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INTRODUCTION 

A Petri  net is an abstract, formal model of 
information flow. The properties, con- 
cepts, and techniques of Petri nets are 
being developed in a search for natural,  
simple, and powerful methods for describ- 
ing and analyzing the flow of information 
and control in systems, particularly sys- 
tems that  may exhibit asynchronous and 
concurrent activities. The major use of Pe- 
tri nets has been the modeling of systems 
of events in which it is possible for some 
events to occur concurrently but there are 
constraints on the concurrence, prece- 
dence, or frequency of these occurrences. 

Since many readers may be unfamiliar 
with Petri nets, we first present a very 
brief and informal introduction to their 
fundamentals and history. Then we con- 
sider several aspects of Petri nets in more 
detail. We begin, in Section 2, by consider- 
ing the use of Petri nets for modeling sys- 

* This work was supported, m part ,  by the  National  
Science Foundation,  under  Gran t  Number  MCS75- 
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tems of parallel or concurrent activities. 
Section 3 presents a more formal definition 
and discussion of the fundamental con- 
cepts and notations of Petri nets. Section 4 
considers the extensive body of research 
dealing with the analysis of Petri nets, 
their advantages, and their limitations. 
Petri net languages are presented in Sec- 
tion 5. Finally, in Section 6, we consider 
some of the many variations of Petri nets 
that  have been defined, both as generali- 
zations of Petri nets and as subclasses of 
the general model; the more general 
models have certain advantages for model- 
ing, while the more restricted models have 
certain advantages for analysis. 

1. OVERVIEW 

Figure 1 shows a simple Petri net. The 
pictorial representation of a Petri net as a 
graph used in this illustration is common 
practice in Petri net research. The Petri 
net graph models the static properties of a 
system, much as a flowchart represents 
the static properties of a computer pro- 
gram. 

Copyright © 1977, Association for Computing Machinery, Inc. General  permismon to republish,  bu t  not for 
profit, all or par t  of this  mater ia l  is granted provided tha t  ACM's copyright notice is given and t ha t  reference 
is made to the  publication, to i ts date of msue, and to the fact tha t  repr in t ing privileges were granted by 
permission of the  Associat]on for Computing Machinery. 
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The graph contains two types of nodes: 
circles (called places) and bars (called 
transitions). These nodes, places and tran- 
sitions, are connected by directed arcs 
from places to transitions and from transi- 
tions to places. If an arc is directed from 
node i to node j (either from a place to a 
transition or a transition to a place), then i 
is an input to j ,  a n d j  is an output of i. In 
Fig. 1, for example, placepl  is an input to 
transition t2, while places P2 and p3 are 
outputs of transition t2. 

In addition to the static properties repre- 
sented by the graph, a Petri net has dy- 
namic properties that  result from its exe- 
cution. Assume that  the execution of a 
computer program represented by a flow- 
chart is exhibited by placing a marker  on 
the flowchart to mark the instruction 
being executed, and that  as the execution 
progresses, the marker  moves around the 
flowchart. Similarly, the execution of a 
Petri net is controlled by the position and 
movement of markers  (called tokens) in 

the Petri net. Tokens, indicated by black 
dots, reside in the circles representing the 
places of the net. A Petri net with tokens is 
a marked Petri net. 

The use of the tokens rather  resembles a 
board game. These are the rules: Tokens 
are moved by the firing of the transitions 
of the net. A transition must  be enabled in 
order to fire. (A transition is enabled when 
all of its input places have a token in 
them.) The transition fires by removing 
the enabling tokens from their input 
places and generating new tokens which 
are deposited in the output places of the 
transition. In the marked Petri net of Fig. 
2, for example, the transition t2 is enabled 
since it has a token in its input place (Pl)" 
Transition ts, on the other hand, is not 
enabled since one of its inputs (P3) does not 
have a token. If t2 fires, the marked Petri 
net of Fig. 3 results. The firing of transi- 
tion t2 removes the enabling token from 
place Pl and puts tokens in p2 and P3, the 
two outputs of t2. 

The distribution of tokens in a marked 
Petri net defines the state of the net and is 
called its marking. The marking may 
change as a result of the firing of transi- 
tions. In different markings, different 
transitions may be enabled. For example, 
in the marked net of Fig. 3 three transi- 
tions are enabled: tl, t3, and t5, none of 
which were enabled in the marking of Fig. 

FIGURE 1. A s i m p l e  g r a p h  r e p r e s e n t a t i o n  o f a  P e t r l  
n e t .  
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FIGURE 2. A marked  Petr~ net.  

t 

t~ P7 

FIGURE 3 The mark ing  resul t ing from firing t ran-  
sit ion t2 in Fig. 2 Note t ha t  the  token in Pl was 
removed and tokens were added to p2 and p3- 

2. In this situation, we have a choice as to 
which transition will fire next. Figure 4 
shows the three possible resultant mark- 
ings; from each of these, other markings 
may then be reached since transition fir- 
ings may continue as long as there is an 
enabled transition. 

Note that  in the marking of Fig. 4a, 
transitions t3 and t5 remain enabled, and 
transition t2 is also enabled; if transition t2 
fires, the resulting marking will have two 
tokens in place p3. In the marking of Fig. 
4b, transition t~ remains enabled but  tran- 
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sition t5 has been disabled since there is no 
longer a token in place P3. In the marking 
of Fig. 4c, transition t3 has become disa- 
bled. Firing either of transitions t3 or t5 
disables the other; they are said to be in 
conflict. 

This simple, vague, and incomplete ex- 
ample of a Petri net is meant  to give a brief 
introduction to the basic concepts of Petri 
nets. It also raises some questions for fur- 
ther consideration. For example, the 
markings of Figs. 3, 4a, 4b, a n d 4 c  were 
generated from the marking of Fig. 2 by 
firing transitions. Can we characterize the 
class of markings that  may be reached 
from a given marked Petri net? Can we 
characterize the class of sequences of tran- 
sition firings that  are possible from a 
marked Petri net? What interesting prop- 
erties can Petri nets have and how can 
these properties be tested for? 

Some of these questions are of interest 
for Petri nets as abstract formal entities. 
Other questions relate to Petri nets in 
their function as models of other systems, 
existing or proposed. For example, the net 
of Fig. 2 can represent a producer-con- 
sumer problem [25] with one producer 
(places p~ and P2) and two consumers 
(places P4, P5 and pe, P7). The items pro- 
duced by the producer are passed to the 
consumers. This is modeled by placep3 and 
the tokens '~roduced" by transition t 2 and 
"consumed" by transitions t3 and ts. For 
this interpretation of the net, we may be 
interested in how far the producer can get 
ahead of the consumers (the maximum 
number of tokens in P3), whether the con- 
sumers could get ahead of the producer or 
consume the same item twice, and so on. 
The use of Petri nets in modeling is dis- 
cussed in Section 2. 

Although Petri nets are basically very 
simple, they may be approached and uti- 
lized in a large number of ways. Petri nets 
can be considered as formal automata and 
investigated either as automata or as gen- 
erators of formal languages [37, 79]. Ques- 
tions dealing with the theory of computa- 
tional complexity have been raised [64, 
49]. Petri nets have associations with the 
study of linear algebra [69], Presburger 
arithmetic [52], and graph theory. They 
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are a major model of concurrent systems 
[6], particularly computer systems. They 
are of interest in some areas of hardware 
design, description and construction, soft- 
ware systems, and the interactions be- 
tween design and implementation. 

Because of the breadth of application 
and depth of research into Petri nets, we 
can only touch here on many of the results. 
We refer the interested reader to the origi- 
nal works cited in the Bibliography for the 
proofs and details of much of the research. 

History 
The theory of Petri nets has developed 
from the work of Carl Adam Petri, A. W. 
Holt, Jack Dennis, and many others. Petri 
nets originated in the early work of Petri, 
in Germany, who in his thesis [80], devel- 
oped a new model of information flow in 
systems. This model was based on the con- 
cepts of asynchronous and concurrent op- 
eration by the parts of a system and the 
realization that  relationships between the 
parts could be represented by a graph, or 
net. 

The ideas of Petri came to the attention 
of a group of researchers at  Applied Data 
Research, Inc., working on the Informa- 
tion Systems Theory Project [43]. This 
group, led by Anatol Holt, developed the 
theory of "systemics" [44] which was con- 
cerned with the representation and analy- 
sis of systems and their behavior. It was 
this work which provided the early theory, 
notation, and representation of Petri nets, 
and showed how Petri nets could be ap- 
plied to the modeling and analysis of sys- 
tems of concurrent processes. 

Applied Data Research's associations 
with Project MAC at MIT, and particu- 
larly the Computation Structures Group 
under the direction of Jack Dennis, intro- 
duced the concepts of Petri nets to this 
latter group. The Computation Structures 
Group has been a most productive source 
of research and literature in this field, 
publishing several PhD theses and numer- 
ous reports and memos on Petri nets [73, 
32, 34, 84, 38, 28]. Two pertinent confer- 
ences have been held by the Computation 
Structures Group: the Project MAC Con- 
ference on Concurrent Systems and Paral- 

lel Computation at Woods Hole in 1970, 
[23] and the Conference on Petri Nets and 
Related Methods at MIT in 1975. 

From the work at Applied Data Re- 
search and MIT, the use of Petri nets has 
spread widely. A large amount of research 
has been done on both the nature and the 
application of Petri nets, and their use 
seems to be expanding. The simplicity and 
power of Petri nets make them excellent 
tools for working with asynchronous con- 
current systems. Unfortunately much of 
the work on Petri nets is in the form of 
theses, dissertations, reports, and memos 
that  are not readily available nor in wide 
circulation. This paper is an at tempt to 
remedy this situation; it is intended as 
both a survey and a tutorial on Petri nets. 

It should be noted that Petri nets can be 
viewed in many different ways; we cannot 
present here all such views. In part  due to 
the difficulty of obtaining li terature on Pe- 
tri nets and the newness of the theory, the 
terminology, notation, and emphasis have 
varied widely in research on this subject. 
This problem is also caused by the power of 
Petri nets and the resultant diversity of 
applications. 

Petri has expanded upon his original 
theory, continuing work on the basic con- 
cepts of information flow and the structure 
of concurrent systems. This has resulted in 
a form of general systems theory called net 
theory [81, 82] which is related to topology. 
This research, involving the fundamental 
nature of information and its control, has 
stimulated a wealth of further research in 
Europe, particularly at the Insti tut  f(lr In- 
formationssystemforschung of the Gesell- 
schaft fiir Mathematik und Datenverar- 
beitung in Bonn. While starting with the 
same fundamental concepts as the work in 
the United States, this work developed in 
a different direction, evolving into a more 
general and abstract theory. 

Holt also has continued to develop new 
concepts from the original work on Petri 
nets, concentrating on the development of 
tools for the representation and analysis of 
systems. His work has centered mainly on 
research into the fundamental aspects of 
concurrency and conflict in systems with 
multiple parts. 
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(a) 

FIGURE 4. 
tranmtion tl; (b) Result of firing transition t3; (c) 

P4 

t~ P7 
(b) 

I) t5 • 

(c) 

Markings resulting from the firing of different transitions in the net of Fig. 3 (a) Result of firing 
Result of firing transition t~. 

In contrast to the work of Petri, Holt, 
and many European researchers, which 
emphasizes the fundamental concepts of 
systems, the work at MIT and many other 
American research centers concentrates 
on those mathematical aspects of Petri 
nets that  are more closely related to auto- 
mata  theory. (This paper is writ ten from 
the latter point of view.) This approach is 
motivated by a desire to analyze systems 
by modeling them as Petri nets, and then 
manipulating the Petri nets to derive 
properties of the modeled systems. This 
requires the development of techniques for 

analyzing Petri nets in order to answer 
questions similar to those raised earlier 
(e.g., what markings are reachable in a 
given Petri net? What sequences of transi- 
tion firings are possible? etc.). This mecha- 
nistic approach is quite different in ori- 
entation from the more philosophical ap- 
proaches of Holt and Petri. 

2. MODELING WITH PETRI NETS 

In many sciences, a phenomenon is stud- 
ied by examining not the actual phenome- 
non itself but  rather a model of the phe- 
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nomenon. A model is a representation, of- 
ten in mathematical  terms, of what  are 
felt to be the important features of the 
object under study. By the manipulation of 
the representation, it is hoped that  new 
knowledge about the modeled phenome- 
non, and the model itself, will be obtained 
without the cost, inconvenience, or danger 
of manipulating the real phenomenon it- 
self. For example, much work on atomic 
energy has been done by modeling because 
of the expense and danger of handling ra- 
dioactive materials. 

Most modeling uses mathematics. The 
important features of many physical phe- 
nomena can be described numerically and 
the relations between these features de- 
scribed by equations or inequalities. Par- 
ticularly in physics and chemistry, proper- 
ties such as mass, momentum, accelera- 
tion, position, and forces, are describable 
by mathematical  equations. To success- 
fully utilize the modeling approach, how- 
ever, requires a knowledge of both the 
modeled phenomena and the modeling 
techniques. Thus, mathematics has devel- 
oped as a science in part  because of its 
usefulness in modeling phenomena in 
other sciences. For example, the differen- 
tial calculus was developed in direct re- 
sponse to the need for a means to model 
continuously changing properties such as 
position, velocity, and acceleration in 
physics. 

Petri nets are also a modeling tool. They 
were devised for use in the modeling of a 
specific class of problems, the class of dis- 
crete-event systems with concurrent or 
parallel events. Petri nets model systems, 
and particularly two aspects of systems, 
events and conditions, and the relation- 
ships among them [44]. In this view, in a 
system, at  any given time, certain condi- 
tions will hold. The fact that  these condi- 
tions hold may cause the occurrence of 
certain events. The occurrence of these 
events may change the state of the system, 
causing some of the previous conditions to 
cease holding, and causing other condi- 
tions to begin to hold. 

A simple example might be that  the si- 
multaneous holding of both the condition 
'A card reader is needed' and the condition 

A CARD READER 
IS NEEDED 

Eli 

A CARD READER 
IS AVAILABLE 

FIGURE 5. 
an  event.  

NO CARD READER 
IS AVAILABLE 

© 

A rumple model of three  condit ions and 

~A card reader is available' might cause 
the event ~Allocate the card reader'  to oc- 
cur. The occurrence of this event results in 
the ceasing of the conditions 'A card reader 
is needed' and 'A card reader is available', 
while causing the condition 'No card 
reader is available' to become true. These 
events and conditions, and their  relation- 
ships, may be modeled as in Fig. 5, where 
we are using places to represent conditions 
and transitions to represent events. Note 
that  other conditions, such as 'The card 
reader is allocated', may also hold in the 
system even though they are not modeled. 

More complicated systems may  also be 
modeled in this manner.  Consider for ex- 
ample the following description of a com- 
puter system: 

• Jobs appear and are put on an input 
list. When the processor is free, and 
there is a job on the input list, the 
processor starts to process the job. 

• When the job is complete, it is 
placed on an output list, and if 
there are more jobs on the input 
list, the processor continues with 
another job; otherwise it waits for 
another job. 

This is a very simple system composed of 
several elements: the processor, the input 
list, the output list, and the jobs. We can 
identify several conditions of interest: 

• The processor is idle; 
• A job is on the input list; 
• A job is being processed; 
• A job is on the output list; 

and several events: 
• A new job enters the system; 
• Job processing is started; 
• Job processing is completed; 
• A job leaves the system. 

Computing Surveys, Vol. 9, No 3, September 1977 



A NEW JOB ENTERS 
THE SYSTEM 

A JOB IS ~ T" P O--SS- 
ONT~Is f ~ ~i~ R ~E OR 

ii 
I 

THE OUTPUT LIST 

A JOB LEAVES 
THE SYSTEM 

FIGURe. 6 Modeling of a simple computer system. 

The Petri net of Fig. 6 illustrates the 
modeling of this system. The '~job enters" 
transition in this illustration is a source; 
the '~job leaves" transition is a s ink .  

Properties of Petri Nets Useful in Modeling 

The example above illustrates several 
points about Petri nets and the systems 
they can model. One is inherent concur- 
rency or paral le l i sm.  There are two main 
kinds of independent entities in the sys- 
tem: the job and the processor. In the Petri 
net model, the events which relate solely 
to one or the other can occur independ- 
ently; there is no need to synchronize the 
actions of the jobs and the processor. Thus 
jobs may enter or leave the system at any 
time independent of the action of the proc- 
essor. However, when synchronization is 
necessary, for instance when both a job 
and an idle processor must be available for 
processing to start, the situation is also 
easily modeled. Thus a Petri net would 
seem to be ideal for modeling systems of 
distributed control with multiple processes 
occurring concurrently. 

Another major feature of Petri nets is 
their asynchronous nature. There is no in- 
herent measure of time or the flow of time 
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in a Petri net. This reflects a philosophy of 
time which states that  the only important 
property of time, from a logical point of 
view, is in defining a partial ordering of 
the occurrence of events. Events take vari- 
able amounts of time in real life; the Petri 
net model reflects this variability by not 
depending upon a notion of time to control 
the sequence of events. Therefore, the Pe- 
tri net structure itself must  contain all 
necessary information to define the possi- 
ble sequences of events of a modeled sys- 
tem. 

Thus, in the net of Fig. 6 the event ~Job 
processing is completed' must  follow the 
corresponding event 'Job processing is 
started' because of the structure of the net 
although no information at  all is given or 
considered concerning the amount of time 
required to process a job. On the other 
hand, events which need not be con- 
strained in terms of their relative order of 
occurrence are not constrained; thus while 
a job is being processed the event ~A new 
job enters the system' may occur, before, 
after, or simultaneously with the occur- 
rence of the event 'Job processing is com- 
pleted'. 

A Petri net, like the system which it 
models, is viewed as a sequence of discrete 
events whose order of occurrence is one of 
possibly many allowed by the basic struc- 
ture. This leads to a n o n d e t e r m i n i s m  in 
Petri net execution. If at any time more 
than one transition is enabled, then any of 
the several enabled transitions may fire. 
The choice as to which transition fires is 
made in a nondeterministic manner, i.e., 
randomly or by forces tha t  are not 
modeled. This feature of Petri nets reflects 
the fact that  in real-life situations where 
several things are happening concur- 
rently, the order of occurrence of events is 
not unique, so that  any of a set of se- 
quences may occur. While nondetermi- 
nism is advantageous from a modeling 
point of view, it introduces considerable 
complexity into the analysis of Petri nets. 

To reduce this complexity, one limita- 
tion is generally accepted in the modeling 
of systems by Petri nets. The firing of a 
transition (occurrence of an event) is con- 
sidered to be ins tantaneous ,  i.e., to take 
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zero time. Since time is a continuous vari- 
able, then, the probability of any two or 
more events happening simultaneously is 
zero, and two transitions cannot fire si- 
multaneously. The events being modeled 
are considered primit ive events,  Note that  
this need cause no problems in the model- 
ing of events. For example, in Fig. 6 the 
event 'Process a job' was modeled. But 
since this event is not a primitive one (it 
takes nonzero time and other events, such 
as the entering and leaving of the system 
by other jobs, may occur at the same time), 
it is decomposed into a beginning and an 
ending, which are instantaneous events, 
plus the noninstantaneous occurrence. 
This is shown in Fig. 7. Since this tech- 
nique can be used for any nonprimitive 
event, the modeling power of Petri nets is 
not reduced. 

The nondeterministic and nonsimulta- 
neous firing of transitions in the modeling 
of concurrent systems takes two forms. 
One of these is shown in Fig. 8, which 
depicts "simultaneous" events that  may 
occur in either order. In this situation the 
two enabled events do not affect each other 
in any way and the possible sequences of 
events include some in which one event 
occurs first and some in which the other 
occurs first. 

The other type of situation, where si- 
multaneity causes difficulties in modeling, 
is handled by defining events to occur non- 
simultaneously. This is illustrated in Fig. 
9. Here the two enabled transitions tj and 
tk are in confhct. Only one transition can 
fire, since in so doing it removes the token 
from p, and disables the other transition. 
To accurately model a system using Petri 
nets requires careful attention to assure 
that  in cases such as the above the Petri 
net reflects all, and only those, event se- 
quences which are possible in real life. 

NON-PRIMITIVE NON-PRIMITIVE 
EVENT~~BEGINS E V E N T ~  

NON-PRIMITIVE 
EVENT OCCURRING 

FIGURE 7. Modeling of a nonpnnut ive  event. 

t 

FIGURE 8. Modeling of %lmultaneous" 
which may occur m either order. 

events 

t j  

P~ 

FIGURE 9. Illustration of conflicting transitions 
Transitions t~ and tk conflict since the firing of one 
will disable the other. 

The two concepts illustrated by Figs. 8 
and 9, concurrency and conflict, are basic 
to an understanding of Petri nets. At the 
same time, the usefulness of Petri nets as 
models of information flow derives from 
the natural  way in which they can be used 
to express and analyze concurrency and 
conflict. 

An important aspect of Petri nets is that  
they are uninterpreted models. The net of 
Fig. 6 has been labeled with statements 
that  indicate to the human observer the 
intent of the model, but these labels dD 
not, in any way, affect the execution of the 
net. The net of Fig. 10 is identical to that  of 
Fig. 6 in that  it has an identical structure. 
However, no meaning is attached to the 
places and transitions in this uninter- 
preted net; we deal only with the abstract 
properties inherent in the structure of the 
net. Since we are interested in the proper- 
ties of Petri nets per se, in this paper we 
concern ourselves only with uninterpreted 
Petri nets. 

Another valuable feature of Petri nets is 
their ability to model a system hierarchi- 
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FIGURE 10. An uninterpreted Petri  net. 

cally. An entire net may be replaced by a 
single place or transition for modeling at a 
more abstract level (abstraction) or places 
and transitions may be replaced by sub- 
nets to provide more detailed modeling 
(refinement). Figure 11 illustrates this hi- 
erarchical modeling capability. 

Most of the work on Petri nets has been 
in the investigation of the properties of a 
given net or class of nets. Little explicit 
attention has been paid to developing 
modeling techniques specifically for Petri 
nets. However, there are certain areas in 
which Petri nets would seem to be the 
perfect tool for modeling: those areas in 
which events occur asynchronously and in- 
dependently. There are many examples, 
some of which we present here. 

Modeling of Hardware 

Large, powerful computer systems often 
use asynchronous parallel activities in an 
effort to achieve maximum parallelism 
and hence increase effective processing 
speed. In computers such as the CDC 6600 
[91] and the IBM 360/91 [4], for example, 
multiple functional units are provided to 
perform computations on multiple regis- 
ters. The control unit  of the machine at- 
tempts to keep several of these units in 
operation simultaneously. 

However, the introduction of parallel- 
ism in this manner must  be controlled so 
that  the results of executing the program 
with and without parallelism are the 
same. Certain operations in the program 
will require that  the results of previous 
operations have been successfully com- 
puted before the following instructions can 
proceed. A system which introduces paral- 

Petr i  Ne t s  • 231 

lelism into a sequential program in such a 
way as to maintain correct results is called 
determinate .  The  conditions for maintain- 
ing determinancy have been considered by 
Bernstein [10]. They are the following: For 
two operations a and b such that  a pre- 
cedes b in the linear precedence of the 
program, b can be started before a is done 
if and only ifb does not need the result of a 
as an input and the results of b do not 
change either the inputs or outputs of a 
[15]. 

One method of applying these con- 
straints to the construction of the com- 
puter control unit  that  is to issue instruc- 
tions is to use a reservation table. An in- 
struction for functional unit  u using regis- 
ters ~, j ,  and k can be issued only if all four 
of these components are not reserved; if 
the instruction is issued, all four of them 
become reserved. If  the instruction cannot 
be issued at this time, the control unit 
waits until the instruction can be issued 
before continuing to the next instruction. 

This sort of scheme can be modeled as a 
Petri net. To each functional uni t  and each 
register we associate a place. If the unit or 
register is free, a token will be in the place; 
if it is not, no token will be in the place. 
Figure 12 shows a portion of a Petri net 
which could be used to model the execution 
of an instruction using unit  u and regis- 

FIGURE 11. Hierarchical modeling in Petrl  nets by 
replacing places or transitions by subnets (or vice 
versa). 
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INSTRUCTION USES DlglT u READY TO DECODE 
AND REGISTERS i, j AND k NEXT INSTRUCTION 

ISSUE 

UNIT u ~ ~  
IS FREE I ~  ~UNiT 

REGISTER u OPERATING 

REGISTER ( • 
j is FREE\V ]7 I' 

~/ ~INSTRUCTION 

kREGISTERIs FREE ~ COMPLETED 
FIGURE 12. A portion of a Petr i  ne t  modeling a 

control un i t  for a computer with mult iple  registers 
and mult iple functional units.  

ters i , j ,  and k. Modeling the entire control 
unit  would of course require a much larger 
Petri net. 

The scheme described above is a very 
simple method of introducing parallelism 
and does not consider, for example, the 
fact that  multiple functional units can use 
the same register as an input simultane- 
ously. Thus, this scheme may not produce 
schedules with maximum parallelism [55]. 
However, there are other schemes which 
can do so. These (more complicated) 
schemes can also be modeled by (more 
complicated) Petri nets. For example, the 
CPU of a CDC 6600 has been modeled by a 
Petri net [90]. This model was used to de- 
termine how object code should be gener- 
ated to minimize execution time by maxi- 
mizing parallelism between the various 
functional units. 

Another approach to the construction of 
a high-performance computer is the use of 
pipelines [13]. This technique is useful, 
particularly for vector and array process- 
ing, and is similar to the operation of an 
assembly line. The pipeline is composed of 
a number of stages, which may be in exe- 
cution simultaneously. When stage k fin- 
ishes, it passes on its results to stage (k + 
1) and looks to (k - 1) for new work. If each 
stage takes t time units and there are n 
stages, then the complete operation for one 
operand takes nt time units. However, if 
the pipe is kept supplied with new oper- 

ands, it can turn  out results at the rate of 
one every t time units. 

As an example, consider the addition of 
two floating-point numbers. The gross 
steps involved are: 

a) Extract  the exponents of the two 
numbers; 

b) Compare the exponents, and inter- 
change if necessary to properly or- 
der the larger and smaller of the 
exponents; 

c) Shift the smaller fraction to equal- 
ize exponents; 

d) Add fractions; 
e) Post-normalize; 
f) Consider exponent overflow or un- 

derflow, and pack the exponent 
and fraction of the result. 

Each of these steps can be performed by a 
separate computational unit, with a par- 
ticular operand being passed from unit  to 
unit  for the complete addition operation. 

The coordination of the different units 
can be handled in several ways. Typically, 
the pipeline control is synchronous with 
the time allowed for each step of the pipe, 
being some fixed constant  t ime t; every t 
time units, the result of each unit  is 
shifted down the pipe to become the input 
for the next unit. However, this can un- 
necessarily hold up processing, as the time 
needed may vary from stage to stage and 
may also vary for different inputs. For 
example, the post-normalization step in 
the floating-point addition above may take 
different amounts of t ime depending on 
how long the normalization shift should be 
and whether  it should be to the left or to 
the right. Thus processing might be 
speeded up by an asyrmhronous pipeline in 
which results from stage k are sent on to 
stage (k + 1) as soon as stage k is done and 
stage (k + 1) is free. This scheme can be 
easily modeled by a Petri  net. 

Consider an arbitrary stage in the pipe- 
line. Operations at this stage require cer- 
tain inputs and produce certain outputs. 
Obviously, there has to be a place to put 
the inputs and outputs. Typically, this in- 
volves registers: the unit  uses the values 
in its input register to produce values in its 
output register. It must  then wait  until 1) 
a new input is available in its input regis- 

Computing Surveys, Vol. 9, No. 3, September 1977 

~ i ;~ '~<~7:1 ~ i . ~ #  ~ 



ter and 2) its output register has been emp- 
tied by being copied into the input register 
of the next stage. Thus the control for the 
pipeline needs to know when the following 
conditions hold: 

• input register full; 
• input register empty; 
• output register full; 
• output register empty; 
• unit  busy; 
• unit  idle; 
• copying taking place. 

Figure 13 shows the Petri net  which 
models the operation of an asynchronous 
pipeline of this kind. Other forms of pipe- 
line control units can also be defined in 
terms of Petri nets. 

The above examples show some of the 
uses to which Petri nets can be put in the 
modeling of hardware. Petri nets have also 
been associated with the description of 
general modular asynchronous systems 
[22, 75] and macromodules [14]. At Honey- 
well, Petri nets have been used for investi- 

f ours ~T 

GISTER 

F OUTPUT 

! 

\ / 
/ \  / 

i 

\ / 

FIGURE 13. Representation of an asynchronous 
pipelined control unit. The block diagram on the 
left is modeled by the Petri net on the right. 
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gating the fault-tolerant properties of de- 
signs [48]. 

Modeling of Software 

On a more abstract level, Petri  nets can 
also model software concepts [24, 77, 61]. 
Resource allocation, deadlock, and process 
coordination in an operating system can be 
modeled. A process can be modeled by a 
Petri net  in the same way that  it can be 
modeled by a flowchart, and then the in- 
teractions between processes can be 
modeled as additional places, arcs and 
transitions. 

For example, consider the mutual  exclu- 
sion problem [25]. This is a problem of 
enforcing coordination of processes in such 
a way that  particular sections of code 
called critical sections, one in each proc- 
ess, are mutual ly excluded in time. That  
is, if Process 1 is executing its critical sec- 
tion, then Process 2 may  not begin i ts  criti- 
cal section until Process 1 has left its own 
critical section. At its highest level of ab- 
straction, the situation is illustrated as 
follows: 

Process I Process 2 

~ ! i ! ~ t i o n  ~~mt.~laC~ii~tio n '  Halt 

The problem is to define appropriate entry 
code and exit code to assure mutual  exclu- 
sion. 

The mutual  exclusion problem can be 
easily solved by using P and V operations 
as defined in [25] for process synchroniza- 
tion and coordination. The P and V opera- 
tions operate on semaphores, and only P 
and V instructions may be executed on a 
semaphore. (A semaphore S is a variable 
with integer values.) These operations can 
be defined as follows: 

P(S): As soon asS > 0, setS:= S-l; 
V(S): S:= S+I. 
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These are indivisible operations. A process 
executing a P operation must  wait until 
the semaphore is positive before it can de- 
crement it and continue. A V operation 
simply adds one to the semaphore (per- 
haps allowing some other process to exe- 
cute a P operation). Two processes cannot 
execute P or V operations on the same 
semaphore concurrently. For example, 

Process I Process 2 
P(mutex); P(mutex); 
"Crihcal Sechon"; "Critical Sechon"; 
V(mutex); V(mutex); 

is a solution of the mutual  exclusion prob- 
lem diagrammed above using P and V op- 
erations, which are primitive, and the 
semaphore "mutex" which is global to the 
two processes and has an initial value of 
one. 

P and V operations have been used 
widely. Systems of processes that  use these 
operations can be modeled by Petri nets 
(see [74]). A semaphore is modeled by a 
place; the number of tokens in the place 
models the value of the semaphore. A V 
operation on the semaphore places a token 
in the semaphore; a P operation removes a 
token (it waits until there is one to re- 
move, if necessary). This is illustrated in 
Fig. 14. The mutual  exclusion problem can 
then be modeled as shown in Fig. 15, in 
which the place S models the semaphore. 
Note that  places P2 and P4 are mutually 
excluded. 

The modeling of P and V operations by 
Petri nets has resulted in the discovery 
and proof of some limitations of these nets. 
Patil showed that  certain process synchro- 
nization problems (such as the Cigarette 
Smokers Problem) cannot be solved by P 
and V operations [74]. Other work follow- 

~ ( a )  
FIGURE 14. Examples of modehng with sema- 

phores. (a) Modeling of a P operation; (b) Model- 
ing of a V operation. 

FIGURE 15. A Petrl  net model of a P / V  solution to 
the mutual exclusion problem 

ing up this technique of using Petri nets to 
prove properties of semaphore systems is 
reported in [57], [3], and [56]. 

These simple examples can only provide 
a slight indication of the modeling power 
of Petri nets and the many diverse systems 
that  can be modeled by them. Many other 
areas of study have been mentioned as 
possible subjects of Petri net  modeling, in- 
cluding resource allocation, operating sys- 
tems [71], queueing networks, traffic con- 
trol, distributed computer systems, legal 
systems [65], proofs in mathematics [30], 
and brain modeling. While much work in 
developing modeling techniques remains 
to be done, Petri nets are a very powerful 
modeling tool that  can be applied to a 
large variety of systems. 

3. STRUCTURE OF PETRI NETS 
The use of Petri nets for the modeling of 
concurrent systems requires a careful un- 
derstanding of the properties of such nets. 
The development of an appropriate theory 
has motivated most of the research on Pe- 
tri nets. This basic theory is presented in 
the following sections. Since this paper is 
tutorial in nature,  we have tried to limit 
the formality of the presentation; however, 
all of the concepts presented here have 
been rigorously defined and formalized in 
the literature. The reader who is inter- 
ested in a more formal t reatment  should 
consult the references. 

Petri nets are composed of two basic 
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components: a set of places, P, and a set of 
transitions, T. To complete the definition, 
it is necessary to define the relationship 
between the places and the transitions. 
This can be done by specifying two func- 
tions connecting transitions to places: I, 
the input function, and O, the output func- 
tion. The input function I defines, for each 
transition t~, the set of input places for the 
transition I(t~). The output function O de- 
fines, for each transition tj, the set of out- 
put  places for the transition O(tj). 

These four items define the structure of 
a Petri net. Places and transitions are the 
fundamental undefined concepts of Petri 
net theory; other concepts are defined in 
terms of these concepts. Formally, a Petri 
net C is defined as the four-tuple C = (P, 
T , I , O ) .  

Consider the following example Petri 
net structure, defined as a four-tuple. 
Each component of the structure is given: 

C = ( P , T , I , O )  
P = {pl, I~,  p~, t)4, ps} 
T = {t , ,  t~, t3, tJ 

I( tO = {p~} O(t~) = {P2, P3, Ps} 
l(t~) = {/)2, P3, Ps} O(t2) = {Ps} 
I(t3) = {P3} O(t3) = {P4} 
I(t4) = {P4} O(t4) = {I~, t~}  

ThePetri Net Graph 

Although the definition given above is 
useful and appropriate for formal work 
with Petri nets, it is ill-suited for the illus- 
tration of many of the concepts of Petri 
nets in an informal and intuitive, yet con- 
cise, manner. For this purpose a different 
representation of a Petri net is more use- 
ful: the  Petri net graph. Figure 16 shows 
the Petri net graph corresponding to the 
structure described above. 

A Petri net structure consists of places, 
transitions, and the input and output func- 
tions. In a Petri net graph there are two 
types of nodes corresponding to the places 
and transitions of the Petri net structure: a 
circle represents a place, and a bar  repre- 
sents a transition. The input and output 
functions are represented by directed arcs 
from the places to the transitions and from 
the transitions to the places. An arc is 
directed from a place p, to a transition tj if 
the place is an input of the transition. 
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c 4 

t I 

FIGURE 16. A Pe t r i  n e t  g raph .  

Similarly, an arc is directed from a transi- 
tion tj to a place pt if  the place is an output 
of the transition. 

A Petri net graph is a directed graph 
since the arcs are directed. In addition, 
since its nodes can be partitioned into two 
sets (places and transitions) such that each 
arc is directed from an element of one set 
(place or transition) to an element of the 
other set (transition or place), it is a bi- 
partite directed graph. 

The correspondence between Petri net 
graphs and Petri net structures is so natu- 
ral that in most work they are considered 
not merely as different representations for 
the same concept, but  rather  as the same 
concept. Thus we refer to either Petri net 
graphs or Petri net structures as Petri 
nets. In this paper we give our examples as 
Petri net graphs, but  our discussion and 
techniques are defined in terms of Petri 
net structures. 

Markings 

A marking ~t of a Petri net is an assign- 
ment of tokens to the places in that  net. 
CToken" is a primitive concept for Petri 
nets.) Tokens reside in the places of the 
net. The number and position of tokens in 
a net may change during its execution. 
The vector fe = (f¢~, ft2, "", ~ )  gives, for 
each place in the Petri net, the number of 
tokens in that  place. The number of tokens 
in place pt is p~, i = 1, ..., n. We may also 
define a marking function/~: P --* N from 
the set of places to the natural  numbers, 
N = {0, 1, 2, ...}. This allows us to use the 
notation ~(pi) to specify the number of 
tokens in place p~. For a marking 
~ ,  ~ ( p t )  = ~ .  

On a Petri net graph, tokens are repre- 
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P2 

t 4 

-~P3 "3 

FIGURE 17 A marked Petr i  net.  

sented by small solid dots inside the circles 
representing the places of the net. Figure 
17 is an example of a Petri net graph with 
a marking. It represents the structure de- 
scribed in the previous section with the 
marking p = (1, 0, 1, 0, 2). A Petri net C = 
(P, T, I, O) with a marking ft becomes the 
marked Petri net, M = (P, T,  I ,  O, Iz). 

Since the number of tokens in a place is 
unbounded over the set of all markings, 
there is an infinite number of markings for 
a Petri net. It is, of course, a denumerable 
infinity. 

Execution Rules for Marked Petri Nets 

Having presented the definitions and rep- 
resentations of Petri nets and their mark- 
ings, we now present the execution rules 
for marked Petri nets. 

A Petri net  executes by f ir ing transi- 
tions. A transition may fire if it is enabled. 
A transition is enabled if each of its input 
places has at least one token in it. In Fig- 
ure 17, for example, since the inputs to 
transition t2 are placesp2, p3, andps,  tran- 
sition t2 is enabled if p2 has at  least one 
token, p3 has at least one token, andp5 has 
at least one token. 

A transition fires by removing one token 
from each of its input places and then de- 
positing one token into each of its output 
places. Transition t3 in Fig. 17, with I(t3) = 
{P3} and O (t3) ---- {P4}, is enabled whenever 
there is at  least one token in place P3. 
Transition t3 fires by removing one token 
fromp3 (its input) and placing one token in 
P4 (its output). Extra tokens in P3 are not 
affected by firing t3 although they may 
enable additional firings of t3 later. Transi- 
tion t2 with I ( t2 )  = {P2, P3,  P5} and O(t2) = 

{P5} fires by removing one token from each 

of P2, P3, and P5 and then puts one token 
in P5. 

Firing a transition will in general 
change the marking of the Petri net,/~, to 
a new marking p' .  Note that  since only 
enabled transitions may fire, the number 
of tokens in each place always remains 
nonnegative when a transition is fired. 
Firing a transition can never remove to- 
kens that  are not there: if any one of the 
input places of a transition contains no 
tokens, then the transition cannot fire. 
Figure 18 summarizes the possible results 
of firing a transition. If a place is an input 
to the transition, one token is removed; if 
it is an output, one token is added. No net 
change occurs if the place is neither an 
input nor an output, or is both an input 
and an output. In the latter case, it is 
necessary for a token to be in the input 
place even though no change in marking 
occurs for this place. 

The State Space of a Petri Net 

The state of a Petri net is defined by its 
marking. Thus the firing of a transition 
represents a change in the state of the net. 
The state space of a Petri net with n places 
is the set of all markings, i.e., N". The 

Pl 
not 
in 

I(tj) 

Pi 
in 

I(tj) 

tj 

I 

© 
~'(pi) = ~(pi ) 

t. 
3 

~'(Pi ) " ~(pi ) - 1 

t j  

~'(pi ) = u(pi ) + 1 

t. 
3 

~*(Pi ) = U(pi ) + 1 - 1 

= ~(pi ) 

Pi not in O(t 3) Pi in O(tj) 

FIGURE 18. The changes in the  mark ing  of a place 
p, which resul t  from fir ing a t r anmhon  tj. 
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change in state caused by firing a transi- 
tion is defined by a partial function 8, 
called the next-state function. Application 
of this function to a marking ft and a tran- 
sition tj yields the value of the marking 
that  results from the firing of transition tj 
in marking ft. Since t~ can fire only if it is 
enabled, 8(ft, tj) is undefined if t~ is not 
enabled in marking ft. Iftj is enabled, then 
8(ft, tj) = ft', where ft' i s the  marking that  
results from removing tokens from the in- 
puts of tj and adding tokens to the outputs 
oftj. 

Given a Petri net and an initial marking 
fto, we can execute the Petri net  by succes- 
sive transition firings. Firing a transition 
tj in the initial marking produces a new 
marking ftl = 8(fto, tj). In this new mark- 
ing, we can fire any new enabled transi- 
tion, say tk, resulting in a new marking 
ft2 = 8(ftl, tk). This can continue as long as 
there is at  least one enabled transition in 
each marking. If we reach a marking in 
which no transition is enabled, then no 
transition can fire and the execution of the 
Petri net must stop. 

As an example of Petri net execution, 
consider the execution of the marked Petri 
net of Fig. 17. In the marking/.to = (1, 0, 1, 
0, 2), two transitions, tl and t3, are ena- 
bled. Choosing one arbitrarily, we can fire 
t3 producing the marking 8(ft °, t3) = (1, 0, 
0, 1, 2) = ft~. In this marking, transitions tl 
and t4 are enabled. Firing t4 changes the 
marking to 8(ft ~, t4) = (1, 1, 1, 0, 2) = ft2. In 
ft2, t~, t2, and t3 are enabled. Firing tl re- 
sults in ft 3 = 8(ft2, t~) = (0, 2, 2, 0, 3). This 
process can continue as long as at least one 
transition is enabled. 

Two sequences result from the execution 
of the Petri net: a sequence of markings 
(fto, f t ] ,  ft2, ...), and a sequence of transi- 
tions (t~o), tj(1), tj~2), "") such that  8(ft k, t~k)) 
= ftk+~ for k = 0, 1, 2, .... In the example 
above the transition sequence w a s  t3, t4, t],  
• "; therefore Jo = 3, j l  = 4, J2 = 1, "". 
Given the transition sequence and ft °, we 
can easily derive the marking sequence for 
the execution of the Petri net and, except 
for a few degenerate nets, given the mark- 
ing sequence we can derive the transition 
sequence. Both of these sequences thus 
provide a record of the execution of the net. 
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The Reachability Set of a Petri Net 

From a marking ft, a set of transition fir- 
ings is possible. The result of firing a tran- 
sition in a marking ft is a new marking ft'. 
We say that  ft' is immediately reachable 
from ft if we can fire some enabled transi- 
tion in the marking ft resulting in the 
marking ft'. A marking ft' is reachable 
from ft if it is immediately reachable from 
ft or is reachable from any marking which 
is immediately reachable from ft. We then 
define the reachability set R(M) for a 
marked Petri net  M = (P, T, I,  O, ft) as the 
set of all markings which can be reached 
from ft. This is the reflexive transitive 
closure of the "immediately reachable" re- 
lationship. 

The reachability set of a marked Petri 
net is the set of all states into which the 
Petri net can enter by any possible execu- 
tion. Hence many analysis questions deal 
with properties of the reachability set of a 
Petri net. (This is discussed in more detail 
in Section 4.) 

Considering a Petri net in terms of 
states and state changes may obscure 
some of the more important concepts relat- 
ing to concurrent systems tha t  can be 
modeled by Petri nets. One of these is the 
concept of local changes in state, as 
modeled by transitions. In a complex sys- 
tem composed of independent asynchro- 
nously operating subparts, each part  can 
be modeled by a Petri net. The enabling 
and firing of transitions are then affected 
by, and in turn  affect only, local changes 
in the marking of the Petri net. Separate 
parts of the total system may operate inde- 
pendently and concurrently. The view of 
Petri nets presented here, with a global 
state and a global sequence of transitions, 
can hide the inherent modularity and con- 
currency in the Petri net model. However, 
despite some important objections to this 
automata-theory-related conception [44], 
most research in the United States has 
been based on this approach. 

4. ANALYSIS OF PETRI NETS 

Why should systems be modeled as Petri 
nets? Originally, the purpose was mainly 
descriptive. Petri nets with their uniform 
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and simple execution rules, can be used to 
describe a system in terms of simple con- 
cepts which provide a natural way to de- 
pict systems of asynchronous concurrent 
processes [24]. After a short time, how- 
ever, it became obvious that another use of 
Petri nets was to take the description of 
the system, as a Petri net, and analyze it 
for the presence of desirable or undesirable 
properties. A body of work is being devel- 
oped which is aimed at deriving, from a 
Petri net, properties of the net, and from 
these, the properties of the system which 
the net models. Some of the analytic ques- 
tions that one would like to ask about a 
Petri net are quite difficult; hence, re- 
stricted subclasses of Petri nets have been 
defined to make analysis easier in specific 
situations. (This will be discussed in Sec- 
tion 6.) 

Following this train of thought, another 
use of Petri nets would seem to be in the 
design of concurrent systems. One method 
of design would consist in first creating a 
design in a traditional representation, for 
example, a logic circuit or a program. 
Then the design would be converted into a 
Petri net and the Petri net analyzed. If  no 
design errors were discovered, the design 
could then be implemented in the tradi- 
tional manner. If  there were errors, how- 
ever, it would be necessary to determine 
how the error which was found in the Pe- 
tri net representation manifests itself in 
the original design, modify the design, and 
repeat the entire process of conversion to a 
Petri net and analysis. This process could 
be simplified if  the design process could be 
carried out directly in Petri nets and the 
resultant Petri net implemented directly. 
This approach requires that  both the nec- 
essary design techniques and the methods 
for implementing Petri net designs, in 
hardware or software, be developed. 

Although some work on design with Pe- 
tri nets [67] and implementation of Petri 
nets [73, 27, 75] has been done, it has been 
limited in scope, presumably because its 
success hinges on the existence of effective 
analysis techniques. 

Analysis Questions 
The first task in developing analysis tech- 
niques is to define the types of questions 

that  the analysis procedures are to an- 
swer, and the properties to be studied. Ob- 
viously, the analysis techniques should be 
oriented towards the solution of those 
problems that  most need to be solved 
rather than towards areas that  are only of 
academic interest. We discuss now some of 
the properties that  have been investigated 
for Petri nets. 

One property of Petri  nets derives from 
their original definition in terms of events 
and conditions. A condition is represented 
by a place. The fact that  the condition 
holds is indicated by a token in the place. 
Consider, however, that  either a condition 
holds or it does not hold. Hence, a token 
should either be present or it should be 
absent. Also, no more than one token 
should ever be present in one place at one 
time, as it seems pointless to have multi- 
ple tokens when one is sufficient. Petri 
nets which are constructed such that  no 
more than one token can ever be in any 
place of the net  at  the same time are safe 
nets [44]. 

Another definition of a safe net is the 
statement that  there is a bound on the 
number of tokens in any place of the net, 
and that  bound is 1. A natural  generaliza- 
tion of this is to allow multiple tokens in a 
place but  only to the extent that  there are 
no more than k tokens in any given place 
at  the same time• Nets in which the num- 
ber of tokens in any place is bounded by k 
are called k-bounded nets. (Thus a safe net  
is a 1-bounded net.) If a net is k-bounded 
for some k but  we do not know the value of 
k, it is simply called bounded. 

Boundedness is a very important practi- 
cal property of Petri nets. If  we wish to 
implement a design modeled by a Petri 
net, then since the capacity of any given 
hardware is bounded, the Petri net must  
be bounded if construction is to be possible. 
In other words, if, for example, places are 
to be implemented as counters, then since 
every physically realizable counter can 
only hold a bounded number, the net must  
also be bounded. 

Another property that  might be impor- 
tant  is conservation of tokens. If  tokens 
are used to represent resources, then it 
follows that  since resources are neither 
created nor destroyed, tokens should also 
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be neither created nor destroyed. A Petri 
net is conservative if the number of tokens 
in the net is conserved. This implies that  
each transition in a conservative net is 
conservative, in the sense that  the number 
of inputs of each firable transition is equal 
to the number of outputs of that  transition. 
More generally, weights can be defined for 
each place allowing the number of tokens 
to change as long as the weighted sum is 
constant [62]. 

Notice that  the above statement was 
qualified to restrict it to firable transi- 
tions. Consider the Petri net of Fig. 19, 
which depicts a nonfirable transition. 
Transitions tl and t2 are conservative. 
Transition t3 is not conservative, in the 
sense that  if it ever fired it would decrease 
the number of tokens by two. However, for 
any initial marking in which the number 
of tokens inp3 is zero, this transition is not 
firable and hence the number of tokens in 
the net is conserved. This means, then, 
that  the transition t3 and place P3 can be 
deleted from the net, simplifying it, with 
no change in its behavior. This would al- 
low a simpler and cheaper implementa- 
tion. 

The notion of transitions that  cannot 
fire seems strange, and we want to be able 
to identify such transitions. Note that  a 
transition which cannot fire is not simply a 
transition which is not enabled, but  rather 
a transition which cannot become enabled. 
A transition is dead in a marking if there 
is no sequence of transition firings that  
can enable it. A transition is potentially 
firable if there exists some sequence that 
enables it [35]. A transition of a Petri net 
is live if it is potentially firable in all 
reachable markings. 

The importance of the concepts of live- 
hess and deadness of transitions comes 
from considerations in the modeling of op- 
erating systems. Liveness is tied to the 
concept of deadlocks and deadlock-freeness 
[45]. Thus it may be important not only 
that  a transition be firable in a given 
marking, but  that it stay potentially fira- 
ble in all markings reachable from that 
marking. If this is not true, then it is 
possible to reach a state in which the tran- 
sition is dead, perhaps signifying a possi- 
ble deadlock. 
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P3 t 3 

Fmvmz 19 A Petr i  net with a nonfirable transi-  
tmn. Tranmtmn t3 is dead in th is  marking .  

A number of different definitions of live- 
ness have been considered. Commoner [16] 
defines four subtly different forms of live- 
hess for a transition tj and a marking ~: 

LI: If  there exists a p '  in R (M) such 
that 8(/~', tj) is defined (i.e., tj is po- 
tentially firable); 

L2: If for every positive integer n there 
exists a transition sequence ~ such 
that 8(~, ~) is defined and t~ appears 
at least n times in ~; 

L3: If there exists an infinite sequence 
of transition firings such that  8(/~, 
~) is defined and t~ appears infi- 
nitely often in ~; 

L4: If t~ is live (i.e., potentially firable 
in all reachable markings). 

Note that  the implications of the four defi- 
nitions of liveness are quite different (see 
[53]). Thus, whenever the property of live- 
ness in a Petri net  is discussed, it is impor- 
tant to state carefully the definition being 
used, since we do not yet have a single 
commonly accepted definition. 

As mentioned earlier, the concept of 
liveness was developed to deal with dead- 
lock problems in operating systems. Other 
problems in operating systems can also be 
posed in terms of Petri nets. The actual 
statement of these questions depends upon 
the manner in which the system is 
modeled. For example, access to a resource 
may be modeled by a transition or a place. 
The mutual exclusion problem is to assure 
that at most one of perhaps several proc- 
esses tries to access the resource at the 
same time. Depending on the modeling 
used, this will be expressed as a question 
concerning whether or not two transitions 
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can be enabled simultaneously or whether 
or not two places may have tokens simul- 
taneously. 

Notice, however, that  both of these 
questions can be stated in terms of the 
reachability of any of a set of undesirable 
states. In fact, many questions can often 
be reduced to the reachabdity problem. 
The reachability problem is simply the fol- 
lowing: Given a marked Petri net  (with 
marking ~) and a marking ~',  is ~' reach- 
able from ~? This problem is very impor- 
tant  to the analysis of Petri nets. It can be 
considered a special case of the set reacha- 
bility problem, which is to determine if a 
set of markings, S = {~1, g2 . . . .  gk}, is a 
subset of the reachability set R(M) of a 
marked Petri net. 

There are many other interesting ques- 
tions that  might be studied with Petri 
nets. Furthermore, since the questions de- 
signers want  to ask about their designs 
depend on the projected use of the designs, 
there will always be new questions. Thus 
it is important to develop general tech- 
niques that  allow new types of questions to 
be answered. The basis for the importance 
of the reachability problem is that  many 
questions about the correctness of systems 
modeled as Petri nets can be translated 
into instances of this problem. For in- 
stance, Hack has shown that  the liveness 
problem (are all transitions live?) is redu- 
cible to the reachability problem and that  
in fact the two problems are equivalent, 
since reachability is also reducible to live- 
ness [35]. 

Solution Techniques 

While several approaches to the analysis 
of Petri nets have been considered, almost 
all work in this area eventually uses one 
basic technique. This technique involves 
finding a finite representation for the 
reachability set of a Petri net, in recogni- 
tion of the fact that many of the properties 
of a Petri net are based on properties of its 
reachability set. The representation used 
is known as the reachability tree. It con- 
sists of a tree whose nodes represent mark- 
ings of the Petri net and whose arcs repre- 
sent the possible changes in state resulting 
from the firing of transitions [51, 53]. 

Notice, however, that  the reachability 
set of a marked Petri net is often infinite. 
Thus, to form a finite representation of an 
infinite set we must map many markings 
into the same node of the tree. This many- 
to-one mapping is accomplished by collaps- 
ing a set of states into a node by ignoring 
the number of tokens in a place of the net 
when this number becomes "too large." 
This is represented by using a special sym- 
bol, ¢o, for the number of tokens in this 
place. 

The symbol co represents a value which 
can be arbitrarily large. Because of this we 
must  interpret the operations of addition, 
subtraction, and comparison as 

co + a =¢0 

a < ¢ o  

for any natural  number a. Thus, co might 
be thought of as a symbol for infinity. 

Each node in the reachability tree is 
labeled with a marking; arcs are labeled 
with transitions. The initial node (root of 
the reachability tree) is labeled with the 
initial marking. Given a node x in the 
tree, additional nodes are added to the tree 
for all markings that  are directly reach- 
able from the marking of the node x. For 
each transition t~ which is enabled in the 
marking for node x, a new node with 
m a r k ~ g  8(x, tj) is created, and an arc la- 
beled t~ is directed from the node x to this 
new node. This process is repeated for all 
new nodes. 

Continuing this process will obviously 
create the entire state-space. A path from 
the initial marking (root) to a node in the 
tree corresponds to an execution sequence. 
Since the state-space may be infinite, two 
special steps are taken to define a finite 
reachability tree. First, if a new marking 
is generated which is equal to an existing 
marking on the path from the root node to 
the new marking, the new (duplicate) 
marking becomes a terminal node. Since 
the new marking is equal to the previous 
marking, all markings reachable from it 
have already been added to the reachabil- 
ity tree by the earlier identical marking. 

Second, if any new marking x is gener- 
ated which is greater than a marking y on 
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the path from the root node to the marking 
x, then those components of marking x 
which are strictly greater than the corre- 
sponding components of marking y are re- 
placed by the symbol oJ. Since marking x is 
greater than  marking y, any sequence of 
transition firings which is possible from 
marking y is also possible from marking x. 
In particular, the sequence that  trans- 
formed marking y into marking x can be 
repeated indefinitely, each time increas- 
ing the number of tokens in those places 
which have a ¢o. Thus the number of to- 
kens in these places can be made arbitrar- 
ily large. 

As an example of this construction, con- 
sider the marked Petri net of Fig. 20. We 
begin with (1, 0, 1, 0) as the root of the 
tree. In this marking, we have only one 
enabled transition. Thus we have a new 
node corresponding to firing t3, (1, 0, 0, 1) 
and an arc from (1, 0, 1, 0) to (1, 0, 0, 1). 
From this marking we can fire t2, resulting 
in (1, 1, 1, 0). Now, since (1, 1, 1, 0) -> (1, 0, 
1, 0), we replace the second component by 
oJ. This reflects the fact that  we can fire 
the sequence t3t2 an arbitrary number of 
times and make the number of tokens in 
place p2 as large as desired. In the mark- 
ing (1, co, 1, 0), two transitions are ena- 
bled, tl and t3. Firing these two would give 
us two new nodes, (1, ~0, 0, 0) and (1, w, 0, 
1). The first of these has no successors 
since 8((1, co, 0, 0), t,) is undefined for all t~. 
The second enables t2, which fires to give 
(1, ~, 1, 0) which is identical to an earlier 
node. Thus, the complete reachability tree 
is as shown in Fig. 21. 

Analysis Using the Reachability Tree 

How is the reachability tree used for anal- 
ysis? Let us consider some of the questions 
raised in the previous section. 

On the questions of safeness and bound- 
edness, notice tha t  if a Petri net is k- 
bounded, then, by definition, no more than 
k tokens are ever in any place. Thus the 
possible values for each place are drawn 
from the set {0, 1 . . . . .  k} and there are 
only (k + 1) n possible reachable markings. 
Therefore, the reachable state-space is 
finite. 
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Pl 4 

~3 

FIGURE 20. A P e t n  ne t  wi th  mark ing  (1,0,1,0) and 
infinite reachable state-space. 

FIGURE 21. 
Fig. 19. 

(1,0,1,0) 

(1,0,0,1) 

(1,~,1,0) 

( 1 ~ , 0 , 0 )  (1,~,0,1) 

(1,~,1,0)  

The reaehabih ty  tree of the  Petr i  net  of 

In the same way, consider a conserva- 
tive Petri net. If we let k be the number of 
tokens in the net, then we must  always 
have k tokens in the net. Since there are 
only a finite number of ways to partition k 
tokens among n places, we must  again 
have a finite reachability set. 

Now consider the reachability tree. If 
any node in the reachability tree contains 
the symbol o~, then that  component can 
become arbitrarily large, i.e., it is not 
bounded. Thus, if the symbol ~o is any- 
where in the reachability tree, the reacha- 
bility set is not finite and hence neither 
bounded nor conservative. On the other 
hand, if the co symbol does not occur any- 
where in the tree, then the reachability 
tree is the reachability set and both are 
finite. This means that  the reachability set 
is bounded, and the bound can be estab- 
lished by inspection. Similarly, if the 
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reachability set is finite, conservation can 
be determined by inspection. In fact, for a 
finite reachability set, any analysis ques- 
tion can be solved by inspection. 

Other problems can also be solved using 
the reachability tree. For example, the 
coverability problem can be solved by in- 
spection of the reachability tree [51, 35]. 
The coverability problem is the following: 
Given a marked Petri net M and a mark- 
ing /~, does there exist a marking/~'  in 
R(M) such that ~' -> re? This problem is 
useful in determining whether violations 
of mutual exclusion occur in a system, and 
in testing transitions for liveness (dead- 
lock). 

The Reachability Problem 

The more general questions of liveness 
and reachability are not answerable by the 
reachability tree. Because of the funda- 
mental nature of the reachability problem 
in the analysis of Petri nets and vector 
addition systems-  an equivalent modeling 
system [51, 34]- i t  has been the object of a 
considerable amount of research. It has 
been shown that the general reachability 
problem is equivalent to several special 
cases such as the zero reachability problem 
(is the zero vector an element of the reach- 
ability set?) [70] and the subset reachabil- 
ity problem (given a nonempty subset of 
places and a marking ft, is any reachable 
marking equal to ~ for the specified subset 
of places, with all other places allowed to 
have any value?) [34]. These problems are 
equivalent in that if an algorithm can be 
found to solve any one of them it can be 
modified to solve any of the others. 

Such an algorithm has recently been 
found [88]. The algorithm is very difficult 
to follow and depends upon both a search 
through a finite tree of possible solutions 
and the recursive solution of reachability 
problems for lower-dimensional state- 
spaces. However, regardless of the com- 
plexity of the algorithm, its existence 
shows that the reachability problem is 
solvable (although possibly at a high cost). 

Since the liveness problem is equivalent 
to the reachability problem [35], it also is 
solvable. 

Unsolvable Problems 

Some Petri-net problems are not solvable 
despite their apparent similarity to the 
reachability problem. The first such prob- 
lem studied was the subset problem: given 
two marked Petri nets, is the reachability 
set of one net a subset of the reachability 
set of the other net? Rabin showed this 
problem to be undecidable [9, 33]. Later 
Hack showed that the equality problem- 
given two marked Petri nets, is the reach- 
ability set of one net equal to the reacha- 
bility set of the other ne t? - i s  also unde- 
cidable [36]. 

These problems are important for appli- 
cations in which one might want the Petri 
nets to be optimized, but the set of reacha- 
ble markings not to be changed. Unfortu- 
nately, it has been shown that both of 
these problems are undecidable in the 
sense that there exists no general algo- 
rithm which can decide, for two arbitrary 
marked Petri nets, if their reachability 
sets are equal or one is the subset of the 
other. This proof is quite complicated. It is 
based on the construction of a Petri net 
which (weakly) computes the value of a 
polynomial in such a way that if the equal- 
ity problem is decidable then Hilbert's 
tenth problem is solvable. Since Hilbert's 
tenth problem is known to be unsolvable, 
the equality problem is undecidable. This 
in turn implies the undecidability of the 
subset problem. 

Complexity 

While much attention has been focused on 
the decidability of the reachability prob- 
lem and similar problems, other aspects of 
Petri net analysis procedures have also 
been investigated. One aspect that has re- 
cently come under investigation is the 
computational complexity of the problem. 
While it is not yet possible to determine 
the complexity exactly, it is possible to 
give its lower bounds. Lipton has shown 
that the reachability problem is exponen- 
tial time-hard and exponential space-hard 
[64]. That is, the amount of time and mem- 
ory space needed to solve the reachability 
problem must be at least an exponential 
function of the length of the input descrip- 
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tion of the Petri net (in the worst case). 
This is a lower bound; the actual complex- 
ity could be much worse. Lipton also shows 
that the coverability problem has an expo- 
nential space lower bound. Rackoff [83] 
has obtained an algorithm for solving cov- 
erability in exponential space, showing 
this to be a tight lower bound. The com- 
plexity of some other problems in Petri 
nets has also been considered [49]. 

These complexity analyses are very im- 
portant in determining the usefulness of 
Petri nets for the modeling and analysis of 
systems. The recent discovery that  the 
reachability problem is decidable marked 
a significant advance in the search for 
analysis techniques; however, the com- 
plexity bounds as well as the large number 
of places and transitions needed to model 
even simple systems tend to indicate that, 
although analysis questions may be decid- 
able using Petri nets, in the worse case the 
cost of answering even simple questions 
may make such analysis unfeasible. 

5. PETRI NET LANGUAGES 

Another area in which Petri nets have 
been used is the study of formal languages 
(see [79, 37]). Here Petri nets are used to 
model the flow of information and control 
of actions in a system. The firing of a 
transition models the occurrence of an op- 
eration in the modeled system. A Petri net 
properly models a system if every se- 
quence of actions in the modeled system is 
possible in the Petri net and every se- 
quence of actions in the Petri net repre- 
sents a possible sequence in the modeled 
system. 

To represent these concepts, we label 
the transitions of a Petri net; with each 
transition we associate a symbol naming 
the transition. Since there are only a finite 
number of transitions, we can define a 
finite alphabet Z which is the set of all 
these symbols. A labeling function (r maps 
transitions to symbols, i.e., a:T--*Z. A la- 
beled marked Petri net defines a set of 
strings over Z, each string corresponding 
to a possible execution of the net. The set 
of all possible strings corresponding to the 
possible executions of a marked labeled 
Petri net defines a P e t n  net  l anguage .  
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Several varieties of Petri net languages 
result from slightly different approaches to 
defining the languages of a Petri net. One 
entire group of languages results from the 
use of different labeling policies, since re- 
strictions on the allowable labeling func- 
tions create restricted classes of Petri net 
languages. 
The free languages are those obtained 

when one introduces the requirement that 
all transition labels be distinct and non- 
null, i.e., ~(t~) 4= ~(t~ for t~ dffi t~. This re- 
quirement reflects the view that  since 
distinct transitions model distinct events, 
they should be distinctly labeled. 

A more general class of languages re- 
suits if one allows a more general label 
function in which many transitions may 
be labeled with the same symbol. This re- 
flects the view that the same action can 
result from different circumstances, and 
hence may be modeled by different transi- 
tions. The modeling process may even in- 
troduce some "extra" transitions that are 
necessary for proper token movement but 
do not correspond to actions of interest in 
the modeled (real) system. 

A third class of labeling functions allows 
transitions to be labeled with the n u l l  la- 
bel h. A null label is defined as a label 
which does not show up in the string re- 
sulting from an execution of the Petri  net. 

As an example of the differences of these 
labeling policies, consider the Petri  net  of 
Fig. 22. Let the language under considera- 
tion be the set of sequences whose net re- 
sult is to move the token in place Pl to 
place P4 (i.e., the set of sequences {t E 
T*18((1, 0, 0, 0), t) = (0, 0, 0, I)}). If we 
label the transitions with the free labeling 

~l ( t , )  = a al(t3) = b 

~r~(t~) = c (r~(t~) = d ,  

then the language is {ancbndln  >-- 0}. A 
nonfree but  h-free labeling such as 

Or2(tl ) = a O'2(t3) ffi b 

~(t~) = a a~(tJ = b 

yields the language {a"b" In > 0}. If  transi- 
tion tl is assigned a null label, then the 
language which results could be the regu- 
lar language {ab*c}. 
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t ~  t3 -[ Qp 

k.L/pl \I 2 "k.Jp 3 -It4 -- 
FIaum~ 22. A Petn net with marking (1,0,0,0). 

The class of labeling functions is only 
one of the determinates of Petri net lan- 
guages. Another is the definition of the set 
of final states. Remember that a language 
is the set of all possible sequences result- 
ing from the execution of a labeled Pe t r i  
net starting in an initial marking (or one 
of a finite set of initial markings) and ter- 
minating in any element of a set of f ina l  
m a r k i n g s .  Different classes of languages 
correspond to different definitions of the 
set of final markings. 

Four types of Petri net languages have 
been defined in terms of the definition of 
final markings [39]: 

L-type: T h e  set of final markings is de- 
fined by a finite final marking setF; 

G-type: Given a finite marking set F, a 
final marking is any marking 
which is greater than or equal to 
any element of F; 

T-type: A final marking is any terminal 
marking (a marking in which no 
transition is enabled); 

P-type: All reachable markings are final 
markings. 

As an example of the differences be- 
tween these different language classes, 
consider the Petri net of Fig. 23, which is a 
labeled version of the net of Fig. 22. (The 
labeling shown is free, but that is not im- 
portant.) For a final state set F = {(0, 0, 1, 
0)}, the L-type language is {a"cb" In >- 0}, 
the G-type language is {amcb ~ t m >- n >- 0}, 
the T-type language is {amcb"d l rn >_ n >- 
0}, and the P-type language is {am I m - 0} 
t.) {amcb" I m >- n ~ O} U {amcb"d I m >- n 
0}. 

With three different kinds of labeling 
functions and four different kinds of final- 
state sets, twelve different classes of Petri 
net languages can be defined. Despite 
their differences, these classes are closely 

4 a b 

FIGURE 23. Labeled marked  Petm ne t  correspond- 
mg  to the  ne t  of Fig. 22. 

related. Preliminary investigations have 
shown that a number of containment rela- 
tionships hold between the classes. For ex- 
ample, since the labeling functions are 
successively more general, all Petri net 
languages with free labelings are also Pe- 
tri net languages with k-free labelings 
which in turn are also Petri net languages 
with arbitrary labelings. It can be shown 
that all P-type languages are also G-type 
languages, that all G-type and T-type lan- 
guages with arbitrary or k-free labelings 
are L-type languages with the same type 
of labeling, and that L-type languages 
with arbitrary labelings are also T-type 
languages. These relationships are shown 
in Fig. 24, in which an arc between classes 
is used to indicate that one class is con- 
tained within the other. It is not known 
whether other arcs might also exist or 
which containments are proper. 

The L-type and P-type languages have 
been investigated in greater depth. L-type 
languages have been shown to be closed 
under union, intersection, concatenation, 
concurrency, reversal and k-free homo- 

ARBITRARY A-FREE FREE 
LABELING LABELING LABELING 

T-type T A ~ T 

L-type ~ L 

G-type !A ~_! 

P-type !A ~ ! 
FIGURE 24. Relationships among 

classes of Petr i  ne t  languages.  
the 

T f 

L f 

G f 

1 
~ pf 

different 
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morphism [77, 37]. P-type languages are 
more restrictive but are still closed under 
union, intersection, concatenation and 
concurrency [37]. Hack has developed a 
characterization theorem for L-type lan- 
guages showing that the class of L-type 
languages is the smallest of languages 
that includes a finite language and the 
complete parenthesis language and is 
closed under inverse homomorphism, con- 
currency, intersection and k-free homo- 
morphism. (The complete parenthesis lan- 
guage is the context-free language over 
two symbols {(,)} whose strings are 
properly nested parenthesis strings [37].) 

The relation of Petri net languages (of 
the L-type) and other classes of languages 
has also been examined. All regular lan- 
guages are Petri net languages. Some con- 
text-free languages are Petri net lan- 
guages and some Petri net languages are 
context-free, but neither class includes the 
other. Their common intersection includes 
regular languages and bounded context- 
free languages, among others. Surpris- 
ingly, the complement of a free Petri net 
language is context-free [18]. All k-free 
Petri net languages are context-sensitive 
[77]. These relationships are illustrated in 
Fig. 25. In this diagram, an arrow between 
two classes of languages indicates proper 
containment. Note that Petri net lan- 
guages appear to be roughly equivalent to 
context-free languages in complexity (and 
interest). 

The original impetus for studying Petri 
net languages was to try to settle some of 
the decidability questions for Petri nets. It 
has been shown [37] that the membership 
problem for Petri nets with k-free or free 
labelings is decidable, but the inclusion 
and equivalence problems for P, P~, L and 
L ~ languages are undecidable. Many de- 
cidability problems are equivalent to the 
reachability problem and thus decidable. 

A different approach to the study of Pe- 
tri nets by the use of formal language the- 
ory has been considered by Crespi-Re- 
ghizzi and Mandrioli [19]. They noticed 
the similarity between the firing of a 
transition and the application of a produc- 
tion in a derivation in which places are 
nonterminals and tokens are separate in- 
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CONTEXT- SENSITIVE 
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PETRI NET 
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FmURE 25. Relationships among Petri net lan- 
guages and the clasmcal language classes. 

stances of the nonterminals. The major 
difference of this approach is the lack of 
ordering information in the Petri net con- 
tained in the sentential form of the deriva- 
tion. To accommodate it, Crespi-Reghizzi 
and Mandrioli defined the c o m m u t a t i v e  
g r a m m a r s ,  which are isomorphic to (gen- 
eralized) Petri nets. In addition, they con- 
sidered the relationship of Petri nets to 
matrix, scattered-context, non-terminal- 
bounded, derivation-bounded, equal-ma- 
trix, and Szilard languages. For example, 
it is not difficult to see that the class L r is 
the set of Szilard languages of matrix con- 
text-free languages [21]. Similar work by 
Keller considered the class of commutative 
semi-Thue systems [53]. Keller has also 
pointed out that k-free languages are a 
subset of real-time counter languages [26]. 

It should be pointed out that this entire 
approach to Petri nets and languages may 
represent an approach from the wrong di- 
rection: Petri nets were designed to repre- 
sent concurrent activity, yet the represen- 
tation of a Petri net execution by a string 
forces all activity to be represented seri- 
ally, incorrectly implying a total ordering 
between events. Some work has consid- 
ered other representations of the partial 
orderings resulting from concurrent activi- 
ties [43, 85], but further research is needed 
in this area. 

6. EXTENSIONS AND SUBCLASSES 

The success of any model is due to two 
factors: its modeling power and its decision 
power. Modeling power refers to the abil- 
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ity to correctly represent the system to be 
modeled so that the model will be a faith- 
ful representation of the modeled system. 
Decision power refers to the ability to ana- 
lyze specific versions of the model and de- 
termine properties of the modeled system 
[54]. 

These two factors generally work at 
cross purposes. Consider, for example, fi- 
nite-state systems. Since the set of reach- 
able states is finite, it is possible to answer 
almost any question about a finite-state 
model; hence such a model has very high 
decision power. On the other hand, the 
class of systems which can be modeled is 
severely limited, which means that  such a 
model has very low modeling power. Tur- 
ing machines, by contrast, have good 
modeling power but, since most general 
questions are undecidable, have poor deci- 
sion power. When we increase modeling 
power (and hence the complexity of the 
models and the modeled systems), our 
ability to algorithmically determine the 
properties of the models is generally de- 
creased. 

Petri net models represent an attempt to 
compromise between these two factors. 
They have better modeling power than fi- 
nite-state models while (one hopes) retain- 
ing most of the farter's decision power. As 
a matter of fact, Petri nets were originally 
defined in answer to the limited modeling 
power of finite-state models. 

Not all researchers have been satisfied 
with the modeling power of Petri  nets, 
however. It is difficult to model some 
events or conditions in systems by Petri 
nets, and it has been shown that  the cor- 
rect modeling of other relatively reasona- 
ble systems is impossible [3, 57]. Thus sev- 
eral proposals have been put  forth for ex- 
tending the modeling power of Petri nets. 

Extended Petri Nets 

One of the first extensions is to remove the 
constraint that  a place may contribute or 
receive only one token from the firing of a 
transition. Consider the modeling of chem- 
ical reactions. Here a token in a place 
represents the availability of a certain 
molecule or atom. Chemical reactions are 

modeled by transitions and may occur 
whenever tokens indicate the availability 
of the reactants. The firing of the transi- 
tion models the reaction, which consumes 
inputs (reactants) and produces outputs 
(products). Notice that a chemical reaction 
may well require more than one unit of a 
particular reactant. This is modeled by al- 
lowing multiple arcs between transitions 
and places, signifying the number of to- 
kens needed. Figure 26 illustrates a Petri 
net model of a reaction that needs three 
C12 and two P to produce two PCI~. In order 
for the transition to fire, at least three Cl2 
and two P must be available. The firing of 
the transition absorbs these tokens and 
produces two tokens in its output place. 

Petri nets that allow multiple arcs have 
been called generalized Petri nets [34, 54]. 
Hack has shown that these nets are equiv- 
alent to ordinary Petri nets (at most one 
arc between a place and a transition). 
Hence although this change may increase 
the convenience of use, it does not change 
the fundamental modeling power or deci- 
sion power of Petri nets. Most researchers 
thus use generalized Petri nets in their 
work, often ignoring the distinction be- 
tween them and what we have defined as 
Petri nets in this paper. 

A more fundamental extension of Petri 
nets was undertaken by a number of au- 
thors [1, 5, 73] in response to difficulties in 
the modeling of priority systems with Petri 
nets. This extension involves so-called 
zero-testing [53]: the introduction of arcs 
from a place Pi to a transition t~ which 
allow the transition to fire only if the place 

1 © 
PCl3 

F m u n  26. Petr i  ne t  model of a chemical  reaction, 
i l lus t ra t ing  the  concept of mult iple input  and out- 
pu t  ares between a t rans i t ion  and a place. 
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FIOUaE 27. An extended Petri net  which has no 
equivalent narrowly defined Petrl net. 

p, has zero tokens in it. These special arcs 
have been drawn in several ways. We rep- 
resent them as shown in Fig. 27. Note that  
transition c2 can fire only if places P4 and 
b~ each have at least one token in them 
and place b l has exactly zero tokens. The 
arc from b~ to c2 is called an inhibitor arc; 
it gives transition cl priority over transi- 
tion c2. 

The addition of inhibitor arcs is a major 
extension of the concept of Petri nets. 
Agerwala has shown that Petri nets ex- 
tended in this manner have the modeling 
power of a Turing machine and hence can 
also be used to show that  many decision 
problems are undecidable [1]. Many other 
extensions of Petri nets including the in- 
troduction of priorities between transi- 
tions, time bounds on transition firings 
[66], or constraint sets that  prohibit tokens 
residing simultaneously in two places [73] 
are equivalent to Petri nets with inhibitor 
arcs and hence to Turing machines. In 
terms of modeling power Petri nets seem 
to be just  below Turing machines, so that  
any significant extension results in Tur- 
ing-machine equivalence [78]. 

Subclasses o! Petri Nets 

It was hoped that the limitations on the 
modeling power of Petri nets relative to 
Turing machines would be balanced by a 
compensating increase in decision power. 
This appears to be the case, since for Petri 
nets many decision problems are equiva- 
lent to the reachability problem, which 
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has been shown to be decidable. However, 
research on the complexity of the reacha- 
bility problem has shown that  even though 
it is decidable, it is very difficult to solve. 
Thus, from a practical point of view, Petri 
nets may be too powerful to be analyzed. 

The result of this has been the definition 
of a number of subclasses of Petri nets, in 
hopes of finding a subclass with (known) 
decision power and still adequate model- 
ing power for practical purposes. These 
subclasses are defined by restrictions on 
their structure intended to improve their 
analyzability. 

Two subclasses are most commonly con- 
sidered, state machines and marked 
graphs [44]. State machines are Petri nets 
which are restricted so that  each transi- 
tion has exactly one input and one output. 
These nets are obviously conservative and 
hence finite-state. In fact, they are exactly 
the class of finite-state machines. This is 
clearly shown by considering the state 
graph of a finite-state machine, as in Fig. 
28a. The nodes of this graph represent the 
states of the finite-state machine. An arc 
from state i to state j labeled x indicates 
that  there is a transition from state i to 
state j with input x. Note that  this state 
graph is nondeterministic. The graph of 
Fig. 28a can be converted to an equivalent 
Petri net by simply making each state a 
place, and making each arc between two 
places a transition. This is illustrated in 
Fig. 28b. Note that  this Petri net is con- 
servative. If  the state graph had been non- 
deterministic, then the Petri net  would 
also have this characteristic. Finite-state 
machines, being finite, have very high de- 
cision power, but  they are of limited use- 
fulness in modeling systems which are not 
finite. 

Marked graphs, the dual of state ma- 
chines, have also been studied extensively 
[17, 44]. A marked graph is a Petri  net in 
which each place has exactly one input 
transition and one output transition. Algo- 
rithms are known for showing that  a 
marked graph is live and safe, and for 
solving the reachability problem for 
marked graphs. Thus, marked graphs 
have high decision power. They have lim- 
ited modeling power, however, since they 
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FIGURE 28 E q m v a l e n t  mode l s  of  a f in i t e - s t a t e  ma -  
chine.  (a) S t a t e  g r a p h  model  (b) Pe t r i  n e t  model .  

tiple outputs for the place, then there is a 
free choice as to which of the transitions is 
fired. 

Hack and Commoner have shown that 
liveness and safeness for free-choice Petri 
nets are decidable and have given neces- 
sary and sufficient conditions for these 
properties. Hack has also shown that  free- 
choice nets can model a class of systems 
called production schemata which are sim- 
ilar to assembly-line systems. 

Other subclasses of Petri nets have been 
defined [32], for example simple Petri nets, 
but  little analysis of them has been done to 
date. Figure 29 shows allowed and disal- 
lowed situations for three subclasses. 
Landweber and Robertson [58] have stud- 
ied the classes of conflict-free and persist- 
ent Petri nets. 

Related Models 

Any discussion of Petri nets would be in- 
complete without a mention of vector addi- 
tion systems. These systems were defined 
by Karp and Miller [51] and are equivalent 

MARKED 
GRAPHS 

ALLOWED NOT ALLOWED 

are able to model only those systems 
whose control flow has no branches. In F~E- 

CHOICE 
other words, parallel activities can be eas- ~Ts 
ily modeled, but  not alternative activities. 

The problem with modeling data-de- 
pendent decisions (branches) in a Petri net 
is that  conflicts may arise, and nets with 
conflicts seem to be difficult to analyze. 
Hack has investigated the class of free- 

SIMPLE choice Petr~ nets [32] in which each arc NETS 
from a place is either the unique output of 
the place, or the unique input to a transi- 
tion. This restriction means that  if there is 
a token in a place then either the token 
will remain in that  place until its unique 
output transition fires or, if there are mul- 

F m u ~  29 Dif ferences  be tween  t h e  s u b c l a s s e s  of  
Pe t r i  ne ts .  
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to Petri nets [34]. A vector addition system 
is essentially a mathematical formulation, 
in terms of vectors, of the markings and 
transitions of a Petri net. Since the mathe- 
matical formulation is more convenient 
for formal manipulation than Petri net 
graphs, many results are given in terms of 
vector addition systems, although they ap- 
ply equally to Petri nets. Vector replace- 
ment systems [53] are a related (and 
equivalent) model based on a generaliza- 
tion of the vector addition systems. 

It should also be pointed out that Petri 
nets are far from the only model of concur- 
rent systems to have been developed. The 
many other models developed to date in- 
clude program graphs [87], computation 
graphs [50], message transmission sys- 
tems [85], flow graph schemata [89], and 
complex bilogic directed graphs [31]. Baer 
has published a survey of some of these 
models [6]. A comparison of the properties 
of many of these models [78] has shown 
that most of them are either subclasses of 
Petri nets or equivalent to Petri nets. 
These results have been reinforced by the 
comparisons of Agerwala [2] which arrive 
at much the same conclusion concerning 
the relative modeling power of the various 
models. The definition of equivalence must 
be carefully considered, however. Lipton, 
Snyder, and Zalcstein [63] have compared 
models using a definition of equivalence 
considerably different but no less valid 
than those of Peterson and Bredt or Ager- 
wala, and arrived at important differences 
in the modeling power of the various 
models of concurrent systems. 

CONCLUSIONS 

The Petri net has been defined as a model 
for systems exhibiting concurrent asyn- 
chronous activities. The major factors that 
might affect its acceptance are concerns 
regarding the modeling power and deci- 
sion power of the model. Although Petri 
nets are not the only models of asynchro- 
nous concurrent systems, they are equiva- 
lent to or include most other models. In 
addition they have a certain clearness and 
cleanness which permits a simple and nat- 
ural representation of many systems. 
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Thus they have gained increasing accept- 
ance in the last decade, and their use is 
growing. 

A major modeling system must provide 
more than simply a convenient represen- 
tation system, however. It must also pro- 
vide analysis procedures that can be used 
to determine properties of the modeled sys- 
tem through the model. Some such analy- 
sis procedures for Petri nets do exist, al- 
lowing the analysis of systems for bound- 
edness, conservation, coverability, and 
reachability of a marking. However, other 
properties, such as inclusion or equiva- 
lence of two Petri nets, have been shown to 
be undecidable. Even though problems 
such as reachability may be decidable, 
complexity results tend to indicate that 
these problems may be intractable, requir- 
ing too much computational time and 
space to be practical. Any significant ex- 
tension of the Petri net model tends to be 
equivalent to a Turing machine, and 
hence analysis of these extensions is not 
possible due to decidability problems. The 
subclasses which have been examined 
have good decision properties, but may be 
too limited for useful modeling. On this 
topic as on many others relating to Petri 
nets, much work remains to be done. 
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