
Using the Heartbeat Failure Detector for
Quiescent Reliable Communication and Consensus

in Partitionable Networks�

Marcos Kawazoe Aguilera Wei Chen Sam Toueg

Department of Computer Science
Upson Hall, Cornell University
Ithaca, NY 14853-7501, USA.

aguilera,weichen,sam@cs.cornell.edu

July 1997

Abstract

We consider partitionable networks with process crashes and lossy links, and focus on the problems
of reliable communication and consensus for such networks. For both problems we seek algorithms
that are quiescent, i.e., algorithms that eventually stop sending messages. We first tackle the problem of
reliable communication for partitionable networks by extending the results of [ACT97a]. In particular,
we generalize the specification of the heartbeat failure detectorHB, show how to implement it, and show
how to use it to achieve quiescent reliable communication. We then turn our attention to the problem of
consensus for partitionable networks. We first show that, even though this problem can be solved using
a natural extension of failure detector3S, such solutions are not quiescent — in other words,3S alone
is not sufficient to achieve quiescent consensus in partitionable networks. We then solve this problem
using3S and the quiescent reliable communication primitives that we developed in the first part of the
paper.

1 Introduction

We focus on the problems of reliable communication and consensus for asynchronous networks that may
partition. For both problems we seek algorithms that are quiescent, i.e., algorithms that eventually stop
sending messages.

We consider networks where processes may crash and communication links may lose messages. We assume
that a lossy link is either fair or eventually down. Roughly speaking, a fair link may lose an infinite number
of messages, but if a message is repeatedly sent then it is eventually received. A link is eventually down (we
also say that it eventually crashes) if it eventually stops transporting messages. Links are unidirectional and
the network is not necessarily completely connected. The network is partitionable: there may be two correct

�Research partially supported by NSF grants CCR-9402896 and CCR-9711403, by ARPA/ONR grant N00014-96-1-1014, and
by an Olin Fellowship.

fair link partition
correct process

A
B

C
D

process that crasheslink that crashes

p

q

Figure 1: A network that partitions

processes p and q such that q is not reachable from p, i.e., there is no fair path from p to q.1 A partition is
a maximal set of processes that are mutually reachable from each other. We do not assume that partitions
are eventually isolated: one partition may be able to receive messages from another, or to successfully send
messages to another partition, forever.

An example of a network that partitions is given in Fig. 1. The processes that do not crash (black disks) are
eventually divided into four partitions, A, B, C and D. Each partition is strongly connected through fair
links (solid arrows). So processes in each partition can communicate with each other (but message losses
can occur infinitely often). None of the partitions is isolated. For example, processes in D may continue
to receive messages from processes in C (but not vice-versa); processes in D are able to send messages to
processes in B; there is no fair path from C to A, or from D to C, etc.

[ACT97a] shows that without the help of failure detectors it is impossible to achieve quiescent reliable
communication in the presence of process crashes and lossy links — even if one assumes that the network
never partitions. In order to overcome this problem, [ACT97a] introduces the heartbeat failure detector

1A fair path is one consisting of correct processes and fair links.

2

(denoted HB), and shows how it can be implemented, and how it can be used to achieve quiescent reliable
communication. All these results are for networks that do not partition.

In this paper, we extend the above results to partitionable networks. In particular, we: (a) generalize
the definitions of reliable communication primitives, (b) generalize the definition of the heartbeat failure
detector HB, (c) show how to implement HB, and (d) use HB to achieve quiescent reliable communication.

We next consider the problem of consensus for partitionable networks, and focus on solving this problem
with a quiescent algorithm.2 In order to do so, we first generalize the traditional definition of consensus to
partitionable networks. We also generalize the definition of 3S — the weakest failure detector for solving
consensus in networks that do not partition [CHT96b].

We show that, although 3S can be used to solve consensus for partitionable networks, any such solution is
not quiescent: Thus, 3S alone is not sufficient to solve quiescent consensus for partitionable networks. We
then show that this problem can be solved using 3S together with HB. In fact, our quiescent consensus
algorithm for partitionable networks is identical to the one given in [CT96] for non-partitionable networks
with reliable links: we simply replace the communication primitives used by the algorithm in [CT96]
with the quiescent reliable communication primitives that we derive in this paper (the proof of correctness,
however, is different).

An important remark on the use of failure detectors to achieve quiescence is now in order. Any reasonable
implementation of a failure detector in a message-passing system is itself not quiescent: A process being
monitored by a failure detector must periodically send a message to indicate that it is still alive, and it must
do so forever (if it stops sending messages it cannot be distinguished from a process that has crashed). Given
that failure detectors are not quiescent, does it still make sense to use them as a tool to achieve quiescent
applications (such as quiescent reliable broadcast, consensus, or group membership)?

The answer is yes, for two reasons. First, a failure detector is intended to be a basic system service that is
shared by many applications during the lifetime of the system, and so its cost is amortized over all these
applications. Second, failure detection is a service that needs to be active forever — and so it is natural that
it sends messages forever. In contrast, many applications (such as a single RPC call or the reliable broadcast
of a single message) should not send messages forever, i.e., they should be quiescent. Thus, there is no
conflict between the goal of building quiescent applications and the use of a (non-quiescent) shared failure
detection service as a tool to achieve this goal.

Organization of the Paper

The rest of the paper is organized as follows. In Section 2, we explain our model of partitionable networks,
and of failure detection for such networks. In Section 3, we extend the definition of the failure detector
HB to partitionable networks. In Section 4, we define reliable communication primitives for partitionable
networks, and give quiescent implementations that use HB. We then turn our attention to the consensus
problem in Section 5. We first define this problem for partitionable networks (Section 5.1), and extend
the definition of the failure detector 3S (Section 5.2). We then show that 3S is not sufficient to achieve
quiescent consensus in partitionable networks (Section 5.3), and give a quiescent implementation that uses
both 3S and HB (Section 5.4). In Section 6, we show how to implement HB in partitionable networks.
Some practical issues are briefly addressed in Section 7. We conclude with a short discussion of related
work (Section 8) and a comparison with other models (Section 9).

2The consensus algorithms for partitionable networks given in [FKM+95, CHT96a, DFKM96] are not quiescent.

3

2 Model

We consider asynchronous message-passing distributed systems in which there are no timing assumptions.
In particular, we make no assumptions on the time it takes to deliver a message, or on relative process
speeds. Processes can communicate with each other by sending messages through unidirectional links. The
system can experience both process failures and link failures. Processes can fail by crashing, and links
can fail by crashing or by intermittently dropping messages (while remaining fair). Failures may cause
permanent network partitions. The model, based on the one in [CHT96b], is described next.

A network is a directed graph G = (Π;Λ) where Π = f1; : : : ; ng is the set of processes, and Λ � Π �Π
is the set of links. If there is a link from process p to process q, we denote this link by p! q, and if, in
addition, q 6= p we say that q is a neighbor of p. The set of neighbors of p is denoted by neighbor(p).

We assume the existence of a discrete global clock — this is merely a fictional device to simplify the
presentation and processes do not have access to it. We take the range T of the clock’s ticks to be the set of
natural numbers.

2.1 Failures and Failure Patterns

Processes can fail by crashing, i.e., by halting prematurely. A process failure pattern FP is a function
from T to 2Π . Intuitively, FP (t) denotes the set of processes that have crashed through time t. Once a
process crashes, it does not “recover”, i.e., 8t : FP (t) � FP (t+1). We define crashed(FP) =

S
t2T FP (t)

and correct(FP) = Π n crashed(FP). If p 2 crashed(FP) we say p crashes (or is faulty) in FP and if
p 2 correct(FP) we say p is correct in FP .

We assume that the network has two types of links: links that are fair and links that crash. Roughly speaking,
a fair link p!q may intermittently drop messages, and do so infinitely often, but if p repeatedly sends some
message to q and q does not crash, then q eventually receives that message. If link p! q crashes, then it
eventually stops transporting messages. Link properties are made precise in Section 2.5.

A link failure pattern FL is a function from T to 2Λ. Intuitively, FL(t) is the set of links that have crashed
through time t. Once a link crashes, it does not “recover”, i.e., 8t : FL(t) � FL(t + 1). We define
crashed(FL) =

S
t2T FL(t). If p!q 2 crashed(FL), we say that p!q crashes (or is eventually down) in

FL. If p!q 62 crashed(FL), we say that p!q is fair in FL.

A failure pattern F = (FP ; FL) combines a process failure pattern and a link failure pattern.

2.2 Connectivity

In contrast to [ACT97a], the network is partitionable: there may be two correct processes p and q such that
q is not reachable from p (Fig. 1). Intuitively, a partition is a maximal set of processes that are mutually
reachable from each other. We do not assume that partitions are eventually isolated: one partition may be
able to receive messages from another, or to successfully send messages to another partition, forever. This
is made more precise below.

The following definitions are with respect to a given failure pattern F = (FP ; FL). We say that a path
(p1; : : : ; pk) in the network is fair if processes p1; : : : ; pk are correct and links p1 ! p2, : : : , pk�1 ! pk

are fair. We say process q is reachable from process p if there is a fair path from p to q.3 If p and q are

3We allow singleton paths of the form (p). Since fair paths contain only correct processes, p is reachable from itself if and only

4

both reachable from each other, we write p
F q. Note that
F is an equivalence relation on the set of
correct processes. The equivalence classes are called partitions. The partition of a process p (with respect
to F) is denoted partitionF (p). For convenience, if p is faulty we define partitionF (p) = ;. The set of
all non-empty partitions is denoted by PartitionsF . The subscript F in the above definitions is omitted
whenever it is clear from the context.

2.3 Failure Detectors

Each process has access to a local failure detector module that provides (possibly incorrect) information
about the failure pattern that occurs in an execution. A failure detector history H with range R is a function
from Π �T to R. H(p; t) is the output value of the failure detector module of process p at time t. A failure
detector D is a function that maps each failure pattern F to a set of failure detector histories with range RD
(where RD denotes the range of the failure detector output of D). D(F) denotes the set of possible failure
detector histories permitted by D for the failure pattern F .

2.4 Algorithms and Runs

An algorithm A is a collection of n deterministic automata, one for each process in the system. Computation
proceeds in atomic steps of A. In each step, a process may: receive a message from a process, get an external
input, query its failure detector module, undergo a state transition, send a message to a neighbor, and issue
an external output.

A run of algorithm A using failure detector D is a tuple R = (F;HD; I; S; T) where F = (FP ; FL)

is a failure pattern, HD 2 D(F) is a history of failure detector D for failure pattern F , I is an initial
configuration of A, S is an infinite sequence of steps of A, and T is an infinite list of strictly increasing time
values indicating when each step in S occurs.

A run must satisfy some properties for every process p: If p has crashed by time t, i.e., p 2 FP (t), then p
does not take a step at any time t0 � t; if p is correct, i.e., p 2 correct(FP), then p takes an infinite number
of steps; if p takes a step at time t and queries its failure detector, then p gets HD(p; t) as a response.

The correctness of an algorithm may depend on certain assumptions on the “environment”, e.g., the maximum
number of processes and/or links that may crash. For example, in Section 5.4, we give a consensus algorithm
that assumes that a majority of processes are in the same network partition. Formally, an environment E is
a set of failure patterns.

A problem P is defined by properties that sets of runs must satisfy. An algorithm A solves problem P

using a failure detector D in environment E if the set of all runs R = (F;HD; I; S; T) of A using D where
F 2 E satisfies the properties required by P . Let C be a class of failure detectors. An algorithm A solves a
problem P using C in environment E if for all D 2 C, A solves P using D in E . An algorithm implements
C in environment E if it implements some D 2 C in E . Unless otherwise stated, we put no restrictions on
the environment (i.e., E is the set of all possible failure patterns) and we do not refer to it.

if it is correct.

5

2.5 Link Properties

So far we have put no restrictions on how links behave in a run (e.g., processes may receive messages that
were never sent, etc.). As we mentioned before, we want to model networks that have two types of links:
links that are fair and links that crash. We therefore require that in each run R = (F;HD; I; S; T) the
following properties hold for every link p!q 2 Λ:

� [Uniform Integrity] for all k � 1, if q receives a message m from p exactly k times by time t, then p
sent m to q at least k times before time t;

� If p!q 62 crashed(FL): [Fairness] if p sends a message m to q an infinite number of times and q is
correct, then q receives m from p an infinite number of times.

If p!q 2 crashed(FL): [Finite Receipt] q receives messages from p only a finite number of times.4

Uniform Integrity ensures that a link does not create or duplicate messages. Fairness ensures that if a link
does not crash then it eventually transports any message that is repeatedly sent through it. Finite Receipt
implies that if a link crashes then it eventually stops transporting messages.

3 The Heartbeat Failure DetectorHB for Partitionable Networks

One of our goals is to achieve quiescent reliable communication in partitionable networks with process
crashes and message losses. In [ACT97a] it is shown that without failure detectors this is impossible, even
if one assumes that the network does not partition. In order to circumvent this impossibility result, [ACT97a]
introduces the heartbeat failure detector, denoted HB, for non-partitionable networks. In this section, we
generalize the definition of HB to partitionable networks. We then show how to implement it in Section 6.

HB is different from the failure detectors defined in [CT96], or those currently in use in many systems (even
though some existing systems, such as Ensemble and Phoenix, use the same name heartbeat in their failure
detector implementations [vR97, Cha97]). In contrast to existing failure detectors, HB is implementable in
asynchronous systems, without the use of timeouts (see Section 6).

A heartbeat failure detector D (for partitionable networks) has the following features. The output of D at
each process p is an array (v1; v2; : : : ; vn) with one nonnegative integer for each process in Π.5 Intuitively,
vq increases if process q is in the partition of p, and stops increasing otherwise. We say that vq is the
heartbeat value of process q at p. The heartbeat sequence of q at p is the sequence of the heartbeat values
of q at p as time increases. D satisfies the following properties:

� HB-Completeness: At each correct process p, the heartbeat sequence of every process not in the
partition of p is bounded. Formally:

8F = (FP ; FL);8H 2 D(F);8p 2 correct(FP);8q 2 Π n partitionF (p);

9K 2 N;8t 2 T : H(p; t)[q] � K

4We could have required a stronger property: if p! q has crashed by time t, i.e., p! q 2 FL(t), then q does not receive any
message sent by p at time t0 � t. This stronger property is not necessary in this paper.

5In [ACT97a], the output of D at p is an array with one nonnegative integer for each neighbor of p.

6

� HB-Accuracy:

– At each process p, the heartbeat sequence of every process is nondecreasing. Formally:

8F;8H 2 D(F);8p 2 Π;8q 2 Π;8t 2 T : H(p; t)[q] � H(p; t+ 1)[q]

– At each correct process p, the heartbeat sequence of every process in the partition of p is
unbounded. Formally:

8F = (FP ; FL);8H 2 D(F);8p 2 correct(FP);8q 2 partitionF (p);

8K 2 N;9t 2 T : H(p; t)[q] > K

The class of all heartbeat failure detectors is denoted HB. By a slight abuse of notation, we sometimes use
HB to denote a (generic) member of that class.

The output of HB is a vector of unbounded counters. In contrast, the output of failure detectors that are
commonly used in practice has bounded size: it is just a list of processes suspected to have crashed. Some
remarks are now in order regarding the necessity and practicality of HB’s unbounded output.

HB can be used to solve the problem of quiescent reliable communication and it is implementable in
asynchronous systems, but its counters are unbounded. Can we solve this problem using a failure detector
that is both implementable and has bounded output? The answer is no: in [ACT97b] we show that a failure
detector with bounded output size is either (a) too weak to achieve quiescent reliable communication, or
(b) not implementable. This shows that failure detectors that are commonly used in practice, i.e., those that
output only lists of suspects, are not always the best ones to solve a problem: their power or applicability is
limited. Thus, the difference between HB and existing failure detectors is more than “skin deep”.

In practice, the unbounded counters of HB are not a problem for the following reasons. First, they are in
local memory and not in messages — the implementation of HB shown in Section 6 uses bounded messages.
Second, if we bound each local counter to 64 bits, and assume a rate of one heartbeat per nanosecond, which
is orders of magnitude higher than currently used in practice, then HB will work for more than 500 years.

4 Reliable Communication for Partitionable Networks

There are two types of basic communication primitives: point-to-point and broadcast. We first define
reliable broadcast for partitionable networks, and give a quiescent implementation that uses HB. We then
consider point-to-point reliable communication.

4.1 Reliable Broadcast: Specification

Reliable broadcast for partitionable networks is defined in terms of two primitives: broadcast(m) and
deliver(m). We say that process p broadcasts message m if p invokes broadcast(m). We assume that
every broadcast message m includes the following fields: the identity of its sender, denoted sender(m),
and a sequence number, denoted seq(m). These fields make every message unique. We say that q delivers
message m if q returns from the invocation of deliver(m). Primitives broadcast and deliver satisfy the
following properties:6

6This specification is a generalization of the one for non-partitionable networks given in [HT94].

7

� Validity: If a correct process broadcasts a message m, then it eventually delivers m.

� Agreement: If a correct process p delivers a message m, then all processes in the partition of p
eventually deliver m.

� Uniform Integrity: For every message m, every process delivers m at most once, and only if m was
previously broadcast by sender(m).

� Partition Integrity: If a process q delivers an infinite number of messages broadcast by a process p,
then q is reachable from p.

Validity and Agreement imply that if a correct process p broadcasts a message m, then all processes in the
partition of p eventually deliver m.

We want to implement broadcast and deliver using the communication service provided by the network
links (which are described in Section 2.5). Informally, an implementation of reliable broadcast is quiescent
if it sends only a finite number of messages when broadcast is invoked a finite number of times.7

4.2 Reliable Broadcast: Algorithm UsingHB

The quiescent implementation of reliable broadcast for partitionable network that we give here is identical to
the one given in [ACT97a] for non-partitionable networks. However, the network assumptions, the reliable
broadcast requirements, and the failure detector properties are different, and so its proof of correctness and
quiescence changes.

This implementation, which uses HB, has the following desirable feature: processes do not need to know
the entire network topology or the number of processes in the system; they only need to know the identity
of their neighbors. Moreover, each process only needs to know the heartbeats of its neighbors.

The implementation of reliable broadcast is shown in Fig. 2. Dp denotes the current output of the failure
detector D at process p. All variables are local to each process. In the following, when ambiguities may
arise, a variable local to process p is subscripted by p. For each message m that is reliably broadcast, each
process p maintains a variable gotp[m] containing a set of processes. Intuitively, a process q is in gotp[m]

if p has evidence that q has delivered m. All the messages sent by a process p in the reliable broadcast
algorithm are of the form (m; got msg; path) where got msg is the current value of gotp[m], and path is
the sequence of processes that this copy of (m; got msg; path) has traversed so far.

In order to reliably broadcast a message m, p first delivers m; then p initializes variable gotp[m] to fpg and
forks task di�use(m); finally p returns from the invocation of broadcast(m). The task di�use(m) runs in
the background. In this task, p periodically checks if, for some neighbor q 62 gotp[m], the heartbeat of q at
p has increased and, if so, p sends (m; gotp[m]; p) to all neighbors whose heartbeat increased — even to
those who are already in gotp[m].8 The task terminates when all neighbors of p are contained in gotp[m].

Upon the receipt of a message (m; got msg; path), process p first checks if it has already delivered m and,
if not, it delivers m and forks task di�use(m). Then p adds the contents of got msg to gotp[m] and appends

7A quiescent implementation is allowed to send a finite number of messages even if no broadcast is invoked at all (e.g., some
messages may be sent as part of an “initialization phase”).

8It may appear that p does not need to send this message to processes in gotp[m], since they already got m! But with this
“optimization” the algorithm is no longer quiescent; we will indicate exactly where the sending to every neighbor whose heartbeat
increased is necessary in the proof of Lemma 9.

8

1 For every process p:
2

3 To execute broadcast(m):
4 deliver(m)
5 got[m] fpg
6 fork task diffuse(m)
7 return
8

9 task diffuse(m):
10 for all q 2 neighbor(p) do prev hb[q] �1
11 repeat periodically
12 hb Dp fqueryHBg
13 if for some q 2 neighbor(p), q 62 got[m] and prev hb[q] < hb[q] then
14 for all q 2 neighbor(p) such that prev hb[q] < hb[q] do send(m; got[m]; p) to q

15 prev hb hb

16 until neighbor(p) � got[m]
17

18 upon receive(m; got msg; path) from q do
19 if p has not previously executed deliver(m) then
20 deliver(m)
21 got[m] fpg
22 fork task diffuse(m)
23 got[m] got[m] [got msg
24 path path � p
25 for all q such that q 2 neighbor(p) and q appears at most once in path do
26 send(m; got[m]; path) to q

Figure 2: Quiescent implementation of broadcast and deliver using HB

itself to path . Finally, p forwards the new message (m; gotp[m]; path) to all its neighbors that appear at
most once in path .

The code consisting of lines 18–26 is executed atomically.9 Moreover, if there are several concurrent
executions of the diffuse task (lines 9 to 16), then each execution must have its own private copy of all the
local variables in this task, namely m, hb, and prev hb.

We now show that this implementation is correct and quiescent. The proofs of the first few lemmata are
obvious and therefore omitted.

Lemma 1 (Uniform Integrity) For every message m, every process delivers m at most once, and only if
m was previously broadcast by sender(m).

Lemma 2 (Validity) If a correct process broadcasts a message m, then it eventually delivers m.

Lemma 3 (Partition Integrity) If a process q delivers an infinite number of messages broadcast by a
process p, then q is reachable from p.

9A process p executes a region of code atomically if at any time there is at most one thread of p in this region.

9

Lemma 4 For any processes p and q, (1) if at some time t, q 2 gotp[m], then at every time t
0 � t,

q 2 gotp[m]; (2) When gotp[m] is initialized, p 2 gotp[m]; (3) if q 2 gotp[m] then q delivered m.

Lemma 5 For every m and path, there is a finite number of distinct messages of the form (m; �; path).

Lemma 6 If some process sends a message of the form (m; �; path), then no process appears more than
twice in path.

Lemma 7 Suppose link p!q is fair, and p and q are in the same partition. If p delivers a message m, then
q eventually delivers m.

Proof. Suppose for a contradiction that p delivers m and q never delivers m. Since p and q are in the
same partition, they are both correct. Therefore, p forks task di�use(m). Since q does not deliver m, by
Lemma 4 part (3) q never belongs to gotp[m]. Because p is correct and q is a neighbor of p, this implies
that p executes the loop in lines 11–16 an infinite number of times. Since q is in the partition of p, the
HB-Accuracy property guarantees that the heartbeat sequence of q at p is nondecreasing and unbounded.
Thus, the condition in line 13 evaluates to true an infinite number of times. Therefore, p executes line 14
infinitely often. So p sends a message of the form (m; �; p) to q infinitely often. By Lemma 5, there exists
a subset g0 � Π such that p sends message (m; g0; p) infinitely often to q. Since q is correct and link p!q

is fair, q eventually receives (m; g0; p). Therefore, q delivers m, a contradiction. 2

Lemma 8 (Agreement) If a correct process p delivers a message m, then all processes in the partition of
p eventually deliver m.

Proof (Sketch). For every process q in the partition of p, there is a fair path from p to q. The result follows
from successive applications of Lemma 7 over the links of this path. 2

We now show that the implementation in Fig. 2 is quiescent. In order to do so, we focus on a single
invocation of broadcast and show that it causes the sending of only a finite number of messages in the
network. This implies that a finite number of invocations of broadcast cause the sending of only a finite
number of messages.

Let m be a message and consider an invocation of broadcast(m). This invocation can only cause the
sending of messages of form (m; �; �). Thus, all we need to show is that every process eventually stops
sending messages of this form.

Lemma 9 Let p be a process and q be a neighbor of p with q 2 partition(p). If p forks task diffuse(m),
then eventually condition q 2 gotp[m] holds forever.

Proof. By Lemma 4 part (1), we only need to show that eventually q belongs to gotp[m]. Suppose, for a
contradiction, that q never belongs to gotp[m]. Since p and q are in the same partition, they are correct and
there exist both a simple fair path10

(p1; p2; : : : ; pk0) from p to q with p1 = p and pk0 = q, and a simple fair
path (pk0 ; pk0+1; : : : ; pk) from q to p with pk = p. For 1 � j < k, let Pj = (p1; p2; : : : ; pj). Note that a
process can appear at most twice in Pk . Thus, for 1 � j < k, process pj+1 appears at most once in Pj .
Moreover, for every j 2 f1; : : : ; kg, pj 2 partition(p).

We claim that for every j 2 f1; : : : ; k � 1g, there is a set gj containing fp1; p2; : : : ; pjg such that pj sends
(m; gj; Pj) to pj+1 an infinite number of times. For j = k�1, this claim together with the Fairness property

10A path is simple if all processes in that path are distinct.

10

of link pk�1!pk immediately implies that pk = p eventually receives (m; gk�1; Pk�1). Upon the receipt
of such a message, p adds the contents of gk�1 to its variable gotp[m]. Since gk�1 contains pk0 = q, this
contradicts the fact that q never belongs to gotp[m].

We show the claim by induction on j. For the base case, note that q never belongs to gotp[m] and q is a
neighbor of p1 = p, and so p1 executes the loop in lines 11–16 an infinite number of times. Furthermore,
since q is in the partition of p1, the HB-Accuracy property guarantees that the heartbeat sequence of q at
p1 is nondecreasing and unbounded. This implies that the condition in line 13 evaluates to true an infinite
number of times. So p1 executes line 14 infinitely often. Since p2 is in the partition of p1, its heartbeat
sequence is nondecreasing and unbounded. Together with the fact that p2 is a neighbor of p1, this implies
that p1 sends messages of the form (m; �; p1) to p2 an infinite number of times.11 By Lemma 5, there is
some g1 such that p1 sends (m; g1; p1) to p2 an infinite number of times. Parts (1) and (2) of Lemma 4 imply
that p1 2 g1. This shows the base case.

For the induction step, suppose that for j < k� 1, pj sends (m; gj; Pj) to pj+1 an infinite number of times,
for some set gj containing fp1; p2; : : : ; pjg. By the Fairness property of the link pj ! pj+1, pj+1 receives
(m; gj; Pj) from pj an infinite number of times. Since pj+2 is a neighbor of pj+1 and appears at most once
in Pj+1, each time pj+1 receives (m; gj; Pj), it sends a message of the form (m; �; Pj+1) to pj+2. It is easy
to see that each such message is (m; g; Pj+1) for some g that contains both gj and fpj+1g. By Lemma 5,
there exists gj+1 � Π such that gj+1 contains fp1; p2; : : : ; pj+1g and pj+1 sends (m; gj+1; Pj+1) to pj+2 an
infinite number of times. 2

Corollary 10 If a correct process p forks task diffuse(m), then eventually p stops sending messages in task
diffuse(m).

Proof. For every neighbor q of p, there are two cases. If q is in the partition of p then eventually condition
q 2 gotp[m] holds forever by Lemma 9. If q is not in the partition of p, then the HB-Completeness property
guarantees that the heartbeat sequence of q at p is bounded, and so eventually condition prev hbp[q] � hbp[q]

holds forever. Therefore, there is a time after which the guard in line 13 is always false. Hence, p eventually
stops sending messages in task di�use(m). 2

Lemma 11 (Quiescence)Eventually every process stops sending messages of the form (m; �; �).

Proof. Suppose, for a contradiction, that the lemma is not true. Then there exists a process p such that p
never stops sending messages of the form (m; �; �). By Lemma 6, the third component of a message of the
form (m; �; �) ranges over a finite set of values. Therefore, there is some fixed path such that p sends an
infinite number of messages of the form (m; �; path).

Now let path0 to be the shortest path such that there exists some process p0 that sends messages of the form
(m; �; path0) an infinite number of times. Note that p0 must be correct. Corollary 10 shows that there is a
time after which p0 stops sending messages in its task di�use(m). Since p0 only sends a message in task
di�use(m) or in line 26, then p0 sends messages of the form (m; �; path0) in line 26 an infinite number of
times. For each (m; �; path0) that p0 sends in line 26, p0 must have previously received a message of the
form (m; �; path1) such that path0 = path1 � p0. So p0 receives a message of the form (m; �; path1) an
infinite number of times. By the Uniform Integrity property of the links, some process p1 sends a message
of form (m; �; path1) to p0 an infinite number of times. But path1 is shorter than path0 — a contradiction
to the minimality of path0. 2

From Lemmata 1, 2, 3, 8, and 11 we have:
11This is where the proof uses the fact that p sends a message containing m to all its neighbors whose heartbeat increased —

even to those (such as p2) that may already be in gotp[m] (cf. line 14 of the algorithm).

11

Theorem 12 For partitionable networks, Fig. 2 shows a quiescent implementation of reliable broadcast
that uses HB.

We next consider point-to-point reliable communication for partitionable networks.

4.3 Quasi Reliable Send and Receive for Partitionable Networks

Consider any two distinct processes s and r. We define quasi reliable send and receive from s to r (for
partitionable networks) in terms of two primitives: qr-sends;r and qr-receiver;s. We say that process s
qr-sends message m to process r if s invokes qr-sends;r(m). We assume that if s is correct, it eventually
returns from this invocation. We allow process s to qr-send the same message m more than once through
the same link. We say that process r qr-receives message m from process s if r returns from the invocation
of qr-receiver;s(m). Primitives qr-sends;r and qr-receiver;s satisfy the following properties:12

� Quasi No Loss: For all k � 1, if s and r are in the same partition, and s qr-sends m to r exactly k
times by time t, then r eventually qr-receives m from s at least k times.

� Uniform Integrity: For all k � 1, if r qr-receives m from s exactly k times by time t, then s qr-sent
m to r at least k times before time t.

� Partition Integrity: If r qr-receives messages from s an infinite number of times then r is reachable
from s.

Intuitively, Quasi No Loss together with Uniform Integrity implies that if s and r are in the same partition,
then r qr-receives m from s exactly as many times as s qr-sends m to r.

We want to implement qr-sends;r and qr-receiver;s using the communication service provided by the
network links. Informally, such an implementation is quiescent if it sends only a finite number of messages
when qr-sends;r is invoked a finite number of times.

Given any quiescent implementation of reliable broadcast (such as the one given in the previous section),
we can obtain a quiescent implementation of qr-sendp;q and qr-receiveq;p for every pair of processes p and
q. The implementation works as follows: to qr-send a message m to q, p simply broadcasts the message
M = (m; p; q; k) using the given quiescent implementation of reliable broadcast, where sender(M) = p

and seq(M) = k, a sequence number that p has not used before. Upon the delivery of M = (m; p; q; k),
a process r qr-receives m from p if r = q, and discards m otherwise. This implementation of qr-sendp;q
and qr-receiveq;p is clearly correct and quiescent. Thus, from Theorem 12, we have:

Corollary 13 For partitionable networks, quasi reliable send and receive between every pair of processes
can be implemented with a quiescent algorithm that uses HB.

5 Consensus for Partitionable Networks

5.1 Specification

We now define the problem of consensus for partitionable networks as a generalization of the standard
definition for non-partitionable networks. Roughly speaking, some processes propose a value and must

12This specification is a generalization of the one for non-partitionable networks given in [ACT97a].

12

decide on one of the proposed values [FLP85]. More precisely, consensus is defined in terms of two
primitives, propose(v) and decide(v), where v is a value drawn from a set of possible proposed values.
When a process invokes propose(v), we say that it proposes v. When a process returns from the invocation
of decide(v), we say that it decides v.

The largest partition is defined to be the one with the largest number of processes (if more than one such
partition exists, pick the one containing the process with the largest process id). The consensus problem
(for partitionable networks) is specified as follows:

� Agreement: No two processes in the same partition decide differently.

� Uniform Validity: A process can only decide a value that was previously proposed by some process.

� Uniform Integrity: Every process decides at most once.

� Termination: If all processes in the largest partition propose a value, then they all eventually decide.

Stronger versions of consensus may also require one or both of the following properties:

� Uniform Agreement: No two processes (whether in the same partition or not) decide differently.

� Partition Termination: If a process decides then every process in its partition decides.

The consensus algorithm given in Section 5.4 satisfies the above two properties, while the impossibility
result in Section 5.3 holds for the weaker version of consensus.

Informally, an implementation of consensus is quiescent if each execution of consensus causes the sending
of only a finite number of messages throughout the network. This should hold even for executions where
only a subset of the correct processes actually propose a value (the others may not wish to run consensus).

5.2 3S for Partitionable Networks

It is well known that consensus cannot be solved in asynchronous systems, even if at most one process may
crash and the network is completely connected with reliable links [FLP85]. To overcome this problem,
Chandra and Toueg introduced unreliable failure detectors in [CT96]. In this paper, we focus on the class
of eventually strong failure detectors (the weakest one for solving consensus in non-partitionable networks
[CHT96b]), and extend it to partitionable networks.13

At each process p, an eventually strong failure detector outputs a set of processes. In [CT96], these are the
processes that p suspects to have crashed. In our case, these are the processes that p suspects to be outside
its partition. More precisely, an eventually strong failure detector D (for partitionable networks) satisfies
the following properties (in the following, we say that a process p trusts process q, if its failure detector
does not suspect q):

� Strong Completeness: For every partition P , there is a time after which every process that is not in P
is permanently suspected by every process in P . Formally:

8F;8H 2 D(F);8P 2 PartitionsF ;9t 2 T ;8p 62 P;8q 2 P;8t0 � t : p 2 H(q; t
0
)

13The other classes of eventual failure detectors introduced in [CT96] can be generalized in a similar way.

13

� Eventual Weak Accuracy: For every partition P , there is a time after which some process in P is
permanently trusted by every process in P . Formally:

8F;8H 2 D(F);8P 2 PartitionsF ;9t 2 T ;9p 2 P;8t0 � t;8q 2 P : p 62 H(q; t
0
)

The class of all failure detectors that satisfy the above two properties is denoted 3S .

A weaker class of failure detectors, denoted 3SLP , is obtained by defining the largest partition as in
Section 5.1, and replacing “For every partition P” with “For the largest partition P” in the two properties
above (this definition is similar to one given in [DFKM96]). Note that 3SLP does not impose any
requirement on the failure detector modules of processes in “small” partitions. To strengthen our results,
we use 3S for the impossibility result (Section 5.3), and 3SLP for the consensus algorithm (Section 5.4).

By a slight abuse of notation, we sometimes use 3S and 3SLP to refer to an arbitrary member of the
respective class.

5.3 Quiescent Consensus for Partitionable Networks Cannot be Achieved using3S

Although consensus for partitionable networks can be solved using3S , we now show that any such solution
is not quiescent (the consensus algorithms in [CHT96a, DFKM96] do not contradict this result because they
are not quiescent).

Theorem 14 In partitionable networks with 5 or more processes, consensus has no quiescent implementa-
tion using 3S . This holds even if we assume that no process crashes, there is a link between every pair of
processes, each link is eventually up or down,14 a majority of processes are in the same partition, and all
processes initially propose a value.

Proof (Sketch). The proof is by contradiction. Suppose there is a quiescent algorithm A that uses 3S to
solve consensus for partitionable networks. We consider a network with n � 5 processes, and construct
three runs of A using 3S in this network, such that the last run violates the specification of consensus. In
each of these three runs no process crashes, and every process executes A by initially proposing 0.

� Run R0. There are two permanent partitions: f1; 2g and f3; 4; : : : ; ng. Within each partition no
messages are lost, and all messages sent across the partitions are lost. At all times, each process
p 2 f1; 2g trusts only itself and process 2, and each process p 2 f3; 4; : : : ; ng trusts only itself and
process 3. We can easily show that processes 1 and 2 cannot decide any value in this run.15 Since A
is quiescent, there is a time t0 after which no messages are sent or received in R0.

� Run R1. Up to time t0, R1 is identical to run R0. At time t0 + 1, the network partitions permanently
into f1g and f2; 3; : : : ; ng. From this time on, within each partition no messages are lost, and all
messages sent across partitions are lost. Moreover, from time t0 + 1, process 1 trusts only itself, and
each process p 2 f2; 3; : : : ; ng trusts only itself and process 2. Since A is quiescent, there is a time
t1 after which no messages are sent or received in R1.

14I.e., for each link there is a time after which either all the messages sent are received or no message sent is received.
15In a minority partition that does not receive messages from the outside, such as partition f1; 2g above, processes can never

decide. Otherwise, we construct another run in which, after they decide, the minority partition merges with a majority partition
where processes have decided differently.

14

� Run R2. There is a single partition: f1; 2; : : : ; ng. Throughout the whole run, process 1 and its failure
detector module behaves as in R0, and all other processes and their failure detector modules behave
as in R1. In particular, up to time t0, R2 is identical to R0, and from time t0 + 1 to t1, all messages
sent to and from process 1 are lost. We conclude that, as in R0, process 1 does not decide in R2. This
violates the Termination property of consensus, since all processes in partition f1; 2; : : : ; ng propose
a value.

Note that the behavior of the failure detector in each of the above three runs is compatible with 3S . 2

5.4 Quiescent Consensus for Partitionable Networks using3SLP andHB

To solve consensus using 3SLP and HB in partitionable networks, we take the rotating coordinator
consensus algorithm of [CT96], we replace its communication primitives with the corresponding ones
defined in Sections 4.3 and 4.1, namely, qr-send, qr-receive, broadcast and deliver, and then we plug in
the quiescent implementations of these primitives given in Section 4.2 (these implementations useHB). The
resulting algorithm satisfies all the properties of consensus for partitionable networks, including Uniform
Agreement and Partition Termination, under the assumption that the largest partition contains a majority of
processes (this assumption is only necessary for the Termination property of consensus).16 Moreover, this
algorithm is quiescent.

Although this algorithm is almost identical to the one given in [CT96] for non-partitionable networks, the
network assumptions, the consensus requirements, and the failure detector properties are different, and so
its proof of correctness and quiescence changes.

The rotating coordinator algorithm is shown in Fig. 3 (the code consisting of lines 39–41 is executed
atomically). Processes proceed in asynchronous “rounds”. During round r, the coordinator is process
c = (r mod n) + 1. Each round is divided into four asynchronous phases. In Phase 1, every process
qr-sends its current estimate of the decision value timestamped with the round number in which it adopted
this estimate, to the current coordinator c. In Phase 2, c waits to qr-receive d(n + 1)=2e such estimates,
selects one with the largest timestamp, and qr-sends it to all the processes as its new estimate estimatec.
In Phase 3, for each process p there are two possibilities: (1) p qr-receives estimatec from c, it adopts
estimatec as its own estimate, and then qr-sends an ack to c; or (2) upon consulting its failure detector
module, p suspects c, and qr-sends a nack to c. In Phase 4, c waits to qr-receive d(n+1)=2e replies (ack or
nack). If all replies are acks, then c knows that a majority of processes changed their estimates to estimatec,
and thus estimatec is locked (i.e., no other decision value is possible). Consequently, c reliably broadcasts
a request to decide estimatec. At any time, if a process delivers such a request, it decides accordingly.

We next prove that the algorithm is correct and quiescent. Our proof is similar to the one in [CT96], except
for the proofs of Termination and Quiescence. The main difficulty in these proofs stems from the fact that we
do not assume that partitions are eventually isolated: it is possible for processes in one partition to receive
messages from outside this partition, forever. The following is an example of why this is problematic. The
failure detector 3SLP guarantees that in the largest partition there is some process c that is trusted by all
processes in that partition. However, c may be permanently suspected of being faulty by processes outside
the largest partition. Thus, it is conceivable that c receives nacks from these processes in Phase 4 of every
round in which it acts as the coordinator. These nacks would prevent c from ever broadcasting a request
to decide. In such a scenario, processes in the largest partition never decide, and they qr-send messages

16A standard partitioning argument shows that consensus for partitionable networks cannot be solved using 3S and HB if we
do not make this assumption.

15

1 For every process p:
2

3 To execute propose(vp):
4 estimatep vp festimatep is p’s estimate of the decision valueg
5 statep undecided
6 rp 0 frp is p’s current round numberg
7 tsp 0 ftsp is the last round in which p updated estimatep, initially 0g
8 repeat fRotate through coordinators until decision is reachedg
9 rp rp + 1
10 cp (rp mod n) + 1 fcp is the current coordinatorg
11

12 Phase 1:
13 qr-send (p; rp; estimatep; tsp) to cp

14

15 Phase 2:
16 if p = cp then
17 wait until [for d(n+ 1)=2e processes q: qr-received (q; rp; estimateq; tsq) from q]
18 msgs

p
[rp] f(q; rp; estimateq; tsq) j p qr-received (q; rp; estimateq; tsq) from qg

19 t largest tsq such that (q; rp; estimateq; tsq) 2 msgs
p
[rp]

20 estimatep select one estimateq such that (q; rp; estimateq; t) 2 msgs
p
[rp]

21 qr-send (p; rp; estimatep) to all
22

23 Phase 3:
24 wait until [qr-received (cp; rp; estimatecp) from cp or Dp suspects cp] fquery3SLPg
25 if [qr-received (cp; rp; estimatecp) from cp] then
26 estimatep estimatecp
27 tsp rp

28 qr-send (p; rp; ack) to cp

29 elseqr-send (p; rp; nack) to cp

30

31 Phase 4:
32 if p = cp then
33 wait until [for d(n+ 1)=2e processes q: qr-received (q; rp; ack) or (q; rp; nack)]
34 if [for d(n+ 1)=2e processes q: qr-received (q; rp; ack)] then
35 broadcast (p; rp; estimatep; decide) freliable broadcast the decision valueg
36 until statep = decided
37

38 upon deliver(q; rq; estimateq ; decide)
39 if statep = undecided then
40 decide(estimateq)
41 statep decided

Figure 3: Consensus for partitionable networks using 3SLP and reliable communication primitives

16

forever. Similar scenarios in which processes in the minority partitions qr-send messages forever are also
conceivable. To show that all such undesirable scenarios cannot occur, we use a partial order on the set of
partitions.

Lemma 15 (Uniform Integrity) Every process decides at most once.

Proof. Immediate from the algorithm. 2

Lemma 16 (Uniform Validity) A process can only decide a value that was previously proposed by some
process.

Proof. Immediate from the algorithm, the Uniform Integrity property of qr-send and qr-receive and the
Uniform Integrity property of reliable broadcast. 2

Lemma 17 (Partition Termination) If a process decides then every process in its partition decides.

Proof. If p is faulty then partition(p) = ;, so the result is vacuously true. If p is correct then the result
follows from the Agreement property of reliable broadcast. 2

We omit the proof of the next lemma because it is almost identical to the one of Lemma 6.2.1 in [CT96].

Lemma 18 (Uniform Agreement) No two processes (whether in the same partition or not) decide differ-
ently.

We now show the termination and quiescence properties of the implementation. For any partition P , we
say that QuiescentDecision(P) holds if:

1. all processes in P eventually stop qr-sending messages, and

2. if jP j > bn=2c and all processes in P propose a value, then all processes in P eventually decide.

Lemma 19 For every partition P , if there is a time after which no process in P qr-receives messages from
processes in Π n P , then QuiescentDecision(P) holds.

Proof (Sketch). Let t be the time after which no process in P qr-receives messages from processes in
Π n P . We first show that all processes in P eventually stop qr-sending messages. There are several
possible cases.

Case 1: Some process in P decides. Then by Lemma 17 all processes in P decide. A process that decides
stops qr-sending messages after it reaches the end of its current round, so all processes inP eventually
stop qr-sending messages.

Case 2: No process in P decides. There are now two subcases:

Case 2.1: Each process in P that proposes a value blocks at a wait statement. Then all processes in P

eventually stop qr-sending messages.

Case 2.2: Some process p in P that proposes a value does not block at any of the wait statements. Then,
since p does not decide, it starts every round r > 0. There are now two subcases:

17

Case 2.2.1: jP j � bn=2c. Let r0 be the round of process p at time t and let r1 be the first round after r0 in
which p is the coordinator. In Phase 2 of round r1, p waits to qr-receive estimates from d(n+ 1)=2e
processes. It can only qr-receive messages from processes in P , and since jP j � bn=2c, it blocks at
the wait statement of Phase 2 — a contradiction.

Case 2.2.2: jP j > bn=2c. By the Eventual Weak Accuracy property of3SLP , there exists a process c 2 P

and a time t0 such that after t0, all processes in P trust c. Let t00 = maxft; t0g and let r0 be the largest
round number among all processes at time t00. Let r1 and r2 be, respectively, the first and second
rounds greater than r0 in which c is the designated coordinator. Since p trusts c after time t00, and
it completes Phase 3 of round r2, p must have qr-received a message of the form (c; r2; estimatec)

from c in that phase. Therefore, c starts round r2, and thus c completes round r1. So c qr-receives
messages from d(n+ 1)=2e processes in Phase 4 of round r1. These processes are all in P because,
after time t

00, c qr-receives no messages from processes in Π n P . All such messages are ack’s
because all processes in P start round r1 after time t00, and so they trust cwhile in round r1. Therefore,
c reliably broadcasts a decision value at the end of Phase 4 of round r1, and so it delivers that value
and decides — a contradiction to the assumption that no process in P decides.

We now show that if jP j > bn=2c and all processes in P propose a value, then all processes in P eventually
decide. By Lemma 17, we only need to show that some process in P decides. For contradiction, suppose
that no process in P decides. We claim that no process in P remains blocked forever at one of the wait
statements. This claim implies that every process in P starts every round r > 0, and thus qr-sends
an infinite number of messages, which contradicts what we have shown above. We prove the claim by
contradiction. Let r0 be the smallest round number in which some process in P blocks forever at one of the
wait statements. Since all processes in P propose and do not decide, they all reach the end of Phase 1 of
round r0: they all qr-send a message of the type (�; r0; estimate; �) to the coordinator c = (r0 mod n) + 1
of round r0. Thus, at least d(n+1)=2e such messages are qr-sent to c. There are now two cases: (1) c 2 P .
Then c qr-receives those messages and replies by qr-sending (c; r0; estimatec). Thus c completes Phase 2
of round r0. Moreover, every process in P qr-receives this message, and so every process in P completes
Phase 3 of round r0. Thus every process in P qr-sends a message of the type (�; r0; ack) or (�; r0;nack)

to c, and so c completes Phase 4 of round r0. We conclude that every process in P completes round r0

— a contradiction. (2) c 62 P . Then, by the Strong Completeness property of 3SLP , all processes in
P eventually suspect c forever, and thus they do not block at the wait statement in Phase 3 of round r0.
Therefore, all processes in P complete round r0 — a contradiction. 2

Lemma 20 For every partition P , QuiescentDecision(P) holds.

Proof (Sketch). Define a binary relation; on the set Partitions as follows: for every P;Q 2 Partitions,
P ; Q if and only if P 6= Q and there is a fair path from some process in P to some process in Q.
Clearly ; is an irreflexive partial order. The lemma is shown by induction on ;. Let P be any partition
and assume that, for every Q such that Q ; P , QuiescentDecision(Q) holds. We must show that
QuiescentDecision(P) also holds.

Let Q be any partition such that Q ; P . Since QuiescentDecision(Q) holds, every process q 2 Q

eventually stops qr-sending messages. So, by the Uniform Integrity property of qr-send and qr-receive,
there is a time after which no process in P qr-receives messages from processes in Q.

Now let Q be any partition such that Q 6; P and Q 6= P . For all processes q 2 Q and p 2 P , there is no
fair path from q to p, and so p is not reachable from q. By the Partition Integrity property of qr-send and

18

qr-receive, eventually p does not qr-receive messages from q. So, eventually no process in P qr-receives
messages from processes in Q.

We conclude that eventually no process in P qr-receives messages from processes in any partition Q 6= P .
Moreover, eventually no process in P qr-receives messages from faulty processes. Thus, there is a time
after which no process in P qr-receives messages from processes in Π n P . Therefore, by Lemma 19,
QuiescentDecision(P) holds. 2

Corollary 21 (Termination) Assume that the largest partition contains a majority of processes. If all
processes in the largest partition propose a value, then they all eventually decide.

Proof. Let P be the largest partition. By assumption, jP j > bn=2c. Apply Lemma 20. 2

Corollary 22 (Quiescence)By plugging the quiescent implementations of qr-send, qr-receive, broad-
cast, and deliver of Section 4.2 into the algorithm of Fig. 3, we obtain a quiescent algorithm.

Proof. First note that every process p invokes only a finite number of broadcasts: if p crashes, this
is obvious; if p is correct and broadcasts at least once, it eventually delivers its first broadcast, and then
stops broadcasting soon after this delivery. Furthermore, each process also invokes only a finite number
of qr-sends: for a process that crashes, this is obvious, and for a correct process, this is a consequence of
Lemma 20. The result now follows since the implementations of broadcast and qr-send in Section 4.2 are
quiescent. 2

From Lemmata 15, 16, 17 and 18, and Corollaries 21 and 22, we have:

Theorem 23 Consider the algorithm obtained by plugging the implementations of qr-send, qr-receive,
broadcast and deliver of Section 4.2 into the algorithm of Fig. 3. This algorithm is quiescent, and
satisfies the following properties of consensus: Uniform Agreement, Uniform Validity, Uniform Integrity,
and Partition Termination. Moreover, if the largest partition contains a majority of processes, then it also
satisfies Termination.

6 Implementation ofHB for Partitionable Networks

We now show how to implement HB for partitionable networks. Our implementation (Fig. 4) is a minor
modification of the one given in [ACT97a] for non-partitionable networks. Every process p executes
two concurrent tasks. In the first task, p periodically increments its own heartbeat value, and sends the
message (HEARTBEAT; p) to all its neighbors. The second task handles the receipt of messages of the
form (HEARTBEAT; path). Upon the receipt of such a message from process q, p increases the heartbeat
values of all the processes that appear after p in path . Then p appends itself to path and forwards message
(HEARTBEAT; path) to all its neighbors that appear at most once in path.

Note that HB does not use timeouts on the heartbeats of a process in order to determine whether this process
has failed or not. HB just counts the total number of heartbeats received from each process, and outputs
these “raw” counters without any further processing or interpretation.

Thus, HB should not be confused with existing implementations of failure detectors (some of which, such
as those in Ensemble and Phoenix, have modules that are also called heartbeat [vR97, Cha97]). Even
though existing failure detectors are also based on the repeated sending of a heartbeat, they use timeouts on

19

1 For every process p:
2

3 Initialization:
4 for all q 2 Π doDp[q] 0 fDp is the output ofHB at pg
5

6 cobegin
7 jj Task 1:
8 repeat periodically
9 Dp[p] Dp[p] + 1 fincrement p’s own heartbeatg
10 for all q 2 neighbor(p) do send(HEARTBEAT; p) to q

11

12 jj Task 2:
13 upon receive(HEARTBEAT; path) from q do
14 for all q 2 Π such that q appears after p in path do
15 Dp[q] Dp[q] + 1
16 path path � p
17 for all q such that q 2 neighbor(p) and q appears at most once in path do
18 send(HEARTBEAT; path) to q

19 coend

Figure 4: Implementation of HB for partitionable networks

heartbeats in order to derive lists of processes considered to be up or down; applications can only see these
lists. In contrast, HB simply counts heartbeats, and shows these counts to applications.

We now proceed to prove the correctness of the implementation.

Lemma 24 At each process p, the heartbeat sequence of every process q is nondecreasing.

Proof. This is clear since Dp[q] can only be changed in lines 9 and 15. 2

Lemma 25 At each correct process p, the heartbeat sequence of every process in the partition of p is
unbounded.

Proof. Let q be a process in the partition of p. If q = p then line 9 is executed infinitely many times (since p
is correct), and so the heartbeat sequence of p at p is unbounded. Now assume q 6= p and let (p1; p2; : : : ; pi)

be a simple fair path from p to q, and (pi; pi+1; : : : ; pk) be a simple fair path from q to p, so that p1 = pk = p

and pi = q. For j = 1; : : : ; k, let Pj = (p1; : : : ; pj). For each j = 1; : : : ; k � 1, we claim that pj sends
(HEARTBEAT; Pj) to pj+1 an infinite number of times. We show this by induction on j. For the base case
(j = 1), note that p1 = p is correct, so its Task 1 executes forever and therefore p1 sends (HEARTBEAT; p1)

to all its neighbors, and thus to p2, an infinite number of times. For the induction step, let j < k � 1 and
assume that pj sends (HEARTBEAT; Pj) to pj+1 an infinite number of times. Since pj+1 is correct and
the link pj ! pj+1 is fair, pj+1 receives (HEARTBEAT; Pj) an infinite number of times. Moreover, pj+2

appears at most once in Pj+1 and pj+2 is a neighbor of pj+1, so each time pj+1 receives (HEARTBEAT; Pj),
it sends (HEARTBEAT; Pj+1) to pj+2 in line 18. Therefore, pj+1 sends (HEARTBEAT; Pj+1) to pj+2 an
infinite number of times. This shows the claim.

For j = k � 1 this claim shows that pk�1 sends (HEARTBEAT; Pk�1) to pk an infinite number of times.
Process pk is correct and link pk�1!pk is fair, so pk receives (HEARTBEAT; Pk�1) an infinite number of

20

times. Note that q appears after p in Pk�1. So every time pk receives (HEARTBEAT; Pk�1), it increments
Dpk [q] in line 15. So Dpk[q] is incremented an infinite number of times. Note that, by Lemma 24, Dpk [q]
can never be decremented. So, the heartbeat sequence of q at pk = p is unbounded. 2

Corollary 26 (HB-Accuracy) At each process p, the heartbeat sequence of every process is nondecreasing,
and at each correct process p, the heartbeat sequence of every process in the partition of p is unbounded.

Proof. From Lemmata 24 and 25. 2

Lemma 27 If some process p sends (HEARTBEAT; path) then (1) p is the last process in path and (2) no
process appears more than twice in path.

Proof. Obvious. 2

Lemma 28 Let p and q be processes, and path be a sequence of processes. Suppose that p receives message
(HEARTBEAT; path � q) an infinite number of times. Then q is correct and link q!p is fair. Moreover, if
path is non-empty, then q receives message (HEARTBEAT; path) an infinite number of times.

Proof. Obvious. 2

Lemma 29 (HB-Completeness)At each correct process p, the heartbeat sequence of every process not in
the partition of p is bounded.

Proof (Sketch). Let q be a process that is not in the partition of p. Note that q 6= p. For a contradiction,
suppose that the heartbeat sequence of q at p is not bounded. Then p increments Dp[q] an infinite number
of times in line 15. So, for an infinite number of times, p receives messages of the form (HEARTBEAT; �)

with a second component that contains q after p. Lemma 27 part (2) implies that the second component of a
message of the form (HEARTBEAT; �) ranges over a finite set of values. Thus there exists a path containing
q after p such that p receives (HEARTBEAT; path) an infinite number of times. Let path = (p1; : : : ; pk).
For convenience, let p = pk+1. By repeated applications of Lemma 28, we conclude that for each
j = k; k � 1; : : : ; 1, pj is correct and link pj ! pj+1 is fair. Let i; i0 2 f1; : : : ; kg be such that pi = p,
pi0 = q and i < i

0. Thus (pi; pi+1; : : : ; pi0) is a fair path from p to q and (pi0; pi0+1; : : : ; pk; p) is a fair path
from q to p. Therefore p and q are in the same partition — a contradiction. 2

By Corollary 26 and the above lemma, we have:

Theorem 30 Figure 4 implements HB for partitionable networks.

7 Some Practical Considerations

In contrast to several previous works on network partitions, we did not assume here that all partitions are
isolated. In other words, there can be two partitions P and P

0 such that processes in P can continuously
receive messages from processes in P0 (but processes in P

0 eventually stop receiving messages from P).
Dealing with non-isolated partitions complicates the task of designing and/or proving the algorithms (e.g.,
in the proof of our Consensus algorithm, we had to define a partial order on the set of partitions, and
argue by induction on this partial order). The completeness properties of HB and 3S helped us deal with
non-isolated partitions, as we now explain.

21

Let P and P
0 be two partitions such that p 2 P receives every message that p0 2 P

0 sends. The
completeness property of HB requires that the heartbeat of p0 at p must eventually stop. Similarly, the
completeness property of 3S requires that p permanently suspectes p0. In other words, even though p

receives all the messages of p0, HB and 3S must behave as if all the processes in P were actually isolated
from those in P 0. Thus, HB and3S help algorithms by “restoring” the isolation of partitions to some extent.
At this point, it may seem that we dealt with problem of non-isolated partitions by simply “postulating it
away” in the definitions of HB and 3S . This is not the case, since we gave an implementation of HB
(Section 6), and by incorporating a timeout mechanism to this implementation, one can also obtain 3S: if
the heartbeat of p0 at p does not increase within a certain timeout period, p suspects p0 (of course, timeout
mechanisms make sense only in partially synchronous systems).

We now address the issue of message buffering. Soon after a process p crashes its heartbeat ceases
everywhere and processes stop sending messages to p. However, they do have to keep the messages they
intended to send to p, just in case p is merely very slow, and the heartbeat of p resumes later on. In theory,
they have to keep these messages forever, and this requires unbounded buffers. In practice, however, the
system will eventually decide that p is indeed useless and will “remove” p (e.g. via a Group Membership
protocol). All the stored messages addressed to p can then be discarded. The removal of p may take a long
time,17 but the heartbeat mechanism ensures that processes stop sending messages to p soon after p actually
crashes, and much before its removal. The same considerations apply if, instead of crashing, p is partitioned
away from its current partition P , and the (Partitionable) Group Membership eventually removes it from P .

8 Related Work

Regarding reliable communication, the works that are closest to ours are [BCBT96, ACT97a]. Both of these
works, however, consider only non-partitionable networks. In [BCBT96], Basu et al. pose the following
question: given a problem that can be solved in asynchronous systems with process crashes only, can this
problem still be solved if links can also fail by losing messages? They show that the answer is “yes” if the
problem is correct-restricted [BN92, Gop92]18 or if more than half of the processes do not crash. However,
the communication algorithms that they give are not quiescent (and do not use failure detectors). [ACT97a]
was the first paper to study the problem of achieving quiescent reliable communication by using failure
detectors in a system with process crashes and lossy links.

Regarding consensus, the works that are closest to ours are [FKM+95, CHT96a, DFKM96, GS96]. In
[GS96], as a first step towards partitionable networks, Guerraoui and Schiper define Γ-accurate failure
detectors. Roughly speaking, only a subset Γ of the processes are required to satisfy some accuracy
property. However, their model assumes that the network is completely connected and links between
correct processes do not lose messages — thus, no permanent partition is possible.

The first paper to consider the consensus problem in partitionable networks is [FKM+95], but the algorithms
described in that paper had errors [CHT96a]. Correct algorithms can be found in [CHT96a, DFKM96].19

All these algorithms use a variant of 3S , but in contrast to the one given in this paper they do not use
HB and are not quiescent: processes in minority partitions may send messages forever. Moreover, these

17In some group membership protocols, the timeout used to remove a process is on the order of minutes: killing a process is
expensive and so timeouts are set conservatively.

18I.e., its specification refers only to the behavior of non-faulty processes.
19Actually, the specification of consensus considered in [FKM+95, CHT96a] only requires that one correct process in the largest

partition eventually decides. Ensuring that all correct processes in the largest partition decide can be subsequently achieved by a
(quiescent) reliable broadcast of the decision value.

22

behavior

failure detector

connectivity

network

by algorithm

messages sent

(b)

(c)

(a)

Figure 5: Cycle of dependencies when network connectivity is defined in terms of messages sent

algorithms make the following additional assumptions: (a) the largest partition is eventually isolated from
the rest of the system: there is a time after which messages do not go in or out of this partition, and (b) links
in the largest partition can lose only a finite number of messages (recall that in our case, all links may lose
an infinite number of messages). The underlying model of failures and failure detectors is also significantly
different from the one proposed in this paper. Another model of failure detectors for partitionable networks
is given in [BDM97]. We compare models in the next section.

9 Comparison with other Models

In [DFKM96, BDM97], network connectivity is defined in terms of the messages exchanged in a run — in
particular, it depends on whether the algorithm being executed sends a message or not, on the times these
messages are sent, and on whether these messages are received. This way of defining network connectivity,
which is fundamentally different from ours, has two drawbacks. First, it creates the following cycle of
dependencies (Fig. 5): (a) The messages that an algorithm sends in a particular run depend on the algorithm
itself and on the behavior of the failure detector it is using, (b) the behavior of the failure detector depends
on the network connectivity, and (c) the network connectivity depends on the messages that the algorithm
sends. Second, it raises the following issue: are the messages defining network connectivity, those of the
applications, those of the failure detection mechanism, or both?

In our model, network connectivity does not depend on messages sent by the algorithm, and so we avoid
the above drawbacks. In fact, network connectivity is determined by the (process and link) failure pattern
which is defined independently of the messages sent by the algorithm. The link failure pattern is intended
to model the physical condition of each link independent of the particular messages sent by the algorithm
being executed.

In [DFKM96], two processes p and q are permanently connected in a given run if they do not crash and
there is a time after which every message that p sends to q is received by q, and vice-versa. Clearly, network
connectivity depends on the messages of the run.

In [BDM97], process q is partitioned from p at time t if the last message that p sent to q by time t0 � t is never

23

received by q. This particular way of defining network connectivity in terms of messages is problematic for
our purposes, as the following example shows.

A process p wishes to send a sequence of messages to q. For efficiency, the algorithm of p sends a
message to q only when p’s failure detector module indicates that q is currently reachable from p (this is
not unreasonable: it is the core idea behind the use of failure detector HB to achieve quiescent reliable
communication). Suppose that at time t, p sends m to q, and this message is lost (it is never received by q).
By the definition in [BDM97], q is partitioned from p at time t. Suppose that the failure detector module
at p now tells p (correctly) that q is partitioned from p. At this point, p stops sending messages to q until
the failure detector says that q has become reachable again. However, since p stopped sending messages to
q, by definition, q remains partitioned from p forever, and the failure detector oracle (correctly) continues
to report that q is unreachable from p, forever. Thus, the loss of a single message discourages p from ever
sending messages to q again.

A possible objection to the above example is that the failure detector module at p is not just an oracle with
axiomatic properties, but also a process that sends its own messages to determine whether q is reachable
or not. Furthermore, these failure detector messages should also be taken into account in the definition
of network connectivity (together with the messages exchanged by the algorithms that use those failure
detectors). However, this defeats one of the original purpose of introducing failure detection as a clean
abstraction to reason about fault tolerance. The proof of correctness of an algorithm (such as the one in the
simple example above) should refer only to the abstract properties of the failure detector that it uses, and
not to any aspects of its implementation.

Acknowledgments

We would like to thank Anindya Basu, Tushar Deepak Chandra, Francis Chu, Vassos Hadzilacos, and the
anonymous referees for their helpful comments.

References

[ACT97a] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. Heartbeat: a timeout-free failure
detector for quiescent reliable communication. In Marios Mavronicolas and Philippas Tsigas,
editors, Proceedings of the 11th International Workshop on Distributed Algorithms, Lecture
Notes on Computer Science. Springer-Verlag, September 1997. A full version is also available
as Technical Report 97-1631, Computer Science Department, Cornell University, Ithaca, New
York, May 1997.

[ACT97b] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. On the weakest failure detector
for quiescent reliable communication. Technical Report 97-1640, Department of Computer
Science, Cornell University, July 1997.

[BCBT96] Anindya Basu, Bernadette Charron-Bost, and Sam Toueg. Simulating reliable links with
unreliable links in the presence of process crashes. In Özalp Babaoğlu and Keith Marzullo,
editors, Proceedings of the 10th International Workshop on Distributed Algorithms, Lecture
Notes on Computer Science, pages 105–122. Springer-Verlag, October 1996.

24

[BDM97] Özalp Babaoğlu, Renzo Davoli, and Alberto Montresor. Partitionable group membership:
specification and algorithms. Technical Report UBLCS-97-1, Dept. of Computer Science,
University of Bologna, Bologna, Italy, January 1997.

[BN92] Rida Bazzi and Gil Neiger. Simulating crash failures with many faulty processors. In Adrian
Segal and Shmuel Zaks, editors, Proceedings of the 6th International Workshop on Distributed
Algorithms, Lecture Notes on Computer Science, pages 166–184. Springer-Verlag, 1992.

[Cha97] Tushar Deepak Chandra, April 1997. Private Communication.

[CHT96a] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg, March 1996. Private Communi-
cation to the authors of [FKM+95].

[CHT96b] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure detector for
solving consensus. Journal of the ACM, 43(4):685–722, July 1996.

[CT96] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43(2):225–267, March 1996.

[DFKM96] Danny Dolev, Roy Friedman, Idit Keidar, and Dahlia Malkhi. Failure detectors in omission
failure environments. Technical Report TR96-1608, Department of Computer Science, Cornell
University, Ithaca, New York, September 1996.

[FKM+95] Roy Friedman, Idit Keidar, Dahlia Malkhi, Ken Birman, and Danny Dolev. Deciding in par-
titionable networks. Technical Report TR95-1554, Department of Computer Science, Cornell
University, Ithaca, New York, November 1995.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, April 1985.

[Gop92] Ajei Gopal. Fault-Tolerant Broadcasts and Multicasts: The Problem of Inconsistency and
Contamination. PhD thesis, Cornell University, January 1992.

[GS96] Rachid Guerraoui and Andŕe Schiper. Gamma-Accurate failure detectors. In Özalp Babaoğlu
and Keith Marzullo, editors, Proceedings of the 10th International Workshop on Distributed
Algorithms, Lecture Notes on Computer Science, pages 269–286. Springer-Verlag, October
1996.

[HT94] Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant broadcasts and related
problems. Technical Report TR 94-1425, Department of Computer Science, Cornell University,
Ithaca, New York, May 1994.

[vR97] Robbert van Renesse, April 1997. Private Communication.

25

