Using the Heartbeat Failure Detector for
Quiescent Reliable Communication and Consensus
in Partitionable Networks'

Marcos Kawazoe Aguilera Wei Chen Sam Toueg

Department of Computer Science
Upson Hall, Cornell University
Ithaca, NY 14853-7501, USA.
agui | era, wei chen, sam@s. cornel | . edu

July 1997

Abstract

We consider partitionable networks with process crashesand lossy links, and focus on the problems
of reliable communication and consensus for such networks. For both problems we seek algorithms
that are quiescent, i.e., algorithms that eventually stop sending messages. We first tackle the problem of
reliable communication for partitionable networks by extending the results of [ACT974]. In particular,
we generalize the specification of the heartbeat failure detector H B, show how to implement it, and show
how to useit to achieve quiescent reliable communication. We then turn our attention to the problem of
consensusfor partitionable networks. We first show that, even though this problem can be solved using
anatural extension of failure detector &, such solutions are not quiescent — in other words, ¢S aone
is not sufficient to achieve quiescent consensus in partitionable networks. We then solve this problem
using ¢S and the quiescent reliable communication primitives that we developed in the first part of the

1 Introduction

We focus on the problems of reliable communication and consensus for asynchronous networks that may
partition. For both problems we seek algorithms that are quiescent, i.e., algorithms that eventualy stop
sending messages.

We consider networks where processes may crash and communication links may lose messages. We assume
that alossy link iseither fair or eventually down. Roughly speaking, afair link may lose an infinite number
of messages, but if amessageisrepeatedly sent thenitiseventually received. A link iseventually down (we
also say that it eventually crashes) if it eventually stops transporting messages. Links are unidirectional and
the network is not necessarily completely connected. The network ispartitionable: there may betwo correct

*Research partially supported by NSF grants CCR-9402896 and CCR-9711403, by ARPA/ONR grant N00014-96-1-1014, and
by an Olin Fellowship.

D
P correct process
fair link .p partition
link that crashes process that crashes

,,,,,,,,,, ~ O

Figure 1: A network that partitions

processes p and ¢ such that ¢ is not reachable from p, i.e., there is no fair path from p to ¢* A partition is
amaximal set of processes that are mutually reachable from each other. We do not assume that partitions
are eventually isolated: one partition may be able to receive messages from another, or to successfully send
messages to another partition, forever.

An example of anetwork that partitionsisgiven in Fig. 1. The processes that do not crash (black disks) are
eventually divided into four partitions, A, B, C and D. Each partition is strongly connected through fair
links (solid arrows). So processes in each partition can communicate with each other (but message losses
can occur infinitely often). None of the partitions is isolated. For example, processesin D may continue
to receive messages from processes in C' (but not vice-versa); processesin D are able to send messages to
processesin B; thereisno fair path from C to A, or from D to C, etc.

[ACT974] shows that without the help of failure detectors it is impossible to achieve quiescent reliable
communication in the presence of process crashes and lossy links — even if one assumes that the network
never partitions. In order to overcome this problem, [ACT974] introduces the heartbeat failure detector

LA fair path is one consisting of correct processes and fair links.

(denoted H B), and shows how it can be implemented, and how it can be used to achieve quiescent reliable
communication. All these results are for networks that do not partition.

In this paper, we extend the above results to partitionable networks. In particular, we: (a) generalize
the definitions of reliable communication primitives, (b) generalize the definition of the heartbeat failure
detector H B, (¢) show how to implement H 3, and (d) use H B to achieve quiescent reliable communication.

We next consider the problem of consensus for partitionable networks, and focus on solving this problem
with a quiescent algorithm2 In order to do so, we first generalize the traditional definition of consensus to
partitionable networks. We also generalize the definition of ¢S — the weakest failure detector for solving
consensus in networks that do not partition [CHT96b].

We show that, although ¢S can be used to solve consensus for partitionable networks, any such solutionis
not quiescent: Thus, ¢S aloneisnot sufficient to solve quiescent consensus for partitionable networks. We
then show that this problem can be solved using ¢S together with /5. In fact, our quiescent consensus
algorithm for partitionable networks isidentical to the one given in [CT96] for non-partitionable networks
with reliable links: we simply replace the communication primitives used by the algorithm in [CT96]
with the quiescent reliable communication primitives that we derive in this paper (the proof of correctness,
however, isdifferent).

Animportant remark on the use of failure detectors to achieve quiescence is now in order. Any reasonable
implementation of a failure detector in a message-passing system isitself not quiescent: A process being
monitored by afailure detector must periodically send amessage to indicate that it is still alive, and it must
do soforever (if it stops sending messagesit cannot be distinguished from aprocessthat has crashed). Given
that failure detectors are not quiescent, does it still make sense to use them as a tool to achieve quiescent
applications (such as quiescent reliable broadcast, consensus, or group membership)?

The answer isyes, for two reasons. First, afailure detector isintended to be a basic system service that is
shared by many applications during the lifetime of the system, and so its cost is amortized over all these
applications. Second, failure detection is a service that needs to be active forever — and so it isnatural that
it sends messagesforever. In contrast, many applications (such asasingle RPC call or the reliable broadcast
of a single message) should not send messages forever, i.e., they should be quiescent. Thus, there is no
conflict between the goal of building quiescent applications and the use of a (non-quiescent) shared failure
detection service asatool to achieve this goal.

Organization of the Paper

Therest of the paper isorganized as follows. In Section 2, we explain our model of partitionable networks,
and of failure detection for such networks. In Section 3, we extend the definition of the failure detector
‘H B to partitionable networks. In Section 4, we define reliable communication primitives for partitionable
networks, and give quiescent implementations that use H5. We then turn our attention to the consensus
problem in Section 5. We first define this problem for partitionable networks (Section 5.1), and extend
the definition of the failure detector ¢S (Section 5.2). We then show that S is not sufficient to achieve
quiescent consensus in partitionable networks (Section 5.3), and give a quiescent implementation that uses
both ¢S and HB (Section 5.4). In Section 6, we show how to implement B3 in partitionable networks.
Some practical issues are briefly addressed in Section 7. We conclude with a short discussion of related
work (Section 8) and a comparison with other models (Section 9).

2The consensus agorithms for partitionable networks given in [FKM*95, CHT96a, DFKM96] are not quiescent.

2 Model

We consider asynchronous message-passing distributed systems in which there are no timing assumptions.
In particular, we make no assumptions on the time it takes to deliver a message, or on relative process
speeds. Processes can communicate with each other by sending messages through unidirectional links. The
system can experience both process failures and link failures. Processes can fail by crashing, and links
can fail by crashing or by intermittently dropping messages (while remaining fair). Failures may cause
permanent network partitions. The model, based on the one in [CHT96b], is described next.

A network isadirected graph G = (IM,\) wherell = {1,...,n} isthe set of processes, and A C 1 x I
isthe set of links. If there is alink from process p to process ¢, we denate thislink by p — ¢, and if, in
addition, ¢ # p we say that ¢ isaneighbor of p. The set of neighbors of p is denoted by neighbor(p).

We assume the existence of a discrete global clock — this is merely a fictional device to simplify the
presentation and processes do not have accessto it. We take the range 7 of the clock’sticksto be the set of
natural numbers.

2.1 Failures and Failure Patterns

Processes can fail by crashing, i.e., by halting prematurely. A process failure pattern % is a function
from 7 to 2. Intuitively, Fp(t) denotes the set of processes that have crashed through time ¢. Once a
process crashes, it does not “recover”, i.e., V¢ : Fp(t) C Fp(t+1). Wedefine crashed(Fp) = User Fp (1)
and correct(Fp) = M\ crashed(Fp). If p € crashed(Fp) we say p crashes (or is faulty) in Fp and if
p € correct(Fp) wesay p iscorrectin Fp.

We assume that the network hastwo types of links: linksthat arefair and linksthat crash. Roughly speaking,
afair link p — ¢ may intermittently drop messages, and do so infinitely often, but if p repeatedly sends some
message to ¢ and ¢ does not crash, then ¢ eventually receives that message. If link p — ¢ crashes, then it
eventually stops transporting messages. Link properties are made precise in Section 2.5.

A link failure pattern Fy, isafunction from 7 to 2°. Intuitively, Fy(t) isthe set of links that have crashed
through time ¢. Once a link crashes, it does not “recover”, i.e, V¢ : F(t) C Fr(t + 1). We define
crashed(Fr) = User Fr(t). If p—q € crashed(Fy), we say that p — g crashes (or is eventually down) in
Fr. lf p—q & crashed(Fr), wesay that p— g isfair in Fy,.

A failure pattern F = (Fp, F,) combines a process failure pattern and alink failure pattern.

2.2 Connectivity

In contrast to [ACT974], the network is partitionable: there may be two correct processes p and ¢ such that
g is not reachable from p (Fig. 1). Intuitively, a partition is a maximal set of processes that are mutually
reachable from each other. We do not assume that partitions are eventualy isolated: one partition may be
able to receive messages from another, or to successfully send messages to another partition, forever. This
is made more precise below.

The following definitions are with respect to a given failure pattern F = (Fp, Fr). We say that a path
(p1,...,pr) in the network is fair if processes py,...,ps are correct and links p1 — p2, ..., Pr_1 — Pk
are fair. We say process g is reachable from process p if there is a fair path from p to ¢3 If p and ¢ are

3We allow singleton paths of the form (p). Sincefair paths contain only correct processes, p is reachable from itself if and only

4

both reachable from each other, we write p = ¢. Note that = is an equivalence relation on the set of
correct processes. The equivalence classes are called partitions. The partition of a process p (with respect
to F) is denoted partitionr(p). For convenience, if p isfaulty we define partitionz(p) = 0. The set of
all non-empty partitions is denoted by Partitionsp. The subscript F' in the above definitions is omitted
whenever it is clear from the context.

2.3 Failure Detectors

Each process has access to a local failure detector module that provides (possibly incorrect) information
about the failure pattern that occursin an execution. A failure detector history H with range R isafunction
fromMN x 7 toR. H(p,t)istheoutput value of the failure detector module of process p at timet. Afailure
detector D isafunction that maps each failure pattern F' to a set of failure detector historieswith range Rp
(where Rp denotes the range of the failure detector output of D). D(F') denotes the set of possible failure
detector histories permitted by D for the failure pattern F'.

2.4 Algorithms and Runs

Analgorithm A isacollection of n deterministic automata, one for each processin the system. Computation
proceedsin atomic stepsof A. Ineach step, aprocessmay: receive amessagefrom aprocess, get an external
input, query itsfailure detector module, undergo a state transition, send a message to a neighbor, and issue
an external output.

A run of algorithm A using failure detector D isatuple R = (F, Hp,1,S,T) where F' = (Fp, Fr)

is a fallure pattern, Hp € D(F') is a history of falure detector D for failure pattern F', I is an initia
configuration of A, S isan infinite sequence of stepsof A, and T" isan infinitelist of strictly increasing time
values indicating when each step in .S occurs.

A run must satisfy some properties for every process p: If p has crashed by time¢, i.e., p € B (t), thenp
does not take astep at any time¢ > ¢; if p iscorrect, i.e., p € correct(Fp), then p takes an infinite number
of steps; if p takes a step at time ¢ and queries its failure detector, then p gets Hp (p, t) as aresponse.

Thecorrectnessof an algorithm may depend on certain assumptionsonthe” environment”, e.g., themaximum
number of processes and/or linksthat may crash. For example, in Section 5.4, we give aconsensus algorithm
that assumes that a majority of processes are in the same network partition. Formally, an environment £ is
aset of failure patterns.

A problem P is defined by properties that sets of runs must satisfy. An algorithm A solves problem P
using afailure detector D in environment & if the set of all runs R = (F, Hp,I,S,T) of A using D where
F € & satisfies the properties required by P. Let C be aclass of failure detectors. An algorithm A solves a
problem P using C in environment £ if for all D € C, A solves P using D in £. An agorithm implements
C in environment £ if it implements someD € C in £. Unless otherwise stated, we put no restrictions on
the environment (i.e., £ isthe set of al possible failure patterns) and we do not refer to it.

if itis correct.

2.5 Link Properties

So far we have put no restrictions on how links behave in arun (e.g., processes may receive messages that
were never sent, etc.). Aswe mentioned before, we want to model networks that have two types of links:
links that are fair and links that crash. We therefore require that in each run R = (F, Hp,I1,S,T) the
following properties hold for every link p — g € A:

e [Uniform Integrity] for al k& > 1, if ¢ receives amessage m from p exactly k timesby time¢, then p
sent m to ¢ at least k times before time ¢;

e If p—q ¢ crashed(Fp): [Fairness] if p sends amessage m to ¢ an infinite number of timesand ¢ is
correct, then ¢ receives m from p an infinite number of times.

If p—q € crashed(Fy): [Finite Receipt] ¢ receives messages from p only afinite number of times?

Uniform Integrity ensures that a link does not create or duplicate messages. Fairness ensures that if alink
does not crash then it eventually transports any message that is repeatedly sent through it. Finite Receipt
impliesthat if alink crashesthen it eventually stops transporting messages.

3 The Heartbeat Failure DetectorH 5 for Partitionable Networks

One of our goals is to achieve quiescent reliable communication in partitionable networks with process
crashes and message losses. In [ACT974q] it is shown that without failure detectors this isimpossible, even
if one assumesthat the network does not partition. Inorder to circumvent thisimpossibility result, [ACT97a]
introduces the heartbeat failure detector, denoted H 3, for non-partitionable networks. In this section, we
generalize the definition of /5 to partitionable networks. We then show how to implement it in Section 6.

H B isdifferent from the failure detectors defined in [CT96], or those currently in usein many systems (even
though some existing systems, such as Ensemble and Phoenix, use the same name heartbeat in their failure
detector implementations [VR97, Cha97]). In contrast to existing failure detectors, H B isimplementable in
asynchronous systems, without the use of timeouts (see Section 6).

A heartbeat failure detector D (for partitionable networks) has the following features. The output of D at
each process p isan array (vi, v, . . . , v,) With one nonnegative integer for each processin N> Intuitively,

v increases if process ¢ is in the partition of p, and stops increasing otherwise. We say that v is the

heartbeat value of process ¢ at p. The heartbeat sequence of ¢ at p isthe sequence of the heartbeat values
of ¢ at p astime increases. D satisfiesthe following properties:

e HB-Completeness. At each correct process p, the heartbeat sequence of every process not in the
partition of p isbounded. Formally:

VF = (Fp,Fr),YH € D(F),Vp € correct(Fp),¥q € T\ partitiong(p),
dK e NVt € T : H(p,t)[¢g] < K

“We could have required a stronger property: if p— ¢ has crashed by timet, i.e., p— ¢ € FL(¢), then ¢ does not receive any
message sent by p at time¢ > ¢. This stronger property is not necessary in this paper.
®In[ACT974], the output of D at p is an array with one nonnegative integer for each neighbor of p.

e 'HB-Accuracy:
— At each process p, the heartbeat sequence of every processis nondecreasing. Formally:
VE,WH € D(F),Vpe M,VgeN,Vt €T : H(p,t)[q] < H(p,t+ 1)[q]

— At each correct process p, the heartbeat sequence of every process in the partition of p is
unbounded. Formally:

VF = (Fp,FL),YH € D(F),Vp € correct(Fp),¥q € partitionp(p),
VK e N3t € T : H(p,t)[q] > K

The class of all heartbeat failure detectors is denoted 5. By a slight abuse of notation, we sometimes use
H B to denote a (generic) member of that class.

The output of HB is a vector of unbounded counters. In contrast, the output of failure detectors that are
commonly used in practice has bounded size: it isjust alist of processes suspected to have crashed. Some
remarks are now in order regarding the necessity and practicality of +5’s unbounded output.

HB can be used to solve the problem of quiescent reliable communication and it is implementable in
asynchronous systems, but its counters are unbounded. Can we solve this problem using a failure detector
that is both implementable and has bounded output? The answer isno: in [ACT97b] we show that afailure
detector with bounded output size is either (a) too weak to achieve quiescent reliable communication, or
(b) not implementable. This shows that failure detectors that are commonly used in practice, i.e., those that
output only lists of suspects, are not always the best ones to solve aproblem: their power or applicability is
limited. Thus, the difference between H B and existing failure detectors is more than “skin deep”.

In practice, the unbounded counters of 3 are not a problem for the following reasons. First, they are in
local memory and not in messages— the implementation of 78 shown in Section 6 uses bounded messages.
Second, if we bound each local counter to 64 bits, and assume arate of one heartbeat per nanosecond, which
is orders of magnitude higher than currently used in practice, then HB will work for more than 500 years.

4 Reliable Communication for Partitionable Networks

There are two types of basic communication primitives. point-to-point and broadcast. We first define
reliable broadcast for partitionable networks, and give a quiescent implementation that uses H5. We then
consider point-to-point reliable communication.

4.1 Reliable Broadcast: Specification

Reliable broadcast for partitionable networks is defined in terms of two primitives: broadcast(m) and
deliver(m). We say that process p broadcasts message m if p invokes broadcast(m). We assume that
every broadcast message m includes the following fields: the identity of its sender, denoted sender(m),
and a sequence number, denoted seq(m). These fields make every message unique. We say that ¢ delivers
message m if ¢ returns from the invocation of deliver(m). Primitives broadcast and deliver satisfy the
following properties®

5This specification is a generalization of the one for non-partitionable networks given in [HT94].

¢ \alidity: If acorrect process broadcasts a message m, then it eventually delivers m.

e Agreement: If a correct process p delivers a message m, then all processes in the partition of p
eventualy deliver m.

e Uniform Integrity: For every message m, every process delivers m at most once, and only if m was
previously broadcast by sender(m).

e Partition Integrity: If aprocess ¢ delivers an infinite number of messages broadcast by a process p,
then ¢ isreachable from p.

Validity and Agreement imply that if a correct process p broadcasts a message m, then al processesin the
partition of p eventually deliver m.

We want to implement broadcast and deliver using the communication service provided by the network
links (which are described in Section 2.5). Informally, an implementation of reliable broadcast is quiescent
if it sends only afinite number of messages when broadcast isinvoked a finite number of times/

4.2 Reliable Broadcast: Algorithm UsingHB

The quiescent implementation of reliable broadcast for partitionable network that we give hereisidentical to
the one given in [ACT973] for non-partitionable networks. However, the network assumptions, thereliable
broadcast requirements, and the failure detector properties are different, and so its proof of correctness and
quiescence changes.

This implementation, which uses H B, has the following desirable feature: processes do not need to know
the entire network topology or the number of processesin the system; they only need to know the identity
of their neighbors. Moreover, each process only needs to know the heartbeats of its neighbors.

The implementation of reliable broadcast is shown in Fig. 2. D, denotes the current output of the failure
detector D at process p. All variables are local to each process. In the following, when ambiguities may
arise, avariable local to process p is subscripted by p. For each message m that isreliably broadcast, each
process p maintains avariable got,[m] containing a set of processes. Intuitively, a process g isin got,[m]

if p has evidence that ¢ has delivered m. All the messages sent by a process p in the reliable broadcast
agorithm are of the form (m, got_msg, path) where got_msg isthe current vaue of got,[m], and pathis
the sequence of processes that this copy of (m, got_msg, path) has traversed so far.

In order to reliably broadcast amessage m, p first delivers m; then p initializes variable got,[m] to {p} and
forkstask diffuse(m); finaly p returns from the invocation of broadcast(m). Thetask diffuse(m) runsin
the background. In thistask, p periodically checks if, for some neighbor ¢ ¢ got,[m], the heartbeat of ¢ at
p hasincreased and, if so, p sends (m, got,[m],p) to al neighbors whose heartbeat increased — even to
those who are already in gotp[m].8 The task terminates when all neighbors of p are contained in got,[m].

Upon the receipt of amessage (m, got_msg, path), process p first checksif it has already delivered m and,
if not, it deliversm and forkstask diffuse(m). Then p addsthe contents of got. msg to got,[m] and appends

A quiescent implementation is allowed to send afinite number of messages even if no broadcast isinvoked at al (e.g., some
messages may be sent as part of an “initialization phase”).

8]t may appear that p does not need to send this message to processes in got,[m], since they already got m! But with this
“optimization” the algorithm is no longer quiescent; we will indicate exactly where the sending to every neighbor whose heartbeat
increased is necessary in the proof of Lemma 9.

© o N o 0 A~ W N B

NORNNNNN N B B R R R R sl p
® 00 R ® N B O © ® N o 00 A ®W N P O

For every process p:

To execute broadcast(m):
deliver(m)
gotfm] — {p}
fork task diffuse(m)
return

task diffuse(m):
for all ¢ € neighbor(p) do prev_hbq] — —1
repeat periodically
hb — D, {query 7B}
if for some¢ € neighbor(p), ¢ € got[m] and prev_hb[q] < hb[g] then
for all ¢ € neighbor(p) such that prev_hb[q] < hblg] do send(m, got[m], p) to ¢
prev_hb «— hb
until neighbor(p) C got[m]

upon receive(m, got_msg, path) from ¢ do

if p hasnot previously executed deliver(m) then
deliver(m)
got[m] — {p}
fork task diffuse(m)

got[m| < got[m] U got_msg

path — path- p

for all ¢ suchthat ¢ € neighbor(p) and ¢ appearsat most oncein path do
send(m, got[m], path) to ¢

Figure 2: Quiescent implementation of broadcast and deliver using H5

itself to path. Finaly, p forwards the new message (m, got,[m], path) to al its neighbors that appear at
most once in path.

The code consisting of lines 18-26 is executed atomically? Moreover, if there are several concurrent
executions of the diffuse task (lines 9 to 16), then each execution must have its own private copy of all the
local variablesin thistask, namely m, hb, and prev_hb.

We now show that this implementation is correct and quiescent. The proofs of the first few lemmata are
obvious and therefore omitted.

Lemma 1 (Uniform Integrity) For every message m, every process delivers m at most once, and only if
m was previously broadcast by sender (m).

Lemma 2 (Validity) If a correct process broadcasts a message m, then it eventually delivers m.

Lemma 3 (Partition Integrity)

If a process ¢ delivers an infinite number of messages broadcast by a

process p, then g isreachable from p.

%A process p executes a region of code atomically if at any time there is at most one thread of p in this region.

Lemma 4 For any processes p and ¢, (1) if at some time ¢, ¢ € got,[m], then at every time >t
q € got,[m]; (2) When got,[m] isinitialized, p € got,[m]; (3) if ¢ € got,[m] then ¢ delivered m.

Lemma 5 For every m and path, there is a finite number of distinct messages of the form (m, x, path).

Lemma 6 If some process sends a message of the form (m, x, path), then no process appears more than
twicein path.

Lemma 7 Suppose link p— ¢ isfair, and p and ¢ arein the same partition. If p deliversa message m, then
g eventually deliversm.

Proof. Suppose for a contradiction that p delivers m and ¢ never delivers m. Since p and ¢ are in the
same partition, they are both correct. Therefore, p forks task diffuse(m). Since ¢ does not deliver m, by
Lemma 4 part (3) ¢ never belongs to got,[m]. Because p is correct and ¢ is a neighbor of p, thisimplies
that p executes the loop in lines 11-16 an infinite number of times. Since ¢ is in the partition of p, the
‘HB-Accuracy property guarantees that the heartbest sequence of ¢ at p is nondecreasing and unbounded.
Thus, the condition in line 13 evaluates to true an infinite number of times. Therefore, p executes line 14
infinitely often. So p sends a message of the form (m, x, p) to ¢ infinitely often. By Lemma 5, there exists
asubset gy C M such that p sends message (m, go, p) infinitely often to ¢. Since ¢ iscorrect and link p — ¢
isfair, g eventually receives (m, go, p). Therefore, ¢ delivers m, a contradiction. O

Lemma 8 (Agreement) If a correct process p delivers a message m, then all processes in the partition of
p eventually deliver m.

Proof (Sketch). For every process ¢ in the partition of p, thereisafair path from p to ¢. The result follows
from successive applications of Lemma 7 over the links of this path. m|

We now show that the implementation in Fig. 2 is quiescent. In order to do so, we focus on a single
invocation of broadcast and show that it causes the sending of only a finite number of messages in the
network. Thisimplies that afinite number of invocations of broadcast cause the sending of only a finite
number of messages.

Let m be a message and consider an invocation of broadcast(m). This invocation can only cause the
sending of messages of form (m, %, *). Thus, al we need to show is that every process eventually stops
sending messages of this form.

Lemma 9 Let p be a process and ¢ be a neighbor of p with ¢ € partition(p). If p forks task diffuse(m),
then eventually condition ¢ € got,[] holds forever.

Proof. By Lemma 4 part (1), we only need to show that eventually ¢ belongs to got,[m]. Suppose, for a
contradiction, that ¢ never belongs to got,[m]. Sincep and ¢ are in the same partition, they are correct and
there exist both asimple fair path'® (p1, p2, ..., pr) fromp to g with p; = p and py = ¢, and asimple fair
path (prr, prr+1, - - ,pk) from g top with p, = p. For 1 < j < k, let P; = (p1,p2,...,p;). Notethat a
process can appear at most twicein B,. Thus, for 1 < j < &, process p; 1 appears at most once in F;.
Moreover, for every j € {1,...,k}, p; € partition(p).

We claim that for every j € {1,...,k — 1}, thereisaset g; containing {p1,p2, . ..,p;} such that p; sends
(m, g5, Pj) top;,1 aninfinite number of times. For j = k — 1, this claim together with the Fairness property

A pathis simpleif al processesin that path are distinct.

10

of link px_1 — pr iImmediately implies that p, = p eventually receives (m, gr_1, Pr_1). Upon the receipt
of such a message, p adds the contents of g, _; to its variable got,[m]. Since g1 contains pp = g, this
contradicts the fact that ¢ never belongs to got,[m)].

We show the claim by induction on j. For the base case, note that ¢ never belongs to got,[m] and g isa

neighbor of p1 = p, and so p; executes the loop in lines 11-16 an infinite number of times. Furthermore,
since ¢ isin the partition of p;, the HB-Accuracy property guarantees that the heartbeat sequence of ¢ at
p1 isnondecreasing and unbounded. Thisimplies that the condition in line 13 evaluates to true an infinite
number of times. So p; executes line 14 infinitely often. Since p, isin the partition of py, its heartbeat

sequence is nondecreasing and unbounded. Together with the fact that p is a neighbor of pq, thisimplies

that p; sends messages of the form (m, *, p1) to p» an infinite number of times!! By Lemma 5, there is

some g1 such that p; sends (m, g1, p1) to p2 an infinite number of times. Parts (1) and (2) of Lemma4 imply
that p1 € g1. This shows the base case.

For the induction step, suppose that for j < k — 1, p; sends (m, g;, P;) to p;+1 aninfinite number of times,
for some set g; containing {p1,p2,...,p;}. By the Fairness property of the link p; — p; 1, pj+1 receives
(m, g;, P;j) from p; an infinite number of times. Since p;» isaneighbor of p;;, and appears at most once
in P; 41, eachtimep; 1 receives (m, g;, P;), it sends amessage of the form (m, *, Pj11) to p;4. It iseasy
to see that each such message is (m, g, P;+1) for some g that contains both g; and {p;+1}. By Lemma5,
thereexists g;+1 C N such that g;+1 contains {p1,p2, . .., p;+1} and p; 1 sends (m, g;+1, Pj+1) t0p; 12 an
infinite number of times. O

Corollary 10 If a correct process p forks task diffuse(m), then eventually p stops sending messagesin task
diffuse(m).

Proof. For every neighbor ¢ of p, there are two cases. If ¢ isin the partition of p then eventually condition
g € gotp[m] holdsforever by Lemma@. If ¢ isnot in the partition of p, then the 74 3-Compl eteness property
guarantees that the heartbeat sequence of ¢ at p isbounded, and so eventually condition preuw hl[qg] > hby[q]
holdsforever. Therefore, thereisatime after which the guard in line 13 isalwaysfase. Hence, p eventually
stops sending messages in task diffuse(m). |

Lemma 11 (Quiescence)Eventually every process stops sending messages of the form (m, *, *).

Proof. Suppose, for a contradiction, that the lemma is not true. Then there exists a process p such that p
never stops sending messages of the form (m, , x). By Lemma 6, the third component of a message of the
form (m, x, *) ranges over afinite set of values. Therefore, there is some fixed path such that p sends an
infinite number of messages of the form (m, , path).

Now let pathg to be the shortest path such that there exists some process iy that sends messages of the form
(m, *, pathg) an infinite number of times. Note that pp must be correct. Corollary 10 shows that there isa
time after which po stops sending messages in itstask diffuse(m). Since pp only sends a message in task
diffuse(m) or in line 26, then po sends messages of the form (m, *, pathg) in line 26 an infinite number of
times. For each (m, *, pathg) that po sendsin line 26, po must have previously received a message of the
form (m, *, pathy) such that pathy = pathq - po. SO po receives a message of the form (m, *, pathy) an
infinite number of times. By the Uniform Integrity property of the links, some process p sends a message
of form (m, *, pathq) 10 po an infinite number of times. But path, is shorter than pathy — a contradiction
to the minimality of pathg. O

From Lemmata 1, 2, 3, 8, and 11 we have:

UThis is where the proof uses the fact that p sends a message containing m to al its neighbors whose heartbeat increased —
even to those (such as p) that may already bein got, [m] (cf. line 14 of the algorithm).

11

Theorem 12 For partitionable networks, Fig. 2 shows a quiescent implementation of reliable broadcast
that uses H .

We next consider point-to-point reliable communication for partitionable networks.

4.3 Quasi Reliable Send and Receive for Partitionable Networks

Consider any two distinct processes s and r. We define quasi reliable send and receive from s to r (for
partitionable networks) in terms of two primitives: gr-send, , and qr-receive, .. We say that process s
gr-sends message m to process r if s invokes gr-send., .(m). We assume that if s is correct, it eventually
returns from this invocation. We allow process s to gr-send the same message m more than once through
the samelink. We say that process r gr-receives message m fromprocess s if » returns from the invocation
of gr-receive, ;(m). Primitives qr-send; , and gr-receive, ; satisfy the following properties!?

e Quasi NoLoss: For al k > 1, if s and r are in the same partition, and s qr-sendsm to r exactly &
times by time ¢, then r eventually gr-receivesm from s at least k times.

¢ Uniformintegrity: For al & > 1, if » qr-receivesm from s exactly k timesby time+, then s gr-sent
m tor at least k times before time ¢.

¢ Partition Integrity: If r gr-receives messages from s an infinite number of times then r isreachable
from s.

Intuitively, Quasi No Loss together with Uniform Integrity impliesthat if s and » are in the same partition,
then r gr-receivesm from s exactly asmany timesas s gr-sendsm to r.

We want to implement gr-send, , and gr-receive, , using the communication service provided by the
network links. Informally, such an implementation is quiescent if it sends only afinite number of messages
when gr-send;, , isinvoked afinite number of times.

Given any quiescent implementation of reliable broadcast (such as the one given in the previous section),
we can obtain a quiescent implementation of gr-send, , and gr-receive, , for every pair of processesp and
g. The implementation works as follows: to gr-send a message m to ¢, p Simply broadcasts the message
M = (m,p,q, k) using the given quiescent implementation of reliable broadcast, where sender(M) = p
and seq(M) = k, a sequence number that p has not used before. Upon the delivery of M = (m,p,q, k),
aprocess r gr-receives m from p if r = ¢, and discards m otherwise. Thisimplementation of gr-send, ,

and gr-receive, , is clearly correct and quiescent. Thus, from Theorem 12, we have:

Corollary 13 For partitionable networks, quasi reliable send and receive between every pair of processes
can be implemented with a quiescent algorithm that uses H5.

5 Consensus for Partitionable Networks

5.1 Specification

We now define the problem of consensus for partitionable networks as a generalization of the standard
definition for non-partitionable networks. Roughly speaking, some processes propose a value and must

12This specification is a generalization of the one for non-partitionable networks given in [ACT974].

12

decide on one of the proposed values [FLP85]. More precisely, consensus is defined in terms of two
primitives, propose(v) and decide(v), where v is avaue drawn from a set of possible proposed values.
When aprocessinvokes propose(v), we say that it proposes v. When aprocess returns from the invocation
of decide(v), we say that it decides v.

The largest partition is defined to be the one with the largest number of processes (if more than one such
partition exists, pick the one containing the process with the largest process id). The consensus problem
(for partitionable networks) is specified as follows:

e Agreement: No two processes in the same partition decide differently.
e Uniform Validity: A process can only decide a value that was previously proposed by some process.
¢ Uniform Integrity: Every process decides at most once.

e Termination: If all processesin the largest partition propose a value, then they all eventually decide.
Stronger versions of consensus may also require one or both of the following properties:

e Uniform Agreement: No two processes (whether in the same partition or not) decide differently.

¢ Partition Termination: If a process decides then every processin its partition decides.

The consensus algorithm given in Section 5.4 satisfies the above two properties, while the impossibility
result in Section 5.3 holds for the weaker version of consensus.

Informally, an implementation of consensus is quiescent if each execution of consensus causes the sending
of only afinite number of messages throughout the network. This should hold even for executions where
only a subset of the correct processes actually propose a value (the others may not wish to run consensus).

5.2 <S8 for Partitionable Networks

It iswell known that consensus cannot be solved in asynchronous systems, even if at most one process may
crash and the network is completely connected with reliable links [FLP85]. To overcome this problem,
Chandra and Toueg introduced unreliable failure detectors in [CT96]. In this paper, we focus on the class
of eventually strong failure detectors (the weakest one for solving consensus in non-partitionable networks
[CHT96b]), and extend it to partitionable networks!?

At each process p, an eventually strong failure detector outputs a set of processes. In [CT96], these are the
processes that p suspects to have crashed. In our case, these are the processes that p suspects to be outside
its partition. More precisely, an eventually strong failure detector D (for partitionable networks) satisfies
the following properties (in the following, we say that a process p trusts process g, if its failure detector
does not suspect q):

e Strong Completeness: For every partition P, thereisatime after which every processthat isnot in P
is permanently suspected by every processin P. Formaly:

VF,YH € D(F),VP € Partitionsp,3t € T,Yp & P,Nq€ P,Yt' > t:p € H(q,t)

3The other classes of eventual failure detectorsintroduced in [CT96] can be generalized in a similar way.

13

¢ Eventual Weak Accuracy: For every partition P, there is a time after which some process in P is
permanently trusted by every processin P. Formally:

VF,YH € D(F),VP € Partitionsp,3t € T,Ip € P,Vt' > t,Vq € P:p & H(q,t)

The class of all failure detectors that satisfy the above two properties is denoted ©S.

A weaker class of failure detectors, denoted ©Spp, is obtained by defining the largest partition as in
Section 5.1, and replacing “For every partition P” with “For the largest partition P” in the two properties
above (this definition is similar to one given in [DFKM96]). Note that ¢&p does not impose any
requirement on the failure detector modules of processesin “small” partitions. To strengthen our results,
we use ¢S for the impossibility result (Section 5.3), and ©&;, p for the consensus algorithm (Section 5.4).

By a dlight abuse of notation, we sometimes use ¢S and ¢Sgp to refer to an arbitrary member of the
respective class.

5.3 Quiescent Consensus for Partitionable Networks Cannot be Achieved usikdgS

Although consensus for partitionabl e networks can be solved using ¢S, we now show that any such solution
isnot quiescent (the consensus algorithmsin [CHT96a, DFKM96] do not contradict this result because they
are not quiescent).

Theorem 14 In partitionable networkswith 5 or more processes, consensus has no quiescent implementa-
tion using ¢S. Thisholds even if we assume that no process crashes, thereis a link between every pair of
processes, each link is eventually up or down,'* a majority of processes are in the same partition, and all
processes initially propose a value.

Proof (Sketch). The proof is by contradiction. Suppose there is a quiescent algorithm A that uses ¢S to
solve consensus for partitionable networks. We consider a network with n > 5 processes, and construct
three runs of .4 using ©§ in this network, such that the last run violates the specification of consensus. In
each of these three runs no process crashes, and every process executes A by initialy proposing O.

e Run Ry. There are two permanent partitions: {1,2} and {3,4,...,n}. Within each partition no
messages are lost, and all messages sent across the partitions are lost. At al times, each process
p € {1, 2} trusts only itself and process 2, and each process p € {3,4,...,n} trusts only itself and
process 3. We can easily show that processes 1 and 2 cannot decide any valuein this runt® Since A
is quiescent, there isatime ¢ after which no messages are sent or received in Ry.

¢ Run R;. Uptotimetp, Ry isidentical torun Ry. Attimetiy + 1, the network partitions permanently
into {1} and {2,3,...,n}. From this time on, within each partition no messages are lost, and all
messages sent across partitions are lost. Moreover, from time ¢ + 1, process 1 trusts only itself, and
each processp € {2,3,...,n} trustsonly itself and process 2. Since A is quiescent, there isatime
t1 after which no messages are sent or received in R;.

141 e, for each link there is a time after which either all the messages sent are received or no message sent is received.

3In a minority partition that does not receive messages from the outside, such as partition {1, 2} above, processes can never
decide. Otherwise, we construct another run in which, after they decide, the minority partition merges with a majority partition
where processes have decided differently.

14

e Run Ry. Thereisasinglepartition: {1,2,...,n}. Throughout thewhole run, process1 and itsfailure
detector module behaves asin Ry, and all other processes and their failure detector modules behave
asin Ry. In particular, up to time #, Ry isidentical to Rp, and from time ¢p + 1 to ¢1, all messages
sent to and from process 1 are lost. We conclude that, asin R, process 1 does not decidein Ry. This
violates the Termination property of consensus, since al processesin partition {1, 2,...,n} propose
avalue.

Note that the behavior of the failure detector in each of the above three runs is compatible with ©S. a

5.4 Quiescent Consensus for Partitionable Networks usingS;,» and HB3

To solve consensus using ¢Spp and HB in partitionable networks, we take the rotating coordinator
consensus algorithm of [CT96], we replace its communication primitives with the corresponding ones
defined in Sections 4.3 and 4.1, namely, gr-send, gr-receive, broadcast and deliver, and then we plug in
the quiescent implementations of these primitives given in Section 4.2 (these implementationsuse H3). The
resulting algorithm satisfies all the properties of consensus for partitionable networks, including Uniform
Agreement and Partition Termination, under the assumption that the largest partition contains amajority of
processes (this assumption is only necessary for the Termination property of consensus)® Moreover, this
algorithm is quiescent.

Although this algorithm is amost identical to the one given in [CT96] for non-partitionable networks, the
network assumptions, the consensus requirements, and the failure detector properties are different, and so
its proof of correctness and quiescence changes.

The rotating coordinator agorithm is shown in Fig. 3 (the code consisting of lines 3941 is executed
atomically). Processes proceed in asynchronous “rounds’. During round r, the coordinator is process
¢=(r mod n) + 1. Each round is divided into four asynchronous phases. In Phase 1, every process
gr-sendsits current estimate of the decision value timestamped with the round number in which it adopted
this estimate, to the current coordinator ¢. In Phase 2, ¢ waitsto gr-receive [(n + 1)/2] such estimates,
selects one with the largest timestamp, and gr-sendsiit to all the processes as its new estimate estimate..
In Phase 3, for each process p there are two possibilities: (1) p gr-receives estimate. from ¢, it adopts
estimate. as its own estimate, and then gr-sends an ack to ¢; or (2) upon consulting its failure detector
module, p suspects ¢, and qr-sendsanack to c. In Phase4, ¢ waitsto gr-receive [(n+1)/2] replies (ack or
nack). If al repliesare acks, then ¢ knowsthat amajority of processes changed their estimatesto estimate,
and thus estimate. islocked (i.e., no other decision value is possible). Consequently, ¢ reliably broadcasts
arequest to decide estimate.. At any time, if a process delivers such arequest, it decides accordingly.

We next prove that the algorithm is correct and quiescent. Our proof is similar to the onein [CT96], except
for the proofs of Termination and Quiescence. The main difficulty in these proofs stemsfrom thefact that we
do not assume that partitions are eventually isolated: it is possible for processes in one partition to receive
messages from outside this partition, forever. The following is an example of why thisis problematic. The
failure detector ¢Sy p guarantees that in the largest partition there is some process ¢ that is trusted by all

processes in that partition. However, ¢ may be permanently suspected of being faulty by processes outside
the largest partition. Thus, it is conceivable that ¢ receives nacks from these processes in Phase 4 of every
round in which it acts as the coordinator. These nacks would prevent ¢ from ever broadcasting a request
to decide. In such a scenario, processes in the largest partition never decide, and they gr-send messages

8A standard partitioning argument shows that consensus for partitionable networks cannot be solved using ¢S and HB if we
do not make this assumption.

15

© © N o g M W N B

BB 8 8 9 8 % P8 8 Y@ 8RB EBENEEERERNNNNNBBESEGRELRESB
= © 0 N o O @w N P O © 0 N O 0o b W N P O © 0 N O o & W N +» O

For every process p:

To execute propose(v,):
estimate, — v, {estimate, isp’s estimate of the decision value}
state, — undecided
rp— 0 {rp isp’s current round number}
ts, — 0 {tsy isthelast round in which p updated estimate,, initialy 0}
repeat {Rotate through coordinators until decision isreached}
Tp —Tp+1
cp — (rpmodn) + 1 {¢p isthe current coordinator}
Phase 1:

gr-send (p, rp, estimate,, ts,) to ¢,

Phase 2:
if p = ¢, then
wait until [for [(n + 1)/2] processesq: qr-received (g, 7,,, estimatey, tsg) from g]
msgs, 7] — {(g,p, Estimatey, tsy) | p qr-received (g, ,, estimateg, tsy) from ¢}
t «— largest tsy such that (g, 75, estimateg, tsg) € msgs,]
estimate, «— select oneestimate, suchthat (g, 7,, estimatey, t) € msgs,[r,]
gr-send (p, rp, estimate,) to all

Phase 3:
wait until [gr-received (c,, r,, estimate.) from ¢, or D, suspectsc,] {query ©Srp}
if [qr-received (c;, r,, estimate,) from ¢,] then
estimate, — estimate,,
ts, — 7y
gr-send (p, 7p, ack) to ¢,
elseqr-send (p, 7, nack) to ¢,

Phase 4:
if p = ¢, then
wait until [for [(n + 1)/2] processesq: qr-received (g, r,, ack) or (g, r,, nack)]
if [for [(n + 1)/2] processesq: qr-received (g, 7,,ack)] then
broadcast (p, r,,, estimate,,, decide) {reliable broadcast the decision value}
until state, = decided

upon deliver(q, r,, estimate,, decide)
if state, = undecided then
decide(estimate,)
state, — decided

Figure 3: Consensus for partitionable networks using ¢ &, p and reliable communication primitives

16

forever. Similar scenarios in which processes in the minority partitions gr-send messages forever are also
conceivable. To show that al such undesirable scenarios cannot occur, we use a partial order on the set of
partitions.

Lemma 15 (Uniform Integrity) Every process decides at most once.

Proof. Immediate from the algorithm. a

Lemma 16 (Uniform Validity) A process can only decide a value that was previously proposed by some
process.

Proof. Immediate from the algorithm, the Uniform Integrity property of gr-send and gr-receive and the
Uniform Integrity property of reliable broadcast. a

Lemma 17 (Partition Termination) If a process decides then every processin its partition decides.

Proof. If p isfaulty then partition(p) = 0, so the result is vacuously true. If p is correct then the result
follows from the Agreement property of reliable broadcast. O

We omit the proof of the next lemma because it is almost identical to the one of Lemma6.2.1 in [CT96].

Lemma 18 (Uniform Agreement) No two processes (whether in the same partition or not) decide differ-
ently.

We now show the termination and quiescence properties of the implementation. For any partition P, we
say that QuiescentDecision(P) holdsif:

1. al processesin P eventualy stop gr-sending messages, and

2. if |P| > |n/2] and dl processesin P propose avalue, then all processesin P eventually decide.
Lemma 19 For every partition P, if thereisatime after which no processin P gr-receives messagesfrom
processesin I\ P, then QuiescentDecision(P) holds.

Proof (Sketch). Let ¢ be the time after which no process in P qr-receives messages from processes in
M\ P. We first show that all processes in P eventualy stop gr-sending messages. There are several
possible cases.

Casel: Someprocessin P decides. Then by Lemma 17 all processesin P decide. A process that decides
stopsqgr-sending messages after it reachesthe end of itscurrent round, so all processesin P eventually
stop gr-sending messages.

Case2: Noprocessin P decides. There are now two subcases:

Case2.1: Each processin P that proposes a value blocks at a wait statement. Then all processesin P
eventually stop gr-sending messages.

Case2.2: Some processp in P that proposes a value does not block at any of the wait statements. Then,
since p does not decide, it starts every round » > 0. There are now two subcases:

17

Case22.1: |P| < |n/2]. Letry betheround of processp at timet¢ and let be thefirst round after g in
which p isthe coordinator. In Phase 2 of round n, p waitsto qr-receive estimatesfrom [(n + 1) /2]
processes. It can only gr-receive messages from processesin P, and since |P| < |n/2], it blocks at
the wait statement of Phase 2 — a contradiction.

Case2.2.2: |P| > |n/2]. By the Eventual Weak Accuracy property of ©& p, thereexistsaprocessc € P
and atime ¢’ such that after ¢/, all processesin P trust c. Let ¢’ = max{t,t'} and let ro be the largest
round number among all processes at time ¢'. Let r1 and r» be, respectively, the first and second
rounds greater than ro in which ¢ is the designated coordinator. Since p trusts ¢ after time #/, and
it completes Phase 3 of round r,, p must have gr-received a message of the form (¢, », estimate.)
from ¢ in that phase. Therefore, ¢ starts round », and thus ¢ completes round ;. So ¢ qr-receives
messages from [(n + 1) /2] processesin Phase 4 of round . These processes are al in P because,
after time ¢, ¢ qr-receives no messages from processes in M\ P. All such messages are ack’s
because all processesin P start round r; after timet”, and so they trust ¢ whilein round r. Therefore,
¢ reliably broadcasts a decision value at the end of Phase 4 of round », and so it delivers that value
and decides — a contradiction to the assumption that no processin P decides.

We now show that if | P| > |n/2] and all processesin P propose avalue, then all processesin P eventually
decide. By Lemma 17, we only need to show that some process in P decides. For contradiction, suppose
that no processin P decides. We claim that no process in P remains blocked forever at one of the wait
statements. This claim implies that every process in P starts every round » > 0, and thus gr-sends
an infinite number of messages, which contradicts what we have shown above. We prove the claim by
contradiction. Let ro be the smallest round number in which some processin P blocks forever at one of the
wait statements. Since all processesin P propose and do not decide, they all reach the end of Phase 1 of
round ro: they all gr-send amessage of thetype (x, ro, estimate, *) to the coordinator ¢ = (7o mod n) + 1
of round ro. Thus, at least [(n+ 1) /2] such messagesareqr-sent to ¢. Therearenow two cases: (1) ¢ € P.
Then ¢ gr-receivesthose messages and replies by qr-sending (c, m, estimate.). Thus ¢ completes Phase 2
of round ro. Moreover, every processin P gr-receives this message, and so every process in P completes
Phase 3 of round rp. Thus every processin P gr-sends a message of the type (x,m, ack) or (x, 7o, nack)
to ¢, and so ¢ completes Phase 4 of round m. We conclude that every process in P completes round
— acontradiction. (2) ¢ € P. Then, by the Strong Completeness property of ©§,p, al processes in
P eventualy suspect ¢ forever, and thus they do not block at the wait statement in Phase 3 of round ».
Therefore, all processesin P complete round m — a contradiction. O

Lemma 20 For every partition P, QuiescentDecision(P) holds.

Proof (Sketch). Define abinary relation ~ on the set Partitions asfollows: for every P, € Partitions,
P ~ @ if and only if P # @ and there is a fair path from some process in P to some process in Q.
Clearly ~ isan irreflexive partial order. The lemma is shown by induction on ~». Let P be any partition
and assume that, for every @ such that Q@ ~ P, QuiescentDecision(Q) holds. We must show that
QuiescentDecision(P) also holds.

Let @ be any partition such that @ ~ P. Since QuiescentDecision(Q) holds, every process ¢ € Q
eventually stops gr-sending messages. So, by the Uniform Integrity property of gr-send and gr-receive,
there is atime after which no processin P qr-receives messages from processesin Q.

Now let @ be any partition such that Q + P and Q # P. For all processesg € Q andp € P, thereisno
fair path from ¢ to p, and so p is not reachable from ¢. By the Partition Integrity property of gr-send and

18

gr-receive, eventually p does not gr-receive messagesfrom ¢. So, eventually no processin P gr-receives
messages from processesin Q.

We conclude that eventually no processin P qr-receives messages from processesin any partition Q) # P.
Moreover, eventually no processin P gr-receives messages from faulty processes. Thus, there isatime
after which no process in P qgr-receives messages from processes in N \ P. Therefore, by Lemma 19,
QuiescentDecision(P) holds. O

Corollary 21 (Termination) Assume that the largest partition contains a majority of processes. If all
processes in the largest partition propose a value, then they all eventually decide.

Proof. Let P be the largest partition. By assumption, |P| > |n/2|. Apply Lemma 20. O

Corollary 22 (Quiescence)By plugging the quiescent implementations of gr-send, gr-receive, broad-
cast, and deliver of Section 4.2 into the algorithm of Fig. 3, we obtain a quiescent algorithm.

Proof. First note that every process p invokes only a finite number of broadcasts. if p crashes, this
is obvious; if p is correct and broadcasts at least once, it eventually delivers its first broadcast, and then
stops broadcasting soon after this delivery. Furthermore, each process also invokes only a finite number
of gr-sends: for a process that crashes, thisis obvious, and for a correct process, this is a consequence of
Lemma 20. The result now follows since the implementations of broadcast and gr-send in Section 4.2 are
guiescent. a

From Lemmata 15, 16, 17 and 18, and Corollaries 21 and 22, we have:

Theorem 23 Consider the algorithm obtained by plugging the implementations of gr-send, gr-receive,
broadcast and deliver of Section 4.2 into the algorithm of Fig. 3. This algorithm is quiescent, and
satisfies the following properties of consensus. Uniform Agreement, Uniform Validity, Uniform Integrity,
and Partition Termination. Moreover, if the largest partition contains a majority of processes, then it also
satisfies Termination.

6 Implementation of H 5 for Partitionable Networks

We now show how to implement B for partitionable networks. Our implementation (Fig. 4) isa minor
modification of the one given in [ACT97a] for non-partitionable networks. Every process p executes
two concurrent tasks. In the first task, p periodically increments its own heartbeat value, and sends the
message (HEARTBEAT, p) to al its neighbors. The second task handles the receipt of messages of the
form (HEARTBEAT, path). Upon the receipt of such a message from process ¢, p increases the heartbeat
values of all the processes that appear after p in path. Then p appends itself to path and forwards message
(HEARTBEAT, path) to al its neighbors that appear at most once in path.

Note that 73 does not use timeouts on the heartbeats of aprocessin order to determine whether this process
has failed or not. H 5 just counts the total number of heartbeats received from each process, and outputs
these “raw” counters without any further processing or interpretation.

Thus, H 1 should not be confused with existing implementations of failure detectors (some of which, such
as those in Ensemble and Phoenix, have modules that are also called heartbeat [VR97, Chad7]). Even
though existing failure detectors are also based on the repeated sending of a heartbeat, they use timeouts on

19

For every process p:

1

2

3 Initialization:

4 forall ¢ € MdoDy,lg] — 0 {D, isthe output of HB at p}
5

6 cobegin

7 || Task 1:

8 repeat periodically

9 Dylp] — Dyplp] +1 {increment p’s own heartbeat}

for all ¢ € neighbor(p) do send(HEARTBEAT, p) to ¢

P
P O

|| Task 2:
upon receive(HEARTBEAT, path) from ¢ do
for all ¢ € M suchthat ¢ appears after p in path do
Dplg] < Dplg] +1
path — path - p
for all ¢ suchthat ¢ € neighbor(p) and ¢ appearsat most oncein path do
send(HEARTBEAT, path) to ¢

P e A I I
© N o a » w N

coend

=
©

Figure 4: Implementation of /1 for partitionable networks

heartbeats in order to derive lists of processes considered to be up or down; applications can only see these
lists. In contrast, H B simply counts heartbeats, and shows these counts to applications.

We now proceed to prove the correctness of the implementation.

Lemma 24 At each process p, the heartbeat sequence of every process ¢ is nondecreasing.

Proof. Thisisclear since D,[¢] can only be changed in lines 9 and 15. m|

Lemma 25 At each correct process p, the heartbeat sequence of every process in the partition of p is
unbounded.

Proof. Let ¢ beaprocessinthe partition of p. If ¢ = p thenline 9 isexecuted infinitely many times (sincep
iscorrect), and so the heartbeat sequence of p at p isunbounded. Now assume g # p and let (n, p2, . - ., ;)

beasimplefair path fromp to ¢, and (p;, pi+1, - - -, px) beasimplefair pathfrom g top, sothat py = pr = p

andp, =¢q. Forj=1,... k let P, = (p1,...,pj). Foreachj =1,...,k — 1, weclaim that p; sends
(HEARTBEAT, P;) top;4+1 aninfinite number of times. We show this by induction on j. For the base case
(j = 1), notethat p; = piscorrect, soits Task 1 executes forever and therefore ; sends (HEARTBEAT , p1)

to al its neighbors, and thus to p,, an infinite number of times. For the induction step, let j < £ — 1 and
assume that p; sends (HEARTBEAT, P;) to p; 1 an infinite number of times. Since p; 1 is correct and
the link p; — p;41 isfair, pj;1 receives (HEARTBEAT, P;) an infinite number of times. Moreover, p; 12

appears at most oncein ;1 and p; +»isaneighbor of p; 1, o eachtimep; ., receives (HEARTBEAT, F;),

it sends (HEARTBEAT, P; ;1) to p;42 inline 18. Therefore, p;; 1 sends (HEARTBEAT, P; 1) to pj42 an
infinite number of times. This showsthe claim.

For j = k — 1 thisclaim shows that p; 1 sends (HEARTBEAT, P, 1) to p an infinite number of times.
Process py, iscorrect and link p, 1 — py isfair, so py receives (HEARTBEAT, P,_1) an infinite number of

20

times. Note that ¢ appears after p in F,_;. So every time p; receives (HEARTBEAT, P,_1), it increments
Dy, lg] inline 15. So D, [¢] isincremented an infinite number of times. Note that, by Lemma 24, 1, [q]
can never be decremented. So, the heartbeat sequence of ¢ at p, = p is unbounded. a

Corollary 26 (HB-Accuracy) Ateach processp, the heartbeat sequence of every processisnondecreasing,
and at each correct process p, the heartbeat sequence of every process in the partition of p is unbounded.

Proof. From Lemmata 24 and 25. O

Lemma 27 If some process p sends (HEARTBEAT, path) then (1) p isthe last processin path and (2) no
process appears more than twice in path.

Proof. Obvious. O

Lemma 28 Let p and g be processes, and path be a sequence of processes. Suppose that p receives message
(HEARTBEAT, path - ¢) an infinite number of times. Then ¢ is correct and link ¢ — p isfair. Moreover, if
path is non-empty, then ¢ receives message (HEARTBEAT, path) an infinite number of times.

Proof. Obvious. O

Lemma 29 (HB-Completeness)At each correct process p, the heartbeat sequence of every processnot in
the partition of p is bounded.

Proof (Sketch). Let ¢ be a process that is not in the partition of p. Note that ¢ # p. For a contradiction,
suppose that the heartbeat sequence of ¢ at p is not bounded. Then p increments 7,[¢] an infinite number
of timesin line 15. So, for an infinite number of times, p receives messages of the form (HEARTBEAT, x)
with a second component that contains g after p. Lemma 27 part (2) impliesthat the second component of a
message of theform (HEARTBEAT, x) ranges over afinite set of values. Thusthere existsa path containing
q after p such that p receives (HEARTBEAT, path) an infinite number of times. Let path = (p1,...,pk)-
For convenience, let p = pri1. By repeated applications of Lemma 28, we conclude that for each
j=kk—1,...,1 p;jiscorrect and link p; — p; 1 isfar. Lets,¢ € {1,...,k} be such that p; = p,
py =qandi <. Thus (p;,pit1,...,p;) isafar path from p to ¢ and (p;r, pyr 11, - - -, Pk, p) isafar path
from ¢ to p. Therefore p and ¢ are in the same partition — a contradiction. a

By Corollary 26 and the above lemma, we have:

Theorem 30 Figure 4 implements H B for partitionable networks.

7 Some Practical Considerations

In contrast to several previous works on network partitions, we did not assume here that all partitions are
isolated. In other words, there can be two partitions P and P such that processesin P can continuously
receive messages from processes in P (but processes in P’ eventually stop receiving messages from P).
Dealing with non-isolated partitions complicates the task of designing and/or proving the algorithms (e.g.,
in the proof of our Consensus algorithm, we had to define a partial order on the set of partitions, and
argue by induction on this partial order). The completeness properties of H 53 and ¢S helped us deal with
non-isolated partitions, as we now explain.

21

Let P and P’ be two partitions such that p € P receives every message that € P’ sends. The
completeness property of HB requires that the heartbeat of p at p must eventualy stop. Similarly, the
completeness property of ¢S requires that p permanently suspectes g. In other words, even though p
receives all the messages of p', HB and ¢S must behave asif all the processesin P were actually isolated
fromthosein P’. Thus, HB and ¢S help algorithms by “restoring” theisolation of partitions to some extent.
At this point, it may seem that we dealt with problem of non-isolated partitions by smply “postulating it
away” in the definitions of HB and ©S. This is not the case, since we gave an implementation of HB
(Section 6), and by incorporating a timeout mechanism to this implementation, one can also obtain ¢S: if
the heartbeat of p’ at p does not increase within a certain timeout period, p suspects ¢ (of course, timeout
mechanisms make sense only in partially synchronous systems).

We now address the issue of message buffering. Soon after a process p crashes its heartbeat ceases
everywhere and processes stop sending messages to p. However, they do have to keep the messages they
intended to send to p, just in case p is merely very slow, and the heartbeat of p resumes later on. In theory,
they have to keep these messages forever, and this requires unbounded buffers. In practice, however, the
system will eventually decide that p isindeed useless and will “remove” p (e.g. viaa Group Membership
protocol). All the stored messages addressed to p can then be discarded. The removal of p may take along
time,’ but the heartbeat mechanism ensures that processes stop sending messages to p soon after p actually
crashes, and much beforeitsremoval. The same considerations apply if, instead of crashing, p is partitioned
away from itscurrent partition P, and the (Partitionable) Group Membership eventually removesit from P.

8 Related Work

Regarding reliable communication, theworksthat are closest to ours are[BCBT96, ACT974]. Both of these
works, however, consider only non-partitionable networks. In [BCBT96], Basu et al. pose the following
guestion: given a problem that can be solved in asynchronous systems with process crashes only, can this
problem still be solved if links can also fail by losing messages? They show that the answer is “yes’ if the
problem is correct-restricted [BN92, Gop92]*® or if more than half of the processes do not crash. However,
the communication algorithms that they give are not quiescent (and do not use failure detectors). [ACT97a]
was the first paper to study the problem of achieving quiescent reliable communication by using failure
detectors in a system with process crashes and lossy links.

Regarding consensus, the works that are closest to ours are [FKM™95, CHT96a, DFKM96, GS96]. In
[GS96], as afirst step towards partitionable networks, Guerraoui and Schiper define I'-accurate failure
detectors. Roughly speaking, only a subset ' of the processes are required to satisfy some accuracy
property. However, their model assumes that the network is completely connected and links between
correct processes do not lose messages — thus, no permanent partition is possible.

Thefirst paper to consider the consensus problem in partitionable networksis[FKM™95], but the algorithms
described in that paper had errors [CHT96a]. Correct algorithms can be found in [CHT96a, DFKM96]%°

All these algorithms use a variant of ¢S, but in contrast to the one given in this paper they do not use
‘HB and are not quiescent: processes in minority partitions may send messages forever. Moreover, these

In some group membership protocols, the timeout used to remove a process is on the order of minutes: killing a process is
expensive and so timeouts are set conservatively.

18 e., its specification refers only to the behavior of non-faulty processes.

P Actually, the specification of consensus considered in [FKM*95, CHT964] only requiresthat one correct processin the largest
partition eventually decides. Ensuring that all correct processes in the largest partition decide can be subsequently achieved by a
(quiescent) reliable broadcast of the decision value.

22

fallure detector
behavior

/\

network messages sent
connectivity - by algorithm

Figure 5: Cycle of dependencies when network connectivity is defined in terms of messages sent

algorithms make the following additional assumptions. (a) the largest partition is eventually isolated from
therest of the system: there isatime after which messages do not go in or out of this partition, and (b) links
in the largest partition can lose only afinite number of messages (recall that in our case, all links may lose
an infinite number of messages). The underlying model of failures and failure detectorsis also significantly
different from the one proposed in this paper. Another model of failure detectors for partitionable networks
isgivenin [BDM97]. We compare models in the next section.

9 Comparison with other Models

In [DFKM96, BDM97], network connectivity is defined in terms of the messages exchanged inarun — in
particular, it depends on whether the algorithm being executed sends a message or not, on the times these
messages are sent, and on whether these messages are received. Thisway of defining network connectivity,
which is fundamentally different from ours, has two drawbacks. First, it creates the following cycle of
dependencies (Fig. 5): (a) The messagesthat an algorithm sendsin a particular run depend on the algorithm
itself and on the behavior of the failure detector it isusing, (b) the behavior of the failure detector depends
on the network connectivity, and (c) the network connectivity depends on the messages that the algorithm
sends. Second, it raises the following issue: are the messages defining network connectivity, those of the
applications, those of the failure detection mechanism, or both?

In our model, network connectivity does not depend on messages sent by the algorithm, and so we avoid
the above drawbacks. In fact, network connectivity is determined by the (process and link) failure pattern
which is defined independently of the messages sent by the algorithm. The link failure pattern is intended
to model the physical condition of each link independent of the particular messages sent by the algorithm
being executed.

In [DFKM96], two processes p and ¢ are permanently connected in a given run if they do not crash and
thereisatime after which every messagethat p sendsto g isreceived by ¢, and vice-versa. Clearly, network
connectivity depends on the messages of the run.

In[BDM97], process g ispartitioned fromp at timet if thelast message that p sentto g by timet < tisnever

23

received by ¢. This particular way of defining network connectivity in terms of messagesis problematic for
our purposes, as the following example shows.

A process p wishes to send a sequence of messages to ¢q. For efficiency, the algorithm of p sends a
message to ¢ only when p’s failure detector module indicates that ¢ is currently reachable from p (thisis
not unreasonable: it is the core idea behind the use of failure detector 7B to achieve quiescent reliable
communication). Suppose that at time ¢, p sendsm to ¢, and this message islost (it is never received by g).
By the definition in [BDM97], ¢ is partitioned from p at time ¢. Suppose that the failure detector module
at p now tells p (correctly) that ¢ is partitioned from p. At this point, p stops sending messages to ¢ until
the failure detector saysthat ¢ has become reachable again. However, since p stopped sending messages to
g, by definition, ¢ remains partitioned from p forever, and the failure detector oracle (correctly) continues
to report that ¢ is unreachable from p, forever. Thus, the loss of a single message discourages p from ever
sending messages to ¢ again.

A possible objection to the above example is that the failure detector module at p is not just an oracle with
axiomatic properties, but also a process that sends its own messages to determine whether ¢ is reachable
or not. Furthermore, these failure detector messages should also be taken into account in the definition
of network connectivity (together with the messages exchanged by the algorithms that use those failure
detectors). However, this defeats one of the original purpose of introducing failure detection as a clean
abstraction to reason about fault tolerance. The proof of correctness of an algorithm (such asthe one in the
simple example above) should refer only to the abstract properties of the failure detector that it uses, and
not to any aspects of itsimplementation.

Acknowledgments

We would like to thank Anindya Basu, Tushar Deepak Chandra, Francis Chu, Vassos Hadzilacos, and the
anonymous referees for their helpful comments.

References

[ACT97a] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. Heartbeat: a timeout-free failure
detector for quiescent reliable communication. In Marios Mavronicolas and Philippas Tsigas,
editors, Proceedings of the 11th International Workshop on Distributed Algorithms, Lecture
Notes on Computer Science. Springer-Verlag, September 1997. A full version isalso available
as Technical Report 97-1631, Computer Science Department, Cornell University, Ithaca, New
York, May 1997.

[ACT97b] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. On the weakest failure detector
for quiescent reliable communication. Technical Report 97-1640, Department of Computer
Science, Cornell University, July 1997.

[BCBT96] Anindya Basu, Bernadette Charron-Bost, and Sam Toueg. Simulating reliable links with
unreliable links in the presence of process crashes. InOzalp Babaojlu and Keith Marzullo,
editors, Proceedings of the 10th International Workshop on Distributed Algorithms, Lecture
Notes on Computer Science, pages 105-122. Springer-Verlag, October 1996.

24

[BDM97]

[BN9Z]

[Cha97]
[CHT964]
[CHT96b]

[CT96]

[DFKM96]

[FKM+95]

[FLPSS5]

[Gop92]

[GS96]

[HT94]

[VRI7]

Ozalp Babaojlu, Renzo Davoli, and Alberto Montresor. Partitionable group membership:
specification and algorithms. Technical Report UBLCS-97-1, Dept. of Computer Science,
University of Bologna, Bologna, Italy, January 1997.

Rida Bazzi and Gil Neiger. Simulating crash failures with many faulty processors. In Adrian
Segal and Shmuel Zaks, editors, Proceedings of the 6th International Workshop on Distributed
Algorithms, Lecture Notes on Computer Science, pages 166-184. Springer-Verlag, 1992.

Tushar Deepak Chandra, April 1997. Private Communication.

Tushar Degpak Chandra, Vassos Hadzilacos, and Sam Toueg, March 1996. Private Communi-
cation to the authors of [FKM™95].

Tushar Degpak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure detector for
solving consensus. Journal of the ACM, 43(4):685-722, July 1996.

Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43(2):225-267, March 1996.

Danny Dolev, Roy Friedman, Idit Keidar, and Dahlia Malkhi. Failure detectors in omission
failure environments. Technical Report TR96-1608, Department of Computer Science, Cornell
University, Ithaca, New York, September 1996.

Roy Friedman, Idit Keidar, Dahlia Malkhi, Ken Birman, and Danny Dolev. Deciding in par-
titionable networks. Technical Report TR95-1554, Department of Computer Science, Cornell
University, Ithaca, New York, November 1995.

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374-382, April 1985.

Ajei Gopa. Fault-Tolerant Broadcasts and Multicasts: The Problem of Inconsistency and
Contamination. PhD thesis, Cornell University, January 1992.

Rachid Guerraoui and André Schiper. Gamma-Accurate failure detectors. InOzalp Babaoglu
and Keith Marzullo, editors, Proceedings of the 10th International Workshop on Distributed
Algorithms, Lecture Notes on Computer Science, pages 269-286. Springer-Verlag, October
1996.

Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant broadcasts and related
problems. Technical Report TR 94-1425, Department of Computer Science, Cornell University,
Ithaca, New York, May 1994.

Robbert van Renesse, April 1997. Private Communication.

25

