (since K is always-up),
and (c) p does not receive any messages of a round higher than r (since p is the first process to start a round
higher than r). So r−p = r. By (3), p starts round r after time T . By (1) and the definition of T andK , while p
is in round r, condition K ∈ d.trustlist \Rp in line 66 evaluates to true and condition (K 	∈ d′.trustlist \Rp

or d.epoch[K] < d′.epoch[K]) in line 68 always evaluates to false. Since p starts a round higher than r, it
does not loop forever in lines 67–68. So p eventually receives a message of a round higher than r while in
round r. This contradicts the fact that p is the first process to start a round higher than r. 2

Definition 5 We say that an always-up process p blocks in round r if p starts round r but p does not start a
higher round, and p never decides.

Lemma 13 If an always-up process p blocks in round r, then in this round its skip round task loops forever
in lines 67–68.

Proof. Clearly, while process p is in round r, its task skip round must loop forever in lines 67–68 or in line 70
(otherwise p starts a round higher than r). By the Accuracy property of3S′e, p eventually trusts some always-
up process c forever. Moreover c 	∈ Rp since c never crashes. So p cannot loop forever in line 70. Therefore
p loops forever in lines 67–68. 2

Lemma 14 Suppose an always-up process p proposes but never decides. If p receives a message of round r,
then eventually p starts some round r′ ≥ r.

Proof. In order to obtain a contradiction, suppose that p never starts any round r′ ≥ r. Since p proposes, p
starts some round (namely, round 1). Since p does not decide, p blocks in some round r′′ < r. By Lemma 13,
while in round r′′ the skip round task of p loops forever in lines 67–68. Since p receives a message of round
r, p eventually exits the loop in lines 67–68 — a contradiction. 2

Definition 6 We say that an eventually-up process stabilizes at time t if it recovers at time t and does not
crash afterwards. By convention, we say that an always-up process stabilizes at time 0.

Lemma 15 Let p and q be two good processes. If (1) p s-sends m to q after p stabilizes, (2) m is the last
message p s-sends to q, and (3) p does not decide after p stabilizes, then q receives m from p infinitely often.

19

Proof. By (1), (2) and (3), p sends m to q infinitely often in task retransmit (line 7). By the Fair Loss
property of links, q receives messages from p infinitely often. Note that m is the only message that p sends to
q infinitely often: this is because (1) in task retransmit, p eventually sends no message different from m to q,
and (2) outside task retransmit, p can only send messages of the form (∗, DECIDE) (line 13); however, such
messages are sent only finitely often since p does not decide after p stabilizes. Therefore, by the No Creation
and Finite Duplication properties of links, q receives from p only finitely many messages different from m.
Since q receives messages from p infinitely often, it follows that q receives m from p infinitely often. 2

Lemma 16 Suppose p and q are good processes. If p decides after p stabilizes and p receives non-DECIDE

messages from q an infinite number of times, then eventually q decides after q stabilizes.

Proof. After p stabilizes and decides, every time p receives a non-DECIDE message from q, p sends a DECIDE

message to q (line 13). Therefore p sends DECIDE messages to q infinitely often. Moreover, this is the only
message that p sends to q infinitely often (since after p decides, it terminates all tasks). By the link properties,
this implies that q receives DECIDE messages from p infinitely often. Thus, eventually q decides after q
stabilizes. 2

Lemma 17 If an always-up process p blocks in a round r, then the coordinator c of this round is also an
always-up process. Moreover, if p 	= c then c receives messages of round r from p infinitely often.

Proof. Note that if p = c then the lemma holds trivially. So assume that p 	= c. We first prove that c is a
good process. In order to obtain a contradiction, suppose that c is bad. By the Completeness and Monotonicity
properties of3S′

e, eventually either c is suspected by p forever, or the epoch number of c at p is nondecreasing
and unbounded. Therefore, in round r, p eventually exits the loop in lines 67–68. This contradicts Lemma 13.
So c is a good process.

We now claim that c receives messages of round r from p infinitely often. To show the claim, first note that in
round r, p s-sends at least one message (r, WAKEUP) to c. If p s-sends only finitely many messages in round
r, then let m be the last message p s-sends to c. By Lemma 15, c receives this message from p infinitely
often and this shows the claim. If p s-sends infinitely many messages in round r, then p sends infinitely
many messages of round r to c. Moreover, p sends only finitely many messages that are not of round r: this is
because (1) in task retransmit, p eventually sends only messages of round r, and (2) outside task retransmit,
p can only send messages of the form (∗, DECIDE), and such messages are never sent since p never decides.
By the link properties, this implies that c receives messages of round r from p infinitely often. This shows the
claim.

We now prove that c is an always-up process. In order to obtain a contradiction, suppose that c is an eventually-
up process. If c decides after c stabilizes then by Lemma 16 p eventually decides, and this contradicts the
assumption that p blocks in round r. So c does not decide after c stabilizes. Then c s-sends a RECOVERED

message to p after c stabilizes, and this is the last message c s-sends to p. By Lemma 15, p eventually receives
this message and adds c to Rp. So eventually condition c 	∈ d′.trustlist \Rp in line 68 is true. Therefore, in
round r, p’s skip round task cannot loop forever in lines 67–68. This contradicts Lemma 13. Hence c is an
always-up process. 2

Lemma 18 If the coordinator c of round r is always-up and blocks in round r, then c waits forever at line 25
or 40.

Proof. Since c is the coordinator of round r and c blocks in round r, c loops forever in lines 22–28 or 36–42,
because otherwise q s-sends a DECIDE message to itself (line 43) and then decides (line 11). Since set Rc

is finite and c never removes any process from Rc, eventually condition Rc = PrevRc in lines 28 or 42 is
always true. Therefore, c waits forever at line 25 or 40. 2

20

Lemma 19 Suppose every always-up process proposes. If some good process p decides after p stabilizes,
then eventually every good process q decides after q stabilizes.

Proof. In order to obtain a contradiction, suppose that every always-up process proposes and some good
process p decides after p stabilizes, but there is some good process q that does not decide after q stabilizes.
Let Q be the set of good processes q such that q does not decide after q stabilizes.

We first claim that Q contains only always-up processes. In order to obtain a contradiction, suppose that
q ∈ Q for some eventually-up process q. Then after q stabilizes, q s-sends a RECOVERED message to all
processes, and in particular to process p. This is the last message q s-sends to p. By Lemma 15, p receives
RECOVERED messages from q infinitely often. By Lemma 16, q eventually decides after q stabilizes. This
contradicts the assumption that q ∈ Q.

So Q contains only always-up processes. By Lemma 12, for every q ∈ Q, q can start only finitely many
rounds. Since q proposes, q blocks in some round rq. Let r = max{rq | q ∈ Q}, and let q ∈ Q be a process
that blocks in round r.

• Case 1: q is the coordinator of round r. By Lemma 18, q waits forever at line 25 or 40. Before q waits
forever, it s-sends a non-DECIDE message to p (line 24 or 38). By Lemma 15, p receives this message
infinitely often. By Lemma 16, q eventually decides after q stabilizes. This contradicts the fact that
q ∈ Q.

• Case 2: q is not the coordinator of round r. Let c 	= q be the coordinator of round r. By Lemma 17, c
is an always-up process and c receives messages of round r from q infinitely often. If c decides after c
stabilizes, then by Lemma 16, q decides after q stabilizes and this contradicts the fact that q ∈ Q. So
c does not decide after c stabilizes. Since c is always-up, c never decides. By Lemma 14, eventually c
starts a round r′ ≥ r. Since c ∈ Q, by the definition of r, we have that r′ ≤ r. Thus r′ = r and so c
blocks in round r. By Case 1, c eventually decides — a contradiction. 2

Henceforth, assume that at most nb processes are bad, and more than nb processes are always up.

Lemma 20 If every always-up process proposes a value, then eventually some always-up process decides.

Proof. In order to obtain a contradiction, suppose that no always-up process decides. By Lemma 12, every
always-up process p can start only finitely many rounds. Since p proposes, p blocks in some round rp. Let
r = max{rp | p is always-up} and let p be an always-up process that blocks in round r.

• Case 1: p is the coordinator of round r.

By Lemma 18, p waits forever at line 25 or 40.

• Case 1.1: p waits forever at line 25.

Let seq be the value of c seqp when p waits forever at line 25.

We first show that for every always-up process q, eventually p receives (r, seq , estimateq, tsq, ESTI-
MATE) from q. Process p s-sends (r, seq , NEWROUND) to q (line 24) before p waits forever at line 25.
We claim that q receives this message from p and q eventually starts round r. Indeed, if q = p, then
p receives this message from itself (line 4) and p starts round r by definition. If q 	= p, then (r, seq ,
NEWROUND) is the last message p s-sends to q. By Lemma 15, q eventually receives this message. By
Lemma 14, q eventually starts a round r′ ≥ r. By the definition of r, we have that r′ ≤ r. Thus r′ = r
and so q starts round r.

21

Process q cannot receive a NEWESTIMATE message of round r from p, because p waits forever at
line 25 and never s-sends NEWESTIMATE messages. So the guard in line 53 is always false. Thus q
loops forever in lines 48–53. Since eventually q receives (r, seq , NEWROUND) from p and seq > 0 is the
largest value of variable c seqp in round r, eventually q s-sends (r, seq , estimateq, tsq, ESTIMATE) to
p (line 51) and sets max seqq to seq (line 52). We claim that p eventually receives this message from q.
Indeed, if q = p, then p receives this message from itself (line 4). If q 	= p, then (r, seq , estimateq, tsq,
ESTIMATE) is the last message q s-sends to p. By Lemma 15, p eventually receives this message from
q. Therefore for every always-up process q, eventually p receives (r, seq , estimateq, tsq , ESTIMATE)
from q.

Since there are more than nb processes that are always up, eventually p receives (r, seq , estimateq, tsq,
ESTIMATE) from at least nb + 1 processes. Moreover, for every eventually-up process q, q does not
decide after q stabilizes, otherwise by Lemma 19 every always-up process decides. After q stabilizes,
q s-sends a RECOVERED message to all (line 75). By Lemma 15, p eventually receives this message
from q. When p receives this message from q, p adds q to set Rp (line 9). So eventually Rp contains
all eventually-up processes. Since at most nb processes are bad, eventually the number of always-up
processes is at least n−nb−|Rp|. Therefore, eventually p receives (r, seq , estimateq, tsq, ESTIMATE)
from at least n − nb − |Rp| processes. Hence the guard in line 25 is true forever, and p cannot wait
forever at line 25 — a contradiction.

• Case 1.2: p waits forever at line 40.

Let seq be the value of c seqp when p waits forever at line 40.

By an argument analogous to the one in Case 1.1, we can show that: (1) for every always-up process
q, p receives (r, seq , ACK) from q; (2) eventually Rp contains all eventually-up processes. Therefore,
since at most nb processes are bad, and more than nb processes are always up, p receives (r, seq , ACK)
from max(nb + 1, n− nb − |Rp|) processes. Hence p cannot wait forever at line 40 — a contradiction.

• Case 2: p is not the coordinator of round r.

Let c 	= p be the coordinator of round r. By Lemma 17, c is an always-up process and c receives
messages of round r from p infinitely often. By Lemma 14, c eventually starts a round r′ ≥ r. By the
definition of r, we have that r′ ≤ r. Thus r′ = r and so c blocks in round r. In Case 1, we showed that
the coordinator of round r does not block in round r — a contradiction. 2

Corollary 21 (Termination) If all good processes propose a value, then they all eventually decide.13

Proof. By Lemmata 19 and 20. 2

Proof of Theorem 7. Immediate from Lemmata 8 and 11, and Corollary 21. 2

7 Solving Consensus with Stable Storage

We now present a consensus algorithm that uses stable storage and 3Su. It requires a majority of good
processes and works in systems with lossy links. If the good processes are not a majority, a majority of
processes may crash permanently, and so consensus cannot be solved even with 3P and reliable links [3].
Note that requiring a majority of good processes is weaker than requiring na > nb, and this is where having
stable storage pays off.

13In fact, it is clear that the following stronger property holds: if all always-up processes propose, then every good process decides
after it stabilizes.

22

For every process p:

1 Initialization:
2 for all q ∈ Π \ {p} do xmitmsg [q]← ⊥
3 To s-send m to q:
4 if q �= p then xmitmsg [q]← m; send m to q else simulate receive m from p

5 Task retransmit:
6 repeat forever
7 for all q ∈ Π \ {p} do if xmitmsg [q] �= ⊥ then send xmitmsg [q] to q

8 upon propose(vp): {p proposes vp by writing it into stable storage}
9 (rp, estimatep, tsp)← (1, vp, 0)
10 fork task {4phases, retransmit}
11 Task 4phases:
12 store {rp}; cp ← (rp mod n) + 1; fork task {skip round, participant}
13 if p = cp then fork task coordinator

14 Task coordinator:
15 {Phase NEWROUND}
16 if tsp �= rp then
17 s-send (rp, NEWROUND) to all
18 wait until [received (rp, estimateq, tsq,
19 ESTIMATE) from �(n + 1)/2� processes]
20 t← largest tsq such that p received
21 (rp, estimateq , tsq, ESTIMATE)
22 estimatep ← select one estimateq such that
23 p received (rp, estimateq , t, ESTIMATE)
24 tsp ← rp

25 store {estimatep, tsp}

31 Task participant:
32 {Phase ESTIMATE}
33 if tsp �= rp then
34 s-send (rp, estimatep, tsp, ESTIMATE) to cp

35 wait until [received (rp, estimatecp ,
36 NEWESTIMATE) from cp]
37 if p �= cp then
38 (estimatep, tsp)← (estimatecp , rp)
39 store {estimatep, tsp}

26 {Phase NEWESTIMATE}
27 s-send (rp, estimatep, NEWESTIMATE) to all
28 wait until [received (rp, ACK) from
29 �(n+ 1)/2� processes]
30 s-send (estimatep, DECIDE) to all

40 {Phase ACK}
41 s-send (rp, ACK) to cp

42 Task skip round:
43 d← Dp {query 3Su}
44 if cp ∈ d.trustlist then
45 repeat d′ ← Dp {query 3Su}
46 until [cp �∈ d′.trustlist or d.epoch [cp] < d′.epoch [cp] or received some message (r, . . .) such that r > rp]
47 terminate task {4phases, participant, coordinator} {abort current round}
48 repeat d← Dp until d.trustlist �= ∅ {query 3Su to go to a higher round}
49 rp ← the smallest r > rp such that [(r mod n) + 1] ∈ d.trustlist and r ≥ max{r′| p received (r′, . . .)}
50 fork task 4phases

51 upon receive m from q do
52 if m = (estimate , DECIDE) and decide(−) has not occurred then {check stable storage about decide}
53 decide(estimate) {decide is logged into stable storage}
54 terminate task {skip round, 4phases, participant, coordinator, retransmit}
55 if m �= (−, DECIDE) and decide(estimate) has occurred then {check stable storage about decide}
56 send (estimate , DECIDE) to q

57 upon recovery:
58 for all q ∈ Π \ {p} do xmitmsg [q]← ⊥
59 if propose(vp) has occurred and decide(−) has not occurred then {check stable storage about propose and decide}
60 retrieve {rp, estimatep, tsp}
61 if rp = ⊥ then rp ← 1; if estimatep = ⊥ then (estimatep, tsp)← (vp, 0)
62 fork task {4phases, retransmit}

Figure 4: Solving Consensus with Stable Storage using 3Su

23

The basic structure of the algorithm (given in Fig. 4) is as in [3, 4] and consists of rounds of 4 phases each
(task 4phases). In each round r, initially the coordinator c broadcasts a NEWROUND message to announce a
new round, and each process sends its current estimate of the decision value — together with a timestamp in-
dicating in which round it was obtained — to c; c waits until it obtains estimates from a majority of processes;
it selects one with the largest timestamp and sends it to all processes; every process that receives this new es-
timate updates its estimate and timestamp accordingly, and sends an acknowledgement to c; when c receives
this acknowledgement from a majority of processes, it sends its estimate as the decision to all processes and
then it decides. Once a process decides, it stops tasks 4phases and retransmit, and enters a passive state in
which, upon receipt of a message, the process responds with the decision value.

A round r can be interrupted by task skip round (which runs in parallel with tasks coordinator and partici-
pant): a process p aborts its execution of round r if (1) it suspects the coordinator c of round r, or (2) it trusts
c but detects an increase in the epoch number of c, or (3) it receives a message from a round r′ > r. When p
aborts round r, it jumps to the lowest round r′ > r such that p trusts the coordinator of round r′ and p has not
(yet) received any message with a round number higher than r′.

In each round, a process p accesses the stable storage twice: first to store the current round number, and later
to store the new estimate and its corresponding timestamp. Upon recovery, p reads the stable storage to restore
its round number, estimate, and timestamp, and then restarts task 4phases with these values.

Note that in round 1, the coordinator c can simply set its estimate to its own proposed value and skip the phase
used to select a new estimate (Phase NEWROUND). It is also easy to see that the coordinator does not have to
store its round number in stable storage in this case. We omit these obvious optimizations from the code.

The following regions of code are executed atomically: lines 22–25 and 38–39.

Theorem 22 The algorithm of Fig. 4 satisfies the Uniform Validity and Uniform Agreement properties of
uniform consensus. If a majority of processes are good then it also satisfies the Termination property.

The proof of this theorem has a similar structure as the proof of Theorem 7, and is given in Appendix C.

8 Performance of the Consensus Algorithms

8.1 Time and Message Complexity in Nice Runs

We analyze the complexity of our algorithms with the optimization in which, in round 1, the coordinator
chooses its own estimate and sends it without waiting for estimates from other processes. In most executions
of consensus in practice, no process crashes or recovers, no message is lost, the failure detector does not
make mistakes, and message delay is bounded by some known δ (including the message processing times).
In such “nice” executions, our two algorithms (with and without stable storage) achieve consensus within
3δ: it takes one δ for the coordinator to broadcast NEWESTIMATE messages, one δ for processes to respond
with ACKs, and another δ for the coordinator to broadcast DECIDE messages. By adding appropriate delays
in the retransmit task, so that a message is retransmitted only 2δ time units after it is sent, processes send a
total of 4(n − 1) messages: in the algorithm of Section 6, there are n − 1 messages for each of WAKEUP,
NEWESTIMATE, ACK, and DECIDE; in the algorithm of Section 7, there are n − 1 messages for each of the
types ESTIMATE, NEWESTIMATE, ACK, and DECIDE.

In contrast, in nice executions the consensus algorithms of [10, 7] reach decision within 2δ and with O(n2)
messages. So, compared to our algorithms, they gain one δ in the decision time, at the cost of increasing
the message complexity from O(n) to O(n2). Roughly speaking, this is achieved by distributing the task
of collecting ACK’s: in our algorithms, the ACK’s are sent to the coordinator who counts whether there are

24

enough of them to send a DECIDE to all (this takes 2δ and O(n) messages), while in [10, 7] every ACK is
broadcast to all processes: each process can then do the counting and deciding by itself (this takes one δ and
O(n2) messages).

8.2 Quiescence

An algorithm is quiescent if eventually all processes stop sending messages [1]. It is clear that no consensus
algorithm can be quiescent in the presence of unstable processes (each time such a process recovers, it must be
sent the decision value, at which point it may crash again and lose this message; this scenario can be repeated
infinitely often). If no process is unstable, our consensus algorithms are quiescent despite process crashes and
message losses (provided all good processes propose a value).

9 Repeated Consensus

In Sections 6 and 7, and Appendix A, we give algorithms that solve a single instance of consensus. This is
appropriate for settings where for each instance of consensus, a distinct set of processes is created to execute
it (for example, an application may spawn a new set of processes for each consensus that it wants to do). In
other settings, it is necessary for the same set of processes to execute repeated (and concurrent) instances of
consensus. We now describe how to modify our algorithms to handle this case.

To separate the multiple instances of consensus, each instance must have a unique identifier, and all proposals,
decisions, and messages associated with a particular instance of consensus are tagged with the corresponding
identifier. This is the only change necessary for the consensus algorithm that uses stable storage (shown in
Fig. 4 in Section 7).

For the algorithms that do not use stable storage (Fig. 2 in Section 6 and Fig. 6 in Appendix A), we can also
apply the above modification, except that RECOVERED messages are not tagged with instance identifiers (such
messages cannot be tagged since a process that recovers has lost all its state). In principle, this modification
still works, but in this case the resulting algorithms are not practical because of the following reasons.

A process that recovers from a crash stops participating in all subsequent instances of consensus. For a long-
lived application this is impractical, since every process is likely to crash and recover at least once during the
life of the application, and so eventually no process will remain to run new instances of consensus. Moreover,
when a process recovers from a crash, it repeatedly sends a RECOVERED message to get the decision values
that it may have “missed” while it was down. When a process receives such a message, it replies with all the
decision values that it knows — this is also impractical.

To solve the above problems, we now assume that stable storage is available, but each process uses it only to
store its proposals and decisions (processes do not use it to store any intermediate state, and so, by Theorem 4,
solving consensus still requires that na > nb). When a process recovers from a crash, it first checks its stable
storage to determine which instances of consensus it was executing when it crashed, i.e., the instances for
which it proposed a value but did not yet decide. Then, for each such instance I , it sends a RECOVERED

message tagged with I , and stops participating in I . With such messages, each process p can now maintain
a set RI

p of processes that it knows to have crashed and recovered while executing instance I , and it uses RIp
instead of Rp. RI

p is initialized to the empty set when p proposes a value for instance I , and is updated every
time p receives a RECOVERED message tagged with I . Finally, if a process receives a RECOVERED message
tagged with I and knows the decision value of instance I , then it replies with this decision value.

With these modifications, a process that crashes and recovers can participate in subsequent instances of con-
sensus. Moreover, the algorithm no longer requires that at least nb + 1 processes be always up throughout the

25

lifetime of the system. Instead, it is sufficient that for each instance I of consensus, at least nb + 1 processes
remain up from the time they propose a value for I (to the time they all decide).

10 Transforming 3Se into 3Su

Figure 5 shows an algorithm to transform D ∈ 3Se into D′ ∈ 3Su.14 This transformation works in any
asynchronous system with crash and recoveries, provided a majority of processes are good. It does not require
any stable storage.

Recall that both D and D′ require the existence of a good process K such that K is eventually trusted forever
by all good processes and K’s epoch number at all good processes stops increasing. The difference between
D and D′ is that, while D allows unstable processes to suspect K or to keep increasing K’s epoch number,
D′ requires all unstable processes to eventually trust K forever and to stop increasing K’s epoch number.

We now explain the main ideas of the algorithm. The output of D′ consists of a trustlist, and epoch numbers
for each process on that list. The algorithm maintains the trustlists of D′ as follows. At each process p,
initially and every time p recovers, the trustlist of p includes all processes. Process p removes a process from
its D′-trustlist only if it finds out that a majority of processes D-suspect this process. With this scheme, if a
process K is D-trusted by all the good processes, then K will be D′-trusted by p — even if p is unstable —
as required by D′ ∈ 3Su.

How does p maintain an epoch number for each process in its D′-trustlist? A naive approach would be for
p to increment the D′-epoch number of a process q every time p finds out that the D-epoch number of q
has increased at a majority of processes. But this does not work, as we now explain. Let u be an unstable
process. Suppose that: (a) n/4 good processes D-suspect u, (b) n/4 + 1 good processes D-trust u while
continually increasing its D-epoch number, and (c) all other processes have crashed permanently. In this case:
(1) there is no majority that D-suspects u, and (2) there is no majority that D-trusts u and increments its
D-epoch number. From (1), a good process p keeps D′-trusting u (see previous paragraph). From (2) and
the naive way of generating the D′-epoch numbers, the D′-epoch number of u at p stops changing. So p
keeps D′-trusting u and stops increasing its D′-epoch number — a violation of the Completeness property of
D′ ∈ 3Su.

To overcome this problem, p increases the D′-epoch number of a process q every time it finds out that the
number of processes that “dislike” q is a majority; a process dislikes q if it D-suspects q or it D-trusts q but
increases its D-epoch number. This scheme ensures that the D′-epoch number of u keeps on increasing. This
also ensures that the D′-epoch number of K stops changing.

In the algorithm, p stores in latestp[q] the latest output of D that p received from q (it is initialized to ⊥).

Theorem 23 If a majority of processes are good, then the algorithm in Fig. 5 transforms 3Se into 3Su.

We now proceed with the proof. Assume that a majority of processes are good. Throughout this proof, let
K be some process such that eventually: (1) K is permanently D-trusted by all good processes and (2) the
D-epoch number ofK at each good process stops changing. The existence ofK is guaranteed by the accuracy
property of D ∈ 3Se.

Lemma 24 (Monotonicity) At every good process, eventually the D′-epoch numbers are nondecreasing.

14As explained in [3], a transformation algorithm TD→D′ uses failure detector D to maintain at each process p a variable D′
p that

emulates the output of D′ at p.

26

1 For every process p:

2 Initialization and upon recovery:
3 D′

p.trustlist ← Π
4 for all q ∈ Π do
5 D′

p.epoch [q]← 0; epochp[q]← 0; dislikep[q]← ∅; latestp[q]← ⊥
6 repeat forever
7 dp ← Dp {query D}
8 send dp to all processes

9 upon receive dq from q do
10 for all r ∈ Π do
11 if r �∈ dq.trustlist or (latestp[q] �= ⊥ and r ∈ latestp[q].trustlist and dq.epoch [r] > latestp[q].epoch [r])

{p determines if q dislikes r (i.e., q does not D-trust r or q increased the D-epoch number of r)}
12 then dislikep[r]← dislikep[r] ∪ {q}
13 if |dislikep[r]| > n/2 then {if a majority dislikes r, p increases the D′-epoch number of r}
14 dislikep[r]← ∅
15 epochp[r]← epochp[r] + 1
16 latestp[q]← dq

17 D′
p.trustlist ← {s : |{r : latestp[r] �= ⊥ and s �∈ latestp[r].trustlist}| ≤ n/2}

{output D′-trust list: p D′-trusts all the processes that are not D-suspected by a majority}
18 for all r ∈ D′

p.trustlist do
19 D′

p.epoch [r]← epochp[r] {output D′-epoch numbers}

Figure 5: Transforming D ∈ 3Se into D′ ∈ 3Su

Proof. Clear because, after a good process p stabilizes, for every process q, epochp[q] can only be incre-
mented. 2

Lemma 25 For every good process g, eventually g permanently D′-trusts K .

Proof. Suppose for a contradiction that g D′-suspects K infinitely often. Good processes send messages to
g infinitely often, so by the Fair Loss property of links, g receives messages from good processes infinitely
often. Thus, g executes line 17 infinitely often as well. When g executes line 17, it D′-suspects K precisely
if there is a majority of processes q such that latestg[q] 	= ⊥ and K 	∈ latestg[q].trustlist . Since there is a
majority of good processes, every time that g executes line 17 and D′-suspects K, there is some good process
q such that K 	∈ latestg[q].trustlist . Thus, for some good process q,K 	∈ latestg[q].trustlist holds infinitely
often.

Since q is good, eventually K is permanently D-trusted by q. Then, by the No Creation and Finite Duplication
properties of links, eventually g receives no message dq from q with K 	∈ dq.trustlist . Since g receives an
infinite number of messages from q, eventually K ∈ latestg[q].trustlist holds forever — a contradiction. 2

Lemma 26 For every unstable process u, eventually whenever u is up, u D′-trusts K .

Proof. Suppose for a contradiction that u D′-suspects K infinitely often. Every time u recovers, u sets
D′

p.trustlist to Π, and so since u D′-suspects K infinitely often, it must execute line 17 infinitely often
as well. When u executes line 17, it D′-suspects K precisely if there is a majority of processes q such
that latestu[q] 	= ⊥ and K 	∈ latestu[q].trustlist . Since there is a majority of good processes, every time
that u executes line 17 and D′-suspects K, there is some good process q such that latestu[q] 	= ⊥ and
K 	∈ latestg[q].trustlist . Thus, for some good process q, (1) latestu[q] 	= ⊥ and (2) K 	∈ latestu[q].trustlist
hold infinitely often.

When u recovers, it sets latestu[q] to ⊥ and, since (1) holds infinitely often, u must set latestu[q] to a non-
⊥ value infinitely often. So u receives messages from q infinitely often. Since q is good, eventually K is

27

permanently D-trusted by q. Then, by the No Creation and Finite Duplication properties of links, eventually
u receives no message d from q with K 	∈ d.trustlist . Since u receives messages from q infinitely often,
eventually K ∈ latestu[q].trustlist holds forever. This contradicts the fact that (2) holds infinitely often. 2

Lemma 27 For every good or unstable process p, eventually K’s epoch number at p stops changing.

Proof. Suppose for a contradiction that K’s epoch number at p never stops changing. Then p increments
epochp[K] in line 15 infinitely often. So, |dislikep[K]| > n/2 holds infinitely often, and dislikep[K] is reset
to ∅ infinitely often. This implies that there exists a majority M of processes such that for every q ∈ M , p
infinitely often receives a value dq from q such that either (1) K 	∈ dq.trustlist or (2) (latestp[q] 	= ⊥ and
K ∈ latestp[q].trustlist and dq.epoch [K] > latestp[q].epoch [K]). Since a majority of processes is good,
there exists a good process q ∈ M . By the No Creation and Finite Duplication properties of the links, q
infinitely often sends a value dq such that either (1) or (2) holds. This implies that either q D-suspects K
infinitely often or the D-epoch number of K at q increases infinitely often. Since q is a good process, this
contradicts the definition of K. 2

Henceforth, let b be a fixed bad process. The Completeness and Monotonicity properties of 3Se guarantees
that for each good process g either (1) eventually g permanently D-suspects b; or (2) eventually the D-epoch
number of b at g is nondecreasing and unbounded.

Lemma 28 For every good processes p and q, line 11 evaluates to true infinitely often for r = b.

Proof. First note that line 11 is executed an infinite number of times since p receives messages from q infinitely
often (this follows from the Fair Loss property of links). Suppose that condition b 	∈ dq.trustlist does not hold
infinitely often. Then eventually b ∈ dq.trustlist holds forever. So, eventually all failure detector values that p
receives from q contain b in its trustlist. Since p eventually stops crashing, eventually conditions latestp[q] 	=
⊥ and b ∈ latestp[q].trustlist are always true. Moreover, by the No Creation and Finite Duplication properties
of links, q infinitely often sends failure detector values containing b in its trustlist. Therefore q D-trusts b
infinitely often. By the Completeness and Monotonicity properties of 3Se, eventually the D-epoch number
of b at q is nondecreasing and unbounded. This implies that dq.epoch [b] > latestp[q].epoch [b] evaluates to
true in line 11 an infinite number of times. 2

Lemma 29 For every good process g, epochg[b] is unbounded.

Proof. Let t0 be the time after which g does not crash. After t0, epoch [b] is nondecreasing. For every good
process g′, g receives messages from g′ infinitely often, so it executes line 11 infinitely often as well. So, by
Lemma 28, g′ is added into set dislikeg[b] an infinite number of times in line 12. By the assumption that a
majority of processes are good, |dislikeg[b]| > n/2 evaluates to true infinitely often and thus epochg[b] grows
unboundedly. 2

Lemma 30 For each good process g, either (1) eventually g permanently D′-suspects b; or (2) the D′-epoch
number of b at g is unbounded.

Proof. Let g be any good process and suppose that (1) does not hold. Therefore g D′-trusts b an infinite
number of times. Every time g D′-trusts b, it sets the D′-epoch number of b to epochg[b]. The result now
follows from Lemma 29. 2

Proof of Theorem 23. The Monotonicity property of D′ follows from Lemma 24. Strong Accuracy follows
from Lemmata 25, 26 and 27. Completeness follows from Lemma 30. 2

28

Acknowledgments

We would like to thank Rachid Guerraoui, Michel Raynal and André Schiper for introducing us to the problem
of consensus in the crash-recovery model, and for explaining their own work on this problem. We are also
grateful to Borislav Deianov and the anonymous referees for their helpful comments and suggestions on how
to improve the presentation of the results.

References

[1] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. Heartbeat: a timeout-free failure detector for
quiescent reliable communication. In Proceedings of the 11th International Workshop on Distributed
Algorithms, Lecture Notes on Computer Science. Springer-Verlag, September 1997. A full version is
also available as Technical Report 97-1631, Computer Science Department, Cornell University, Ithaca,
New York, May 1997.

[2] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure detector for solving
consensus. Journal of the ACM, 43(4):685–722, July 1996.

[3] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed systems.
Journal of the ACM, 43(2):225–267, March 1996.

[4] Danny Dolev, Roy Friedman, Idit Keidar, and Dahlia Malkhi. Failure detectors in omission failure
environments. Technical Report 96-1608, Department of Computer Science, Cornell University, Ithaca,
New York, September 1996.

[5] Cynthia Dwork, Nancy A. Lynch, and Larry Stockmeyer. Consensus in the presence of partial synchrony.
Journal of the ACM, 35(2):288–323, April 1988.

[6] Rachid Guerraoui, Rui Oliveira, and André Schiper. Stubborn communication channels. Technical
report, Département d’Informatique, Ecole Polytechnique Fédérale, Lausanne, Switzerland, December
1996.

[7] Michel Hurfin, Achour Mostefaoui, and Michel Raynal. Consensus in asynchronous systems where
processes can crash and recover. In Proceedings of the 17th IEEE Symposium on Reliable Distributed
Systems, pages 280–286, October 1998.

[8] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., 1996.

[9] Gil Neiger and Sam Toueg. Automatically increasing the fault-tolerance of distributed algorithms. Jour-
nal of Algorithms, 11(3):374–419, 1990.

[10] Rui Oliveira, Rachid Guerraoui, and André Schiper. Consensus in the crash-recover model. Technical
Report 97-239, Département d’Informatique, Ecole Polytechnique Fédérale, Lausanne, Switzerland,
August 1997.

29

Appendix

A Solving Consensus without Stable Storage using 3Se

Figure 6 shows the algorithm that solves consensus without stable storage using 3Se (it is less efficient than
the one that uses 3S′

e in Section 6). This algorithm always satisfies the Uniform Agreement and Validity
properties of uniform consensus, and if the number of processes that are always up is more than nb, then it
also satisfies the Termination property.

In each round k, each process p starts by repeatedly sending its estimate to the current coordinator c (this esti-
mate is called the k-suggestion of p). When c receives a k-suggestion, it responds with the first k-suggestion
that it received. Process p waits for a response from the coordinator until it suspects c or detects an increase
in the epoch number of c. If p receives a response from c, it updates its estimate to that value. Then, p sets
its report [k] variable to its current estimate — this is the k-report of p. After this, p collects the k-reports
of other processes (the collect procedure is explained below). If all the collected k-reports are for the same
value, then p sets its proposal [k] variable to that value; otherwise, p sets it to special value “λ” (which cannot
be one of the proposed values) — this is the k-proposal of p. Then, p collects the k-proposals of other pro-
cesses. If some collected k-proposal w is different from λ, then p sets its estimate to w (we will show that it
cannot collect two distinct k-proposals different from λ). Moreover, if all collected k-proposals are for w, p
decides w.

When a process recovers from a crash, it stops participating in the algorithm except that: (1) it periodically
broadcasts a RECOVERED message, and (2) if asked to act as the coordinator for some round r (by receiving
an r-suggestion) it will do so. When a process p receives a RECOVERED message from some process q, it
adds q to a set Rp of processes known to have recovered.

To collect k-reports, a process p invokes procedure collect(REPORT). In this procedure, p repeatedly sends
requests for the k-reports of other processes; when a process receives such a request, it sends back its k-report
if it is different from ⊥. After p has received k-reports from max(nb + 1, n− nb − |Rp|) processes, it checks
whether during the collection of k-reports it detected the recovery of a process that never recovered before
(Rp 	= PrevRp). If so, p restarts the collection of k-reports from scratch; else, p returns from procedure
collect (REPORT). Process p collects k-proposals in a similar way.

To illustrate the main ideas of the algorithm, we made two simplifications. First, we did not require that all
good processes decide: in fact, this algorithm only guarantees that all always-up processes eventually decide.
Second, we assumed that links satisfy the following Per-Message Fair Loss property (instead of the Fair
Loss property of Section 2.5): if a process p sends a message m to a good process q an infinite number of
times, then q receives m from p an infinite number of times.15 We later remove these two simplifications by
modifying the algorithm so that: (1) all good processes eventually decide (and eventually stop executing the
algorithm), and (2) the algorithm works with links that satisfy the Fair Loss property of Section 2.5.

Theorem 31 The algorithm of Fig. 6 satisfies the Uniform Validity and Uniform Agreement properties of
uniform consensus. Moreover, suppose that at most nb processes are bad, more than nb processes are always
up, and links satisfy the Per-Message Fair Loss property. If all always-up processes propose a value, then
they all eventually decide.

The proof follows.

15The Fair Loss and Per-Message Fair Loss properties of links are called Weak Loss Limitation and Strong Loss Limitation,
respectively, in [8].

30

For process p:

1 Initialization:
2 rp ← 0; Rp ← ∅
3 for all i ∈ N do
4 reportp[i]← ⊥; proposalp[i]← ⊥; coord estp[i]← ⊥
5 upon propose(vp): {p proposes vp via an external input containing vp}
6 repeat forever
7 rp ← rp + 1
8 cp ← (rp mod n) + 1

9 repeat send (rp, vp, SUGGESTION) to cp

10 until [for some w receive (rp, w, ESTIMATE) from cp or suspect cp or epoch number of cp increases]
11 if for some w receive (rp, w, ESTIMATE) from cp then vp ← w
12 reportp[rp]← vp

13 RV p[rp]← collect (REPORT)
14 if for some w, RV p[rp] = {w} then proposal p[rp]← w else proposalp[rp]← λ

15 PV p[rp]← collect (PROPOSAL)
16 if for some w �= λ, w ∈ PV p[rp] then vp ← w
17 if for some w �= λ, PV p[rp] = {w} then decide(w)

18 procedure collect(valtype)
19 seqp ← 0
20 repeat
21 PrevRp ← Rp; seqp ← seqp + 1
22 repeat send (rp, seqp, valtype , REQUEST) to all
23 until [received messages of the form (rp, seqp, ∗, valtype) from max(nb + 1, n− nb − |Rp|) processes]
24 until Rp = PrevRp

25 return({ v : received (rp, seqp, v, valtype) })
26 upon receive RECOVERED from q do
27 Rp ← Rp ∪ {q}
28 upon receive (rq, vq , SUGGESTION) from q do
29 if coord estp[rq] = ⊥ then coord estp[rq]← vq

30 send (rq, coord estp[rq], ESTIMATE) to q

31 upon receive (rq, seqq, REPORT, REQUEST) from q do
32 if report p[rq] �= ⊥ then send (rq, seqq, reportp[rq], REPORT) to q

33 upon receive (rq, seqq, PROPOSAL, REQUEST) from q do
34 if proposal p[rq] �= ⊥ then send (rq, seqq, proposalp[rq], PROPOSAL) to q

35 upon recovery:
36 for all i ∈ N do
37 reportp[i]← ⊥; proposalp[i]← ⊥; coord estp[i]← ⊥
38 repeat forever
39 send RECOVERED to all

Figure 6: Solving Consensus without Stable Storage using 3Se

31

Definition 7 We say that p is in round r at time t if p does not crash by time t and the value of variable rp
at time t is r. A process p starts round r when p sets variable rp to r in line 7. Process p reaches the end of
round r if p completes the execution of the loop in lines 7–17 in round r.

Definition 8 We say that p k-reports v if it sets reportp[k] to v in line 12 in round k. Similarly, we say that p
k-proposes v if it sets proposalp[k] to v in line 14.

Definition 9 We say that p completes the collection of k-reports if it returns from the invocation of
collect (REPORT) and sets RV p[k] to the return value in line 13 in round k. Similarly, we say that p com-
pletes the collection of k-proposals if it returns from the invocation of collect (PROPOSAL) and sets PVp[k] to
the return value in line 15 in round k.

Lemma 32 (Uniform Validity) If a process decides v then some process previously proposed v.

Proof. A simple but tedious induction shows that the variable vp of any process p is always set to some value
that was previously proposed by some process. Moreover, clearly the decision value is the value of variable
vp of some process p at some time. 2

Lemma 33 For any processes p and q that complete the collection of k-reports RVp[k] ∩RV q[k] 	= ∅.

Proof. For any process p that completes the collection of k-reports, p invokes collect (REPORT) and returns
from this invocation. During this invocation, consider the time when p executes line 24 for the last time, and
at this time let:

• sp be the value of seqp;

• Pp be the subset of processes from which p has received (k, sp, ∗, REPORT);

• Rp, the value of set Rp.

Clearly, to show that RV p[k] ∩ RV q[k] 	= ∅, it is sufficient to show that Pp ∩ Pq 	= ∅. We first claim
that (1) processes in Rp crash before p starts sending (k, sp, REPORT, REQUEST) to any process in round k
(line 22). Indeed, when p executes line 24 for the last time during its invocation of collect(REPORT) in round
k, we have that Rp = Rp (by the definition of Rp) and Rp = PrevRp (by the condition in line 24). Therefore,
PrevRp = Rp. All processes in PrevRp crash before p starts sending (k, sp, REPORT, REQUEST), and so the
claim follows.

Note that (2) |Pp| ≥ nb + 1 (this is due to the guard in line 23). We now show that Pp ∩Rp = ∅. Let p′ ∈ Rp.
By the previous claim, p′ crashes before p starts sending (k, sp, REPORT, REQUEST). This happens before
any process sends (k, sp, ∗, REPORT) to p. So p′ crashes before any process sends (k, sp, ∗, REPORT) to p.
Since after a process crashes (and recovers) it does not send REPORT messages, it follows that p′ 	∈ Pp. Thus,
Pp ∩Rp = ∅.

So, |Pp ∪Rp| = |Pp| + |Rp|. By the threshold in line 23, we have |Pp| ≥ max(nb + 1, n − nb − |Rp|), and
thus (3) |Pp ∪Rp| ≥ n− nb.

By the same argument, we have (4) |Pq| ≥ nb + 1 and (5) |Pq ∪Rq| ≥ n− nb.

Now suppose, in order to obtain a contradiction, that Pp∩Pq = ∅. By (3) and (4), we have Pq∩(Pp∪Rp) 	= ∅.
Since Pp∩Pq = ∅, we have Pq∩Rp 	= ∅. Let p′ ∈ Pq∩Rp. Clearly, q starts sending (k, sq, REPORT, REQUEST)
to processes before p′ receives such a message, which happens before p′ sends a message of the form (k, sq,

32

∗, REPORT) to q (p′ sends such message because p′ ∈ Pq), which happens before p′ crashes (since after a
process crashes and recovers, it does not send REPORT messages), which happens before p starts sending (k,
sp, REPORT, REQUEST) to processes (this follows from the fact that p′ ∈ Rp and Claim (1)). From all this, we
conclude that q starts sending (k, sq, REPORT, REQUEST) before p starts sending (k, sp, REPORT, REQUEST).

By (2) and (5), we have Pp ∩ (Pq ∪ Rq) 	= ∅. By an argument analogous to the one above, we can conclude
that p starts sending (k, sp, REPORT, REQUEST) before q starts sending (k, sq, REPORT, REQUEST). This is a
contradiction. Hence, we conclude that Pp ∩ Pq 	= ∅. 2

Lemma 34 If p and q k-propose v 	= λ and v′ 	= λ, respectively, then v = v′.

Proof. If p k-proposes v 	= λ, then p sets proposalp[k] to v in line 14. Thus RV p[k] = {v}. Similarly we
have RV q[k] = {v′}. By Lemma 33, RV p[k] ∩ RV q[k] 	= ∅. Therefore, v = v′. 2

Lemma 35 If p completes the collection of k-proposals, then PVp[k] contains at most one value different
from λ.

Proof. In order to obtain a contradiction, suppose that this is not true, i.e., there exist v 	= λ and v′ 	= λ
such that v 	= v′ and v, v′ ∈ PV p[k]. Every value in PV p[k] is k-proposed by some process, so there exist
processes q and q′ that k-propose v and v′, respectively. By Lemma 34, v = v′ — a contradiction. 2

Lemma 36 For any processes p and q that complete the collection of k-proposals, PVp[k] ∩ PV q[k] 	= ∅.

Proof. This proof is similar to the proof of Lemma 33. 2

Lemma 37 If in round k some process p decides v, then all processes q that reach the end of round k set
variable vq to v in line 16. Moreover, if q decides v′ in round k then v = v′.

Proof. Since in round k p decides v, then v 	= λ and PVp[k] = {v}. For every process q that reaches the end
of round k, q completes the collection of k-proposals, and thus by Lemma 36, v ∈ PVq[k]. By Lemma 35, v
is the only value in PV q[k] different from λ, so q sets variable vq to v in line 16. Moreover, since v ∈ PVq[k],
if q decides v′ then v = v′. 2

Lemma 38 If all processes p that reach the end of round k set variable vp to v in line 16, then all processes
that (k + 1)-report a value (k + 1)-report v.

Proof. This is clear from the fact that every value (k + 1)-reported is the value of variable vp at the end of
round k for some process p. 2

Lemma 39 If all processes that k-report a value k-report the same value v, then all processes p that reach
the end of round k set variable vp to v in line 16 and decide v.

Proof. First note that processes cannot k-report λ, because no process p can set its variable vp to λ at any
time. If all processes that k-report a value k-report the same value v, then for all processes p that complete the
collection of k-reports, RVp[k] = {v}. Thus all processes that k-propose a value k-propose the same value
v. Therefore, for all processes p that complete the collection of k-proposals, PVp[k] = {v}. Since v 	= λ,
all processes p that reach the end of round k set variable vp to v in line 16 and decide v. 2

Lemma 40 (Uniform Agreement) No two processes decide differently.

33

Proof. Suppose process p decides v in round k and process q decides v′ in round k′. We show that v = v′.

Assume without loss of generality that k ≤ k′. If k = k′, then v′ = v by Lemma 37. Now suppose k < k′.
By Lemma 37, all processes p′ that reach the end of round k set variable vp′ to v in line 16. By Lemma 38,
all processes that (k + 1)-report a value (k + 1)-report v. By Lemma 39, all processes p′ that reach the end
of round k + 1 set variable vp′ to v in line 16 and decide v. By repeatedly applying Lemmata 38 and 39, we
conclude that all processes that reach the end of round k′ decide v. Since q reaches the end of round k′, it
decides v in round k′, and so v = v′. 2

Henceforth assume that at most nb processes are bad, more than nb processes are always up, and links satisfy
the Per-Message Fair Loss property.

Lemma 41 If an always-up process p starts a round k, then eventually it k-reports a value.

Proof. In order to obtain a contradiction, suppose that p never k-reports any value. Then p loops forever
in lines 9–10 in round k. Let c be the coordinator of round k. If c is a bad process, then according to the
Monotonicity and Completeness property of 3Se, either eventually p permanently suspects c or the epoch
number of c at p is nondecreasing and unbounded. Thus eventually the guard in line 10 is true and p does
not loop forever in lines 9–10. So c is a good process. Process p sends (k, vp, SUGGESTION) to c infinitely
often (line 9). By the Per-Message Fair Loss property, c receives this message from p infinitely often. Since
c is a good process, there is a time t after which c does not crash. After time t, every time c receives (k, vp,
SUGGESTION) from p, c sends the same message (k,w, ESTIMATE) to p. So c sends (k,w, ESTIMATE) to p
infinitely often. By the Per-Message Fair Loss property, p eventually receives this message. Therefore, p does
not loop forever in lines 9–10 — a contradiction. 2

Lemma 42 If all always-up processes k-report a value, then eventually they all k-propose a value.

Proof. In order to obtain an contradiction, suppose that all always-up processes k-report a value, but
there is an always-up process p that never k-proposes any value. So p never returns from the invocation
of collect(REPORT) in round k. Process p loops forever either in lines 20–24 or 22–23. Since set Rp is finite
and p never removes any process from Rp, eventually condition Rp = PrevRp in lines 24 is always true.
Therefore, p loops forever in lines 22–23. Thus for some value sp, p sends (k, sp, REPORT, REQUEST) to all
processes infinitely often.

For every always-up process q, by the Per-Message Fair Loss property, q receives (k, sp, REPORT, REQUEST)
from p infinitely often. Since q k-reports a value, there is a time t after which reportq[k] = w for some
w 	= ⊥. So after time t, every time q receives (k, sp, REPORT, REQUEST) from p, q sends (k, sp, w, REPORT)
to p (line 32). Thus q sends (k, sp, w, REPORT) to p infinitely often. By the Per-Message Fair Loss property,
eventually p receives (k, sp, w, REPORT) from q. Therefore eventually p receives messages of the form
(k, sp, ∗, REPORT) from all always-up processes. Since more than nb processes are always up, eventually p
receives messages of the form (k, sp, ∗, REPORT) from at least nb + 1 processes.

For every eventually-up process q, it is clear that eventually p receives a RECOVERED message from q, since
after q’s last recovery q sends RECOVERED messages to all processes infinitely often. Therefore, eventually
Rp contains all eventually-up processes. Since there are at most nb bad processes, eventually the number of
always-up processes is at least n− nb − |Rp|. Therefore eventually p receives messages of the form (k, sp, ∗,
REPORT) from at least n− nb − |Rp| processes.

Hence, eventually p receives messages of the form (k, sp, ∗, REPORT) from max(nb + 1, n − nb − |Rp|)
processes, so the guard in line 23 is true. Therefore process p does not loop forever in lines 22–23 — a
contradiction. 2

34

Lemma 43 If all always-up processes k-propose a value then eventually they all reach the end of round k.

Proof. Similar to the proof of Lemma 42. 2

Corollary 44 If all always-up processes propose, then for every k ∈ {1, 2, 3, . . .}, eventually they all reach
the end of round k.

Proof. If all always-up processes propose, they all start round 1. Lemmata 41, 42 and 43 show that if all
always-up processes start a round r then eventually they all reach the end of round r; thus, they all start round
r + 1. The proof follows by induction. 2

Lemma 45 There exists a round k such that all processes that k-report a value k-report the same value.

Proof. Choose a time T such that (1) all processes that are not always-up have crashed at least once by time
T , (2) all good processes remain up forever after time T , and (3) for some good process c, for every good
process g, after time T , g permanently trusts c and the epoch number of c at g stops changing (we can find
such process c by the Accuracy property of 3Se). Choose a round k such that no process starts round k by
time T , and c is the coordinator of round k.

Let p be a process that k-reports a value. Then p eventually exits the loop in lines 9–10. Moreover, by
definition of k, p starts round k after time T . Only always-up processes can start a round after time T ,
because all other processes crashed at least once by time T and, after they crash, they never start any round.
Thus, p is an always-up process, and so in round k, p never suspects c and the epoch number of c at p never
increases. Thus, p can only exit the loop in lines 9–10 by receiving (k,w, ESTIMATE) from c, for some
w 	= ⊥. Since p eventually exits this loop, it receives (k,w, ESTIMATE) from c. Therefore, there is a time at
which coord estc[k] = w. Note that c never receives any message of the form (k, ∗, SUGGESTION) by time
T , because no process starts round k by time T . Therefore, the value of coord estc[k] is ⊥ before or at time
T . Thus, c sets coord estc[k] to w after time T . Since c does not crash after time T , once c sets coord estc[k]
to w, it never changes this variable again. This implies that every process that k-reports a value receives (k,w,
ESTIMATE) from c, and then k-reports w. 2

Lemma 46 If all always-up processes propose a value then they all eventually decide.

Proof. Suppose that all always-up processes propose a value. By Lemma 45, there exists a round k such that
all processes that k-report a value k-report the same value. By Corollary 44, all always-up processes reach
the end of round k. By Lemma 39, all always-up processes decide in round k. 2

Proof of Theorem 31. Immediate from Lemmata 32, 40, and 46. 2

We now explain how to remove the two limitations that we mentioned at the beginning of this section. The
first one is that the algorithm in Fig. 6 does not guarantee that eventually-up processes decide; moreover
processes never stop executing rounds. To fix these problems, we modify the algorithm as follows. Once a
process p decides, it stops executing the algorithm. Then, every time that p receives any message it replies
with the decision value. When a process receives the decision value, it decides. With this modification, all
good processes decide and all processes eventually stop executing rounds.

The second limitation is that the algorithm does not work with the Fair Loss property of Section 2.5. We first
explain why, and then we modify the algorithm to fix this problem.

There are two types of messages in the algorithm: active messages, i.e., those that are actively sent by pro-
cesses (SUGGESTION, REQUEST and RECOVERED messages), and passive messages, which are sent in re-
sponse to an active message (ESTIMATE, REPORT, PROPOSAL and “decide” messages). In the algorithm, a

35

process p proceeds by sending an active message to other processes, until it gets responses; then p sends a
different active message, and so on. The problem arises when p repeatedly sends an active message to q, while
q repeatedly sends another active message to p. Every time p receives the active message from q, p replies
with a passive message, and vice-versa. Thus, p repeatedly sends both an active and a passive message to q,
and vice-versa. With the Fair Loss property, it is possible that all the active messages are received and all the
passive ones are lost. Thus, p and q never receive a reply from each other.

To fix this problem, we modify the algorithm as follows. For all p and q, process p now keeps a copy of the
last message of each type (active or passive) that it wants to send to q. Every time p sends an active or passive
message to q in the original algorithm, in the modified algorithm it actually sends a tuple consisting of both
the last active and the last passive messages to q. When q receives such a tuple, it processes both components
separately (as if q had received both messages separately in the original algorithm). With this modification,
the algorithm will work with the Fair Loss property.

From the above, we have:

Theorem 47 Assume that at most nb processes are bad and more than nb processes are always up. Uniform
consensus can be solved without stable storage using 3Se.

B Implementation of 3Se and 3S′e in Partially Synchronous Systems

We show how to implement 3Se and 3S′
e in the models of partial synchrony of [5, 3] (extended to systems

with crashes and recoveries). [5] considers two models of partial synchrony. Roughly speaking, the first
model, denotedM1 here, stipulates that in every execution there are bounds on process speeds and on message
transmission times, but these bounds are not known. In the second model, denoted M2, these bounds are
known, but they hold only after some unknown time (called GST for Global Stabilization Time). [3] defines a
weaker model of partial synchrony, denoted M3, in which bounds exist but they are not known and they hold
only after some unknown GST. In M1 links do not lose messages, and in M2 and M3 links can only lose
messages sent before the GST. Note that every system that conforms to M1 or M2 also conforms to M3.

All the above models assume that process crashes are permanent. A natural extension of M3 to systems
with crashes and recoveries, which we also denote M3, is as follows: after some (unknown) GST, all the
good processes are up forever, and there are bounds on process speeds and on message transmission times. In
particular, all the messages sent to good processes after the GST, including those sent by unstable processes,
are received within the (unknown) bound. Messages sent to bad processes may be lost. Henceforth, M3

denotes this extended model.

Figure 7 shows an implementation of 3Se (and also of 3S′
e) in M3. The algorithm is similar to one given

in [3]. To measure elapsed time, each process p maintains a local clock, say, by counting the number of
steps that it takes. After each recovery, each process p first sends an I-RECOVERED message to all processes;
then it periodically sends an I-AM-ALIVE message. If p does not receive an I-AM-ALIVE message from some
process q for ∆p[q] time units on its clock, p removes q from its list of trusted processes. When p receives
I-AM-ALIVE from some process q, it checks if it currently suspects q. If so, p knows that its previous time-out
on q was premature and so p adds q to its list of trusted processes and increases its time-out period ∆p[q].
When p receives I-RECOVERED from some process q, it increments the epoch number of q. Note that this
implementation does not use any stable storage.

Following [3], it is easy to see that when this algorithm is executed in M3, there is a time after which every
good process trusts every good process and suspects every eventually-down process. It is also easy to see
that at every good process, eventually the epoch numbers are nondecreasing (this occurs after the process

36

1 For process p:

2 Initialization and upon recovery:
3 Dp.trustlist ← Π; trustlistp ← Π
4 for all q ∈ Π do Dp.epoch [q]← 0; epochp[q]← 0; ∆p[q]← default time-out interval
5 send I-RECOVERED to all processes

6 repeat forever
7 send I-AM-ALIVE to all processes
8 for all q ∈ Π do
9 if q ∈ trustlistp and p did not receive I-AM-ALIVE from q during the last ∆p[q] ticks of p’s clock then
10 trustlistp ← trustlistp \ {q} {suspect q}
11 Dp.trustlist ← trustlistp {update the failure detector output}
12 for all q ∈ Dp.trustlist do Dp.epoch [q]← epochp[q]

13 upon receive I-AM-ALIVE from q do
14 if q �∈ trustlistp then
15 trustlistp ← trustlistp ∪ {q} {trust q}
16 ∆p[q]← ∆p[q] + 1 {increase timeout}
17 upon receive I-RECOVERED from q do
18 epochp[q]← epochp[q] + 1

Figure 7: Implementing 3Se and 3S′
e in M3

stops crashing). Moreover, good processes send I-RECOVERED messages only a finite number of times, so
that the epoch numbers of each good process at every good process eventually stop changing. It remains to
show that for every unstable process u and every good process g, either eventually g permanently suspects
u or u’s epoch number at g is unbounded. Indeed, if g does not permanently suspect u, then it trusts u
infinitely often; in this case, g receives I-AM-ALIVE messages from u infinitely often. So u sends I-AM-
ALIVE messages to g infinitely often. Note that after each recovery, u always sends I-RECOVERED message
before sending I-AM-ALIVE messages. Therefore, u sends I-RECOVERED messages infinitely often. Thus,
g receives I-RECOVERED messages from u infinitely often and so g increments u’s epoch number infinitely
often.

Hence we have:

Theorem 48 In any partially synchronous system that conforms to M3, the algorithm in Fig. 7 guarantees
that (1) at every good process, eventually the epoch numbers are nondecreasing, (2) for every bad process b
and every good process g, either eventually g permanently suspects b or b’s epoch number at g is unbounded,
and (3) for every good process g, eventually g is permanently trusted by every good process, and g’s epoch
number at every good process stops changing.

Corollary 49 In any partially synchronous system that conforms to M3, the algorithm in Fig. 7 implements
3Se and 3S′

e.

Note that the algorithm does not implement 3Su in M3. This is because an unstable process u resets its
timeouts to a default value infinitely often, and if this value is smaller than the (unknown) bound on message
delays, then umay suspect every process infinitely often — a violation of the strong accuracy property of3Su.
In Section 10, however, we show how to transform any implementation of 3Se into 3Su (this transformation
does not rely on partial synchrony assumptions).

37

C Proof of Theorem 22

Theorem 22 The algorithm of Fig. 4 satisfies the Uniform Validity and Uniform Agreement properties of
uniform consensus. If a majority of processes are good then it also satisfies the Termination property.

The proof follows.

Definition 10 We say that p is in round r at time t if the value of variable rp in stable storage at time t is
r. A process p starts round r when p stores r as the value of rp for the first time in line 12. We say that p
updates estimatep to est when p stores est as the value of estimatep (in line 25 or 39). Similarly, we say that
p updates tsp to t when p stores t as the value of tsp (in line 25 or 39).

Lemma 50 (Uniform Validity) If a process decides v then some process previously proposed v.

Proof. Trivial. 2

Lemma 51 A process can update estimatep and tsp at most once in each round.

Proof. Let r be a round and p be a process. In round r, if p is the coordinator of round r then p can only
update estimatep and tsp in line 25; else, p can only update estimatep and tsp in line 39. When p updates
estimatep and tsp, it updates tsp to r. After it does so, it can not execute lines 25 and 39 in round r again
(even if it crashes and later recovers) because of the guard in lines 16 and 33, respectively. 2

Lemma 52 Let c be the coordinator of some round r. (1) in round r, if c starts Phase NEWESTIMATE with
estimatec = est , then c updates estimatec to est; and (2) in some round r′ > r, if some process p s-sends
(r′, est , r, ESTIMATE) in line 34, then in round r, c updates estimatec to est .

Proof. To prove (1), assume that in round r, c starts Phase NEWESTIMATE with estimatec = est . Clearly,
before c starts Phase NEWESTIMATE, it updates estimatec to some value est′. By Lemma 51, c updates
estimatec at most once in round r. Therefore est = est′. This shows (1).

To prove (2), assume that in some round r′ > r some process p s-sends (r′, est , r, ESTIMATE) in line 34. We
first claim that in round r, p updates estimatep to est . Indeed, since tsp = r when p executes line 34 in round
r′, pmust have executed line 24 or 38 in round r to set tsp to r, and then stored tsp in line 25 or 39 in round r.
Let est ′ be the value of estimatep that p stores in line 25 or 39 in round r. We need to show that est′ = est .
Indeed, it is clear that when p executes line 34 in round r′, the values of estimatep and tsp in stable storage
are est and r, respectively (this is because every time p changes estimatep or tsp, it stores its new value in
stable storage — see lines 25 and 39). Moreover, from the structure of the algorithm, the value of tsp in stable
storage is nondecreasing, so that after p stores tsp in round r, its value in stable storage does not change until
round r′. Note that estimatep and tsp are always updated together. So after p stores estimatep in round r,
the value of estimatep in stable storage also does not change until round r′. So est ′ = est , and this shows
the claim.

Now there are two cases. If p = c (i.e., p is the coordinator of round r), then part (2) follows immediately
from the claim. If p 	= c, then p does not execute line 25 in round r, and so by the claim p stores est as the
value of estimatep in line 39 in round r. Thus p must have received (r, est , NEWESTIMATE) from c, which
implies that c must have s-sent this message to p in line 27 in round r. By part (1), c updates estimatec to
est in round r. 2

Lemma 53 Suppose that the coordinator c of round r s-sends (est , DECIDE) in line 30. In every round
r′ ≥ r, if the coordinator c′ updates estimatec′ to some value est′ then est = est ′.

38

Proof. We prove this lemma by induction on the round number r′. For the base case (r′ = r), note that if c
s-sends (est , DECIDE) in line 30, then c starts Phase NEWESTIMATE with estimatec = est . The base case
now follows directly from Lemmata 51 and 52 (1).

Now assume that the lemma holds for all r′, r ≤ r′ < k. Let c′ be the coordinator of round k. We show that
the lemma holds for r′ = k.

Suppose that in round k, c′ updates estimatec′ to some value est′. Since c′ is the coordinator of round k,
this update can only happen in line 25. Then c′ received messages of the form (k, ∗, ∗, ESTIMATE) from
#(n+1)/2$ processes in the wait statement in line 18. Since c executes line 30 in round r, c receives (r, ACK)
from #(n+ 1)/2$ processes. Thus, there is some process p such that (1) in round r, c receives (r, ACK) from
p, and (2) in round k, for some est′′ and ts ′′, c′ receives (k, est′′, ts ′′, ESTIMATE) from p in the wait statement
in line 18. By (1), p s-sends (r, ACK) to c in round r. By (2), p s-sends (k, est′′, ts ′′, ESTIMATE) to c′ in
round k. Before doing that, p starts round k. After p starts round k, p never starts a round lower than k. This
implies that p s-sends (k, est ′′, ts ′′, ESTIMATE) to c′ in round k after p s-sends (r, ACK) to c in round r.
Before s-sending (r, ACK) to c in round r, p updates tsp to r (line 25 or 39). Since the value of tsp in stable
storage is non-decreasing, we must have ts′′ ≥ r. It is easy to see that no process ever s-sends a message
of the form (k, ∗, ts , ESTIMATE) with ts ≥ k. So, the value t that c′ selects in line 20 in round k is such that
r ≤ t < k. Let q be the process whose estimate value est′ is selected in line 22 in round k. Then in round
k, q s-sends (k, est ′, t, ESTIMATE). By Lemma 52 (2), the coordinator c′′ of round t updated estimatec′′ to
est ′. By the induction hypothesis, we have est′ = est . 2

Lemma 54 If processes c and c′ s-send (est , DECIDE) and (est ′, DECIDE) in line 30 in rounds r and r′,
respectively, then est = est′.

Proof. Assume without loss of generality that r′ ≥ r. Since line 30 is executed only by the coordinator, c and
c′ are the coordinators of rounds r and r′, respectively. Since c′ s-sends (est ′, DECIDE) in line 30 in round
r′, c′ starts Phase NEWESTIMATE with estimatec′ = est ′. By Lemma 52 (1), c′ updates estimatec′ to est ′.
By Lemma 53, est = est ′. 2

Lemma 55 (Uniform Agreement) No two processes decide differently.

Proof. Suppose that processes p and p′ decide on values est and est′, respectively. Process p decides est
in line 53 after receiving message (est , DECIDE). By a simple induction, some process must have s-sent
message (est , DECIDE) in line 30. Similarly, process p′ decides est′ in line 53, and so some process must
have s-sent message (est′, DECIDE) in line 30. By Lemma 54, est = est′. 2

Lemma 56 A process can start only finitely many rounds.

Proof. In order to obtain a contradiction, suppose that there are processes that start infinitely many rounds.
Let P be the set of all such processes. Clearly, P contains only good or unstable processes. For any process
p ∈ P and any round r ≥ 1, p eventually starts a round higher than r. Let r+p be the lowest round higher than
r that p starts and let r−p be the highest round lower than or equal to r that p starts. Then 1 ≤ r−p ≤ r < r+p .

By the Strong Accuracy property of 3Su, we can find a time T and a good process K such that after T , K
is never suspected by any good or unstable process and the epoch number of K at every good or unstable
process stops changing.

Let r be a round such that (1) K is the coordinator of round r, and (2) no process in Π \ P starts a round
higher than r, and (3) for every p ∈ P , p starts round r−p after time T . Such round clearly exists because
processes in Π \ P start only finitely many rounds and processes in P start infinitely many rounds.

39

Let p be the first process to start a round higher than r. By (2), p ∈ P and by the definition of r−p and r+p , p
selects round r+p when it executes line 49 in round r−p . This implies that r−p = r: indeed, if r−p < r then p
does not select round r+p in line 49; instead, it selects a round number that is at most r since (a) p trusts the
coordinator K of round r (by (3) and the definitions of T and K), and (b) p does not receive any messages of
a round higher than r (since p is the first process to start a round higher than r). So r−p = r. By (3), p starts
round r after time T . By (1) and the definition of T and K , while p is in round r, condition K ∈ d.trustlist
in line 44 evaluates to true and condition (K 	∈ d′.trustlist or d.epoch[K] < d′.epoch[K]) in line 46 always
evaluates to false. Since p starts a round higher than r, it does not loop forever in lines 45–46. So p eventually
receives a message of a round higher than r while in round r. This contradicts the fact that p is the first process
to start a round higher than r. 2

Definition 11 We say that a good process p blocks in round r if p starts round r but p does not start a higher
round, and p never decides.

Lemma 57 If a good process p blocks in round r, then in this round its skip round task loops forever in
lines 45–46.

Proof. Clearly, while process p is in round r, its task skip round must loop forever in lines 45–46 or in line 48
(otherwise p starts a round higher than r). By the Strong Accuracy property of 3Su, p eventually trusts some
process forever and so p cannot loop forever in line 48. Therefore p loops forever in lines 45–46. 2

Definition 12 We say that an eventually-up process stabilizes at time t if it recovers at time t and does not
crash afterwards. By convention, we say that an always-up process stabilizes at time 0.

Lemma 58 Suppose a good process p proposes but never decides. If p receives a message of round r after p
stabilizes, then eventually p starts some round r′ ≥ r.

Proof. In order to obtain a contradiction, suppose that p never starts any round r′ ≥ r. Since p proposes, p
starts some round (namely, round 1). Since p does not decide, p blocks in some round r′′ < r. By Lemma 57,
while in round r′′, the skip round task of p loops forever in lines 45–46. Since p receives a message of round
r after p stabilizes, p eventually exits the loop in lines 45–46. This is a contradiction. 2

Lemma 59 Let p and q be two good processes. If (1) p s-sends m to q after p stabilizes, (2) m is the last
message p s-sends to q, and (3) p never decides, then q receives m from p infinitely often.

Proof. By (1), (2) and (3), p sends m to q infinitely often in task retransmit (line 7). By the Fair Loss
property of links, q receives messages from p infinitely often. Note that m is the only message that p sends
to q infinitely often: this is because (1) in task retransmit, p eventually sends no message different from m
to q, and (2) outside task retransmit, p can only send messages of the form (∗, DECIDE) (line 56); however,
such messages are never sent since p never decides. Therefore, by the No Creation and Finite Duplication
properties of links, q receives from p only finitely many messages different fromm. Since q receives messages
from p infinitely often, it follows that q receives m from p infinitely often. 2

Lemma 60 If a good process p blocks in a round r, then the coordinator c of this round is also a good process.
Moreover, if p 	= c then c receives messages of round r from p infinitely often.

Proof. Let p by a good process that blocks in round r and let c be the coordinator of round r. We now prove
that c is a good process. In order to obtain a contradiction, suppose that c is bad. Since p blocks in round r,
by Lemma 57, while in round r′′ the skip round task of p loops forever in lines 45–46. By the Completeness

40

and Monotonicity properties of 3Su, eventually either p permanently suspects c or c’s epoch number at p is
nondecreasing and unbounded. Therefore, p eventually exits the loop in lines 45–46. This is a contradiction.
So c is a good process.

Now, assume p 	= c. After p stabilizes, it s-sends a message to c for the last time in round r, either in line 34
or in line 41. By Lemma 59, c receives this message from p infinitely often. 2

Lemma 61 Let p and q be good processes. If p decides and p receives non-DECIDE messages from q infinitely
often, then eventually q decides.

Proof. After p decides, every time p receives a non-DECIDE message from q, p sends a DECIDE message to q
(line 56). Therefore p sends DECIDE messages to q infinitely often. Moreover, this is the only message that p
sends to q infinitely often (since after p decides, it terminates all tasks). This implies that q receives DECIDE

messages from p infinitely often. Thus, eventually q decides. 2

Lemma 62 Suppose all good processes propose. If some good process decides then eventually all good
processes decide.

Proof. In order to obtain a contradiction, suppose that every good process proposes and some good process p
decides, but there is some good process q that never decides. Let Q be the set of good processes that do not
decide. By Lemma 56, for every q ∈ Q, q can start only finitely many rounds. Since q proposes, q blocks in
some round rq. Let r = max{rq | q ∈ Q}, and let q ∈ Q be a process that blocks in round r.

• Case 1: q is the coordinator of round r. Process q never decides, so in round r either q waits forever
at line 18 or at line 28 (otherwise q s-sends a DECIDE message to itself in line 30 and then decides in
line 53). Before q waits forever, it s-sends a non-DECIDE message to p (line 17 or 27). By Lemma 59,
p receives this message infinitely often. By Lemma 61, q eventually decides. This contradicts the fact
that q ∈ Q.

• Case 2: q is not the coordinator of round r. Let c 	= q be the coordinator of round r. By Lemma 60,
c is a good process and c receives messages of round r from q infinitely often. If c decides, then by
Lemma 61, q eventually decides too and this contradicts the fact that q ∈ Q. So c never decides. By
Lemma 58, eventually c starts a round r′ ≥ r. Since c ∈ Q, by the definition of r, we have that r′ ≤ r.
Thus r′ = r and so c blocks in round r. By Case 1, c eventually decides — a contradiction. 2

Lemma 63 Suppose there is a majority of good processes. If every good process proposes a value, then
eventually some good process decides.

Proof. In order to obtain a contradiction, suppose that no good process decides. By Lemma 56, each good pro-
cess p can start only finitely many rounds. Since p proposes, p blocks in some round rp. Let r = max{rp | p
is good} and let p be a good process that blocks in round r.

• Case 1: p is the coordinator of round r. Process p never decides, so in round r either p waits forever at
line 18 or at line 28.

• Case 1.1: p waits forever at line 18

We claim that for every good process q, p eventually receives (r, estimateq, tsq, ESTIMATE) from q
after p stabilizes. Then by the assumption that there is a majority of good processes, p does not wait
forever at line 18 — a contradiction.

To show the claim, note that since p waits forever at line 18 of round r, we have tsp 	= r. Thus, p never
updates tsp to r, and so p never updates estimatep in round r. By Lemma 52 (1), p never starts Phase
NEWESTIMATE. So p never s-sends NEWESTIMATE messages in round r.

41

• Case 1.1.1: q = p. Since tsp 	= r, in round r, after p stabilizes and forks task participant, p s-sends
(r, estimatep, tsp, ESTIMATE) to itself (line 34). Thus p receives this message after it stabilizes.

• Case 1.1.2: q 	= p. Before p waits forever at line 18, it s-sends (r, NEWROUND) to q (line 17) after
p stabilizes, and this is the last message p s-sends to q. By Lemma 59, q eventually receives (r,
NEWROUND) after q stabilizes. By Lemma 58, q eventually starts a round r′ ≥ r. By the definition
of r, we have that r′ ≤ r. Thus r′ = r and so q starts round r. In round r, we have that tsq 	= r
(otherwise, q sets tsp to r in line 39, which implies that q received a NEWESTIMATE message from p
— contradicting the fact that p never s-sends NEWESTIMATE messages). Then q s-sends message (r,
estimateq, tsq, ESTIMATE) to p (line 34). Process q waits forever in line 35 since p never s-sends a
NEWESTIMATE message to q. Therefore (r, estimateq, tsq, ESTIMATE) is the last message q s-sends
to p. By Lemma 59, p eventually receives (r, estimateq, tsq , ESTIMATE) from q after p stabilizes.

This concludes the proof of the claim.

• Case 1.2: p waits forever at line 28

We claim that for every good process q, p eventually receives (r, ACK) from q after p stabilizes. Then
by the assumption that there is a majority of good processes, p does not wait forever at line 28 — a
contradiction.

We now show the claim.

• Case 1.2.1: q = p. Before p waits forever at line 28, it s-sends a NEWESTIMATE message to itself (and
it does so after p stabilizes). Thus p receives this message from itself. So in task participant, p finishes
Phase ESTIMATE and s-sends (r, ACK) to itself. Therefore p receives this message from itself after it
stabilizes.

• Case 1.2.2: q 	= p. Before p waits forever at line 28, it s-sends (r, estimatep, NEWESTIMATE) to q
and this is the last message p s-sends to q. By Lemma 59, q eventually receives this message from p
after q stabilizes. By Lemma 58, q eventually starts a round r′ ≥ r. By the definition of r, we have
r′ ≤ r. Thus r′ = r and so q blocks in round r. In round r, after q stabilizes and forks task participant,
q finishes Phase ESTIMATE (since q receives a NEWESTIMATE message from p) and s-sends message
(r, ACK) to p in Phase ACK. This is the last message q s-sends to p, since q blocks in round r. By
Lemma 59, p eventually receives (r, ACK) from q after p stabilizes.

This shows the claim.

• Case 2: p is not the coordinator of round r.

Let c 	= p be the coordinator of round r. By Lemma 60, c is a good process and c receives messages of
round r from p infinitely often. By Lemma 58, c eventually starts a round r′ ≥ r. By the definition of r,
we have that r′ ≤ r. Thus r′ = r and so c blocks in round r. In Case 1, we showed that the coordinator
of round r does not block in round r — a contradiction. 2

Corollary 64 (Termination) Suppose there is a majority of good processes. If all good processes propose a
value, then they all eventually decide.

Proof. From Lemmata 62 and 63. 2

Proof of Theorem 22. Immediate from Lemmata 50 and 55, and Corollary 64. 2

42

