
Int J STTT (1998) 2: 98–132 1998 Springer-Verlag

DOI 10.1007/s100099800003

The practitioner’s guide to coloured Petri nets

Lars M. Kristensen, Søren Christensen, Kurt Jensen

CPN Group, Department of Computer Science, University of Aarhus, Denmark;
E-mail: {lmkristensen,schristensen,kjensen}@daimi.au.dk

Abstract. Coloured Petri nets (CP-nets or CPNs) pro-
vide a framework for the design, specification, validation,
and verification of systems. CP-nets have a wide range of
application areas and many CPN projects have been car-
ried out in industry, e.g., in the areas of communication
protocols, operating systems, hardware designs, embed-
ded systems, software system designs, and business pro-
cess re-engineering. Design/CPN is a graphical computer
tool supporting the practical use of CP-nets. The tool
supports the construction, simulation, and functional and
performance analysis of CPN models. The tool is used by
more than four hundred organisations in forty different
countries – including one hundred commercial companies.
It is available free of charge, also for commercial use. This
paper provides a comprehensive road map to the practi-
cal use of CP-nets and the Design/CPN tool. We give an
informal introduction to the basic concepts and ideas un-
derlying CP-nets. The key components and facilities of
the Design/CPN tool are presented and their use illus-
trated. The paper is self-contained and does not assume
any prior knowledge of Petri nets and CP-nets nor any
experience with the Design/CPN tool.

Key words: High-level Petri nets – Coloured Petri nets
– Practical use – Modelling – Validation – Verification –
Visualisation – Tool support

1 Introduction

An increasing number of system development projects
are concerned with distributed and concurrent systems.
There are numerous examples, ranging from large scale
systems, in the areas of telecommunication and applica-
tions based on WWW technology, to medium or small
scale systems, in the area of embedded systems.

The development of concurrent and distributed sys-
tems is complex. A major reason is that the execution of

such systems may proceed in many different ways, e.g.,
depending on whether messages are lost, the speed of the
processes involved, and the time at which input is re-
ceived from the environment. As a result, distributed and
concurrent systems are, by nature, complex and difficult
to design and test.

Coloured Petri nets (CP-nets or CPNs) [34–37] pro-
vide a framework for the construction and analysis of dis-
tributed and concurrent systems. A CPN model of a sys-
tem describes the states which the system may be in and
the transitions between these states. CP-nets have been
applied in a wide range of application areas, and many
projects have been carried out in industry [36] and docu-
mented in the literature, e.g., in the areas of communica-
tion protocols [21, 30], audio/video systems [9], operating
systems [7, 8], hardware designs [22, 62], embedded sys-
tems [59], software system designs [46, 61], and business
process re-engineering [49, 56].

The development of CP-nets has been driven by the
desire to develop an industrial strength modelling lan-
guage – at the same time theoretically well-founded and
versatile enough to be used in practice for systems of the
size and complexity found in typical industrial projects.
To achieve this, we have combined the strength of Petri
nets [50] with the strength of programming languages.
Petri nets provide the primitives for describing synchro-
nisation of concurrent processes, while a programming
language provides the primitives for defining data types
(colour sets) and manipulating data values.

CPN models can be structured into a number of re-
lated modules. This is particularly important when deal-
ing with CPN models of large systems. The module con-
cept of CP-nets is based on a hierarchical structuring
mechanism, which supports a bottom-up as well as top-
down working style. New modules can be created from
existing modules, and modules can be reused in several
parts of the CPN model. By means of the structuring
mechanism it is possible to capture different abstraction

L.M. Kristensen et al.: The practitioner’s guide to coloured Petri nets 99

levels of the modelled system in the same CPN model.
A CPN model which represents a high level of abstrac-
tion is typically made in the early stages of design or
analysis. This model is then gradually refined to yield
a more detailed and precise description of the system
under consideration.

CPN models are executable. This implies that it is
possible to investigate the behaviour of the system by
making simulations of the CPN model. Very often, the
goal of doing simulations is to debug and validate the sys-
tem design. However, simulations can equally well serve
as a basis for investigating the performance of the consid-
ered system.

Visualisation is a technique which is closely related
to simulation of CPN models. Observation of every sin-
gle step in a simulation is often too detailed a level for
observing the behaviour of a system. It provides the ob-
server with an overwhelming amount of detail, particu-
larly for very large CPN models. By means of high level
visual feedback from simulations, information about the
execution of the system can be obtained at a more appro-
priate level of detail. Another important application of
visualisation is the possibility of presenting design ideas
and results using application domain concepts. This is
particularly important in discussions with people and col-
leagues unfamiliar with CP-nets.

Time plays a significant role in a wide range of dis-
tributed and concurrent systems. The correct functioning
of many systems crucially depends on the time taken up
by certain activities, and different design decisions may
have a significant impact on the performance of a system.
CP-nets includes a time concept which makes it possible
to capture the time taken by different activities in the sys-
tem. Timed CPN models and simulation can be used to
analyse the performance of a system, e.g., investigate the
quality of service (e.g., delay), or the quantity of service
(e.g., throughput) provided by the system. The time con-
cept of CP-nets is primarily suited for investigating a sys-
tem by means of simulations. This contrasts analytical
approaches to performance analysis [45], and modelling
languages aimed at model checking [15, 47] of timed and
hybrid systems [3, 42].

The state space method of CP-nets makes it possible
to validate and verify the functional correctness of sys-
tems. The state space method relies on the computation
of all reachable states and state changes of the system,
and is based on an explicit state enumeration [28, 29, 35].
By means of a constructed state space, behavioural prop-
erties of the system can be verified. Examples of such
properties are the absence of deadlocks in the system, the
possibility of always reaching a given state, and the guar-
anteed delivery of a given service. The state space method
of CP-nets can also be applied to timed CP-nets. Hence, it
is also possible to investigate the functional correctness of
systems modelled by means of timed CP-nets.

Design/CPN [10, 51] is a graphical computer tool sup-
porting CP-nets. It consists of three closely integrated

components. The CPN editor supports the construction
and editing of hierarchical CPN models. Simulation of
CPN models is supported by the CPN simulator, while
the CPN state space tool supports the state space method
of CP-nets. In addition to these three main components,
the tool includes a number of additional packages and
libraries. One of these is a set of packages, which sup-
ports visualisation by means of business charts, message
sequence charts (MSC), and construction of application
specific graphics.

The Design/CPN tool is used by more than four hun-
dred organisations in forty different countries – including
one hundred commercial companies. It is available free of
charge, also for commercial use. More than 50 man-years
have been invested in the development of CP-nets and
Design/CPN.

CP-nets has been developed over the last 20 years.
The main developer has been the CPN group at the
University of Aarhus, Denmark, headed by Kurt Jensen.
We have developed the basic model, including the use
of data types and hierarchy constructs, defined the ba-
sic concepts such as dynamic properties, and developed
the theory behind many of the existing analysis methods.
Together with Meta Software Corporation [16], we have
played a key role in the development of high-quality tools
supporting the use of CP-nets. Finally, we have been en-
gaged in a large number of application projects, many of
these in industrial settings. For more information on the
group and its work see [27]. More detailed acknowledge-
ments of some of the individual contributions during the
first 15 years can be found in the prefaces of [34–36].

Outline. This paper is organised as follows. Section 2
gives an informal introduction to the syntax and dynamic
behaviour of CP-nets. In this section, we also introduce
the hierarchical structuring mechanism of CP-nets. Sec-
tion 3 gives an overview of the Design/CPN tool. Sec-
tion 4 explains how the construction of CPN models is
supported by the CPN editor. Section 5 considers simu-
lation of CPN models and the CPN simulator. Section 6
presents the packages supporting visualisation and gives
some examples of their use. Section 7 introduces the time
concept of CP-nets and explains how this can be used
to conduct simulation based performance analysis of sys-
tems. Section 8 introduces the CPN state space tool and
the state space method of CP-nets. Section 9 sums up
the conclusions and explains how to get started using CP-
nets and the Design/CPN tool.

2 Coloured Petri nets

This section gives an informal introduction to the syntax
and semantics of CP-nets. A small communication proto-
col is used throughout the section to illustrate the basic
concepts of the CPN language. Later, the communication
protocol will also be used to introduce the time concept
and the state space method of CP-nets.

100 L.M. Kristensen et al.: The practitioner’s guide to coloured Petri nets

One should keep in mind that it is very difficult (prob-
ably impossible) to give an informal explanation which is
totally complete and unambiguous. Thus it is extremely
important for the soundness of the CPN modelling lan-
guage and the Design/CPN tool that the informal de-
scription is complemented by a more formal definition.
The formal definition of the syntax and semantics of CP-
nets can be found in [32, 34]. For the practical use of
CP-nets and Design/CPN, however, it suffices to have
an intuitive understanding of the syntax and semantics.
This is analogous to programming languages, which are
successfully applied by users even though they are unfa-
miliar with the formal, mathematical definitions of the
languages.

2.1 Example: a communication protocol

We consider a stop-and-wait protocol from the datalink
control layer of the OSI network architecture. The proto-
col is taken from [2]. The stop-and-wait protocol is quite
simple, and does not in any way represent a sophisticated
protocol. However, the protocol is interesting enough to
deserve closer investigation, and it is also complex enough
for introducing the basic constructs of CP-nets.

Figure 1 gives an overview of the protocol considered.
The system consists of a Sender (left) transmitting data
packets to a Receiver (right). The data packets to be trans-
mitted are located in a Send buffer at the sender side.
Communication with the receiver takes place on a bidi-
rectional Communication Channel (bottom).

Fig. 1. Stop-and-wait communication protocol

The data packets have to be delivered exactly once and
in the correct order into the Received buffer at the re-
ceiver side. Obtaining this service is complicated by the
fact that the sender and receiver communicate via an un-
reliable communication channel, i.e., packets may be lost
during transmission and packets may overtake each other.
One way of achieving the desired service is to use a so-
called stop-and-wait retransmission strategy. The idea is
that the sender keeps sending the same data packet un-
til a matching acknowledgement is received, in which case

the next data packet can be transmitted. For simplicity,
this particular stop-and-wait protocol uses an unlimited
number of retransmissions.

The sender sends a data packet on the communica-
tion channel by constructing a data frame and putting
the data frame in the TransmitData frame buffer. A data
frame is a pair consisting of a sequence number and a data
packet. The channel will then attempt to transmit the
data frame, and, if successful, the data frame will be de-
livered into the ReceiveData frame buffer, where it can be
processed by the receiver. The receiver delivers data pack-
ets to the upper protocol layers using the data packet
buffer Received. The protocol uses sequence numbers to be
able to match acknowledgements and data packets, i.e.,
to be able to deduce which acknowledgements correspond
to which data packets, and to be able to deduce whether
a given data packet has already been received.

The receiver sends an acknowledgement for a received
data frame by constructing an acknowledgement frame
and putting it in the TransmitAck frame buffer. An ac-
knowledgement frame consists of a sequence number in-
dicating the sequence number of the data packet that the
receiver expects next. Similar to data frames, the channel
will then attempt to transmit it, and, if successful, it will
turn up in the ReceiveAck frame buffer at the sender side,
where it can be processed by the sender.

We will return to the inscriptions placed next to the el-
lipses and in the upper left corner of the boxes later in this
section.

2.2 Modelling of states

Petri nets are, in contrast to most specification languages,
state and action oriented at the same time, providing an
explicit description of both the states and the actions
of the system. This means that, at a given moment, the
modeller can freely determine whether to concentrate on
states or on actions.

A CP-net is always created as a graphical drawing.
Figure 2 shows the CP-net that models the sender in the
stop-and-wait protocol. It consists of two parts. The part
on the left models the sending of data frames, and the
part on the right models the reception of acknowledge-
ment frames. We will explain Fig. 2 in great detail in the
following sections which introduce the basic constructs of
CP-nets.

Places. The states of a CP-net are represented by means
of places (which are drawn as ellipses or circles). The
sender is modelled using six different places. By conven-
tion, we write the names of the places inside the ellipses.
The names have no formal meaning – but they have huge
practical importance for the readability of a CP-net (just
like the use of mnemonic names in traditional program-
ming). A similar remark applies to the graphical appear-
ance of the places, i.e., the line thickness, size, colour,
font, position, etc.

L.M. Kristensen et al.: The practitioner’s guide to coloured Petri nets 101

ReceiveAck

Frame

P InTransmitData

Frame

P Out

Send
PacketBuffer

P I/O

1‘["Software"," Tools f","or Techn",
 "ology tr","ansfer. "]

Receive
AckFrameAccept

Waiting

DataFrame

1‘(0,"")

TimeOut

NextSend

1‘(0,acked)

SeqxStatus

Send
DataFrame

Sending
DataFrame

ackframe rn

(sn,p)

dframe

dframe

p::packets

(sn,acked)

(sn,status)

if (rn > sn)
then (rn,acked)
else (sn, status)

(sn,notacked)

packets

dframe

dataframe dframe

dframe

dframe

(sn,notacked)

Fig. 2. Sender of the stop-and-wait protocol

It is important to keep in mind that places in con-
trast to, for example, transition systems, are not used to
directly describe the possible states of the CP-net. The
state of a CP-net is a so-called marking of the places of
the CP-net. We explain the concept of markings after the
next paragraph.

The place Send (top left) models the data packet
buffer, containing the data packets which the sender has
to transmit to the receiver. The places TransmitData and
ReceiveAck (at the bottom) model the frame buffers be-
tween the sender and the communication channel. The
place NextSend (middle) models the internal status of
the sender – it will keep track of the sequence number
of the data packet to be sent next, and it will indicate
whether an acknowledgement has been received for the
data packet which is currently being transmitted. The
places Sending and Waiting model the two possible pos-
itions of the control flow in the sender – either the sender
is just about to start Sending a data frame, or the sender is
Waiting after having sent a data frame.

Types. Each place has an associated type (colour set) de-
termining the kind of data that the place may contain.
By convention, the type of a place is written in italics, to
the lower left or right of the place. The types are similar
to types in a programming language. The types of a CP-
net can be arbitrarily complex, e.g., a record where one
field is a real, another a text string, and a third a list of
integers. Figure 3 shows the type definitions used in the
stop-and-wait protocol.

We use eight different types to model the sender. The
place Send has the type PacketBuffer. This type is defined
as a list of Packets representing the possible contents of
the packet buffer modelled by the place Send. The type
Packet is defined as a string denoting the set of text strings.

(* —– data packets —– *)
color Packet = string ;
color PacketBuffer = list Packet ;

(* —– status and sequence numbers —– *)
color Seq = int ;
color Status = with acked | notacked ;

color SeqxStatus = product Seq * Status ;

(* —– data and acknowledgement frames —– *)
color DataFrame = product Seq * Packet ;
color AckFrame = Seq ;

color Frame = union
dataframe : DataFrame + ackframe : AckFrame ;

Fig. 3. Type (colour set) definitions

The type of the place NextSend is SeqxStatus. This type is
defined as the product (or pair) of the types Seq and Sta-

tus. The type Seq is defined as int (integers), and Status

is defined as an enumeration type containing two possible
values: acked and notacked. Hence, the type SeqxStatus con-
tains all pairs in which the first component is an integer
(denoting a sequence number) and the second component
is either acked or notacked (indicating whether an acknowl-
edgement has been received for the data packet currently
being sent).

The places Sending and Waiting have the type Data-

Frame, which is defined as a product of Sequence numbers
and Packets. The places TransmitData and ReceiveAck both
have the type Frame, which is defined as the union of type
DataFrame and type AckFrame. The type AckFrame is sim-
ply a Sequence number.

102 L.M. Kristensen et al.: The practitioner’s guide to coloured Petri nets

Markings. A state of a CP-net is called a marking. It con-
sists of a number of tokens positioned (distributed) on
the individual places. Each token carries a value (colour),
which belongs to the type of the place on which the token
resides. The tokens that are present on a particular place
are called the marking of that place. For historical rea-
sons, we sometimes refer to token values as token colours,
in the same way as we refer to data types as colour sets.
This is a metaphoric picture where we consider the to-
kens of a CP-net to be distinguishable from each other
and hence “coloured” – in contrast to low-level Petri nets
which have “black” indistinguishable tokens.

The marking of a place is, in general, a multi-set of
token values. A multi-set is similar to a set, except that
there may be several appearances of the same element.
This means that a place may have several tokens with the
same token value. As an example, a possible marking of
the place TransmitData is the following:

2‘dataframe(0,”CP-nets”) + 4‘dataframe(1,”CPN”)

This marking contains two tokens with value data-

frame(0,”CP-nets”) and four tokens with value dataframe(1,

”CPN”). By convention, multi-sets are written as a sum
(+) using the symbol prime (‘) (pronounced “of”) to de-
note the number of appearances of an element.

Initial marking. A CP-net has a distinguished marking
– the initial marking , which is used to describe the ini-
tial state of the system. The initial marking of a place
is, by convention, written on the upper left or right of
the place. The place Send has an initial marking consist-
ing of a single token with the value [”Software”,” Tools

f”,”or Techn”,”ology Tr”,”ansfer. ”], i.e., a list of five pack-
ets. The place NextSend initially contains a single token
with the value (0,acked), denoting that the packet to be
sent first will be assigned sequence number 0, and that
an acknowledgement has been received for the previous
data packet (since initially there is no previous packet).
Initially the sender is in state waiting, as indicated by the
initial marking of the place Waiting. Initially, the remain-
ing three places contain no tokens. The specification of
the initial marking is therefore (by convention) omitted
for these three places.

2.3 Modelling of actions

Transitions. The actions of a CP-net are represented by
means of transitions (which are drawn as rectangles). As
with places, we write the name of the transitions inside
the rectangles. The sender consists of four transitions.
The transition Accept models the action taken when the
next data packet is accepted for transmission. The tran-
sition SendDataFrame models the sending of a data frame,
and ReceiveAckFrame models the reception of an acknowl-
edgement frame. TimeOut is used to model the occurrence
of a timeout so that the data frame can be retransmitted.

Arcs and arc expressions. Transitions and places are con-
nected by arcs . The actions of a CP-net consist of occur-
rences of transitions. An occurrence of a transition re-
moves tokens from places connected to incoming arcs (in-
put places), and adds tokens to places connected to out-
going arcs (output places), thereby changing the marking
(state) of the CP-net. This is also referred to as the to-
ken game. As an example, the transition Accept has three
incoming arcs and three outgoing arcs. Hence, an occur-
rence of this transition will remove tokens from the places
Waiting, Send, and NextSend, and add tokens to the places
Sending, Send, and NextSend.

The exact number of tokens added and removed by the
occurrence of a transition, and their data values are deter-
mined by the arc expressions, which are positioned next
to the arcs. How to determine the values of the tokens
removed and added will be explained in the next subsec-
tion. A double arc, like the dashed arc between TimeOut

and NextSend, is shorthand for two opposite directed arcs
with identical arc expressions. As we will see in the next
section, an action of a CP-net consists, in general, of one
or more transitions occurring concurrently.

2.4 Dynamic behaviour

We now describe the dynamic behaviour (operational se-
mantic) of CP-nets. That is, the conditions under which
transitions may occur, and the effect of an occurrence of
a transition on the marking of the CP-net.

Variables and bindings. To talk about an occurrence of
a transition, we need to assign (bind) data values to the
(free) variables occurring in the arc expressions on the
surrounding arcs of the transition. Otherwise, it is im-
possible to evaluate the arc expressions. The transition
Accept has four variables: p of type Packet, packets of type
PacketBuffer, sn of type Seq, and dframe of type DataFrame.
The variable declarations , specifying the variables and
their types, are shown in Fig. 4. Variables can be assigned
data values belonging to the type of the variable.

(* —– data packets —– *)
var p : Packet ;
var packets : PacketBuffer ;

(* —– status and sequence numbers —– *)
var sn,rn : Seq ;
var status : Status ;

(* —– data frames —– *)
var dframe : DataFrame ;

Fig. 4. Variable declarations for the stop-and-wait protocol

Let us now assume that we assign data values to the
variables of the transition Accept by creating the binding
listed in Fig. 5, where← should be read ”bound to”.

L.M. Kristensen et al.: The practitioner’s guide to coloured Petri nets 103

p ← ”Software”

packets ← [” Tools f”,”or Techn”,”ology Tr”,”ansfer. ”]

sn ← 0

dframe ← (0,””)

Fig. 5. A binding of transition Accept

Figure 6 shows, for each surrounding arc of Accept, the
multi-set of tokens resulting from evaluating the corre-
sponding arc expressions in the binding listed in Fig. 5.
In this case all multi-sets contain a single token. For all
arc expressions, the result is straightforward. The only
exception is the arc expression p::packets on the incom-
ing arc from Send. The infix operator :: is the basic list
constructor. This means that the result of evaluating the
expression p::packets in the binding of Fig. 5 is the list ob-
tained by inserting the value ”Software”, bound to p, at the
front of the list bound to packets.

Figure 6 also shows the initial marking of the places
surrounding the transition Accept. The marking of each
place is indicated next to the place. The number of tokens
on the place is shown in the small circle, while the detailed
token values are indicated in the dashed box next to the
small circle.

A binding of a transition is also written in the form:
〈v1 = d1, v2 = d2, . . . vn = dn〉 where vi for i ∈ 1..n is
a variable, and di is the value assigned to vi. As an ex-
ample, the binding in Fig. 5 can be written as:

〈p = ”Software”, sn = 0, dframe = (0, ””),

packets = [” Tools f”,”or Techn”,”ology Tr”,”ansfer. ”]〉

In addition to the arc expressions, it is possible to attach
a Boolean expression (with variables) to each transition.
The Boolean expression is called a guard . It specifies that
we only accept bindings for which the Boolean expression
evaluates to true. However, none of the transitions of the
sender uses a guard.

Enabling. In order for a transition to be enabled in
a marking, i.e., ready to occur , it must be possible to bind

Sending
DataFrame

Accept

Send
PacketBuffer

1 1‘["Software"," Tools f","or Techn",
"ology tr","ansfer. "]

Waiting

DataFrame

1 1‘(0,"")

NextSend
SeqxStatus

1 1‘(0,acked)

(sn,p)

1‘(0,"Software")

dframe
1‘(0,"")

p::packets

1‘["Software"," Tools f","or Techn",
"ology tr","ansfer. "]

(sn,acked)

1‘(0,acked)

(sn,notacked)

1‘(0,notacked)

packets

1‘[" Tools f","or Techn",
"ology tr","ansfer."]

Fig. 6. Evaluation of arc expressions for Accept

(assign) data values to the variables appearing on the
surrounding arc expressions and in the guard of the tran-
sition such that: 1) each of the arc expressions evaluate
to tokens which are present on the corresponding input
place; and 2) the guard (if any) is satisfied.

Figure 6 tells us that an occurrence of the transition
Accept (with the binding in Fig. 5) removes a token with
value (0,””) from the place Waiting, a token with value
[”Software”,” Tools f”, ”or Techn”,”ology Tr”,”ansfer. ”] from
the place Send, and a token with value (0,acked) from the
place NextSend.

This binding of Accept is enabled in the initial mark-
ing, since the tokens to which the arc expressions evaluate
are present on the corresponding input places.

Obviously, there are many other bindings that we may
try for the transition Accept in the initial marking. How-
ever, none of these are enabled in the initial marking. This
can be seen as follows. The place Send has only one token.
Hence we need to bind p to the head of the list, and pack-

ets to the tail of the list. The place NextSend also contains
a single token with value (0,acked). Hence, we need to bind
sn to 0. The place Waiting also contains a single token with
value (0,””), hence we need to bind dframe to this value.
Therefore the enabled binding is uniquely determined by
the tokens residing on the input places.

The possible bindings of data values to the variables
of a transition correspond to the possible ways in which
a transition can occur. However, as we demonstrated
above, only a subset of these will, in general, be enabled
in a given marking.

Occurrence. The occurrence of a transition in an enabled
binding removes tokens from the input places and adds
tokens to the output places of the transition. The values
of the tokens removed from an input place are determined
by evaluating the arc expression on the corresponding
input arc. Similarly, the values of tokens added to an
output place are determined by evaluating the arc ex-
pression on the corresponding output arc (see Fig. 6).
Figure 7 shows the marking of the surrounding places of
the transition Accept resulting from the occurrence of this

Waiting

DataFrame

Accept

Sending
DataFrame

1 1‘(0,"Software")

NextSend

SeqxStatus

1 1‘(0,notacked)

Send
PacketBuffer

1 1‘[" Tools f","or Techn","ology tr",
"ansfer. "]

(sn,p)

dframe

p::packets

(sn,acked)

(sn,notacked)

packets

Fig. 7. Marking resulting from the occurrence of Accept

104 L.M. Kristensen et al.: The practitioner’s guide to coloured Petri nets

transition in the initial marking with the enabled binding
listed in Fig. 5.

Hence, the occurrence of the transition Accept has the
effect that the data packet at the head of the list, residing
on the place Send, is removed. The status of the sender,
modelled by NextSend, is updated so that the token, re-
siding on NextSend, indicates that an acknowledgement
has not yet been received (notacked) for the data packet,
which is now being transmitted. The control flow of the
sender is changed from being in the state waiting to send-
ing, by removing the token, corresponding to the data
frame previously being transmitted from the place Wait-

ing, and adding a token to the place Sending corresponding
to the newly constructed data frame, which is now being
transmitted.

We now briefly sum up the remaining parts of the
CP-net in Fig. 2. The transition TimeOut is enabled when
the data frame currently being sent is on Waiting, and an
acknowledgement has not yet been received (status is no-

tacked) for the data frame currently being sent. An occur-
rence of TimeOut changes the control in the sender from
being waiting to sending, by removing the data frame on
Waiting and adding it to the place Sending so that it can be
retransmitted. At first glance, it may seem strange that
we do not specify the conditions under which retrans-
missions occur. However, for a lot of purposes this is not
necessary. Most CP-nets are used to investigate the log-
ical and functional correctness of a system design. For
this purpose it is often sufficient to describe that retrans-
missions may appear, e.g., because the communication
channel is slow. However it may not be necessary, or even
beneficial, to consider how often this happens – the proto-
col must be able to cope with all kinds of communication
channels, both those which work so well that there are no
retransmissions, and those in which retransmissions are
frequent. Later on we will see that CP-nets can be ex-
tended with a time concept that allows us to describe the
duration of the individual actions and states. This will
permit us to investigate the performance of the modelled
system, i.e., how fast and effectively it operates. Then we
will give a much more precise description of retransmis-
sions (e.g., that they occur when no acknowledgement has
been received inside two hundred milliseconds).

The reception of acknowledgement frames is mod-
elled by ReceiveAckFrame. The occurrence of this transi-
tion removes an acknowledgement frame from the place
ReceiveAck and compares the sequence number rn in the
acknowledgement frame with the sequence number sn of
the data frame currently being sent. If the sequence num-
ber in the acknowledgement is greater than the sequence
number of the data frame currently being sent (recall
that the receiver sends the sequence number of the data
frame it expects next), then the sequence number of the
next data packet is updated, and the acknowledgement
status is changed to indicate that an acknowledgement
has been received for the data frame currently being
sent. This is accomplished by the if-then-else construction

used on the arc from ReceiveAckFrame to NextSend, which
puts a token on NextSend with a value according to the
above description.

Occurrence sequences and steps. An execution of a CP-
net is described by means of an occurrence sequence. It
specifies the markings that are reached and the steps that
occur. Above, we have seen an occurrence sequence of
length one. It consisted of a single step, the occurrence of
Accept in the binding in Fig. 5 in the initial marking, and
leading to the marking in Fig. 7.

In this marking, the transition SendDataFrame is en-
abled in a binding in which the variable dframe is as-
signed the value (0,”Software”). Hence, the occurrence se-
quence can be continued with a step corresponding to
the occurrence of this binding of SendDataFrame. This
leads to a new marking in which the marking of Send

and ReceiveAck remains unchanged, one token with value
dataframe(0,”Software”) is on TransmitData (corresponding
to the data frame being placed in the TransmitData buffer
for transmission), and one token with value (0,”Software”)

is on Waiting.
In general, a step may consist of several enabled bind-

ing elements occurring concurrently. A binding element is
a pair consisting of a transition and a binding of its vari-
ables. As an example, consider the marking of the sender
shown in Fig. 8. This marking is identical to the mark-
ing reached after the occurrence of Accept in the initial
marking, except that two tokens are residing on the place
ReceiveAck; one token with value ackframe(0), and one to-
ken with value ackframe(1). Moreover, the token present
on place NextSend now indicates that an acknowledgment
has been received. In this marking, the three binding
elements listed below are enabled.

1. (SendDataFrame, 〈dframe = (0, ”Software”)〉)
2. (ReceiveAckFrame, 〈rn = 0, sn = 0, status = acked〉)
3. (ReceiveAckFrame, 〈rn = 1, sn = 0, status = acked〉)

The binding elements 1 and 2 are concurrently en-
abled , since each binding element can get those tokens
that it needs (i.e., those specified by the input arc expres-
sions) – without sharing the tokens with the other binding
element. The same is true for the binding elements 1 and
3. However, the binding elements 2 and 3 are not con-
currently enabled, since they cannot both get the only
(0,acked) token on NextSend. These two binding elements
are in conflict .

In general, it is possible for a transition to be concur-
rently enabled with itself (using two different bindings or
using the same binding twice). Hence, a step, from one
marking to the next, may involve a multi-set of binding
elements. The marking, resulting from the occurrence of
a step consisting of several binding elements, is the same
as the marking reached by the occurrence of the individ-
ual binding elements in some arbitrary order. This mark-
ing is well-defined since the marking resulting from the
occurrence of a multi-set of concurrently enabled binding

L.M. Kristensen et al.: The practitioner’s guide to coloured Petri nets 105

ReceiveAck
Frame

P In

2 1‘ackframe(0)+
1‘ackframe(1)TransmitData

Frame

P Out

Send
PacketBuffer

P I/O

1 1‘[" Tools f","or Techn",
"ology tr","ansfer. "]

Receive
AckFrameAccept

Waiting

DataFrame

1‘(0,"")

TimeOut

NextSend

SeqxStatus

1 1‘(0,acked)

Send
DataFrame

Sending
DataFrame

1 1‘(0,"Software")

ackframe rn

(sn,p)

dframe

dframe

p::packets

(sn,acked)

(sn,status)

if (rn > sn)
then (rn,acked)
else (sn, status)

(sn,notacked)

packets

dframe

dataframe dframe

dframe

dframe

(sn,notacked)

Fig. 8. Marking of the sender

elements, is independent of the order in which the individ-
ual binding elements occur.

A finite occurrence sequence is an occurrence sequence
consisting of a finite number of markings and steps. An
infinite occurrence sequence is an occurrence sequence
consisting of an infinite number of markings and steps.
An infinite occurrence sequence corresponds to a non-
terminating execution of the system.

2.5 Hierarchical CP-nets

The basic idea underlying hierarchical CP-nets is to allow
the modeller to construct a large model by using a num-
ber of small CP-nets like the one in Fig. 2. These small
CP-nets are called pages. These pages are then related
to each other in a well-defined way as explained below.
This is similar to the situation in which a programmer
constructs a large program by means of a set of mod-
ules. Many CPN models consist of more than one hundred
pages with a total of many hundred places and tran-
sitions. Without hierarchical structuring facilities, such
a model would have to be drawn as a single (very large)
CP-net, and it would become totally incomprehensible.

In the previous section, we described a CPN model
for the sender. In this section we describe models for the
receiver and the communication channel, and we show
how these three submodels can be put together to form
a model of the entire stop-and-wait protocol.

In a hierarchical CP-net, it is possible to relate a tran-
sition (and its surrounding arcs and places) to a separate
CP-net, providing a more precise and detailed descrip-
tion of the activity represented by the transition. The
idea is analogous to the hierarchy constructs found in
many graphical description languages (e.g., data flow and
SADT diagrams). It is also, in some respects, analogous

to the module concepts found in many modern program-
ming languages. At one level, we want to give a simple
description of the modelled activity without having to
consider internal details about how it is carried out. At
another level, we want to specify the more detailed be-
haviour. Moreover, we want to be able to integrate the
detailed specification with the more crude description –
and this integration must be done in such a way that it
becomes meaningful to speak about the behaviour of the
combined system.

Substitution transitions and subpages. We start out by
working in a top-down manner. The most abstract CP-
net describing the stop-and-wait protocol is the one
shown in Fig. 1. Here we have three transitions: Sender,
Receiver, and Communication Channel. Each of these transi-
tions is marked with an HS-tag (in the upper left corner)
indicating that it is a substitution transition (HS = Hi-
erarchy + Substitution). The dashed boxes next to the
HS-tags are called hierarchy inscriptions and they define
the details of the substitutions.

Each hierarchy inscription specifies the subpage, i.e.,
the CP-net that contains the detailed description of the
activity represented by the corresponding substitution
transition. The subpage corresponding to the substitu-
tion transition Sender is named Sender and it is the CP-net
shown in Fig. 2. The Receiver has a subpage named Re-

ceiver and the Communication Channel has a subpage named
ComChannel. We will return to the latter two pages later
in this subsection, where we explain how the receiver and
the communication channel are modelled.

Port and socket places. Each subpage has a number
of places which are marked with an In-tag, Out-tag, or
I/O-tag. These places are called port places and they
constitute the interface through which the subpage com-
municates with its surroundings. Through the input ports

106 L.M. Kristensen et al.: The practitioner’s guide to coloured Petri nets

(marked with an In-tag) the subpage receives tokens
from the surroundings. Analogously, the subpage deliv-
ers tokens to the surroundings through the output ports
(marked with an Out-tag). A place with an I/O-tag is both
an input port and an output port at the same time. The
page Sender has one input port ReceiveAck, one output
port TransmitData, and one input/output port Send.

The substitution transition Sender in Fig. 1 has one
input place ReceiveAck, one output place TransmitData,
and one input/output place Send. These places are called
socket places. More precisely, ReceiveAck is an input socket
for the Sender transition, TransmitData is an output socket ,
while Send is an input/output socket . To specify the re-
lationship between a substitution transition and its sub-
page, we must describe how the port places of the subpage
are related to the socket places of the substitution transi-
tion. This is achieved by providing a port assignment . For
the Sender subpage, we relate the input port ReceiveAck

in Fig. 2 to the input socket ReceiveAck in Fig. 1. Analo-
gously, the output port TransmitData in Fig. 2 is related
to the output socket TransmitData in Fig. 1, and the in-
put/output port Send to the input/output socket Send.

When a port place is assigned to a socket place, the
two places become identical. The port place and the
socket place are just two different representations of a sin-
gle conceptual place. More specifically, this means that
the port and the socket places always have identical mark-
ings. When an input socket receives a token from the sur-
roundings of the substitution transition, that token also
becomes available at the input port of the subpage, and
hence the token can be used by the transitions on the sub-
page. Analogously, the subpage may produce tokens on
an output port. Such tokens are also available at the cor-
responding output socket and hence they can be used by
the surroundings of the substitution transition.

The communication channel. Let us now consider the
communication channel. The communication channel is
required to be an unreliable bidirectional communica-
tion channel. We will now work in a bottom-up manner,
modelling an unreliable unidirectional channel and then
compose two such unidirectional channels to form a bidi-
rectional channel.

The CP-net modelling a unidirectional channel is
shown in Fig. 9. It consists of two places Incoming and
Outgoing, and a single transition Transmit. The input port
place Incoming models the incoming traffic which is to be
transmitted on the channel. The output port place Out-

going models the outgoing traffic which has been trans-
mitted successfully on the channel. Both places have the

Transmit Outgoing

Frame

P Out

Incoming

Frame

P In
if success
then 1‘frame
else emptyframe

Fig. 9. Unidirectional channel

type Frame since the channel will be transmitting frames.
An occurrence of the transition Transmit removes a frame
from the place Incoming. Depending on the binding of
the Boolean variable success (which may either be true or
false), the frame is either put on the place Outgoing, corre-
sponding to a successful transmission, or the frame is not
put on the place Outgoing, corresponding to a loss of the
frame. The constant empty denotes the empty multi-set of
tokens.

The CP-net modelling the unreliable bidirectional
communication channel is shown in Fig. 10. The CP-
net has two substitution transitions: DataChannel and
AckChannel.

DataChannel models the traffic in the sender-to-receiver
direction. AckChannel models the traffic in the receiver-to-
sender direction. Both substitution transitions have the
CP-net modelling the unidirectional channel as subpage.
This means that we have reused the CP-net of the uni-
directional channel. During the execution of the CP-net,
we will have two separate page instances of the CP-net
modelling the unidirectional channel; one instance cor-
responding to the data channel, and one corresponding
to the acknowledgement channel. Each of these page
instances will have its own marking which is totally in-
dependent of the marking of the other page instances (in
a similar way to procedure calls having private copies of
local variables).

OutgoingData

Frame

P Out

IncomingAck

Frame

P In

OutgoingAck

Frame

P Out

IncomingData

Frame

P In

AckChannel

HS UniChannel#19

DataChannel

HS UniChannel#19

Fig. 10. Bidirectional channel

The port assignment for the socket places in Fig. 10 is as
one would expect. The two input socket places Incoming-

Data and IncomingAck are assigned to the port place Incom-

ing in Fig. 9. The two output socket places OutgoingData

and OutgoingAck are assigned to the port place Outgoing in
Fig. 9.

The CP-net modelling the bidirectional channel is
the subpage of the substitution transition Communication

Channel in Fig. 1. It is worth observing that the places
IncomingData, OutgoingData in Fig. 10 are sockets with
respect to the substitution transition DataChannel while
they are port places with respect to the substitution tran-
sition Communication Channel. A similar remark applies to
IncomingAck and OutgoingAck.

The receiver. Figure 11 depicts the CPN model of the re-
ceiver. The right hand side models the reception of data

L.M. Kristensen et al.: The practitioner’s guide to coloured Petri nets 107

ReceiveData

Frame

P InTransmitAck

Frame

P Out

Received

PacketBuffer

P I/O

[]

Receive
DataFrame

Send
AckFrame

Next
Receive

SeqxStatus

(0,acked)

if sn=rn
then packets^^[p]
else packets

dataframe (sn,p)

(rn,notacked) (if sn=rn
then rn+1
else rn,notacked)

ackframe rn

packets

(rn,status)(rn,acked)

Fig. 11. Receiver of the stop-and-wait protocol

frames while the left hand side models the sending of ac-
knowledgements. The place NextReceive (middle) is simi-
lar to the place NextSend at the sender page. It is used to
keep track of the state of the receiver. It specifies the se-
quence number of the data frame which is expected next,
and it indicates whether an acknowledgement has been
sent for the last received data frame. Initially, the receiver
expects the data frame with the sequence number 0, and
the previous data frame has been acknowledged (since,
initially, there is no such data frame). This is specified by
the initial marking (0,acked) of the place NextReceive. The
place Received models the data packet buffer on the re-
ceiver side. Initially, the buffer is empty as indicated by
the initial marking [], denoting the empty list. The port
places TransmitAck and ReceiveData are like the similarly
named places at the sender side in that they model the
frame buffers between the receiver and the communica-
tion channel.

The transition ReceiveDataFrame models the receipt of
data frames. When a data frame is received, it is removed
from the place ReceiveData and its sequence number sn

is compared with the sequence number rn of the data
frame that the receiver expects next. If the sequence num-
bers match (rn=sn), then the packet p is appended to the
list residing on the place Received and the sequence num-
ber of the data frame expected next is incremented by
one. In any case, the state of the receiver is updated to
be notacked.

The transition SendAckFrame models the sending of ac-
knowledgement frames. When the internal state of the
receiver is notacked, then an acknowledgement frame with
sequence number rn is put on place TransmitAck, and the
internal state of the receiver is updated to be acked, indi-
cating that an acknowledgement has been sent.

Fusion places. Hierarchical CP-nets additionally offer
a concept known as fusion places. This allows the mod-
eller to specify that a set of places are considered to be
identical, i.e., they all represent a single conceptual place,
even though they are drawn as a number of individual
places. When a token is added/removed at one of the
places, an identical token will be added/removed at all
the other places in the fusion set . From this description, it
is easy to see that the relationship between the members
of a fusion set is (in some respects) similar to the relation-
ship between two places which are assigned to each other
by a port assignment.

When all members of a fusion set belong to a single
page and that page only has one page instance, place fu-
sion is nothing more than a drawing convenience which
allows the user to avoid too many crossing arcs. However,
things become much more interesting when the members
of a fusion set belong to several different subpages or to
a page that has several page instances. In that case, fusion
sets allow the user to specify a behaviour, which would be
very difficult to describe without fusion.

There are three different kinds of fusion sets: global fu-
sion sets can have members from many different pages,
while page fusion sets and instance fusion sets only have
members from a single page. The difference between the
last two is the following. A page fusion unifies all the in-
stances of its places (independently of the page instance
at which they appear), and this means that the fusion set
only has one “resulting place” which is “shared” by all
instances of the corresponding page. In contrast, an in-
stance fusion set only identifies the place instances that
belong to the same page instance, and this means that the
fusion set has a “resulting place” for each page instance.
The semantics of a global fusion set is analogous to that

108 L.M. Kristensen et al.: The practitioner’s guide to coloured Petri nets

of a page fusion set – in the sense that there is only one
“resulting place” (which is common for all instances of
all participating pages). To obtain the benefits of modu-
lar design and analysis, global fusion sets should be used
sparingly.

In the protocol example, we only have three levels in
the page hierarchy. However, in practice, there are often
up to ten different hierarchical levels. As we saw with
the page modelling the bidirectional channel, a subpage
may contain substitution transitions and thus have its
own subpages. Very often, a page both has transitions
and substitution transitions, i.e., some activities are de-
scribed in full detail, while other activities are described
in a coarser way – deferring the detailed description to
a subpage.

It can be shown that each hierarchical CP-net has
a behaviourally equivalent non-hierarchical CP-net. To
obtain the non-hierarchical net, we simply replace each
substitution transition (and its surrounding arcs) by
a copy of its subpage, “glueing” each port place to the
socket place to which it is assigned.

It should be noted that substitution transitions never
become enabled and never occur. Substitution transi-
tions work as a macro mechanism. They allow subpages
to be conceptually inserted at the position of the sub-
stitution transitions – without doing an explicit inser-
tion in the model. In Fig. 1, we have not provided any
arc expressions for the arcs that surround the substitu-
tion transitions. These are unnecessary since the substi-
tution transitions never become enabled or occur. Nev-
ertheless, they can be very useful in giving the reader
of a model a first impression of the functionality of the
subpage.

It is important to notice that the hierarchical con-
structs do not guarantee a formal relationship in terms of
behavioural equivalence between arc expressions on arcs
surrounding a substitution transition, and the behaviour
of the corresponding subpage. This means that the hier-

CPN ML

Standard ML

Graphical User
 Interface

Design/OA

CPN State Space Tool
Model Checking

State Space
Generation

Visualisation

Queries

CPN Simulator

Compilation of
State Space Code

Simulation

Visualisation

Interactive
Simulation

CPN EditorEditing
Compilation of
Simulation Code

Syntax Check

Fig. 12. Architectural overview of Design/CPN

archical concepts of CP-nets offers abstraction [43] at the
syntactic rather than at the semantic level.

3 Overview of the Design/CPN tool

In this section, we give an overview of the Design/CPN
tool by describing its main components and the general
way in which to apply the tool.

The overall architecture of the Design/CPN tool is
shown in Fig. 12. Design/CPN consists of two main com-
ponents: the graphical user interface (GUI) and CPN ML.
Together, these two components span the three tightly
integrated tools which constitute Design/CPN: the CPN

editor, the CPN simulator, and the CPN state space tool.
The GUI is the graphical front-end with which the

user interacts. It is built on top of the general graphical
package Design/OA [17]. The CPN ML part implements
the CPN ML language, which is the programming lan-
guage used for declarations of variables, declaration of
types, and net inscriptions (e.g., arc expressions, guards,
etc.) in CP-nets. Figures 3 and 4 from the previous sec-
tion are examples of type and variable declarations writ-
ten in CPN ML. The CP-nets from the previous sections
also give a number of examples of arc expressions writ-
ten in CPN ML. In addition to the CPN ML language,
the CPN ML component implements the simulation en-
gine and the central algorithms and data structures for
the generation and use of state spaces. This means that
the CPN ML component is responsible for the calculation
of enabled binding elements in the encountered markings
of the CPN model.

CPN ML is built on top of the Standard ML (SML)
language [48]. The CPN ML language is the SML lan-
guage extended with some syntactical sugar to simplify
the declaration of types, variables, etc. The fact that the
inscription language is based on SML has several advan-
tages. First, the expressiveness of SML is inherited by De-

L.M. Kristensen et al.: The practitioner’s guide to coloured Petri nets 109

sign/CPN. Second, SML is strongly typed, allowing many
modelling errors to be caught early on. A third virtue is
that polymorphism, overloading, and definition of infix
operators in SML allow net inscriptions to be written in
a natural, mathematical syntax. Finally, SML is well doc-
umented, tested, and maintained [1, 53, 63]. The choice
of SML has turned out to be one of the most success-
ful design decisions for Design/CPN. It has proven ad-
vantageous to build Design/CPN upon Design/OA and
SML, which are both available on different platforms,
since platform dependency is isolated in these building
blocks and not in the tool itself.

For the inscriptions of the CP-net (e.g., arc expres-
sions, guards, etc.) only the purely functional part of the
SML language is used. This is consistent with the oper-
ational semantics of CP-nets, as described in Sect. 2.4.
It would not make sense if, for example, evaluation of
a guard for a transition might have an impact on the
marking of some places.

The usual working style, when applying the tool, is
to start out using the editor for constructing a first CPN
model of the system under consideration. The hierarch-
ical CP-net from the previous section (Fig. 1) modelling
the stop-and-wait protocol, is an example of a CPN dia-
gram constructed using the CPN editor. The figures from
the previous section are screen dumps from the editor.
The user works directly on the graphical representation of
the CPN model. In order to be able to simulate the CPN
model, it has to constitute a syntactical and type correct
CP-net. When reported syntax and type errors (if any)
have been corrected, the user can switch to the CPN sim-
ulator. The switch to the CPN simulator generates the
code necessary for simulation of the CPN model. The syn-
tax check as well as the compilation is handled by the
CPN ML part of the editor. The CPN editor is described
in more detail in Sect. 4.

Once the code for simulation has been compiled, the
user is ready to start investigating the behaviour of the
system by means of simulations. These first simulations
typically have the characteristics of single step debug-
ging in which the token game is observed in great detail,
and the user chooses the next binding elements to occur.
During such simulations, the markings of the places are
shown directly on the CPN diagram similar to Fig. 8. The
simulations typically reveal some shortcomings and/or
errors in the CPN model which then have to be resolved.
Hence, the first phase normally consists of a number of it-
erations switching back and forth between the editor and
the simulator, gradually refining and improving the CPN
model. The simulation/execution of the CPN model is
driven by the simulator engine of CPN ML. It uses the
simulator part of the GUI for visualisation of the token
game. The CPN simulator will be considered in more de-
tail in Sect. 5.

Usually, the next phase is to make some lengthy simu-
lations to conduct a more elaborate validation of the de-
sign and/or the CPN model. In such lengthy simulations,

the visualisation of the token game is typically replaced
with some higher and more abstract way of visualising the
behaviour of the system. Examples of this include busi-
ness charts, message sequence charts (MSC), and various
kinds of graphics, specific for the application domain. The
libraries for visualisation are considered in Sect. 6.

In case the purpose of creating the CPN model is to
make performance analysis, the CPN simulator is config-
ured to collect data during the lengthy simulations. The
collected data can then be used later in a post-processing
phase in which the key figures for the performance of the
system are obtained. The time concept of CP-nets and
the support for simulation based performance analysis
are described in Sect. 7.

A possible next phase is to apply the state space tool
to verify and validate the functional correctness of the
system. In order to apply the CPN state space tool, the
user switches from the CPN simulator to the CPN state
space tool. The switch is similar to the one from the editor
to the simulator, and consists of a compilation of the ne-
cessary internal data structures for working with the state
space tool. This compilation is handled by the simulator
part of CPN ML. The first phase of applying the state
space tool typically consists of making the CPN model
tractable for state space analysis. The next step is then
to generate the state space (or part of it). Generation is
handled by the CPN ML part of the state space tool. The
user can now make queries about the behaviour of the sys-
tem, using the available query languages. Queries can be
written as formulas in a state and action oriented variant
of the temporal logic CTL [6, 15] or by using a number of
available search and traversal functions. The answers to
these queries are calculated by the model checker in the
CPN ML part of the state space tool. It uses the GUI for
visualising information about the state space and for dis-
playing the results of queries. The state space method and
the CPN state space tool are considered in more detail
in Sect. 8.

The GUI and CPN ML run as two separate com-
municating processes. Communication between the two
processes is needed in order to transform the graphical
representation in the GUI into abstract/internal repre-
sentations used in CPN ML and vice versa. Having the
GUI and CPN ML as two separate processes has sev-
eral advantages. The main advantage comes from the
fact that CPN ML handles the syntax check, code gen-
eration, simulation, and state space generation which are
the parts that require the bulk of the computational re-
sources in terms of memory and speed. The GUI has
rather modest requirements with respect to computa-
tional resources. Since the two parts are separate commu-
nicating processes, the GUI can run on a small worksta-
tion, and CPN ML can run in the background on a more
powerful workstation. In most of the industrial projects
in which the Design/CPN tool has been applied, a work-
station equipped with 64 MB internal memory and with
a speed equivalent to that of a Sun Ultra Sparc has been

110 L.M. Kristensen et al.: The practitioner’s guide to coloured Petri nets

suitable for running the CPN ML part. However, the
state space tool often requires additional computational
resources in terms of memory.

4 Construction of CPN models

The CPN editor supports construction, editing, and syn-
tax check of CPN diagrams. In this section, we describe
the basic functionality of the editor.

4.1 Working with Hierarchical CPN models

In typical industrial applications, a CPN diagram con-
sists of 10–100 pages with varying complexity. A modeller
must find a suitable way in which to divide the model
into pages. Moreover, the modeller must find a suitable
balance between declarations, net inscriptions, and net
structure (i.e., places, transitions, and arcs).

The hierarchy page. The editor provides an overview of
the pages in the CPN model and their interrelation-
ship by automatically creating and maintaining a so-
called hierarchy page, which is similar to the project
browsers found in many conventional programming envi-
ronments. The hierarchy page for the stop-and-wait pro-
tocol is shown in Fig. 13.

The hierarchy page has a page node for each page. An
arc between two page nodes indicates that the latter is
a subpage of the former, i.e., that the source page contains
a substitution transition that uses the destination page as
subpage. Each page node is inscribed with text that spec-
ifies the page name and the page number. Analogously,
each arc has text that specifies the name of the substi-
tution transition in question. As an example, page node
SWProtocol represents the page shown in Fig. 1. The page
node has three outgoing arcs corresponding to the three
substitution transitions Sender, Receiver, and Communica-

tion Channel. These three arcs leads to the page nodes
representing the pages Sender (shown in Fig. 2), Receiver

(shown in Fig. 11), and ComChannel (shown in Fig. 10), re-
spectively. The page node representing page ComChannel

SWProtocol#1

Sender#4 ComChannel#3

UniChannel#19

Receiver#5

Receiver

DataChannel

AckChannel

Communication
Channel

Sender

M PrimeDeclarations#2

Fig. 13. Hierarchy page for the stop-and-wait protocol

has one outgoing arc leading to the page node represent-
ing page UniChannel (shown in Fig. 9). This arc corres-
ponds to the two substitution transitions DataChannel and
AckChannel.

When the user double clicks on a page node, the cor-
responding page is opened and displayed, and the user
can start editing the page. A double click on a substitu-
tion transition similarly opens and puts the correspond-
ing subpage in front.

The page SWProtocol has a small Prime tag next to
it. This indicates that SWProtocol is a prime page, i.e.,
a page on the most abstract level. A CPN model has
a page instance for each prime page. For each substitu-
tion transition on a prime page we get a page instance of
the corresponding subpage. If these page instances have
substitution transitions, we get page instances for these,
and so on, until we reach the bottom of the page hierarchy
(which is required to be acyclic). The CPN model of the
stop-and-wait protocol has six page instances. All pages
have one instance, except UniChannel, which has two in-
stances, one for each of the two substitution transitions
on page ComChannel.

The CPN model also has a page named Declarations.
This page contains the global declaration node. The global
declaration node contains all declarations of types, con-
stants, functions, and variables, used in the net inscrip-
tions of the CPN model. For the stop-and-wait protocol,
the global declaration node contains the type and variable
declaration shown in Figs. 3 and 4.

Move to subpage. The editor makes it easy to add new
subpages, or rearrange the page hierarchy in other ways.
When a page gets too many places and transitions, we
can move some of them to a new subpage. This is done in
a single editor operation. The user selects the nodes to be
moved and invokes the Move to Subpage command. Then
the editor:

– checks the legality of the selection (it must form a sub-
net bounded by transitions)

– creates the new page
– moves the subnet to the new page
– creates the port places by copying those places which

were adjacent to the selected subnet
– calculates the port types (In, Out, or I/O)
– creates the corresponding port tags
– constructs the necessary arcs between the port nodes

and the selected subnet
– prompts the user to create a new transition which be-

comes the substitution transition for the new subpage
– draws the arcs surrounding the new transition
– creates a hierarchy inscription for the new transition
– updates the page hierarchy.

As may be seen, a lot of rather complex checks, cal-
culations, and manipulations are involved in the Move to

Subpage command. However, almost all of these are auto-
matically performed by the editor. The user only selects
the subnet, invokes the command, and creates the new

L.M. Kristensen et al.: The practitioner’s guide to coloured Petri nets 111

substitution transition. The rest of the work is done by
the editor. This is, of course, only possible because the
editor recognises a CPN diagram as a hierarchical CP-
net, and not just as a mathematical graph or as a set of
unrelated objects. Without this property, the user would
have to do all the work by means of the ordinary editing
operations (copying, moving, and creating the necessary
objects). This would be possible – but it would be much
slower and much more error-prone.

Creating substitution transitions. There is also an editor
command which turns an existing transition into a sub-
stitution transition – by relating it to an existing page.
Again, most of the work is done by the editor. The user
selects the transition and invokes the command. Then the
editor:

– makes the hierarchy page active
– prompts the user to select the desired subpage; when

the mouse is moved over a page node it blinks, unless
it is illegal (because selecting it would make the page
hierarchy cyclic)

– waits until a blinking page node has been selected
– tries to deduce the port assignment by means of a set

of rules which looks at the port/socket names and the
port/socket types (In, Out, or I/O)

– creates the hierarchy inscription with the name and
number of the subpage and with those parts of the
port assignment which could be automatically de-
duced

– updates the page hierarchy.

Replace by subpage. Finally, there is an editor command
that replaces a substitution transition by the entire con-
tent of its subpage. Again, this operation involves a lot of
complex calculations and manipulations, but, again, all of
them are done by the editor. The user simply selects the
substitution transition, invokes the command and uses
a simple dialogue box to specify the details of the opera-
tion (e.g., whether the subpage shall be deleted when no
other substitution transition uses it).

The three hierarchy commands described above can
be invoked in any order. A user with a top-down approach
would typically start by creating a page where each tran-
sition represents a rather complex activity. Then a sub-
page is created for each activity. The easiest way in which
to do this, is to use the Move to Subpage command. Then
the subpage automatically gets the correct port places,
i.e., the correct interface to the substitution transition.
As the new subpages are modified, by adding places and
transitions, the subpages may become so detailed that ad-
ditional levels of subpages must be added. This is done in
exactly the same way as the first level was created.

4.2 Flexible graphics

In order to be able to create easily readable CPN models,
Design/CPN supports a wide variety of graphical for-
matting parameters such as shapes, shading, borders,

etc. The underlying formal CPN model (in CPN ML of
Fig. 12) is unaffected by the graphical appearance. For
example, an object created as a place remains a place for-
ever, independent of graphical changes. Flexible graph-
ics in Design/CPN are accompanied by sensible defaults,
e.g., the default shape of a place is an ellipse.

Figure 2 illustrates the use of flexible graphics. The
main flow of the sender is Accept or TimeOut, Sending,
SendDataFrame, and Waiting. This is indicated by the thick
border of these places and transitions, and the thick arcs
in between. The places modelling buffers and variables in
the sender have been given a thin border. All arcs mod-
elling access to these variables and buffers are thin and
dashed.

The user can modify the default settings for the graph-
ical appearance of objects using system defaults and di-
agram defaults . The scope of diagram defaults is a single
diagram. If the user sets the diagram defaults for a spe-
cific object type, e.g., places, then all places created in
this diagram will be created using the diagram default.
The system defaults work across diagrams and determine
the initial diagram defaults for new CPN diagrams. The
system defaults make it easy for a user to have a certain
style in which CPN diagrams are created. The diagram
defaults make it simple for a user to modify a CPN di-
agram created by another user, and still ensure that the
graphical appearance of the modified and added objects is
consistent with the rest, i.e., the original part of the CPN
diagram.

4.3 Syntax and type checking

The editor is syntax directed by enforcing a number of
built-in syntax restrictions. This prevents the user from
making certain errors during the construction of a model.
As an example, it is impossible to draw an arc between
two transitions or between two places. However, it is im-
possible to catch all errors efficiently that way. Hence,
there is a syntax and type checker, which can be invoked
when the user wants to ensure that the created model
constitutes a legal CP-net.

An example of a syntax error would be a missing type
of a place. An example of a type error would be an arc ex-
pression with a type which is different from the type of the
place connected to the arc. Several errors can be reported
at the same time during a syntax check.

Reporting errors is based on a hypertext facility. We
illustrate this by explaining how syntax errors on page
Sender (shown in Fig. 2) is reported. On the hierarchy
page (Fig. 13), an error box will appear. The error box
will contain a text stating that there is an error on page
Sender, and there will be a hypertext link pointing to the
page. Following this link will open page Sender and select
another error box with a description of the problem in
the form of an error message. As a part of the message
another hypertext link is provided, which points to the
object, e.g., place or transition, where the error is located.

112 L.M. Kristensen et al.: The practitioner’s guide to coloured Petri nets

In many cases, correcting errors only involves local
changes. For efficiency reasons, the syntax and type check
is incremental. This means that only the modified part
of the model is checked again – not the entire model.
For example, assume that all five modules of the CPN
model depicted in Fig. 13 have been syntax checked.
When a syntax error regarding, say, the transition Ac-

cept on page Sender has been fixed, only that transition
and its surrounding arcs and places are rechecked, not all
five modules.

4.4 Textual interchange format

CPN diagrams of hierarchical CP-nets can be imported
and exported in a textual format [44]. Figure 14 gives
an example of the textual format supported by De-
sign/CPN. It shows how the transition Transmit on page
UniChannel in Fig. 9 is represented in the textual format.
The transition Transmit is represented using a trans block .
The tags and attributes inside this block give informa-
tion about the name of the transition and its graphical
appearance such as the lineattributes, fillattributes, and
textattributes. Hence, the textual format gives informa-
tion about the CP-net itself, i.e., transition, places, arcs
and net inscriptions, as well as the graphical layout of the
CP-net.

The textual format is based on SGML (Standard Gen-
eralised Markup Language) [26, 57] on which a number
of markup languages such as HTML (HyperText Markup
Language) are based. This is the reason why the textual
format as shown in Fig. 14 looks very similar to HTML.
The textual format has been developed with emphasis on
conforming to the committee draft [20] of the forthcoming
standard for high-level Petri nets.

<trans id=id15>
<text>Transmit</text>
<lineattr type=Solid thick=2 colour=black>
<fillattr pattern=None colour=black>
<posattr x=-14.01390 y=1135.58337>
<box h=254.00000 w=779.63892>
<textattr font=Helvetica size=18 just=Centered

colour=black bold=FALSE italic=FALSE
underlin=FALSE outline=FALSE
shadow=FALSE
condense=FALSE extend=FALSE
scbar=TRUE>

</trans>

Fig. 14. Example of the textual interchange format

5 Simulation of CPN models

The CPN simulator supports execution of CPN models.
It provides two fundamental modes of simulation suitable
for different purposes as explained below.

5.1 Interactive simulation

As the individual parts of a CP-net are constructed, they
are investigated and debugged by means of the CPN sim-
ulator, just as a programmer tests and debugs new parts
of a program. In the early phases of a modelling process,
the user typically wants to make a detailed investigation
of the behaviour of the individual transitions or small
parts of the model.

For this purpose, the simulator offers an interactive
mode. Here the user is in full control, sets breakpoints,
chooses between enabled binding elements, changes mark-
ings of places, and studies the token game in detail. This
work mode is similar to single step debugging in an or-
dinary programming language. The purpose is to see
whether the individual net components work as expected.
Interactive simulations are, by nature, very slow – no hu-
man being can investigate more than a few markings per
minute.

As indicated above, the modeller is able to inspect all
details of the markings reached. The user can see the set
of enabled transitions and select the binding elements to
occur. In Fig. 15, a screen dump from an interactive simu-
lation of the stop-and-wait protocol is depicted. It shows
the marking of the sender page.

The current marking is indicated: the number of to-
kens on a place is contained in the small circle next to the
place. The absence of a circle indicates that the place has
no tokens. The data values of the tokens are shown in the
box with a dashed border positioned next to the circle. If
desired, the user can hide a box, e.g., if the data values are
irrelevant or too big to print. The transition Accept is dis-
played with a thick border to indicate that it is enabled in
the current marking. Usually, enabled transitions and the
markings of places are displayed using different colours.
This significantly improves the readability compared to
the black and white variant shown in Fig. 15.

Interactive simulations are supported in different vari-
ants. It is for instance possible to specify that only the
token game of certain parts of the CPN model should
be observed, and it is possible to control the amount of
graphical feedback in each step. Interactive simulations
do not require the model to be complete, i.e., the user can
start investigating the behaviour of parts of a model and
directly apply the insight gained to the ongoing design ac-
tivities. Often, a model is gradually refined – from a crude
description towards a more detailed one.

5.2 Automatic simulation

Later on in a modelling process, the focus shifts from the
individual transitions to the overall behaviour of the full
model. The automatic mode of the simulator is suitable
here. In this case, the simulator makes random choices
(by means of a random number generator) between en-
abled binding elements. In this way, it is possible to ob-
tain much faster simulations. This is achieved even for

L.M. Kristensen et al.: The practitioner’s guide to coloured Petri nets 113

ReceiveAck
Frame

P InTransmitData
Frame

P Out

Send
PacketBuffer

P I/O

1 1‘[" Tools f","or Techn",
"ology tr","ansfer. "]

Receive
AckFrameAccept

Waiting

DataFrame

1‘(0,"")

TimeOut

NextSend

SeqxStatus

1 1‘(0,acked)

Send
DataFrame

Sending
DataFrame

1 1‘(0,"Software")

ackframe rn

(sn,p)

dframe

dframe

p::packets

(sn,acked)

(sn,status)

if (rn > sn)
then (rn,acked)
else (sn, status)

(sn,notacked)

packets

dframe

dataframe dframe

dframe

dframe

(sn,notacked)

Fig. 15. Snapshot from an interactive simulation

large models, because the enabling and occurrence rules
of Petri nets are local. This means that, when a transition
has occurred, only the enabling of the nearest transitions
needs to be recalculated, i.e., the number of steps per sec-
ond is independent of the size of the model. A totally
automatic simulation is executed with a speed of several
thousand steps per second (depending on the nature of
the CPN model and the power of the computer on which
the CPN simulator runs). The user is in control of auto-
matic simulations by means of stop options. Stop options
make it possible, for instance, to give an upper limit to the
number of steps the simulation should run.

Before and after an automatic simulation, the cur-
rent marking and the enabled transitions are displayed
as described for the interactive mode. However, the token
game is not displayed during automatic simulations. Of
course, this typically constitutes less information than de-
sired. A straightforward possibility to obtain information
about “what happened” is to use the simulation report .
It is a textual file containing detailed information about
all the bindings of transitions which occurred. Figure 16
shows a simulation report of the first 8 steps from an au-
tomatic simulation of the stop-and-wait protocol.

The A following the step number indicates that the
binding of the transition was executed in automatic
mode. The information after the @-sign specifies the page
instance, i.e., the part of the CP-net to which the occur-
ring transition belongs. Finally, for each step, the binding
in which the transition occurs is shown. As an example,
step 3 corresponds to an occurrence of the transition

1 A Accept@(1:Sender#4)
{ dframe = (0,””),p = ”Software”,
packets = ” Tools f”,”or Techn”,”ology tr”,
”ansfer. ”], sn = 0}

2 A Send@(1:Sender#4)
{ dframe = (0,”Software”)}

3 A Transmit@(2:UniChannel#19)
{ frame = dataframe((0,”Software”)),
success = false}

4 A TimeOut@(1:Sender#4)
{ dframe = (0,”Software”),sn = 0}

5 A Send@(1:Sender#4)
{ dframe = (0,”Software”)}

6 A TimeOut@(1:Sender#4)
{ dframe = (0,”Software”),sn = 0}

7 A Transmit@(2:UniChannel#19)
{ frame = dataframe((0,”Software”)),
success = false}

8 A Send@(1:Sender#4)
{ dframe = (0,”Software”)}

Fig. 16. Partial sample simulation report

Transmit on the second instance of page UniChannel in
a binding corresponding to the first data frame being lost.

5.3 Code segments

It is possible to attach a piece of sequential CPN ML code
to individual transitions using so-called code segments .

114 L.M. Kristensen et al.: The practitioner’s guide to coloured Petri nets

When a transition occurs, the corresponding code seg-
ment is executed. For example, it may read and write
text files, update graphics or even calculate values to be
bound to some of the variables of the transition. In this
way, the code segments provide a very convenient inter-
face between the CPN model and its environment, e.g.,
the file system. When we describe visualisation in Sect. 6
and performance analysis in Sect. 7, we will give a number
of examples on the use of code segments.

5.4 Integration with the editor

Often, a simulation results in the desire to modify the
model. Some of these modifications can be made im-
mediately: it is possible to make minor changes while
remaining in the simulator, e.g., to edit an arc expres-
sion. Other modifications require more involved recheck-
ing/regeneration of the simulator code, which is only sup-
ported in the editor, e.g., it is impossible to add or change
a type in the simulator. In Design/CPN, the editor and
simulator are closely integrated. Therefore, it is easy and
fast to go from the simulator back to the editor, fix a prob-
lem, re-enter the simulator, and resume simulation.

6 Visualisation of CPN models

The graphical feedback from interactive simulations and
the simulation report from automatic simulations are in
many situations a too detailed level of obtaining and
interpreting results from simulations. To overcome this
problem, the Design/CPN tool includes libraries for visu-
alisation. The visualisation is driven by the CPN simu-
lator and makes it possible to create and update various
kinds of graphics during the simulation.

There are several reasons why visualising the be-
haviour of a system during lengthy simulations is bene-
ficial. We can obtain a condensed overview of a lengthy
simulation. By extracting the key activities and repre-
senting them in a graphical way the simulation results
are easily interpreted. We can see whether the CPN
model behaves as expected. If it does not, we can see
where discrepancies appear. Then we can use interactive
simulations or the simulation report to make a closer in-
vestigation of these situations. Furthermore, visualisation
is able to hide the CP-nets and obtain graphical feedback
from simulations which are specific for the application do-
main. This makes it possible to discuss design ideas and
results from simulations with colleagues and other people
who have knowledge about the application domain, but
who are unfamiliar with CP-nets.

In this section we consider three kinds of graphical
feedback from simulations: line and bar charts, message
sequence charts, and application specific graphics. The li-
braries presented are all examples of standard libraries.
It is possible for the user, due to the open architecture of
Design/CPN, to tailor these libraries to specific domains,

or to create new visualisation libraries on top of the CPN
simulator.

The visualisation is handled by code segments asso-
ciated with transitions as discussed in Sect. 5. Typically
the user has to provide 2–5 lines of rather straightforward
CPN ML code for each of the code segments. It is im-
portant to notice that the behaviour of the CPN model
is not in any way affected by the additional graphical
visualisation, and that new visualisations can be added
independently of other means of feedback.

6.1 Line and bar charts

For the stop-and-wait protocol we may use the three
charts shown in Figs. 17, 18, and 19. The chart in Fig. 17
is a line chart showing how fast the individual data pack-
ets are successfully received (as a function of the step
number). From the line chart, we can see that the first
data packet was received after approximately 10 steps,
the second after approximately 30 steps, the third after
approximately 50 steps, and so on. The line chart is up-
dated each time a new packet is successfully received.
This is done by a few lines of code in the code segment of
ReceiveAckFrame.

The chart in Fig. 18 is a bar chart . It tells us how many
times each of the data frames has been sent and with what
result. From the bar chart we see that the data frame with
sequence number 0 has been sent 6 times. One of these

 Data Packets Received

0 20 40 60 80 100 120 140 160 180 200
 Step No.

0

1

2

3

4

5

6

7

8
 Data Packet No.

Fig. 17. Line chart for reception of data frames

Fig. 18. Bar chart for transmission of data frames

L.M. Kristensen et al.: The practitioner’s guide to coloured Petri nets 115

Fig. 19. Bar chart for transmission of acknowledgement frames

was lost, four were received as failures (i.e., out of order)
and the last one was successfully received. Analogously,
we can see that the data frame with sequence number 1
has been sent six times, while data frame number 2 and 3
have been sent five times each. Finally, we see that data
frame number 4 has been sent twice, and that both of
these are en route (i.e., on one of the places TransmitData

and ReceiveData).
The chart in Fig. 19 is similar to the chart in Fig. 18,

except that it shows the progress of acknowledgement
frames. The two bar charts are updated periodically, with
intervals specified by the modeller, e.g., for each fifty
steps. The three charts give us a lot of valuable informa-
tion about the behaviour of the protocol. As an example,
it is straightforward to see that failures (i.e., overtaking)
often cause more retransmissions than lost packets. It is
also easy to see that we need more than 90 steps to trans-
mit the five packets successfully, while with perfect com-

 Send

1

15

Sender

2

Timeout (0,"Software") 4

5

Timeout (0,"Software")
9

10

Communication Channel

3

Transmit (0,"Software")
6

11

14

7

12

13

14

Receiver

7

8

Received

Accept

Send DataFrame

(0,"Software")

Send DataFrame

Receive DataFrame

Receive

Send AckFrame 1

Send DataFrame

Transmit
ackframe(1) (0,"Software")

Receive AckFrame 1

Accept

(0,"Software")

(0,"Software")

(0,"Software")

(0,"Software")

(1," Tools f")

Transmit

Transmit
(0,"Software")

(0,"Software")

"Software"

Receive DataFrame

Fig. 20. MSC for stop-and-wait protocol

munication channels (and no overtaking) it is possible to
do this in 35 steps.

6.2 Message sequence charts

Message sequence charts (MSCs) [5] – also known as
event traces, message flow diagrams, or time sequence di-
agrams – is a widely used formalism for specifying exam-
ples of either normal or exceptional executions of a sys-
tem being designed. In the Design/CPN tool, MSCs are
used to capture a single simulation run, thereby providing
a graphical overview of the execution of the system. The
exact information contained in the MSCs is determined
by the user. For the stop-and-wait protocol an MSC may
appear as shown in Fig. 20. Vertical lines in MSCs are typ-
ically used to represent processes or components of a sys-
tem. Small squares on vertical lines and horizontal arrows
between vertical lines are typically used to describe ac-
tions or events of a system.

An occurrence of the Accept transition is shown by
a horizontal arrow between the first and second vertical
line. The arrow is labelled with the data packet being
accepted for transmission and the sequence number as-
signed to the data packet. Analogously, the occurrence
of the SendDataFrame transition is shown by a horizontal
arrow between the second and the third vertical lines.
A successful occurrence of Transmit with a data frame is
indicated by a horizontal arrow between the third and the
fourth vertical lines. However, if the data frame is lost, we
only get a small square at the third line. Similarly, an oc-
currence of the transition TimeOut also results in a small
square but at the second line.

116 L.M. Kristensen et al.: The practitioner’s guide to coloured Petri nets

An occurrence of ReceiveDataFrame is indicated by
a horizontal arrow from the fourth to the fifth vertical
line. Furthermore, if the data frame being received was
the one expected a horizontal arrow is created between
the fifth and the sixth vertical line. An occurrence of the
transition SendAckFrame is indicated by an arrow from
the fifth to the fourth vertical line. The arrow is labelled
with the sequence number corresponding to the acknowl-
edgement frame. Occurrences of Transmit with acknowl-
edgement frames are indicated in a similar way as occur-
rences of Transmit with data frames (but the arrows are
now drawn from right to left, while the square dots are
positioned at the fourth vertical line). Occurrences of Re-

ceiveAckFrame are indicated by an arrow from the third
to the second vertical line with a label corresponding to
the sequence number of the acknowledgement. The num-
bers to the outermost right of the MSC correspond to step
numbers of the simulation. In Fig. 20 we have an arrow (or
a square) for each step in the simulation. This means that
the MSC contains all the information in the simulation re-
port. However, it is much more common only to record
a few key activities, e.g., the transmission of data frames
and acknowledgement frames.

For creating the MSCs, code segments have been at-
tached to the transitions of the CPN model. Figure 21
shows the code segment of the transition Accept. MSC-

Graphics is a reference to the message sequence chart,
while mkst_col’DataFrame is a predeclared function provid-
ing a string representation of the CPN ML value (sn,p).
The function MSC.Message is one of the primitives pro-
vided by the MSC library for creating a horizontal arrow
between two vertical lines in the MSC according to the
record given as argument. The entries sender and receiver

are used to specify the source and the destination of the
horizontal arrow to be created. In this case the arrow is
drawn from the first vertical line (identified by ”Send”) to
the second vertical line (identified by ”Sender”). The ar-
row is labelled by the transition name (Accept) and the
occuring binding element. The code segments of the other
transitions are similar.

input (sn,p) ;
action
MSC.Message (!MSCGraphics)
{annotation = makestring (step ()),
label = "Accept"ˆNEWLINEˆ

(mkst_col´DataFrame (sn,p))ˆNEWLINE,
sender = "Send",
receiver = "Sender"

} ;

Fig. 21. Code segment for the transition Accept

6.3 Application specific graphics

The line, bar, and message sequence charts presented in
the previous sections are characterised by being rather

standard ways of creating graphical feedback. It is how-
ever often advantageous to create graphical feedback
from simulations which are based on concepts and objects
from the specific application domain. The Mimic/CPN
library [58] supports such application specific graphics .
Moreover, the library makes it possible to interact with
the graphical feedback and, in this way, to have a high-
level way to control and provide input for the simu-
lation. The stop-and-wait-protocol is really too simple
to illustrate the power of application specific graph-
ics. Instead we will illustrate how CP-nets and appli-
cation specific graphics were applied in a project at
Deutsche Telekom [4] to the design of services in Intelli-
gent Networks.

Intelligent networks (IN) extends conventional tele-
communication networks with the ability to collect and
compute information in addition to the conventional
transmission and switching functions. The ability to col-
lect and compute information is referred to as network
intelligence. Example of IN services are freephone, card
calling services, and premium rate services.

Figure 22 illustrates the main components of an IN
architecture. The basic idea is to separate the classical
switching and transport functionality from the IN service
logic functionality. The service switching point (SSP) rep-
resents physical local telephone exchanges whereas the
service control points (SCP) represent network nodes con-
taining the IN service logic. From these nodes the local
exchanges (SSPs) can be controlled remotely using a so-
called signalling system network (SS.7). A local exchange
contains the call control function (CCF) which represents
the functionality contained in a local exchange that is not
yet prepared for handling IN calls. The service switch-
ing function (SSF) enhances the local exchange with the
capability of handling IN calls, and makes it possible to
communicate with the IN service logic contained in the
SCP. The SCP consists of two parts: the service control
function (SCF) which contains the IN service logic and
the service data function (SDF) containing the database
for the IN.

The goal of separating the IN service logic from the
basic switching and transport functionality is to make it
possible to introduce new IN services without having to
modify the local exchanges (SSPs). The aim of the project

SSP
SSF

CCF

Signalling Network SS.7

SSP SSF

CCF

SCP SDF

SCF

signalling

transport

SCP: Service Control Point
SSP: Service Switching Point
SCF: Service Control Function
SDF: Service Data Function
SSF: Service Switching Point
CCF: Call Control Function

Fig. 22. Intelligent network architecture

L.M. Kristensen et al.: The practitioner’s guide to coloured Petri nets 117

at Deutsche Telekom was to investigate how the basic call
processing in the SSPs should be augmented to allow this.
To investigate this, a CPN model of the IN architecture
was constructed. The CPN model consisted of about 40
pages. The CPN model contained a representation of the
users of the network, the IN service logic, and the basic
call processing at the SSPs.

To provide input and control the simulations, the
CPN model was augmented with the application specific
graphics shown in Fig. 23. The application specific graph-
ics represent a small IN consisting of one service control
point (SCP) connected to two service switching points
(SSPs), each of which has three phones attached to it.
Having started a simulation, the user can select graphical
objects. Depending on the state of the system, different
kinds of interaction are possible. If a phone is on-hook, it
is possible to select the phone which will result in chang-
ing its state to off-hook (e.g., the phone to the upper
left). In this state the user can select the phone or its re-
ceiver. Selecting the receiver corresponds to an on-hook
operation. Selecting the phone will prompt the user for
the digits corresponding to the phone number. Figure 23
shows the graphics in a state where two phones 3070 and
7890 are active and have established a connection. In this
case the user can choose either to hang-up one of the ac-
tive phones, or to lift the receiver of one of the passive
phones. As can be seen this visualisation is used for con-
trolling the simulation and for testing different scenarios,
and it allows users who are unfamiliar with the CP-net to
understand the behaviour of the system.

SSP

3070

SSP

3790 6151830

7880
SCP

78903880

u1

u4

u3

u6u5

Fig. 23. Example of application specific graphics

The application specific graphics also have a record and
replay facility. This makes it possible to record the input
provided by the user and later replay these inputs, e.g.,
after having made modifications to the underlying CPN
model. In this way it is possible to create a set of standard
scenarios (use cases) for testing the system under consid-
eration.

7 Performance analysis

This section introduces the time concept of CP-nets and
explains how this can be used to conduct simulation-

based performance analysis of systems. As we proceed
with the introduction of the time concept and how it is
supported by the Design/CPN tool, we construct a timed
CPN model of the stop-and-wait protocol. Also, we ana-
lyse the performance of the stop-and-wait protocol in
terms of throughput, delay, and usage of channel band-
width and buffer space.

7.1 Timed CP-nets

The time concept of CP-nets is based on the introduction
of a global clock . The clock values represent model time,
and they may either be integers (i.e., discrete) or reals
(i.e., continuous). In addition to the token value, we al-
low each token to carry a time value, also called a time
stamp. Intuitively, the time stamp describes the earliest
model time at which the token can be used, i.e., removed
by the occurrence of a binding element.

In a timed CP-net a binding element is said to be
colour enabled when it satisfies the enabling rule for un-
timed CP-nets (i.e., when the required tokens are present
at the input places and the guard evaluates to true). How-
ever, to be enabled, the binding element must also be
ready. This means that the time stamps of the tokens
to be removed must be less than or equal to the current
model time.

Figure 25 shows a timed CP-net for the sender of the
stop-and-wait protocol. The net structure is the same as
in the untimed CP-net in Fig. 2. However, the net in-
scriptions and the type declarations (shown in Fig. 24)
have been modified with the addition of some timing con-
structs which will be explained in detail below.

(* —– data packets —– *)
color String = string ;
color ArrivalTime = TIME ;

color Packet = product ArrivalTime * String timed ;
color PacketBuffer = list Packet ;

(* —– status and sequence numbers —– *)
color Seq = int timed ;
color Status = with acked | notacked ;

color SeqxStatus = product Seq * Status ;

(* —– data and acknowledgement frames —– *)
color DataFrame = product Seq * Packet ;
color AckFrame = Seq ;

color Frame = union
dataframe : DataFrame + ackframe : AckFrame ;

Fig. 24. Timed type definitions

From the type definitions it can be seen that type Packet

has been modified to be a product of String and Arrival-

Time. The latter is used to calculate the delay of the

118 L.M. Kristensen et al.: The practitioner’s guide to coloured Petri nets

Waiting

DataFrame

1‘(0,(0,""))

Send
DataFrame

TimeOut

TransmitData
Frame

P Out

Sending
DataFrame

Accept

@+5

Send
PacketBuffer

P I/O

NextSend

SeqxStatus

Receive
AckFrame

@+5

ReceiveAck
Frame

P In

ackframe rn

(sn,p)

dframe

dframe@ignore

p::packets

(sn,acked)

(sn,status)

if (rn > sn)
then (rn,acked)
else (sn, status)

(sn,notacked)

packets

dframe

(dataframe dframe)@+5

dframe

dframe@+TExpire

(sn,notacked)

Fig. 25. Timed sender of the stop-and-wait protocol

data packets. Moreover, the types Packet and Seq are now
timed . By convention, the five structured types Packet-

Buffer, SeqxStatus, DataFrame, AckFrame, and Frame also be-
come timed – because they contain a component (Packet

or Seq) which is timed. This means that the corresponding
tokens carry time stamps.

The marking of places with a timed type is a timed
multi-set of token values. A timed multi-set is similar to
a multi-set, except that each element in the multi-set car-
ries a time stamp. As an example, a possible marking of
the place TransmitData is the following:

2‘dataframe(0,(0,”CP-nets”))@[19,45] +

4‘dataframe(1,(0,”CPN”))@[7,10,42,42]

This marking contains two tokens with value dataframe-

(0,(0,”CP-nets”)) and time stamps 19 and 45. Moreover,
there are four tokens with value dataframe(1,(0,”CPN”));
one with time stamp 7, one with the time stamp 10, and
two with time stamp 42. Similar to ordinary untimed
multi-sets, timed multi-sets are written as a sum (+)
using the symbol prime (‘) (pronounced ”of”) to denote
the number of appearances of an element. The @ sign
(which is usually read as “at”) and the list symbol [] is
used to specify the time stamps. For the stop-and-wait
protocol we use an integer clock, starting at zero. Hence,
all time stamps in the initial marking are equal to zero.

To model that an activity/operation takes r time
units, we let the corresponding transition create time
stamps for its output tokens that are r time units larger
than the clock value at which the transition occurs. This
implies that the tokens produced are unavailable for r
time units.

It can be argued that it would be more natural to de-
lay the creation of the output tokens, so that they did not
come into existence until r time units after the occurrence
of the transition had begun. However, such an approach
would mean that a timed CP-net would get “intermedi-
ate” markings which do not correspond to markings in
the corresponding untimed CP-net, because there would
be markings in which input tokens have been removed
but output tokens not yet generated. Hence we would get
a more complex relationship between the behaviour of
timed and untimed CP-nets. For a timed CP-net we re-
quire that each step consists of binding elements which
are both colour enabled and ready. As a consequence,
the possible occurrence sequences of a timed CP-net al-
ways form a subset of the possible occurrence sequences
of the corresponding untimed CP-net. This means that
we have a well-defined and easy-to-understand relation-
ship between the behaviour of a timed CP-net and the
behaviour of the corresponding untimed CP-net.

The execution of a timed CP-net is time driven, and it
works in a way similar to that of the event queues found in
many other languages for discrete event simulation. The
system remains at a given model time as long as there are
colour enabled binding elements that are ready for execu-
tion. When no more binding elements can be executed, at
the current model time, the system advances the clock to
the next model time at which binding elements can be ex-
ecuted. Each marking exists in a closed interval of model
time (which may be a point, i.e., a single moment).

Now let us take a closer look at the transitions in the
sender. The transition Accept has a time inscription @+5.
Intuitively, the time inscription describes how much time
the corresponding operation takes. This time inscription

L.M. Kristensen et al.: The practitioner’s guide to coloured Petri nets 119

specifies that the tokens created at Sending, Send, and
NextSend when Accept occurs, get time stamps that are 5
time units larger than the time at which the transition oc-
curs. As an example, if the transition Accept occurs in the
initial marking at time 0 we get the marking indicated in
Fig. 26. In this marking the transition SendDataFrame is
not enabled at time 0 since the time stamp of the token
on the place Sending is 5 – the transition is colour enabled,
but in order for the transition to become ready, the model
time has to be increased to 5. This will be the next model
time at which a transition becomes enabled. Hence the
system is in its initial marking (or state) for zero time
units, and in the marking resulting from the occurrence of
Accept in the initial marking in five time units.

Waiting

DataFrame

Sending
DataFrame

1 1‘(0,"Software")@[5]

Accept

@+5

Send
PacketBuffer

1 1‘[" Tools f","or Techn","ology tr",
"ansfer. "]@[5]

NextSend

SeqxStatus

1 1‘(0,notacked)@[5]

(sn,p)

dframe@ignore

p::packets

(sn,acked)

(sn,notacked)

packets

Fig. 26. Marking resulting from the occurrence of Accept

Let us now consider the remaining time inscriptions. The
transition ReceiveAckFrame has the same time inscription
as the transition Accept. For the transition SendDataFrame

the time inscription is not put directly on the transition
but associated with the arc expressions of the outgoing
arcs. The arc expression on the arc to TransmitData has the
time inscription @+5 which specifies that the tokens put
on this place are given a time stamp which is 5 time units
larger than the current model time. The arc expression
on the arc to Waiting is @+TExpire. TExpire is a constant
used to specify the time which has to elapse before a data
frame is retransmitted. By assigning the token put on the
place Waiting, a time stamp which is TExpire time units
higher than the current model time, a retransmission of
a data frame cannot happen until TExpire time units later.
The time inscription on the arc from Waiting to Accept

is @ignore. This means that the enabling rule of Accept

ignores the time stamp of tokens on Waiting. Hence an oc-
currence of the transition Accept can remove a token from
the place Waiting even though its time stamp is higher
than the current model time. This allows us to disable
the retransmission timer immediately when an acknowl-
edgement frame arrives for the data frame which we are
currently sending.

Let us now consider how the communication channel
is modelled in the timed CPN model. In the untimed CPN
model of the communication channel the unreliability of

the communication channel was modelled such that there
were two possible outcomes of a transmission; either the
frame was lost or successfully transmitted and there was
a 50% chance for each. We now extend the model in such
a way that the two probabilities need not be equal and we
take into account the transmission time for a frame. This
is achieved by the modified CPN model of the unidirec-
tional communication channel shown in Fig. 27 and the
declarations shown in Fig. 28.

Incoming

Frame

P In

Transmit
C

input (s);
output (success);
action
 ran’Hun1 () <=s;

@+TransDelay ()

Outgoing

Frame

P Out

SP
Hun0

95

Code Segment of Transmit

if success
then 1‘frame
else emptyframe

s

Fig. 27. Timed unidirectional channel

The place SP (success probability) has been added. The
marking of this place is used to specify the probability
of successful transmission. We use a code segment (see
Sect. 5.3) to calculate the binding of the variable success.
The types Hun0 and Hun1 contain the integers in the in-
tervals 0..100 and 1..100, respectively. ran’Hun1 draws an
element uniformly at random from Hun1. If this integer
is smaller than the value bound to s then success will be
bound to true. In the above case the initial marking of SP

is 95 specifying that the probability of successful trans-
mission is 95%.

The transmission time on the channel is specified by
the time inscription @+TransDelay (). TransDelay is a user
defined function returning a random element from a nor-
mal distribution with mean 10 and deviation 2. This im-
plies that the duration of a transmission varies according
to this random distribution. The CPN simulator offers
a number of standard statistical functions for specify-
ing other types of delays (e.g., uniform, exponential, and
poisson).

The receiver of the timed CPN model is identical to
the receiver of the untimed CPN model except that a de-
lay of five time units has been assigned to the transitions
ReceiveDataFrame and SendAckFrame.

color Bool = bool ;
var success : Bool ;

color Hun0 = int with 0. .100 ;
var s : Hun0 ;

color Hun1 = int with 1. .100 declare ran ;

fun TransDelay () = normaldist (10.0,2.0) ;

Fig. 28. Declarations for communication channel

120 L.M. Kristensen et al.: The practitioner’s guide to coloured Petri nets

In general, the time delays may be made much more
complex than described above, and they may depend
upon the binding in question, i.e., upon the values of the
input and output tokens.

7.2 Workload and traffic

When analysing the performance of a system some mech-
anism is needed to generate the workload or traffic to
be used as input for evaluating the performance of the
system. In the case of the stop-and-wait protocol, the
workload is the data packets presented to the protocol for
transmission.

There are a number of techniques which can be ap-
plied when generating the workload. One technique is to
make a CP-net which is part of the CPN model, and
which is responsible for generating the workload (per-
haps according to some random distribution). In other
cases the workload may be available from a text file (e.g.,
a server access log file) which can then be read into the
CPN model. A third technique is a combination of the
two in which a separate CPN model is created which gen-
erates the workload (once and for all) and writes it into
a text file. This text file can then be used as input for
the actual CPN model. Specifying the workload in a file
which is read into the model is also sometimes referred to
as trace-driven simulation. It is beneficial if reproducibil-
ity is needed, for instance, when comparing the perform-
ance of different system designs.

For the stop-and-wait protocol we add the relatively
simple CP-net shown in Fig. 29 to the CPN model. The
place Send is related via port assignments to the place
Send on the page modelling the sender. Hence it corres-
ponds to the data packet buffer of the sender. The place
Next has the integer type Int, and is used as a counter to
enumerate the data packets. The constant NextPacket is
used to specify the interval between the arrival of data
packets. When the transition GeneratePacket occurs, a new
data packet is put at the end of the buffer. The contents of
this data packet is a pair, where the first element specifies
the arrival time of the packet, while the second element
specifies the packet number. The arrival time is the time
at which the packet is generated, i.e., the time at which
GeneratePacket occurs. It is determined via the function
time which returns the current model time. The packet
number is determined by the data value of the token on
place Next. When GeneratePacket occurs, the value of the
token on the place Next is incremented, and given a time
stamp which is NextPacket higher than the current model
time. This ensures that the next data packet will arrive
NextPacket time units later. The arrival time recorded in
the data packet will be used later to calculate the delay
of the data packet. We use the ignore time inscription on
the arc from Send such that the data packets are put in the
buffer as soon as they arrive. Hence, for the stop-and-wait
protocol we have a simple workload in which data packets
arrive for transmission with some fixed input rate.

Generate
Packet

Send P I/O

PacketBuffer

[]

Next

Int

1

packets^^[(time(),"packet "^(makestring i))]packets@ignore

i+1@+NextPacketi

Fig. 29. Workload generator

7.3 Data collection and processing

Simulation based performance analysis typically consists
of making a number of lengthy simulations. To make it
simple to collect data during such simulations, the CPN
simulator implements a number of high-level primitives
and data structures [66] for data collection. The collected
data are stored in data structures called data collections.
Data collections offer, in addition to serving as a stor-
age for the collected data, operations for computing, e.g.,
the average, standard deviation, and minimum and max-
imum of the observed values. All such key figures can be
written to a performance report , which provides a quick
summary of the observed values and hence the perform-
ance of the system. Moreover, the observed values can
be written to an observation log file which can serve as
a basis for processing the collected data further, e.g., in
a spreadsheet or for visualisation in a graphical tool.

To collect data only minor modifications are needed to
the CPN model. For the stop-and-wait protocol we only
had to modify the Packet type by adding an arrival time to
be used later to compute the delay of the data packet.

The data to be collected depend on the performance
measures of interest. For the stop-and-wait protocol we
are first and foremost interested in the throughput and
the delay. For analysing the throughput we consider the
interarrival time, which is the time which elapses between
successive deliveries of data packets in the Received buffer.
The delay is the time from when a data packet is put in
the Send buffer at the sending side until it is delivered in
the Received buffer at the receiver side. Therefore, when-
ever the transition ReceiveDataFrame occurs with the data
packet that we expect next, i.e., a data packet is written
in the Received buffer, we collect (observe) the time which
has elapsed since the delivery of the last data packet, and
the time which has elapsed since the data packet was put
in the Send buffer.

Figure 30 depicts the transmission delays for data
packets in a simulation corresponding to 50, 000 time
units, with a retransmission interval of 70 time units, and
with a workload corresponding to data packets arriving

L.M. Kristensen et al.: The practitioner’s guide to coloured Petri nets 121

with an interval of 80 time units. Figure 31 depicts the
interarrival times of the packets. The figures have been
created by reading the observation log files into the Gnu-
plot tool [52].

Table 1 shows the part of the performance report
containing the key numbers for the observed values for
throughput and delay. There have been 625 observations
corresponding to the arrival of 625 data packets. The
average interarrival time (I-Time) was 79.91 time units,
and the average delay was 28.58 time units. StD denotes
the standard deviation, i.e., the average deviation from
the average value. It can also be observed that the min-
imal and maximal interarrival time of data packets have
been 19 and 249 time units, respectively. Similarly, the
minimal and maximal delay experienced have been 14
and 189 time units, respectively.

For the stop-and-wait protocol we are also interested
in getting information about its usage of buffer space. We
want to avoid too many frames accumulating in the frame
buffers at the sender and the receiver side. Also, we want
to avoid a backlog of unsent data packets accumulating
in the Send buffer. The latter could for instance happen if

0

20

40

60

80

100

120

140

160

180

200

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

D
el

ay

Time

Fig. 30. Packet transmission delay

0

50

100

150

200

250

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

In
te

ra
rr

iv
al

 T
im

e

Time

Fig. 31. Interarrival time (I-Time)

Table 1. Transmission and interarrival time

Updates Average StD Min. Max.

I-Time 625 79.91 23.35 19 249
Delay 625 28.58 22.77 14 189

the arrival rate of data packets exceeds the capacity of the
protocol. In order to analyse the buffer usage we observe
at each step in the simulation the number of tokens on
the TransmitData, ReceiveAck, TransmitAck, and ReceiveData

places, and the length of the list on the place Send. The
key figures for the observed values of our simulation with
50, 000 time units are shown in Table 2. The Send row cor-
responds to the observation on the length of the list on the
place Send. The ReceiveData row corresponds to the obser-
vation on the number of tokens on the place ReceiveData

in the receiver. The TransmitAck corresponds to the obser-
vation on the number of tokens on the place TransmitAck

in the receiver. Similarly, the ReceiveAck and TransmitData

rows correspond to the accordingly named places in the
sender.

Table 2. Analysis of buffer contents

Place Updates Average StD Min. Max.

Send 5276 0.07 0.27 0 3
ReceiveData 5276 0.12 0.33 0 1
TransmitAck 5276 0.07 0.25 0 1
ReceiveAck 5276 0.12 0.32 0 1
TransmitData 5276 0.07 0.25 0 1

For each of the data collections there have been 5276 up-
dates corresponding to the 5276 steps of the simulation.
From the table it can be seen that the use of buffer space
is modest. There has been at most one token on each of
the places ReceiveData, TransmitAck, ReceiveAck, Transmit-

Data, and a backlog of at most three unsent data packets.
Hence, a workload in which data packets arrive with an
interval of 80 time units seems to be well within the range
of the capacity of the protocol.

The buffer space analysed above is one measure of the
computational resources demanded by the communica-
tion protocol. Another measure is the use of bandwidth
on the communication channel. The use of bandwidth can
be measured by considering the number of occurrences
of the Transmit transition on the two instances of page
UniChannel. These figures are shown in Table 3. There
have been 1342 updates corresponding to 1342 occur-

Table 3. Usage of network bandwidth

Transition Updates Time Frequency

Transmit 1342 50000 0.027

122 L.M. Kristensen et al.: The practitioner’s guide to coloured Petri nets

rences in the simulation. This yields a frequency of 0.027,
i.e., an average of 37 time units between transmissions.
The purpose of performance analysis is very often to in-
vestigate what-if-scenarios . To illustrate this we will in-
vestigate how the retransmission interval, as specified by
the constant TExpire in Fig. 25, influences the perform-
ance of the stop-and-wait protocol. The performance of
the protocol for six different values of the retransmis-
sion interval (TExpire) is listed in Table 4. The I-Time row
lists the average interarrival time, the Delay row lists the
average delay, and Bandwidth lists the use of bandwidth
i.e., the average number of occurrences of the Transmit

transition per time unit. RecvAck and ReceiveData are the
average number of tokens on the place ReceiveAck in the
sender and ReceiveData in the receiver, respectively. From
the results it can be seen that it does not pay to decrease
the retransmission interval below approximately 30 time
units. From that point on, we do not gain any reduction
in the delay, but start to make increasing use of the band-
width and buffer space.

Table 4. Investigation of retransmission parameter

TExpire 70 50 30 20 10 5

I-Time 79.91 79.90 79.91 79.91 79.91 79.84
Delay 28.58 24.74 21.41 20.64 20.19 21.48
Bandwidth 0.03 0.03 0.08 0.13 0.24 0.45
RecvAck 0.12 0.12 0.22 0.23 0.42 0.52
RecvData 0.12 0.12 0.23 0.24 0.50 1.66

8 State space analysis

As explained in Sect. 5 it is customary to first debug and
investigate a system by means of simulations. Simulation
works in a similar way to program testing and, unless
the system is trivial, cannot be used to prove or verify
properties about the behaviour of the system. Therefore
simulation is often complemented by state space analysis .

The basic idea behind a state space is to construct a di-
rected graph which has a node for each reachable mark-
ing and an arc for each occurring binding element. State
spaces are also called occurrence graphs or reachability
graphs/trees. The first of these names reflects the fact
that a state space contains all the possible occurrence se-
quences of the CP-net, while the two latter names reflect
that the state space contains all reachable markings of the
CP-net. State spaces of CP-nets can be constructed fully
automatically, and from a constructed state space it is
possible to answer a large set of analysis and verification
questions concerning the behaviour of the system. More-
over, if the system does not have a desired property then
the state space method can provide debug information
in the form of counter examples. The counter examples
are typically a node, path, or a subset of the state space
demonstrating that the desired property does not hold.

The expressive power of CP-nets inherited from
Place/Transition nets [60] and the SML language im-
plies that essentially all interesting verification questions
concerning CP-nets are undecidable (see, e.g., [19]). How-
ever, in practice, many CP-nets do have a finite state
space making verification possible. In addition to this,
it is often possible to prove and disprove properties of
a system by relying on partial state spaces, i.e., finite sub-
graphs of the full state space.

The focus and emphasis of this section will be more on
state space analysis as seen from the point of view of the
user of the CPN state space tool, and less on algorithmic
and implementation issues. The reader interested in the
underlying algorithms and formal definitions is referred
to [11, 33, 35]. As we proceed in this section, we verify the
correctness of the stop-and-wait protocol.

8.1 State spaces of CP-nets

Very often, the first step in state space analysis is to make
some modifications to the CPN model in order to make
it tractable for state space analysis. Tractable typically
means obtaining a CPN model with a finite state space of
a size which is within the limits of the available computing
resources.

For the stop-and-wait protocol we modify the mod-
elling of the frame buffers between the sender, receiver,
and the communication channel. In the original CPN
model (see Fig. 2) an arbitrary number of frame tokens
could be on the places TransmitData and ReceiveAck. This
corresponds to the frame buffers being unbounded. To ob-
tain a finite state space we modify the modelling of the
frame buffers in such a way that they have a finite cap-
acity (of one). Figure 33 shows the modified CPN model
of the sender of the stop-and-wait protocol, and Fig. 32
shows the modified declaration of the Frame type.

color Frame = union
dataframe : DataFrame +
ackframe : AckFrame +
noframe ;

Fig. 32. Modified Frame type definition

The modification is that the sender can only put
a data frame in the frame buffer TransmitData when it is
empty corresponding to a token with value noframe being
located at the place. Similarly, when the sender receives
an acknowledgement frame, a token with value noframe is
returned to the place ReceiveAck indicating that the frame
buffer is now empty. This implies that it is no longer pos-
sible for frames to overtake each other. The receiver and
the communication channel have been modified in a simi-
lar fashion as the sender.

The initial part of the state space for the stop-and-
wait protocol is shown in Fig. 34. The rounded boxes with
thick borderlines are the nodes of the state space. Each

L.M. Kristensen et al.: The practitioner’s guide to coloured Petri nets 123

Send
PacketBuffer

P I/O

Accept NextSend

SeqxStatus

Receive
AckFrame

ReceiveAck
Frame

noframe

P I/OTransmitData

Frame

noframe

P I/O

Send
DataFrame

Sending

DataFrame

TimeOut

Waiting

DataFrame

1‘(0,"")

ackframe rn

(sn,p)

dframe

dframe

p::packets

(sn,acked)

(sn,status)

if (rn > sn)
then (rn,acked)
else (sn, status)

(sn,notacked)

packets

dframe

dataframe dframe

dframe

dframe

(sn,notacked)

noframe

noframe

Fig. 33. Modified sender of the stop-and-wait protocol

of them represents a reachable marking. The marking of
the individual places is described in the dashed box next
to the node. Below, we focus on the marking of places in
the sender, and therefore the box lists only the marking of
places in the sender. By convention we omit places with
an empty marking, and we have also chosen to omit the
place Send.

At the top of Fig. 34, we have a node with a thicker
borderline. This node represents the initial marking. The
text inside the node tells us that this is node number 1
and that it has zero predecessors and one successor (the
latter information may be useful when we have drawn
only part of a state space). Analogously, we see that node
number 2 has three predecessors and one successor. By
convention we use Mn to denote the marking of node
number n. Each arc represents the occurrence of the bind-
ing element listed in the solid box next to the arc. In M1

the only enabled binding element is transition Accept with
the binding listed in the box. When this binding element
occurs, we reach marking M2, in which there is again one
enabled binding element. An occurrence of SendDataFrame

with the variable dframe bound to (0,”Software”) will lead
to the marking M3. In marking M3 there are three en-
abled binding elements corresponding to the two enabled
bindings of transition Transmit (data frame loss or success-
ful transmission) and the one enabled binding of transi-
tion TimeOut. Depending on which of these binding elem-
ents occur we end up in marking M4, M5, or M6. Node 6
has a quote (”) following the node number. This indicates
that successors for this node have not yet been calculated.

From the first part of the state space it can be ob-
served that an occurrence of transition Transmit with the
variable success bound to false in M3 followed by the oc-

currence of transition TimeOut leads via the marking M5

to the marking M2. An occurrence of the two binding
elements in the opposite order also leads from M3 to M2,
but now with M4 as the intermediate marking. The en-
abled binding of TimeOut is concurrently enabled with
each of the two bindings of transition Transmit. By defin-
ition, arcs corresponding to steps with more than one
binding element are not part of the state space. Such arcs
would give information about the concurrency between
binding elements, but they are not necessary for the ver-
ification of standard behavioural properties.

8.2 Generation of state spaces

The CPN state space tool supports two modes in which
the user can generate state spaces: interactive and auto-
matic. The relationship between these two modes is simi-
lar to the relationship between interactive and automatic
simulations.

Interactive generation. In interactive generation the user
specifies a marking, and the tool then calculates the en-
abled binding elements in this marking, and the suc-
cessor marking resulting from the occurrence of each of
these binding elements. The first part of the state space
for the stop-and-wait protocol in Fig. 34 was obtained
in this manner. Interactive generation is typically used
in connection with drawing parts of the state space. We
will return to this topic in Sect. 8.5. Interactive gener-
ation of the state space has many similarities with single
step debugging.

Automatic generation. State spaces are in most cases of
a size which makes it impractical to generate the full state

124 L.M. Kristensen et al.: The practitioner’s guide to coloured Petri nets

1
0:1

1
NextSend: 1‘(0,acked)
Waiting: 1‘(0,"")
ReceiveAck: 1‘noframe
TransmitData: 1‘noframe

2
3:1

2
NextSend: 1‘(0,notacked)
Sending: 1‘(0,"Software")
ReceiveAck: 1‘noframe
TransmitData: 1‘noframe

3
1:3

3
NextSend: 1‘(0,notacked)
Waiting: 1‘(0,"Software")
ReceiveAck: 1‘noframe
TransmitData: 1‘dataframe((0,"Software"))

4
1:2

4
NextSend: 1‘(0,notacked)
Sending: 1‘(0,"Software")
ReceiveAck: 1‘noframe
TransmitData:
 1‘dataframe((0,"Software"))

5
1:1

5
NextSend: 1‘(0,notacked)
Waiting: 1‘(0,"Software")
ReceiveAck: 1‘noframe
TransmitData: 1‘noframe

6"
1:0

1:1->2
Accept: {sn=0,
 packets=[" Tools f","or Techn",
 "ology tr","ansfer. "],
 p="Software",dframe=(0,"")}

2:2->3
SendDataFrame:
{dframe=(0,"Software")}

3:3->4
TimeOut: {sn=0,
 dframe=(0,"Software")}

4:3->5
Transmit: {success=false,
frame=dataframe((0,"Software"))}

5:3->6
Transmit 1: {success=true,
frame=dataframe((0,"Software"))}

8:4->2
Transmit: {success=false,
frame=dataframe((0,"Software"))}

10:5->2
TimeOut: {sn=0,
 dframe=(0,"Software")}

Fig. 34. Initial part of the state space for the stop-and-wait protocol

space in an interactive manner. Therefore it is also pos-
sible to generate the state space in an automatic man-
ner. Here, the user simply starts the generation and the
state space is then fully automatically calculated by the
state space tool without any intervention from the user.
The user can control an automatic generation using so-
called stop and branching options. Stop options allow the
user to specify conditions under which the calculation of
the state space should be stopped. An example of this is
to specify an upper bound on the number of nodes that
should be generated. The branching options give the user
local control over the generation of successors, making it
possible to specify that only a certain subset of the suc-
cessors of a node should be generated. The generation
control is particularly important in early phases of state
space analysis which is typically concerned with identi-
fying a configuration of the system which is tractable for
state space analysis. The stop and branching options also
make it possible to obtain a partial state space. A par-
tial state space is a subset of the full state space. In many
situations it is not necessary to generate the full state
space in order to locate errors and check the correctness
of a system. A detailed discussion of partial state spaces is

beyond the scope of this paper, and we will consider only
full state spaces in this section.

The state space of the stop-and-wait protocol has 1220
nodes, 3621 arcs and is generated in 4 seconds on a Sun
Ultra Sparc with 300 Mb of memory. This is a rather
small state space and typically the state space consists of
hundreds of thousands of nodes and arcs. The CPN state
space tool has been used to construct state spaces with
up to half a million nodes and one million arcs (when the
tool runs on a machine with three hundred Megabytes of
memory).

8.3 The state space report

When a state space has been generated, the next thing
to typically do is to study the state space report . This
is a text file containing answers to a set of standard
behavioural properties which can be used on any CPN
model (i.e., generic properties that can be formulated
independently of the system under consideration). The
state space report can be produced in a few minutes –
totally automatically. It contains a lot of highly useful
information about the behaviour of the CPN model. By

L.M. Kristensen et al.: The practitioner’s guide to coloured Petri nets 125

studying the state space report the user gets a first rough
idea, as to whether the CPN model works as expected.
If the system contains errors they are often reflected in
the state space report. In the following we will go through
the various parts of the state space report for the stop-
and-wait protocol. We only give an intuitive explanation
of the behavioural properties. The reader interested in the
formal definitions is referred to [32, 35].

Statistical information. The first part of the state space
report contains some statistical information about the
size of the state space. The statistical information for
the state space of the stop-and-wait protocol is listed in
Table 5. We see that the state space has 1220 nodes and
3621 arcs. We have calculated the full state space, and
this took only 4 seconds (on a Sun Ultra Sparc with 300
Mb of memory).

Table 5. Statistical information

State Space SCC Graph

Nodes: 1220 Nodes: 742
Arcs: 3621 Arcs: 2622
Secs: 4 Secs: 1
Status: Full

The statistical part also contains information about the
SCC-graph [35]. A strongly connected component (SCC)
is a maximal subgraph in which it is possible to find
a path between any pair of nodes, i.e., a part of the state
space in which all nodes are mutually reachable from each
other. Each node in the state space belongs to exactly one
SCC and hence we can use the SCCs to obtain a more
compact graph known as the SCC-graph. The SCC-graph
has a node for each SCC and an arc for each binding
element which leads from one SCC to another. Strongly
connected components can be calculated with Tarjan’s al-
gorithm [23] which has a time and space complexity that
is linear in the size of the state space. Hence, it is cheap to
construct SCC-graphs which turn out to be very efficient
for the investigation of certain kinds of behavioural prop-
erties [34, 35]. From Table 5 we see that the SCC-graph
has 742 nodes and 2622 arcs. This means that there are
less SCCs (742) than state space nodes (1220), and hence
at least one of the SCCs covers more than one state space
node. From this we conclude that an infinite occurrence
sequence exists, and hence we cannot be sure that the
protocol terminates. To guarantee termination one usu-
ally limits the number of retransmissions.

Boundedness properties. The second part of the state
space report contains information about the integer and
multi-set bounds. Table 6 shows the upper and lower in-
teger bounds, i.e., the maximal and minimal number of
tokens which may be located on the individual places in
the reachable markings. The table only lists the places of

the receiver and the sender since the remaining places of
the CP-net are related via port assignments to places ei-
ther in the sender or in the receiver. This means that the
integer bound for these places can be inferred from those
in Table 6. From the table we see that each of the places
Sending and Waiting always has either one or no token,
while all other places always have exactly one token each.
This is not at all surprising, but it is reassuring, since it
indicates that the system behaves as expected.

Table 6. Upper and lower integer bounds

Place Upper Bound Lower Bound

NextSend 1 1
ReceiveAck 1 1
Send 1 1
Sending 1 0
TransmitData 1 1
Waiting 1 0
NextReceive 1 1
ReceiveData 1 1
Received 1 1
TransmitAck 1 1

Table 7 shows the upper multi-set bounds for the places
in the sender. By definition, the upper multi-set bound
of a place is the smallest multi-set which is larger than
all reachable markings of the place. The integer bounds
give us information about the number of tokens, while
the multi-set bounds give us information about the values
which the tokens may carry.

From the multi-set bounds we can, for example, see
that the place TransmitData may contain all five different
data frames, and a token with value noframe correspond-
ing to the frame buffer being empty. We also see that no
other token values are possible for this place. Notice that
the upper multi-set bound of TransmitData is a multi-set
with six elements, although the upper integer bound tells
us that there can never be more than one token on Trans-

mitData at a time. Analogously, each of the places Sending

and Waiting may contain all five possible data frames.
The place Waiting may in addition contain the data frame
(0,””) which is the data frame located on this place in the
initial marking.

Also the upper multi-set bounds are as expected,
and this further confirms that the protocol works as ex-
pected. However, the multi-set bounds also give us some
new knowledge. As an example, there are probably many
readers who did not notice, until now, that acknowl-
edgement frames never carry the sequence number 0,
as can be seen from the upper multi-set bound of the
place ReceiveAck.

The lower multi-set bound of a place is the largest
multi-set which is smaller than all reachable markings
of the place. For all places in the stop-and-wait protocol
the lower multi-set bound is the empty multi-set. This is

126 L.M. Kristensen et al.: The practitioner’s guide to coloured Petri nets

Table 7. Upper multi-set bounds

NextSend 1‘(0,acked) + 1‘(0,notacked) +
1‘(1,acked) + 1‘(1,notacked) +
1‘(2,acked) + 1‘(2,notacked) +
1‘(3,acked) + 1‘(3,notacked) +
1‘(4,acked) + 1‘(4,notacked) +
1‘(5,acked)

ReceiveAck 1‘ackframe(1) + 1‘ackframe(2) +
1‘ackframe(3)+ 1‘ackframe(4) +
1‘ackframe(5)+ 1‘noframe

Sending 1‘(0,”Software”) + 1‘(1,” Tools f”) +
1‘(2,”or Techn”) + 1‘(3,”ology tr”) +
1‘(4,”ansfer. ”)

TransmitData 1‘dataframe((0,”Software”)) +
1‘dataframe((1,” Tools f”)) +
1‘dataframe((2,”or Techn”)) +
1‘dataframe((3,”ology tr”)) +
1‘dataframe((4,”ansfer. ”)) +
1‘noframe

Waiting 1‘(0,””) + 1‘(0,”Software”) +
1‘(1,” Tools f”) + 1‘(2,”or Techn”) +
1‘(3,”ology tr”) + 1‘(4,”ansfer. ”)

Send 1‘[”Software”,” Tools f”,”or Techn”,
”ology tr”,”ansfer. ”] +

1‘[” Tools f”,”or Techn”,”ology tr”,
”ansfer. ”] +

1‘[”or Techn”,”ology tr”,”ansfer. ”] +
1‘[”ology tr”,”ansfer. ”] +
1‘[”ansfer. ”] + 1‘[]

because there are no places in the CPN model in which
a token with a certain value is permanently present.

Home and liveness properties. The third part of the state
space report is shown in Table 8. It provides information
about home and liveness properties. A home marking is
a marking which is reachable from all reachable mark-
ings, i.e., a marking which can always be reached – inde-
pendently of what has previously happened. We see that
the protocol has a single home marking, M862. A dead
marking is a marking with no enabled transitions. We see
that the protocol has a single dead marking, and that the
dead marking is identical to the home marking. At first
glance, one might think that the existence of dead mark-
ings would prevent the existence of home markings. How-
ever, by definition, a marking is always reachable from
itself, and hence a dead marking may be a home marking
(provided that it is the only dead marking). This is the
case for the protocol system. We will investigate the home
and dead marking in more detail in a moment.

From the liveness properties we also see that there
are no dead transitions. Dead transitions are similar to
dead code in a programming language and it means that

Table 8. Home and liveness properties

Home Markings: [862]
Dead Markings: [862]
Dead Transitions Instances: None
Live Transitions Instances: None

each transition is enabled in at least one reachable mark-
ing (which is a rather weak property). We also see that
there are no live transitions. A live transition is a transi-
tion which can always, no matter what happens, become
enabled again. When there are dead markings (as in our
protocol), there cannot be any live transitions.

We now investigate marking M862 in more detail.
Figure 35 shows marking M862. Similarly to Fig. 34 the
dashed box next to the node gives information about
the marking of the individual places. The box shows the
marking of all places in the sender and in the receiver with
a non-empty marking. Inspection of the dashed box re-
veals that M862 is the desired terminating state of the
protocol, in which all data packets have been sent, re-
ceived in the correct order, and the frame buffers are
empty. Since M862 is the only dead marking this implies
that the protocol is partially correct – if the protocol
terminates then it terminates in the desired state. Since
M862 is a home marking the protocol always has a chance
of terminating correctly. This means that it is impossible
to reach a marking from which we cannot terminate the
protocol with the correct result.

862
4:0

862
Send: 1‘[]
NextSend: 1‘(5,acked)
Waiting: 1‘(4,"ansfer. ")
ReceiveAck: 1‘noframe
TransmitData: 1‘noframe
ReceiveData: 1‘noframe
TransmitAck: 1‘noframe
NextReceive: 1‘(5,acked)
Received: 1‘["Software"," Tools f",
 "or Techn","ology tr",
 "ansfer. "]

Fig. 35. Home and dead marking

Fairness Properties. The fourth and final part of the
state space report is shown in Table 9. It provides infor-
mation about the fairness properties, i.e., how often the
individual transitions occur. We see that SendDataFrame,
TimeOut, and Transmit 2 are impartial . This means that
each of them occurs infinitely often in any infinite oc-
currence sequence. Transmit 2 is the transition on the
second instance of page UniChannel. This is the instance
which corresponds to the data channel. Hence, in any
non-terminating execution of the protocol we keep hav-
ing timeouts and we keep sending and transmitting data
frames. Transition Accept is fair which is a weaker fairness
property stating that the transition occurs infinitely often

L.M. Kristensen et al.: The practitioner’s guide to coloured Petri nets 127

Table 9. Fairness properties

Receive DataFrame Fair
Send AckFrame No Fairness
Accept Fair
Receive AckFrame No Fairness
Send DataFrame Impartial
TimeOut Impartial
Transmit 1 No Fairness
Transmit 2 Impartial

in all infinite occurrence sequences where it is infinitely
often enabled.

8.4 Standard queries

In addition to the state space report, the tool also of-
fers a set of standard query functions that allow the user
to make a more detailed inspection of the standard be-
havioural properties. Many of these query functions re-
turn results which are already included in the state space
report as described in the previous subsection. In fact, the
state space report is implemented using a subset of the
available standard query functions.

As an example, the tool has two functions, UpperInteger

and LowerInteger which determine the maximal/minimal
number of tokens residing on a set of places (where the
state space report only considers individual places). The
queries in Fig. 36 use these two functions to determine the
maximal/minimal number of tokens on the places Sending

and Waiting.

fun SendWaitMarking n =
(Mark.Sender´Sending 1 n) +
(Mark.Sender´Waiting 1 n) ;

UpperInteger (SendWaitMarking) ;
LowerInteger (SendWaitMarking) ;

Fig. 36. Example of standard query

It is easy to use the standard queries. For the queries in
Fig. 36, the only thing which the user has to do, is to de-
clare a function to be used as argument to UpperInteger

and/or LowerInteger. This function maps a markingMn (of
the entire CPN model) into the multi-set Mn(Sending)+
Mn(Waiting). The result of both queries is 1, and hence
we have proved that there always is a token on Sending or
a token on Waiting, but not on both places at the same
time (see Fig. 33).

Analogously there is a function HomeSpace to de-
termine whether a specified set of markings constitute
a home space, i.e., whether it always is possible to reach
one of the specified markings – independently of what has
previously happened. The argument to this function is
a list containing the set of markings under consideration.

The state space tool also provides standard queries to
investigate multi-set bounds and to investigate reachabil-
ity. Finally, there are queries to investigate liveness and
fairness properties. These queries can be used on sets of
transitions or on sets of binding elements.

8.5 Visualisation of state spaces

Since state spaces often become large, it seldom makes
sense to draw them in full. However, the result of queries
will often be a set of nodes and/or arcs possessing certain
interesting properties, e.g., a path in the state space lead-
ing from one marking to another. A good and quick way
to get detailed information on a small number of nodes
and arcs is to draw the corresponding fragment of the
state space. This makes visualisation particularly useful
when locating errors in a system under consideration.

The state space can be drawn either in small steps,
e.g., node by node or arc by arc, or in fragments using re-
sults from, for example, queries as input to a number of
built-in drawing functions. Drawing of state spaces is of-
ten done in conjunction with interactive generation. Fig-
ure 34 was obtained by combining interactive generation
with drawing.

To obtain detailed information about the drawn frac-
tion of the state space, it is possible to attach descriptors
to the nodes and arcs. The boxes positioned next to the
nodes and arcs in Fig. 34 are examples of descriptors. For
the nodes, the descriptors typically show the marking of
certain places. For the arcs, the descriptors typically show
the occurring transition and the binding of some or all of
its variables. The descriptors have sensible defaults but
the user may customise the descriptors by writing a script
which specifies the contents and layout of the descriptor.
The descriptors thus offer an abstraction mechanism by
which the user can define a view of the state space.

To illustrate the use of drawing in combination with
debugging we investigate what will happen if we mod-
ify the stop-and-wait protocol such that we only send an
acknowledgement frame back to the sender when we re-
ceive the data frame that we were expecting. The state
space for this variant of the protocol has 261 nodes and
609 arcs. It still has one dead marking in which all data
packets have been sent, received in correct order, and
the frame buffers are empty. However, this marking is no
longer a home marking. This indicates that we can end
up in a marking in which we cannot terminate the proto-
col correctly. To investigate this problem, we exploit the
constructive feedback from the standard query function
for checking whether a marking is a home marking. This
feedback tells us that there exists an SCC from which
it is impossible to reach the dead marking. By means of
a standard query function, we see that this SCC only has
eight nodes and that one of these is node 15. Using an-
other query function we can find one of the shortest paths
leading from the initial marking (node 1) to the node 15.
This path is shown in Fig. 37, which is created by means

128 L.M. Kristensen et al.: The practitioner’s guide to coloured Petri nets

 1
0:1

 2
3:1

 3
1:3

 6
1:2

 8
3:2

11
3:3

15
3:1

1:1->2
Accept:
{sn=0,
 packets=
 [" Tools f","or Techn",
 "ology tr","ansfer. "],
 p="Software",
 dframe=(0,"")}

2:2->3
SendDataFrame :
{dframe=(0,"Software")} 5:3->6

Transmit:
{success=true,
frame=dataframe((0,"Software"))}

9:6->8
Receive:
{status=acked,
 sn=0,rn=0,packets=[],
 p="Software"}

13:8->11
SendAckFrame :
{rn=1}

20:11->15
Transmit:
{success=false,
frame=ackframe(1)}

Fig. 37. Occurrence sequence as debugging information

of the built-in drawing functions. From the descriptors
of the arcs on this path it is easy to identify the prob-
lem. To begin with, we successfully transmit the first data
packet corresponding to the first three arcs in the path.
Then we attempt to transmit the acknowledgement frame
but it is lost. Hence, when we lose the acknowledgement
frame we end up in a situation in which we cannot ter-
minate the protocol correctly. The only thing that can
happen from that point on is that we keep retransmitting
the first data frame. These retransmissions cannot trigger
an acknowledgement frame which would allow us to start
transmitting the next data frame. The latter can easily be
seen by drawing the eight nodes in the SCC together with
the arcs that interconnect them.

8.6 Integration with simulation

During a modelling and design process, the user quite of-
ten switches between state space analysis and simulation.
To support this, the state space tool is tightly integrated
with the simulator, making it possible to transfer mark-
ings between the simulator and the state space tool.

When a marking is transferred from the state space
into the simulator, it is displayed on the CPN diagram
in the usual way. The user can inspect the marking of
the individual places, and the enabling of the individ-
ual transitions. It is also possible to start a simulation
from the transferred marking. As an example we could
have checked that M862 was the desired dead marking by
transferring the marking from the state space tool into
the simulator and inspect the marking of the individual
places. Figure 38 shows the top level page of the stop-
and-wait protocol after M862 has been transferred into
the simulator.
Transferring the current marking of the simulator into the
state space is supported as well. A typical use of this is

to investigate all possible markings reachable within a few
steps from the current simulator marking. In this case,
the user transfers the simulator marking into the state
space tool and all successor markings can be found and
drawn as illustrated above.

8.7 Advanced queries

The state space report and the standard queries are good
for providing a rough picture of the behaviour of the sys-
tem. However, they also have some limitations. First of
all, many interesting properties of systems cannot easily
be investigated using standard queries. Second, for de-
bugging systems, more elaborate queries are often needed
for locating the source of the problem. Therefore, a more
general query language implemented on top of Standard
ML (SML) is provided. It provides primitives for travers-
ing the state space in different ways and thereby writing
non-standard and model dependent queries. On top of

Send

PacketBuffer

1 1‘[]

Sender

Communication Channel

Receiver

Received

PacketBuffer

1 1‘["Software"," Tools f",
"or Techn","ology tr",
"ansfer. "]

TransmitData

Frame

1 1‘noframe

ReceiveAck

Frame

1 1‘noframe

TransmitAck

Frame

1 1‘noframe

ReceiveData

Frame

1 1‘noframe

Fig. 38. Home and dead marking of the protocol

L.M. Kristensen et al.: The practitioner’s guide to coloured Petri nets 129

this general query language, a variant of the temporal
logic CTL is provided [6, 15]. In this variant of CTL, it is
possible to formulate queries about binding elements as
well as markings corresponding to Petri nets being both
action and state oriented.

Similar to standard queries, a non-standard query
typically consists of a few lines of SML code. To illus-
trate this we will use the query language to investigate
a system dependent property of the stop-and-wait proto-
col. We want to check that the sender is at most one data
packet ahead of the receiver, i.e., that the stop-and-wait
discipline is observed by the protocol. This can be proved
by the non-standard query listed in Fig. 39. SWPredicate

is a predicate which, given a marking, checks that the
sum of the lengths of the lists on the places Send and Re-

ceived differs by at most one from the total number of data
packets to be sent. PredAllNodes is a predeclared query
function, which returns all the nodes in the state space
that satisfy a specified predicate. In the query we negate
the SWPredicate and hence check the state space for nodes
which violate the predicate. The operator o is the built-in
infix operator in SML for functional composition.

val Length = length o ms_to_col ;
val total = Length (Mark.Sender´Send 1 1)

fun SWPredicate n =
let

val sent = total – (Length (Mark.Sender´Send 1 n)) ;
val received = (Length (Mark.Receiver´Receiver 1 n))

in
((sent = received) orelse (sent = received + 1))

end ;

val nodelist = PredAllNodes (not o SWPredicate) ;

Fig. 39. Example of non-standard query

For the state space of the stop-and-wait protocol the re-
sult of the query is the empty list. Hence all nodes in the
state space satisfy the SWPredicate, and we have proved
that the stop-and-wait discipline is observed.

8.8 Advanced state space analysis

In this section, we have demonstrated that the state space
method is an effective way to investigate the dynamic
behaviour of a system. The construction and analysis of
state spaces are totally automatic. From the state space
report the user gains a lot of knowledge about the dy-
namic behaviour of the system. The state space method,
however, also has some drawbacks.

The most serious drawback of the state space method
is the so-called state explosion problem. For many sys-
tems, the state space becomes so large that it cannot
be fully constructed even for small configurations of the
system. A number of techniques exist for alleviating the

state explosion problem. They do this by constructing
a condensed state space from which it is still possible
to verify the same kind of behavioural properties as
with full ordinary state spaces. Condensed state spaces
are typically orders of magnitude smaller than the full
state space. Some of the techniques exploit the symme-
try [14, 18, 31, 33, 35, 40] and equivalence [35, 39] which
are present in many concurrent and distributed systems.
Other techniques exploit the independency and concur-
rency between binding elements [24, 25, 41, 54, 55, 64], or
take advantage of the hierarchical structure of the CPN
model [13, 65]. The reader is encouraged to consult the
papers cited above for a more detailed presentation and
discussion of these techniques, their use, and how they are
supported by the CPN state space tool.

Another drawback is the fact that a state space is al-
ways constructed for a particular initial marking, which
often corresponds to only one out of many different pos-
sible system configurations. We have seen above that the
protocol works when we have five data packets – but will
it also work for more packets? In theory we cannot be to-
tally sure. However, in practice the situation is not that
bad, since most errors in system designs tend to mani-
fest themselves readily in small configurations. Hence, it
is very likely that our protocol will also work with more
than five packets.

9 Conclusions

Coloured Petri nets have been developed over the past
20 years at the University of Aarhus, Denmark. The de-
velopment has been balanced between the development
of theory, supporting computer tools, and experiments in
the form of practical case studies. All three parts have had
a mutual beneficial influence on each other. The devel-
opment of theory has been driven by the idea of combin-
ing the concurrency theory of Petri nets with the prac-
tical applicability of high-level programming languages.
The theory has been important for developing computer
tools founded on a solid and sound theory. The devel-
opment of computer tools has been necessary to be able
to make practical experiments with the aim of assessing
the practical applicability of the developed theory. The
practical case studies have led to new theoretical develop-
ments. A number of the case studies have been conducted
by external users. This has provided valuable input for
the further development of CP-nets and their supporting
tools, and has demonstrated the practical applicability
of CP-nets.

In this paper we have demonstrated the applica-
tion of CP-nets for modelling and analysis of a rather
simple communication protocol. It is obvious that com-
pared to a simple communication protocol considerably
more effort has to be invested when modelling and ana-
lysing industrial-sized systems. The feasibility of doing
this has been demonstrated in a large number of dif-

130 L.M. Kristensen et al.: The practitioner’s guide to coloured Petri nets

ferent projects. This includes the projects described in
the subsequent papers of this special section on coloured
Petri nets. Other examples are projects within the areas
of communication protocols [21, 30], audio/ video sys-
tems [9], operating systems [7, 8], hardware designs [22,
62], embedded systems [59], software system designs [46,
61], and business process re-engineering [49, 56] and the
industrial projects listed on the web site [51]. The reader
is referred to the individual papers for an elaborate as-
sessment of the resources needed to apply CP-nets on
industrial-sized systems.

As part of larger case studies (see e.g., [9, 59]), know-
ledge has also been gained on the resources which peo-
ple without prior knowledge of CP-nets need to invest in
order to be able to start applying CP-nets. The experi-
ences have been encouraging. Typically, only about one or
two weeks of intensive training are needed in order to be
able to construct and simulate the first CPN models. CP-
nets and the Design/CPN tool have been used in a course
on distributed systems [12] at the University of Aarhus.
After a period of about four weeks (with 15 hours of work
per week) the students are able to make a CPN model of
a non-trivial protocol stack and validate its correctness by
means of simulations.

A comprehensive web site has been set up [51] with re-
sources and technical support on the use of CP-nets and
the Design/CPN tool. It contains manuals, tutorials, ex-
amples, answers to frequently asked questions (FAQs),
a list of known problems, tips and tricks, etc. Moreover,
it explains how to get a free license for the Design/CPN
tool. The tool is currently available for Sun Solaris, HP
Unix, and Linux platforms. A mailing list has been es-
tablished as a forum for discussion among users of the
Design/CPN tool.

The first workshop on practical use and application
of CP-nets and Design/CPN (CPN’98) [38] was held in
Aarhus in June, 1998 with the participation of 40 users
from 10 different countries. The workshop contained pre-
sentations of regular papers, tutorials with practical ex-
ercises, and discussions and presentations of future plans
for Design/CPN. Selected papers from the workshop are
published in this special section of the STTT journal.
The second workshop CPN’99 will be held in Aarhus in
October, 1999.

The first version of Design/CPN appeared in 1989.
Based on the knowledge gained from the practical use of
the tool, the internal data structures and algorithms of
the CPN simulator have been re-designed and are cur-
rently in the process of being implemented. The first re-
sults show that the new simulator runs orders of mag-
nitude faster than the current version of the CPN simu-
lator. The new simulator also contains an improved in-
terface for declarations of types, variables, and functions.
This new interface reduces the turn-around time between
the editor and simulator when working with large-scale
CPN models. The first version of this new simulator is re-
leased in 1999. A similar development is planned for the

CPN state space tool. This work is expected to signifi-
cantly push the borderline of systems that can be ana-
lysed by state spaces.

The area of automatic code generation from CP-
nets is also a topic of ongoing work. Until now CP-nets
have mostly been applied for the design and analysis
of systems, and the transition to the final implemen-
tation has been done manually. Some first experiments
in the area of automatic code generation were reported
in [59]. The promising work of this project is currently
being continued.

Acknowledgements. Many students and colleagues – in particular
at the University of Aarhus and Meta Software – have influenced
the development of CP-nets, their analysis methods, and their tool
support. The development has been supported by several grants
from the Danish Natural Science Research Council. A more de-
tailed description of individual contributions can be found in the
prefaces of [34–36]. For the present paper, we are grateful for the
comments and suggestions provided by the reviewers.

References

1. Appel, A.W., MacQueen, D.B.: Standard ML of New Jer-
sey. In: Maluszyński, J., Wirsing, M. (eds.): Third Interna-
tional Symposium on Programming Languages Implementa-
tion and Logic Programming. LNCS 528. Berlin, Heidelberg,
New York: Springer-Verlag, 1991

2. Bertsekas, D., Gallager, R.: Data Networks. Prentice-Hall,
1992

3. Campos, S., Clarke, E.: Analysis and Verification of Real-time
Systems using Quantitative Symbolic Algorithms. Software
Tools for Technology Transfer, To appear.

4. Capellmann, C., Christensen, S., Herzog, U.: Visualising the
Behaviour of Intelligent Networks. In: Margaria, T., Steffen,
B., Ruckert, R., Posegga, J. (eds.): Services and Visualisation,
Towards User-Friendly Design. LNCS 1385. Berlin, Heidel-
berg, New York: Springer-Verlag, 1998, pp. 174–189

5. ITU (CCITT). Recommendation z.120: Msc. Technical report,
International Telecommunication Union, 1992

6. Cheng, A., Christensen, S., Mortensen, K.H.: Model Checking
Coloured Petri Nets Exploiting Strongly Connected Compo-
nents. In: Spathopoulos, M.P., Smedinga, R., Kozák, P. (eds.):
Proceedings of the International Workshop on Discrete Event
Systems, WODES96. Institution of Electrical Engineers, Com-
puting and Control Division, Edinburgh, UK, 1996

7. Cherkasova, L., Kotov, V., Rokicki, T.: On Net Modelling of
Industrial Size Concurrent Systems. In: Ajmone-Marsan, M.
(ed.): Proceedings of ICATPN’ 93. LNCS 691. Berlin, Heidel-
berg, New York: Springer-Verlag, 1993

8. Cherkasova, L., Kotov, V., Rokicki, T.: On Scalable Net Mod-
eling of OLTP. In: Proceedings of the 5th International Work-
shop on Petri nets and Performance Models, Toulouse, France.
IEEE Computer Society Press, 1993

9. Christensen, S., Jørgensen, J.N.: Analysis of Bang and
Olufsen’s BeoLink Audio/Video System Using Coloured
Petri Nets. In: Azéma, P., Balbo, G. (eds.): Proceedings
of ICATPN’ 97. LNCS 1248. Berlin, Heidelberg, New York:
Springer-Verlag, 1997

10. Christensen, S., Jørgensen, J.B., Kristensen, L.M.: De-
sign/CPN - A Computer Tool for Coloured Petri Nets.
In: Brinksma, E. (ed.): Proceedings of TACAS’ 97. LNCS
1217. Berlin, Heidelberg, New York: Springer-Verlag, 1997,
pp. 209–223

11. Christensen, S., Kristensen, L.M.: State Space Analysis of
Hierarchical Coloured Petri Nets. In: Farwer, B., Moldt, D.,
Stehr, M.-O. (eds.): Proceedings of Workshop on Petri nets in
System Engineering – Modelling, Verification, and Validation.
Department of Computer Science, University of Hamburg,
1997, pp. 32–43, Report no. 205

L.M. Kristensen et al.: The practitioner’s guide to coloured Petri nets 131

12. Christensen, S., Mortensen, K.H.: Teaching Coloured Petri
Nets - A Gentle Introduction to Formal Methodsin a Dis-
tributed Systems Course. In: Azema, P., Balbo, G. (eds.):
Proceedings of ICATPN’ 97. LNCS 1248. Berlin, Heidelberg,
New York: Springer-Verlag, 1997, pp. 290–309

13. Christensen, S., Petrucci, L.: Modular State Space Analysis of
Coloured Petri Nets. In: De Michelis, G., Diaz, M. (eds.): Pro-
ceedings of ICATPN’ 96. LNCS 935. Berlin, Heidelberg, New
York: Springer-Verlag, 1996

14. Clarke, E.M., Enders, R., Filkorn, T., Jha, S.: Exploiting Sym-
metries in Temporal Model Logic Model Checking. Formal
Methods in System Design 9, 1996

15. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic Veri-
fication of Finite State Concurrent Systems using Temporal
Logic. ACM Transactions on Programming Languages and
Systems 8(2): 244–263, 1986

16. Meta Software Corp. http://www.metasoftware.com
17. Meta Software Corporation. Design/OA. Meta Software Cor-

poration, 150 Cambridge Park Drive, Cambridge MA 02140,
USA

18. Emerson, E.A., Prasad Sistla, A.: Symmetry and Model
Checking. Formal Methods in System Design 9, 1996

19. Esparza, J.: Decidability and Complexity of Petri Net Prob-
lems – An Introduction. In: Reisig, W., Rozenberg, G. (eds.):
Lectures on Petri nets I: Basic Models. LNCS 1491. Berlin,
Heidelberg, New York: Springer-Verlag, 1998, pp. 374–428

20. Billington, J., et al.: High-level Petri Nets – Concepts, Defini-
tions and Graphical Notation. Technical report, International
Standards Organization and International Electrotechnical
Committee, October 1997, Commitee Draft 15909 ISO/IEC
JTC1/SC7/WG11 N-3

21. Floreani, D.J., Billington, J., Dadej, A.: Designing and Veri-
fying a Communications Gateway Using Coloured Petri Nets
and Design/CPN. In: Billington, J., Reisig, W. (eds.): Pro-
ceedings of ICATPN’ 96. LNCS 1091. Berlin, Heidelberg, New
York: Springer-Verlag, 1996

22. Genrich, H.J., Shapiro, R.M.: Formal Verification of an Ar-
biter Cascade. In: Jensen, K. (ed.): Proceedings of
ICATPN’ 92. LNCS 616. Berlin, Heidelberg, New York:
Springer-Verlag, 1992

23. Gibbons, A.: Algorithmic Graph Theory. Cambridge Univer-
sity Press, 1985

24. Godefroid, P.: Using partial orders to improve automatic
verification methods. In: Proceedings of CAV’ 90. LNCS
531. Berlin, Heidelberg, New York: Springer-Verlag, 1990,
pp. 175–186

25. Godefroid, P.: Partial-Order Methods for the Verification of
Concurrent Systems, An Approach to the State-Explosion
Problem. LNCS 1032. Berlin, Heidelberg, New York: Springer-
Verlag, 1996

26. Goldfarb, C.F., Rubinsky, Y.: The SGML handbook. Claren-
don Press, Oxford, UK, 1990

27. The CPN Group. http://www.daimi.au.dk/CPnets
28. Holzmann, G.J.: Design and Validation of Computer Proto-

cols. Prentice-Hall International Editions, 1991
29. Huber, P., Jepsen, A.M., Jepsen, L.O., Jensen, K.: Reacha-

bility Trees for High-level Petri nets. Theoretical Computer
Science 45: 261–292, 1986, Also in Jensen, K., Rozenberg, G.
(eds.): High-level Petri nets. Theory and Application. Berlin,
Heidelberg, New York: Springer-Verlag, 1991, pp. 319–350

30. Huber, P., Pinci, V.O.: A Formal Executable Specification of
the ISDN Basic Rate Interface. In: Rozenberg, G. (ed.): Pro-
ceedings of ICATPN’ 91, 1991

31. Ip, C.N., Dill, D.L.: Better Verification Through Symmetry.
Formal Methods in System Design 9, 1996

32. Jensen, K.: An Introduction to the Theoretical Aspects of
Coloured Petri Nets. In: de Bakker, J.W., de Roever, W.P.,
Rozenberg, G. (eds.): A Decade of Concurrency. LNCS
803. Berlin, Heidelberg, New York: Springer-Verlag, 1994,
pp. 230–272

33. Jensen, K.: Condensed State Spaces for Colored Petri Nets.
Formal Methods in System Design 9, 1996

34. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analy-
sis Methods and Practical Use. Volume 1, Basic Concepts.
Monographs in Theoretical Computer Science. Berlin, Heidel-

berg, New York: Springer-Verlag, 2nd corrected printing 1997,
ISBN: 3-540-60943-1

35. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis
Methods and Practical Use. Volume 2, Analysis Methods.
Monographs in Theoretical Computer Science. Berlin, Heidel-
berg, New York: Springer-Verlag, 2nd corrected printing 1997,
ISBN: 3-540-58276-2

36. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis
Methods and Practical Use. Volume 3, Practical Use. Mono-
graphs in Theoretical Computer Science. Berlin, Heidelberg,
New York: Springer-Verlag, 1997, ISBN: 3-540-62867-3

37. Jensen, K.: An Introduction to the Practical Use of Coloured
Petri Nets. In: Reisig, W., Rozenberg, G. (eds.): Lectures
on Petri nets II. LNCS 1492. Berlin, Heidelberg, New York:
Springer Verlag, 1998, pp. 237–292

38. Jensen, K. (ed.): Workshop on Practical Use of coloured Petri
nets and Design/CPN, number 532 in DAIMI PB. Depart-
ment of Computer Science, University of Aarhus, 1998, Also
available via http://www.daimi.au.dk/CPnets/workshop98/
papers/

39. Jørgensen, J.B., Kristensen, L.M.: Verification of Coloured
Petri Nets Using State Spaces with Equivalence Classes. In:
Farwer, B., Moldt, D., Stehr, M.O. (eds.): Proceedings of
Workshop on Petri nets in System Engineering – Modelling,
Verification, and Validation. Department of Computer Sci-
ence, University of Hamburg, 1997, pp. 20–31, Report no. 205

40. Jørgensen, J.B., Kristensen, L.M.: Computer Aided Verifica-
tion of Lamport’s Fast Mutual Exclusion Algorithm Using
Coloured Petri Nets and Occurrence Graphs with Symmetries.
To Appear in IEEE Transactions on Parallel and Distributed
Systems, 1999

41. Kristensen, L.M., Valmari, A.: Finding Stubborn Sets of
Coloured Petri Nets Without Unfolding. In: Desel, J., Silva,
M. (eds.): Proceedings of ICATPN’ 98. LNCS 1420. Berlin,
Heidelberg, New York: Springer-Verlag, 1998, pp. 104–123

42. Larsen, K.G., Steffen, S., Wiese, C., Alur, R., Henzinger, T.A.:
Special Section on Timed and Hybrid Systems. Number 1-2
in Software Tools for Technology Transfer. Berlin, Heidelberg,
New York: Springer-Verlag, 1997

43. Loiseaux, G., Graf, S., Sifakis, J., Bouajjani, A., Bensalem, S.:
Property Preserving Abstractions for the Verification of Con-
current Systems. Formal Methods in System Design 6, 1995

44. Lyngsø, R.B., Mailund, T.: Textual Interchange Format for
High-level Petri Nets. In: Jensen, K. (ed.): Workshop on
Practical Use of Coloured Petri nets and Design/CPN, num-
ber 532 in DAIMI PB. Department of Computer Science,
University of Aarhus, 1998, pp. 47–65, Also available via
http://www.daimi.au.dk/CPnets/workshop98/papers/

45. Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Frabces-
chinis, G.: Modelling with Generalized Stochastic Petri nets.
Series in Parallel Computing. Wiley, 1995

46. McLendon, W.M., Vidale, R.F.: Analysis of an Ada Sys-
tem Using Coloured Petri Nets and Occurrence Graphs. In:
Jensen, K. (ed.): Proceedings of ICATPN’ 92. LNCS 616.
Berlin, Heidelberg, New York: Springer-Verlag, 1992

47. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic
Publishers, 1993

48. Milner, R., Harper, R., Tofte, M.: The Definition of Standard
ML. MIT Press, 1990

49. Mortensen, K.H., Pinci, V.: Modelling the Work Flow of a Nu-
clear Waste Management Program. In: Valette, R. (ed.): Pro-
ceedings of ICATPN’ 94 815. Berlin, Heidelberg, New York:
Springer-Verlag, 1994

50. Murata, T.: Petri Nets: Properties, Analysis and Application.
In: Proceedings of the IEEE, Vol. 77, No. 4. IEEE Computer
Society, 1989

51. Design/CPN Online. http://www.daimi.au.dk/designCPN/
52. The Gnuplot Tool. Available online:

http://www.cs.dartmouth/ gnuplot_info.html.
53. Paulson, L.C.: ML for the Working Programmer. Cambridge

University Press, 2 edition, 1996
54. Peled, D.: All from One, One for All: On Model Check-

ing Using Representatives. In: Proceedings of CAV’ 93. LNCS
697. Berlin, Heidelberg, New York: Springer-Verlag, 1993,
pp. 409–423

132 L.M. Kristensen et al.: The practitioner’s guide to coloured Petri nets

55. Peled, D.: Combining Partial Order Reductions with On-the-
fly Model Checking. Formal Methods in System Design, 1996

56. Pinci, V.O., Shapiro, R.M.: An Integrated Software Devel-
opment Methodology Based on Hierarchical Coloured Petri
Nets. In: Rozenberg, G. (ed.): Advances in Petri nets. LNCS
524. Berlin, Heidelberg, New York: Springer-Verlag, 1991,
pp. 227–252

57. Information Processing: Text and office systems: Standard
Generalized Markup Language (SGML). Technical report,
ISO standard 8879, International Organisation for Standard-
ization, Geneve, Switzerland, 1986, Amendment from 1988
exists.

58. Rasmussen, J.L., Singh, M.: Mimic/CPN. A Graphical Simu-
lation Utility for Design/CPN. User’s Manual. Available from
http://www.daimi.au.dk/designCPN

59. Rasmussen, J.L., Singh, M.: Designing a Security System by
Means of Coloured Petri Nets. In: Billington, J., Reisig, W.
(eds.): Proceedings of ICATPN’ 96. LNCS 1091. Berlin, Hei-
delberg, New York: Springer-Verlag, 1996

60. Reisig, W.: Petri nets, volume 4 of EACTS Monographs on
Theoretical Computer Science. Berlin, Heidelberg, New York:

Springer-Verlag, 1985
61. Scheschonk, G., Timpe, M.: Simulation and Analysis of a

Document Storage System. In: Valette, R. (ed.): Proceedings
of ICATPN’ 94. LNCS 815. Berlin, Heidelberg, New York:
Springer-Verlag, 1994

62. Shapiro, R.M.: Validation of a VLSI Chip Using Hierarchical
Coloured Petri Nets. Journal of Microelectronics and Reliabil-
ity, Special Issue on Petri nets, 1991

63. Ullman, J.D.: Elements of ML Programming. Prentice-Hall,
1997

64. Valmari, A.: A Stubborn Attack on State Explosion. In: Pro-
ceedings of CAV’ 90. LNCS 531. Berlin, Heidelberg, New York:
Springer-Verlag, 1990, pp. 156–165

65. Valmari, A.: Compositionality in State Space Verification
Methods. In: Billington, J., Reisig, W. (eds.): Proceedings
of ICATPN’ 96. LNCS 1091. Berlin, Heidelberg, New York:
Springer-Verlag, 1996

66. Wells, L., B. Lindstrøm. The Design/CPN Performance Tool
Manual. Department of Computer Science, University of
Aarhus, 1998. On-line version: http://www.daimi.au.dk
/designCPN/

