
Petri Nets*

JAMES L. PETERSON

Department of Computer Sciences, The Unwers~ty of Texas, Austin, Texas 78712

Over the last decade, the Petr i net has gamed increased usage and acceptance as a basic
model of systems of asynchronous concurrent computation. This paper surveys the basic
concepts and uses of Petm nets. The structure of Petr i nets, thei r markings and
execution, several examples of Petm net models of computer hardware and software, and
research into the analysis of Petm nets are presented, as are the use of the reachabil i ty
tree and the decidability and complexity of some Petr i net problems. Petr i net
languages, models of computation related to Petm nets, and some extensions and
subclasses of the Petri net model are also bmefly discussed

Keywords and Phrases: P e t n nets, system models, asynchronous concurrent events.

CR Categories. 1.3, 5.29, 8.1

INTRODUCTION

A Petri net is an abstract, formal model of
information flow. The properties, con-
cepts, and techniques of Petri nets are
being developed in a search for natural,
simple, and powerful methods for describ-
ing and analyzing the flow of information
and control in systems, particularly sys-
tems that may exhibit asynchronous and
concurrent activities. The major use of Pe-
tri nets has been the modeling of systems
of events in which it is possible for some
events to occur concurrently but there are
constraints on the concurrence, prece-
dence, or frequency of these occurrences.

Since many readers may be unfamiliar
with Petri nets, we first present a very
brief and informal introduction to their
fundamentals and history. Then we con-
sider several aspects of Petri nets in more
detail. We begin, in Section 2, by consider-
ing the use of Petri nets for modeling sys-

* This work was supported, m part , by the National
Science Foundation, under Gran t Number MCS75-
16425.

tems of parallel or concurrent activities.
Section 3 presents a more formal definition
and discussion of the fundamental con-
cepts and notations of Petri nets. Section 4
considers the extensive body of research
dealing with the analysis of Petri nets,
their advantages, and their limitations.
Petri net languages are presented in Sec-
tion 5. Finally, in Section 6, we consider
some of the many variations of Petri nets
that have been defined, both as generali-
zations of Petri nets and as subclasses of
the general model; the more general
models have certain advantages for model-
ing, while the more restricted models have
certain advantages for analysis.

1. OVERVIEW

Figure 1 shows a simple Petri net. The
pictorial representation of a Petri net as a
graph used in this illustration is common
practice in Petri net research. The Petri
net graph models the static properties of a
system, much as a flowchart represents
the static properties of a computer pro-
gram.

Copyright © 1977, Association for Computing Machinery, Inc. General permismon to republish, bu t not for
profit, all or par t of this mater ia l is granted provided tha t ACM's copyright notice is given and t ha t reference
is made to the publication, to i ts date of msue, and to the fact tha t repr in t ing privileges were granted by
permission of the Associat]on for Computing Machinery.

Computing Surveys, Vol 9, No. 3, September 1977

224 * J. L. Peterson

CONTENTS

INTRODUCTION
1 OVERVIEW

Hmtory
2. MODELING WITH PETRI NETS

Properties of Petn Nets Useful m Modeling
Modeling of Hardware
Modehng of Software

3 STRUCTURE OF PETRI NETS
The Petn Net Graph
Markings
Executmn Rules for Marked Petrl Nets
The State Space of a Petn Net
The Reachabfllty Set of a Petrl Net

4 ANALYSIS OF PETRI NETS
Analysis Questmns
Solutmn Techmques
Analysis Using the Reachabfllty Tree
The Reachablhty Problem
Unsolvable Problems
Complexity

5 PETRI NET LANGUAGES
6 EXTENSIONS AND SUBCLASSES

Extended Petrt Nets
Subclasses of Petrl Nets
Related Models

CONCLUSIONS
ACKNOWLEDGMENTS
BIBLIOGRAPHY

v

The graph contains two types of nodes:
circles (called places) and bars (called
transitions). These nodes, places and tran-
sitions, are connected by directed arcs
from places to transitions and from transi-
tions to places. If an arc is directed from
node i to node j (either from a place to a
transition or a transition to a place), then i
is an input to j , a n d j is an output of i. In
Fig. 1, for example, placepl is an input to
transition t2, while places P2 and p3 are
outputs of transition t2.

In addition to the static properties repre-
sented by the graph, a Petri net has dy-
namic properties that result from its exe-
cution. Assume that the execution of a
computer program represented by a flow-
chart is exhibited by placing a marker on
the flowchart to mark the instruction
being executed, and that as the execution
progresses, the marker moves around the
flowchart. Similarly, the execution of a
Petri net is controlled by the position and
movement of markers (called tokens) in

the Petri net. Tokens, indicated by black
dots, reside in the circles representing the
places of the net. A Petri net with tokens is
a marked Petri net.

The use of the tokens rather resembles a
board game. These are the rules: Tokens
are moved by the firing of the transitions
of the net. A transition must be enabled in
order to fire. (A transition is enabled when
all of its input places have a token in
them.) The transition fires by removing
the enabling tokens from their input
places and generating new tokens which
are deposited in the output places of the
transition. In the marked Petri net of Fig.
2, for example, the transition t2 is enabled
since it has a token in its input place (Pl)"
Transition ts, on the other hand, is not
enabled since one of its inputs (P3) does not
have a token. If t2 fires, the marked Petri
net of Fig. 3 results. The firing of transi-
tion t2 removes the enabling token from
place Pl and puts tokens in p2 and P3, the
two outputs of t2.

The distribution of tokens in a marked
Petri net defines the state of the net and is
called its marking. The marking may
change as a result of the firing of transi-
tions. In different markings, different
transitions may be enabled. For example,
in the marked net of Fig. 3 three transi-
tions are enabled: tl, t3, and t5, none of
which were enabled in the marking of Fig.

FIGURE 1. A s i m p l e g r a p h r e p r e s e n t a t i o n o f a P e t r l
n e t .

C o m p u t i n g Surveys , Vol. 9, No 3, Sep tember 1977

Pl

p 5~ 5p
7

FIGURE 2. A marked Petr~ net.

t

t~ P7

FIGURE 3 The mark ing resul t ing from firing t ran-
sit ion t2 in Fig. 2 Note t ha t the token in Pl was
removed and tokens were added to p2 and p3-

2. In this situation, we have a choice as to
which transition will fire next. Figure 4
shows the three possible resultant mark-
ings; from each of these, other markings
may then be reached since transition fir-
ings may continue as long as there is an
enabled transition.

Note that in the marking of Fig. 4a,
transitions t3 and t5 remain enabled, and
transition t2 is also enabled; if transition t2
fires, the resulting marking will have two
tokens in place p3. In the marking of Fig.
4b, transition t~ remains enabled but tran-

Petri Ne t s • 225

sition t5 has been disabled since there is no
longer a token in place P3. In the marking
of Fig. 4c, transition t3 has become disa-
bled. Firing either of transitions t3 or t5
disables the other; they are said to be in
conflict.

This simple, vague, and incomplete ex-
ample of a Petri net is meant to give a brief
introduction to the basic concepts of Petri
nets. It also raises some questions for fur-
ther consideration. For example, the
markings of Figs. 3, 4a, 4b, a n d 4 c were
generated from the marking of Fig. 2 by
firing transitions. Can we characterize the
class of markings that may be reached
from a given marked Petri net? Can we
characterize the class of sequences of tran-
sition firings that are possible from a
marked Petri net? What interesting prop-
erties can Petri nets have and how can
these properties be tested for?

Some of these questions are of interest
for Petri nets as abstract formal entities.
Other questions relate to Petri nets in
their function as models of other systems,
existing or proposed. For example, the net
of Fig. 2 can represent a producer-con-
sumer problem [25] with one producer
(places p~ and P2) and two consumers
(places P4, P5 and pe, P7). The items pro-
duced by the producer are passed to the
consumers. This is modeled by placep3 and
the tokens '~roduced" by transition t 2 and
"consumed" by transitions t3 and ts. For
this interpretation of the net, we may be
interested in how far the producer can get
ahead of the consumers (the maximum
number of tokens in P3), whether the con-
sumers could get ahead of the producer or
consume the same item twice, and so on.
The use of Petri nets in modeling is dis-
cussed in Section 2.

Although Petri nets are basically very
simple, they may be approached and uti-
lized in a large number of ways. Petri nets
can be considered as formal automata and
investigated either as automata or as gen-
erators of formal languages [37, 79]. Ques-
tions dealing with the theory of computa-
tional complexity have been raised [64,
49]. Petri nets have associations with the
study of linear algebra [69], Presburger
arithmetic [52], and graph theory. They

Computing Surveys, Vol. 9, No. 3, September 1977

226 • J . L . Pe terson

are a major model of concurrent systems
[6], particularly computer systems. They
are of interest in some areas of hardware
design, description and construction, soft-
ware systems, and the interactions be-
tween design and implementation.

Because of the breadth of application
and depth of research into Petri nets, we
can only touch here on many of the results.
We refer the interested reader to the origi-
nal works cited in the Bibliography for the
proofs and details of much of the research.

History
The theory of Petri nets has developed
from the work of Carl Adam Petri, A. W.
Holt, Jack Dennis, and many others. Petri
nets originated in the early work of Petri,
in Germany, who in his thesis [80], devel-
oped a new model of information flow in
systems. This model was based on the con-
cepts of asynchronous and concurrent op-
eration by the parts of a system and the
realization that relationships between the
parts could be represented by a graph, or
net.

The ideas of Petri came to the attention
of a group of researchers at Applied Data
Research, Inc., working on the Informa-
tion Systems Theory Project [43]. This
group, led by Anatol Holt, developed the
theory of "systemics" [44] which was con-
cerned with the representation and analy-
sis of systems and their behavior. It was
this work which provided the early theory,
notation, and representation of Petri nets,
and showed how Petri nets could be ap-
plied to the modeling and analysis of sys-
tems of concurrent processes.

Applied Data Research's associations
with Project MAC at MIT, and particu-
larly the Computation Structures Group
under the direction of Jack Dennis, intro-
duced the concepts of Petri nets to this
latter group. The Computation Structures
Group has been a most productive source
of research and literature in this field,
publishing several PhD theses and numer-
ous reports and memos on Petri nets [73,
32, 34, 84, 38, 28]. Two pertinent confer-
ences have been held by the Computation
Structures Group: the Project MAC Con-
ference on Concurrent Systems and Paral-

lel Computation at Woods Hole in 1970,
[23] and the Conference on Petri Nets and
Related Methods at MIT in 1975.

From the work at Applied Data Re-
search and MIT, the use of Petri nets has
spread widely. A large amount of research
has been done on both the nature and the
application of Petri nets, and their use
seems to be expanding. The simplicity and
power of Petri nets make them excellent
tools for working with asynchronous con-
current systems. Unfortunately much of
the work on Petri nets is in the form of
theses, dissertations, reports, and memos
that are not readily available nor in wide
circulation. This paper is an at tempt to
remedy this situation; it is intended as
both a survey and a tutorial on Petri nets.

It should be noted that Petri nets can be
viewed in many different ways; we cannot
present here all such views. In part due to
the difficulty of obtaining li terature on Pe-
tri nets and the newness of the theory, the
terminology, notation, and emphasis have
varied widely in research on this subject.
This problem is also caused by the power of
Petri nets and the resultant diversity of
applications.

Petri has expanded upon his original
theory, continuing work on the basic con-
cepts of information flow and the structure
of concurrent systems. This has resulted in
a form of general systems theory called net
theory [81, 82] which is related to topology.
This research, involving the fundamental
nature of information and its control, has
stimulated a wealth of further research in
Europe, particularly at the Insti tut f(lr In-
formationssystemforschung of the Gesell-
schaft fiir Mathematik und Datenverar-
beitung in Bonn. While starting with the
same fundamental concepts as the work in
the United States, this work developed in
a different direction, evolving into a more
general and abstract theory.

Holt also has continued to develop new
concepts from the original work on Petri
nets, concentrating on the development of
tools for the representation and analysis of
systems. His work has centered mainly on
research into the fundamental aspects of
concurrency and conflict in systems with
multiple parts.

Computing Surveys, Vol 9, No 3, September 1977

Petri Nets • 227

Pl

t 3

t J

(a)

FIGURE 4.
tranmtion tl; (b) Result of firing transition t3; (c)

P4

t~ P7
(b)

I) t5 •

(c)

Markings resulting from the firing of different transitions in the net of Fig. 3 (a) Result of firing
Result of firing transition t~.

In contrast to the work of Petri, Holt,
and many European researchers, which
emphasizes the fundamental concepts of
systems, the work at MIT and many other
American research centers concentrates
on those mathematical aspects of Petri
nets that are more closely related to auto-
mata theory. (This paper is writ ten from
the latter point of view.) This approach is
motivated by a desire to analyze systems
by modeling them as Petri nets, and then
manipulating the Petri nets to derive
properties of the modeled systems. This
requires the development of techniques for

analyzing Petri nets in order to answer
questions similar to those raised earlier
(e.g., what markings are reachable in a
given Petri net? What sequences of transi-
tion firings are possible? etc.). This mecha-
nistic approach is quite different in ori-
entation from the more philosophical ap-
proaches of Holt and Petri.

2. MODELING WITH PETRI NETS

In many sciences, a phenomenon is stud-
ied by examining not the actual phenome-
non itself but rather a model of the phe-

Computing Surveys, Vol. 9, No. 3, September 1977

228 • J . L. Peterson

nomenon. A model is a representation, of-
ten in mathematical terms, of what are
felt to be the important features of the
object under study. By the manipulation of
the representation, it is hoped that new
knowledge about the modeled phenome-
non, and the model itself, will be obtained
without the cost, inconvenience, or danger
of manipulating the real phenomenon it-
self. For example, much work on atomic
energy has been done by modeling because
of the expense and danger of handling ra-
dioactive materials.

Most modeling uses mathematics. The
important features of many physical phe-
nomena can be described numerically and
the relations between these features de-
scribed by equations or inequalities. Par-
ticularly in physics and chemistry, proper-
ties such as mass, momentum, accelera-
tion, position, and forces, are describable
by mathematical equations. To success-
fully utilize the modeling approach, how-
ever, requires a knowledge of both the
modeled phenomena and the modeling
techniques. Thus, mathematics has devel-
oped as a science in part because of its
usefulness in modeling phenomena in
other sciences. For example, the differen-
tial calculus was developed in direct re-
sponse to the need for a means to model
continuously changing properties such as
position, velocity, and acceleration in
physics.

Petri nets are also a modeling tool. They
were devised for use in the modeling of a
specific class of problems, the class of dis-
crete-event systems with concurrent or
parallel events. Petri nets model systems,
and particularly two aspects of systems,
events and conditions, and the relation-
ships among them [44]. In this view, in a
system, at any given time, certain condi-
tions will hold. The fact that these condi-
tions hold may cause the occurrence of
certain events. The occurrence of these
events may change the state of the system,
causing some of the previous conditions to
cease holding, and causing other condi-
tions to begin to hold.

A simple example might be that the si-
multaneous holding of both the condition
'A card reader is needed' and the condition

A CARD READER
IS NEEDED

Eli

A CARD READER
IS AVAILABLE

FIGURE 5.
an event.

NO CARD READER
IS AVAILABLE

©

A rumple model of three condit ions and

~A card reader is available' might cause
the event ~Allocate the card reader' to oc-
cur. The occurrence of this event results in
the ceasing of the conditions 'A card reader
is needed' and 'A card reader is available',
while causing the condition 'No card
reader is available' to become true. These
events and conditions, and their relation-
ships, may be modeled as in Fig. 5, where
we are using places to represent conditions
and transitions to represent events. Note
that other conditions, such as 'The card
reader is allocated', may also hold in the
system even though they are not modeled.

More complicated systems may also be
modeled in this manner. Consider for ex-
ample the following description of a com-
puter system:

• Jobs appear and are put on an input
list. When the processor is free, and
there is a job on the input list, the
processor starts to process the job.

• When the job is complete, it is
placed on an output list, and if
there are more jobs on the input
list, the processor continues with
another job; otherwise it waits for
another job.

This is a very simple system composed of
several elements: the processor, the input
list, the output list, and the jobs. We can
identify several conditions of interest:

• The processor is idle;
• A job is on the input list;
• A job is being processed;
• A job is on the output list;

and several events:
• A new job enters the system;
• Job processing is started;
• Job processing is completed;
• A job leaves the system.

Computing Surveys, Vol. 9, No 3, September 1977

A NEW JOB ENTERS
THE SYSTEM

A JOB IS ~ T" P O--SS-
ONT~Is f ~ ~i~ R ~E OR

ii
I

THE OUTPUT LIST

A JOB LEAVES
THE SYSTEM

FIGURe. 6 Modeling of a simple computer system.

The Petri net of Fig. 6 illustrates the
modeling of this system. The '~job enters"
transition in this illustration is a source;
the '~job leaves" transition is a s ink .

Properties of Petri Nets Useful in Modeling

The example above illustrates several
points about Petri nets and the systems
they can model. One is inherent concur-
rency or paral le l i sm. There are two main
kinds of independent entities in the sys-
tem: the job and the processor. In the Petri
net model, the events which relate solely
to one or the other can occur independ-
ently; there is no need to synchronize the
actions of the jobs and the processor. Thus
jobs may enter or leave the system at any
time independent of the action of the proc-
essor. However, when synchronization is
necessary, for instance when both a job
and an idle processor must be available for
processing to start, the situation is also
easily modeled. Thus a Petri net would
seem to be ideal for modeling systems of
distributed control with multiple processes
occurring concurrently.

Another major feature of Petri nets is
their asynchronous nature. There is no in-
herent measure of time or the flow of time

Petr i N e t s • 229

in a Petri net. This reflects a philosophy of
time which states that the only important
property of time, from a logical point of
view, is in defining a partial ordering of
the occurrence of events. Events take vari-
able amounts of time in real life; the Petri
net model reflects this variability by not
depending upon a notion of time to control
the sequence of events. Therefore, the Pe-
tri net structure itself must contain all
necessary information to define the possi-
ble sequences of events of a modeled sys-
tem.

Thus, in the net of Fig. 6 the event ~Job
processing is completed' must follow the
corresponding event 'Job processing is
started' because of the structure of the net
although no information at all is given or
considered concerning the amount of time
required to process a job. On the other
hand, events which need not be con-
strained in terms of their relative order of
occurrence are not constrained; thus while
a job is being processed the event ~A new
job enters the system' may occur, before,
after, or simultaneously with the occur-
rence of the event 'Job processing is com-
pleted'.

A Petri net, like the system which it
models, is viewed as a sequence of discrete
events whose order of occurrence is one of
possibly many allowed by the basic struc-
ture. This leads to a n o n d e t e r m i n i s m in
Petri net execution. If at any time more
than one transition is enabled, then any of
the several enabled transitions may fire.
The choice as to which transition fires is
made in a nondeterministic manner, i.e.,
randomly or by forces tha t are not
modeled. This feature of Petri nets reflects
the fact that in real-life situations where
several things are happening concur-
rently, the order of occurrence of events is
not unique, so that any of a set of se-
quences may occur. While nondetermi-
nism is advantageous from a modeling
point of view, it introduces considerable
complexity into the analysis of Petri nets.

To reduce this complexity, one limita-
tion is generally accepted in the modeling
of systems by Petri nets. The firing of a
transition (occurrence of an event) is con-
sidered to be ins tantaneous , i.e., to take

Computing Surveys, Vol. 9, No. 3, September 1977

230 • J . L. Peterson

zero time. Since time is a continuous vari-
able, then, the probability of any two or
more events happening simultaneously is
zero, and two transitions cannot fire si-
multaneously. The events being modeled
are considered primit ive events, Note that
this need cause no problems in the model-
ing of events. For example, in Fig. 6 the
event 'Process a job' was modeled. But
since this event is not a primitive one (it
takes nonzero time and other events, such
as the entering and leaving of the system
by other jobs, may occur at the same time),
it is decomposed into a beginning and an
ending, which are instantaneous events,
plus the noninstantaneous occurrence.
This is shown in Fig. 7. Since this tech-
nique can be used for any nonprimitive
event, the modeling power of Petri nets is
not reduced.

The nondeterministic and nonsimulta-
neous firing of transitions in the modeling
of concurrent systems takes two forms.
One of these is shown in Fig. 8, which
depicts "simultaneous" events that may
occur in either order. In this situation the
two enabled events do not affect each other
in any way and the possible sequences of
events include some in which one event
occurs first and some in which the other
occurs first.

The other type of situation, where si-
multaneity causes difficulties in modeling,
is handled by defining events to occur non-
simultaneously. This is illustrated in Fig.
9. Here the two enabled transitions tj and
tk are in confhct. Only one transition can
fire, since in so doing it removes the token
from p, and disables the other transition.
To accurately model a system using Petri
nets requires careful attention to assure
that in cases such as the above the Petri
net reflects all, and only those, event se-
quences which are possible in real life.

NON-PRIMITIVE NON-PRIMITIVE
EVENT~~BEGINS E V E N T ~

NON-PRIMITIVE
EVENT OCCURRING

FIGURE 7. Modeling of a nonpnnut ive event.

t

FIGURE 8. Modeling of %lmultaneous"
which may occur m either order.

events

t j

P~

FIGURE 9. Illustration of conflicting transitions
Transitions t~ and tk conflict since the firing of one
will disable the other.

The two concepts illustrated by Figs. 8
and 9, concurrency and conflict, are basic
to an understanding of Petri nets. At the
same time, the usefulness of Petri nets as
models of information flow derives from
the natural way in which they can be used
to express and analyze concurrency and
conflict.

An important aspect of Petri nets is that
they are uninterpreted models. The net of
Fig. 6 has been labeled with statements
that indicate to the human observer the
intent of the model, but these labels dD
not, in any way, affect the execution of the
net. The net of Fig. 10 is identical to that of
Fig. 6 in that it has an identical structure.
However, no meaning is attached to the
places and transitions in this uninter-
preted net; we deal only with the abstract
properties inherent in the structure of the
net. Since we are interested in the proper-
ties of Petri nets per se, in this paper we
concern ourselves only with uninterpreted
Petri nets.

Another valuable feature of Petri nets is
their ability to model a system hierarchi-

Computing Surveys, "Col. 9, No. 3, September 1977

t 1

t

FIGURE 10. An uninterpreted Petri net.

cally. An entire net may be replaced by a
single place or transition for modeling at a
more abstract level (abstraction) or places
and transitions may be replaced by sub-
nets to provide more detailed modeling
(refinement). Figure 11 illustrates this hi-
erarchical modeling capability.

Most of the work on Petri nets has been
in the investigation of the properties of a
given net or class of nets. Little explicit
attention has been paid to developing
modeling techniques specifically for Petri
nets. However, there are certain areas in
which Petri nets would seem to be the
perfect tool for modeling: those areas in
which events occur asynchronously and in-
dependently. There are many examples,
some of which we present here.

Modeling of Hardware

Large, powerful computer systems often
use asynchronous parallel activities in an
effort to achieve maximum parallelism
and hence increase effective processing
speed. In computers such as the CDC 6600
[91] and the IBM 360/91 [4], for example,
multiple functional units are provided to
perform computations on multiple regis-
ters. The control unit of the machine at-
tempts to keep several of these units in
operation simultaneously.

However, the introduction of parallel-
ism in this manner must be controlled so
that the results of executing the program
with and without parallelism are the
same. Certain operations in the program
will require that the results of previous
operations have been successfully com-
puted before the following instructions can
proceed. A system which introduces paral-

Petr i Ne t s • 231

lelism into a sequential program in such a
way as to maintain correct results is called
determinate . The conditions for maintain-
ing determinancy have been considered by
Bernstein [10]. They are the following: For
two operations a and b such that a pre-
cedes b in the linear precedence of the
program, b can be started before a is done
if and only ifb does not need the result of a
as an input and the results of b do not
change either the inputs or outputs of a
[15].

One method of applying these con-
straints to the construction of the com-
puter control unit that is to issue instruc-
tions is to use a reservation table. An in-
struction for functional unit u using regis-
ters ~, j , and k can be issued only if all four
of these components are not reserved; if
the instruction is issued, all four of them
become reserved. If the instruction cannot
be issued at this time, the control unit
waits until the instruction can be issued
before continuing to the next instruction.

This sort of scheme can be modeled as a
Petri net. To each functional uni t and each
register we associate a place. If the unit or
register is free, a token will be in the place;
if it is not, no token will be in the place.
Figure 12 shows a portion of a Petri net
which could be used to model the execution
of an instruction using unit u and regis-

FIGURE 11. Hierarchical modeling in Petrl nets by
replacing places or transitions by subnets (or vice
versa).

Computing Surveys, Vol. 9, No. 3, September 1977

232 • J. L. Peterson

INSTRUCTION USES DlglT u READY TO DECODE
AND REGISTERS i, j AND k NEXT INSTRUCTION

ISSUE

UNIT u ~ ~
IS FREE I ~ ~UNiT

REGISTER u OPERATING

REGISTER (•
j is FREE\V]7 I'

~/ ~INSTRUCTION

kREGISTERIs FREE ~ COMPLETED
FIGURE 12. A portion of a Petr i ne t modeling a

control un i t for a computer with mult iple registers
and mult iple functional units.

ters i , j , and k. Modeling the entire control
unit would of course require a much larger
Petri net.

The scheme described above is a very
simple method of introducing parallelism
and does not consider, for example, the
fact that multiple functional units can use
the same register as an input simultane-
ously. Thus, this scheme may not produce
schedules with maximum parallelism [55].
However, there are other schemes which
can do so. These (more complicated)
schemes can also be modeled by (more
complicated) Petri nets. For example, the
CPU of a CDC 6600 has been modeled by a
Petri net [90]. This model was used to de-
termine how object code should be gener-
ated to minimize execution time by maxi-
mizing parallelism between the various
functional units.

Another approach to the construction of
a high-performance computer is the use of
pipelines [13]. This technique is useful,
particularly for vector and array process-
ing, and is similar to the operation of an
assembly line. The pipeline is composed of
a number of stages, which may be in exe-
cution simultaneously. When stage k fin-
ishes, it passes on its results to stage (k +
1) and looks to (k - 1) for new work. If each
stage takes t time units and there are n
stages, then the complete operation for one
operand takes nt time units. However, if
the pipe is kept supplied with new oper-

ands, it can turn out results at the rate of
one every t time units.

As an example, consider the addition of
two floating-point numbers. The gross
steps involved are:

a) Extract the exponents of the two
numbers;

b) Compare the exponents, and inter-
change if necessary to properly or-
der the larger and smaller of the
exponents;

c) Shift the smaller fraction to equal-
ize exponents;

d) Add fractions;
e) Post-normalize;
f) Consider exponent overflow or un-

derflow, and pack the exponent
and fraction of the result.

Each of these steps can be performed by a
separate computational unit, with a par-
ticular operand being passed from unit to
unit for the complete addition operation.

The coordination of the different units
can be handled in several ways. Typically,
the pipeline control is synchronous with
the time allowed for each step of the pipe,
being some fixed constant t ime t; every t
time units, the result of each unit is
shifted down the pipe to become the input
for the next unit. However, this can un-
necessarily hold up processing, as the time
needed may vary from stage to stage and
may also vary for different inputs. For
example, the post-normalization step in
the floating-point addition above may take
different amounts of t ime depending on
how long the normalization shift should be
and whether it should be to the left or to
the right. Thus processing might be
speeded up by an asyrmhronous pipeline in
which results from stage k are sent on to
stage (k + 1) as soon as stage k is done and
stage (k + 1) is free. This scheme can be
easily modeled by a Petri net.

Consider an arbitrary stage in the pipe-
line. Operations at this stage require cer-
tain inputs and produce certain outputs.
Obviously, there has to be a place to put
the inputs and outputs. Typically, this in-
volves registers: the unit uses the values
in its input register to produce values in its
output register. It must then wait until 1)
a new input is available in its input regis-

Computing Surveys, Vol. 9, No. 3, September 1977

~ i ;~ '~<~7:1 ~ i . ~ # ~

ter and 2) its output register has been emp-
tied by being copied into the input register
of the next stage. Thus the control for the
pipeline needs to know when the following
conditions hold:

• input register full;
• input register empty;
• output register full;
• output register empty;
• unit busy;
• unit idle;
• copying taking place.

Figure 13 shows the Petri net which
models the operation of an asynchronous
pipeline of this kind. Other forms of pipe-
line control units can also be defined in
terms of Petri nets.

The above examples show some of the
uses to which Petri nets can be put in the
modeling of hardware. Petri nets have also
been associated with the description of
general modular asynchronous systems
[22, 75] and macromodules [14]. At Honey-
well, Petri nets have been used for investi-

f ours ~T

GISTER

F OUTPUT

!

\ /
/ \ /

i

\ /

FIGURE 13. Representation of an asynchronous
pipelined control unit. The block diagram on the
left is modeled by the Petri net on the right.

P e t r i N e t s • 233

gating the fault-tolerant properties of de-
signs [48].

Modeling of Software

On a more abstract level, Petri nets can
also model software concepts [24, 77, 61].
Resource allocation, deadlock, and process
coordination in an operating system can be
modeled. A process can be modeled by a
Petri net in the same way that it can be
modeled by a flowchart, and then the in-
teractions between processes can be
modeled as additional places, arcs and
transitions.

For example, consider the mutual exclu-
sion problem [25]. This is a problem of
enforcing coordination of processes in such
a way that particular sections of code
called critical sections, one in each proc-
ess, are mutual ly excluded in time. That
is, if Process 1 is executing its critical sec-
tion, then Process 2 may not begin i ts criti-
cal section until Process 1 has left its own
critical section. At its highest level of ab-
straction, the situation is illustrated as
follows:

Process I Process 2

~ ! i ! ~ t i o n ~~mt.~laC~ii~tio n ' Halt

The problem is to define appropriate entry
code and exit code to assure mutual exclu-
sion.

The mutual exclusion problem can be
easily solved by using P and V operations
as defined in [25] for process synchroniza-
tion and coordination. The P and V opera-
tions operate on semaphores, and only P
and V instructions may be executed on a
semaphore. (A semaphore S is a variable
with integer values.) These operations can
be defined as follows:

P(S): As soon asS > 0, setS:= S-l;
V(S): S:= S+I.

Computing Surveys, Vol. 9, No. 3, September 1977

234 • J . L . Pe terson

These are indivisible operations. A process
executing a P operation must wait until
the semaphore is positive before it can de-
crement it and continue. A V operation
simply adds one to the semaphore (per-
haps allowing some other process to exe-
cute a P operation). Two processes cannot
execute P or V operations on the same
semaphore concurrently. For example,

Process I Process 2
P(mutex); P(mutex);
"Crihcal Sechon"; "Critical Sechon";
V(mutex); V(mutex);

is a solution of the mutual exclusion prob-
lem diagrammed above using P and V op-
erations, which are primitive, and the
semaphore "mutex" which is global to the
two processes and has an initial value of
one.

P and V operations have been used
widely. Systems of processes that use these
operations can be modeled by Petri nets
(see [74]). A semaphore is modeled by a
place; the number of tokens in the place
models the value of the semaphore. A V
operation on the semaphore places a token
in the semaphore; a P operation removes a
token (it waits until there is one to re-
move, if necessary). This is illustrated in
Fig. 14. The mutual exclusion problem can
then be modeled as shown in Fig. 15, in
which the place S models the semaphore.
Note that places P2 and P4 are mutually
excluded.

The modeling of P and V operations by
Petri nets has resulted in the discovery
and proof of some limitations of these nets.
Patil showed that certain process synchro-
nization problems (such as the Cigarette
Smokers Problem) cannot be solved by P
and V operations [74]. Other work follow-

~ (a)
FIGURE 14. Examples of modehng with sema-

phores. (a) Modeling of a P operation; (b) Model-
ing of a V operation.

FIGURE 15. A Petrl net model of a P / V solution to
the mutual exclusion problem

ing up this technique of using Petri nets to
prove properties of semaphore systems is
reported in [57], [3], and [56].

These simple examples can only provide
a slight indication of the modeling power
of Petri nets and the many diverse systems
that can be modeled by them. Many other
areas of study have been mentioned as
possible subjects of Petri net modeling, in-
cluding resource allocation, operating sys-
tems [71], queueing networks, traffic con-
trol, distributed computer systems, legal
systems [65], proofs in mathematics [30],
and brain modeling. While much work in
developing modeling techniques remains
to be done, Petri nets are a very powerful
modeling tool that can be applied to a
large variety of systems.

3. STRUCTURE OF PETRI NETS
The use of Petri nets for the modeling of
concurrent systems requires a careful un-
derstanding of the properties of such nets.
The development of an appropriate theory
has motivated most of the research on Pe-
tri nets. This basic theory is presented in
the following sections. Since this paper is
tutorial in nature, we have tried to limit
the formality of the presentation; however,
all of the concepts presented here have
been rigorously defined and formalized in
the literature. The reader who is inter-
ested in a more formal t reatment should
consult the references.

Petri nets are composed of two basic

Computmg Surveys, Vol. 9, No 3, September 1977

components: a set of places, P, and a set of
transitions, T. To complete the definition,
it is necessary to define the relationship
between the places and the transitions.
This can be done by specifying two func-
tions connecting transitions to places: I,
the input function, and O, the output func-
tion. The input function I defines, for each
transition t~, the set of input places for the
transition I(t~). The output function O de-
fines, for each transition tj, the set of out-
put places for the transition O(tj).

These four items define the structure of
a Petri net. Places and transitions are the
fundamental undefined concepts of Petri
net theory; other concepts are defined in
terms of these concepts. Formally, a Petri
net C is defined as the four-tuple C = (P,
T , I , O) .

Consider the following example Petri
net structure, defined as a four-tuple.
Each component of the structure is given:

C = (P , T , I , O)
P = {pl, I~, p~, t)4, ps}
T = {t , , t~, t3, tJ

I(tO = {p~} O(t~) = {P2, P3, Ps}
l(t~) = {/)2, P3, Ps} O(t2) = {Ps}
I(t3) = {P3} O(t3) = {P4}
I(t4) = {P4} O(t4) = {I~, t~}

ThePetri Net Graph

Although the definition given above is
useful and appropriate for formal work
with Petri nets, it is ill-suited for the illus-
tration of many of the concepts of Petri
nets in an informal and intuitive, yet con-
cise, manner. For this purpose a different
representation of a Petri net is more use-
ful: the Petri net graph. Figure 16 shows
the Petri net graph corresponding to the
structure described above.

A Petri net structure consists of places,
transitions, and the input and output func-
tions. In a Petri net graph there are two
types of nodes corresponding to the places
and transitions of the Petri net structure: a
circle represents a place, and a bar repre-
sents a transition. The input and output
functions are represented by directed arcs
from the places to the transitions and from
the transitions to the places. An arc is
directed from a place p, to a transition tj if
the place is an input of the transition.

Pe t r i N e t s • 235

c 4

t I

FIGURE 16. A Pe t r i n e t g raph .

Similarly, an arc is directed from a transi-
tion tj to a place pt if the place is an output
of the transition.

A Petri net graph is a directed graph
since the arcs are directed. In addition,
since its nodes can be partitioned into two
sets (places and transitions) such that each
arc is directed from an element of one set
(place or transition) to an element of the
other set (transition or place), it is a bi-
partite directed graph.

The correspondence between Petri net
graphs and Petri net structures is so natu-
ral that in most work they are considered
not merely as different representations for
the same concept, but rather as the same
concept. Thus we refer to either Petri net
graphs or Petri net structures as Petri
nets. In this paper we give our examples as
Petri net graphs, but our discussion and
techniques are defined in terms of Petri
net structures.

Markings

A marking ~t of a Petri net is an assign-
ment of tokens to the places in that net.
CToken" is a primitive concept for Petri
nets.) Tokens reside in the places of the
net. The number and position of tokens in
a net may change during its execution.
The vector fe = (f¢~, ft2, "", ~) gives, for
each place in the Petri net, the number of
tokens in that place. The number of tokens
in place pt is p~, i = 1, ..., n. We may also
define a marking function/~: P --* N from
the set of places to the natural numbers,
N = {0, 1, 2, ...}. This allows us to use the
notation ~(pi) to specify the number of
tokens in place p~. For a marking
~ , ~ (p t) = ~ .

On a Petri net graph, tokens are repre-

Computing Surveys, Vol. 9, No. 3, September 1977

236 • J . L. Peterson

P2

t 4

-~P3 "3

FIGURE 17 A marked Petr i net.

sented by small solid dots inside the circles
representing the places of the net. Figure
17 is an example of a Petri net graph with
a marking. It represents the structure de-
scribed in the previous section with the
marking p = (1, 0, 1, 0, 2). A Petri net C =
(P, T, I, O) with a marking ft becomes the
marked Petri net, M = (P, T, I , O, Iz).

Since the number of tokens in a place is
unbounded over the set of all markings,
there is an infinite number of markings for
a Petri net. It is, of course, a denumerable
infinity.

Execution Rules for Marked Petri Nets

Having presented the definitions and rep-
resentations of Petri nets and their mark-
ings, we now present the execution rules
for marked Petri nets.

A Petri net executes by f ir ing transi-
tions. A transition may fire if it is enabled.
A transition is enabled if each of its input
places has at least one token in it. In Fig-
ure 17, for example, since the inputs to
transition t2 are placesp2, p3, andps, tran-
sition t2 is enabled if p2 has at least one
token, p3 has at least one token, andp5 has
at least one token.

A transition fires by removing one token
from each of its input places and then de-
positing one token into each of its output
places. Transition t3 in Fig. 17, with I(t3) =
{P3} and O (t3) ---- {P4}, is enabled whenever
there is at least one token in place P3.
Transition t3 fires by removing one token
fromp3 (its input) and placing one token in
P4 (its output). Extra tokens in P3 are not
affected by firing t3 although they may
enable additional firings of t3 later. Transi-
tion t2 with I (t2) = {P2, P3, P5} and O(t2) =

{P5} fires by removing one token from each

of P2, P3, and P5 and then puts one token
in P5.

Firing a transition will in general
change the marking of the Petri net,/~, to
a new marking p' . Note that since only
enabled transitions may fire, the number
of tokens in each place always remains
nonnegative when a transition is fired.
Firing a transition can never remove to-
kens that are not there: if any one of the
input places of a transition contains no
tokens, then the transition cannot fire.
Figure 18 summarizes the possible results
of firing a transition. If a place is an input
to the transition, one token is removed; if
it is an output, one token is added. No net
change occurs if the place is neither an
input nor an output, or is both an input
and an output. In the latter case, it is
necessary for a token to be in the input
place even though no change in marking
occurs for this place.

The State Space of a Petri Net

The state of a Petri net is defined by its
marking. Thus the firing of a transition
represents a change in the state of the net.
The state space of a Petri net with n places
is the set of all markings, i.e., N". The

Pl
not
in

I(tj)

Pi
in

I(tj)

tj

I

©
~'(pi) = ~(pi)

t.
3

~'(Pi) " ~(pi) - 1

t j

~'(pi) = u(pi) + 1

t.
3

~*(Pi) = U(pi) + 1 - 1

= ~(pi)

Pi not in O(t 3) Pi in O(tj)

FIGURE 18. The changes in the mark ing of a place
p, which resul t from fir ing a t r anmhon tj.

Computing Surveys, Vol. 9, No. 3, September 1977

change in state caused by firing a transi-
tion is defined by a partial function 8,
called the next-state function. Application
of this function to a marking ft and a tran-
sition tj yields the value of the marking
that results from the firing of transition tj
in marking ft. Since t~ can fire only if it is
enabled, 8(ft, tj) is undefined if t~ is not
enabled in marking ft. Iftj is enabled, then
8(ft, tj) = ft', where ft' i s the marking that
results from removing tokens from the in-
puts of tj and adding tokens to the outputs
oftj.

Given a Petri net and an initial marking
fto, we can execute the Petri net by succes-
sive transition firings. Firing a transition
tj in the initial marking produces a new
marking ftl = 8(fto, tj). In this new mark-
ing, we can fire any new enabled transi-
tion, say tk, resulting in a new marking
ft2 = 8(ftl, tk). This can continue as long as
there is at least one enabled transition in
each marking. If we reach a marking in
which no transition is enabled, then no
transition can fire and the execution of the
Petri net must stop.

As an example of Petri net execution,
consider the execution of the marked Petri
net of Fig. 17. In the marking/.to = (1, 0, 1,
0, 2), two transitions, tl and t3, are ena-
bled. Choosing one arbitrarily, we can fire
t3 producing the marking 8(ft °, t3) = (1, 0,
0, 1, 2) = ft~. In this marking, transitions tl
and t4 are enabled. Firing t4 changes the
marking to 8(ft ~, t4) = (1, 1, 1, 0, 2) = ft2. In
ft2, t~, t2, and t3 are enabled. Firing tl re-
sults in ft 3 = 8(ft2, t~) = (0, 2, 2, 0, 3). This
process can continue as long as at least one
transition is enabled.

Two sequences result from the execution
of the Petri net: a sequence of markings
(fto, f t] , ft2, ...), and a sequence of transi-
tions (t~o), tj(1), tj~2), "") such that 8(ft k, t~k))
= ftk+~ for k = 0, 1, 2, In the example
above the transition sequence w a s t3, t4, t],
• "; therefore Jo = 3, j l = 4, J2 = 1, "".
Given the transition sequence and ft °, we
can easily derive the marking sequence for
the execution of the Petri net and, except
for a few degenerate nets, given the mark-
ing sequence we can derive the transition
sequence. Both of these sequences thus
provide a record of the execution of the net.

Petri Nets • 237

The Reachability Set of a Petri Net

From a marking ft, a set of transition fir-
ings is possible. The result of firing a tran-
sition in a marking ft is a new marking ft'.
We say that ft' is immediately reachable
from ft if we can fire some enabled transi-
tion in the marking ft resulting in the
marking ft'. A marking ft' is reachable
from ft if it is immediately reachable from
ft or is reachable from any marking which
is immediately reachable from ft. We then
define the reachability set R(M) for a
marked Petri net M = (P, T, I, O, ft) as the
set of all markings which can be reached
from ft. This is the reflexive transitive
closure of the "immediately reachable" re-
lationship.

The reachability set of a marked Petri
net is the set of all states into which the
Petri net can enter by any possible execu-
tion. Hence many analysis questions deal
with properties of the reachability set of a
Petri net. (This is discussed in more detail
in Section 4.)

Considering a Petri net in terms of
states and state changes may obscure
some of the more important concepts relat-
ing to concurrent systems tha t can be
modeled by Petri nets. One of these is the
concept of local changes in state, as
modeled by transitions. In a complex sys-
tem composed of independent asynchro-
nously operating subparts, each part can
be modeled by a Petri net. The enabling
and firing of transitions are then affected
by, and in turn affect only, local changes
in the marking of the Petri net. Separate
parts of the total system may operate inde-
pendently and concurrently. The view of
Petri nets presented here, with a global
state and a global sequence of transitions,
can hide the inherent modularity and con-
currency in the Petri net model. However,
despite some important objections to this
automata-theory-related conception [44],
most research in the United States has
been based on this approach.

4. ANALYSIS OF PETRI NETS

Why should systems be modeled as Petri
nets? Originally, the purpose was mainly
descriptive. Petri nets with their uniform

Computmg Surveys, Vol. 9, No. 3, September 1977

238 • J . L. Peterson

and simple execution rules, can be used to
describe a system in terms of simple con-
cepts which provide a natural way to de-
pict systems of asynchronous concurrent
processes [24]. After a short time, how-
ever, it became obvious that another use of
Petri nets was to take the description of
the system, as a Petri net, and analyze it
for the presence of desirable or undesirable
properties. A body of work is being devel-
oped which is aimed at deriving, from a
Petri net, properties of the net, and from
these, the properties of the system which
the net models. Some of the analytic ques-
tions that one would like to ask about a
Petri net are quite difficult; hence, re-
stricted subclasses of Petri nets have been
defined to make analysis easier in specific
situations. (This will be discussed in Sec-
tion 6.)

Following this train of thought, another
use of Petri nets would seem to be in the
design of concurrent systems. One method
of design would consist in first creating a
design in a traditional representation, for
example, a logic circuit or a program.
Then the design would be converted into a
Petri net and the Petri net analyzed. If no
design errors were discovered, the design
could then be implemented in the tradi-
tional manner. If there were errors, how-
ever, it would be necessary to determine
how the error which was found in the Pe-
tri net representation manifests itself in
the original design, modify the design, and
repeat the entire process of conversion to a
Petri net and analysis. This process could
be simplified if the design process could be
carried out directly in Petri nets and the
resultant Petri net implemented directly.
This approach requires that both the nec-
essary design techniques and the methods
for implementing Petri net designs, in
hardware or software, be developed.

Although some work on design with Pe-
tri nets [67] and implementation of Petri
nets [73, 27, 75] has been done, it has been
limited in scope, presumably because its
success hinges on the existence of effective
analysis techniques.

Analysis Questions
The first task in developing analysis tech-
niques is to define the types of questions

that the analysis procedures are to an-
swer, and the properties to be studied. Ob-
viously, the analysis techniques should be
oriented towards the solution of those
problems that most need to be solved
rather than towards areas that are only of
academic interest. We discuss now some of
the properties that have been investigated
for Petri nets.

One property of Petri nets derives from
their original definition in terms of events
and conditions. A condition is represented
by a place. The fact that the condition
holds is indicated by a token in the place.
Consider, however, that either a condition
holds or it does not hold. Hence, a token
should either be present or it should be
absent. Also, no more than one token
should ever be present in one place at one
time, as it seems pointless to have multi-
ple tokens when one is sufficient. Petri
nets which are constructed such that no
more than one token can ever be in any
place of the net at the same time are safe
nets [44].

Another definition of a safe net is the
statement that there is a bound on the
number of tokens in any place of the net,
and that bound is 1. A natural generaliza-
tion of this is to allow multiple tokens in a
place but only to the extent that there are
no more than k tokens in any given place
at the same time• Nets in which the num-
ber of tokens in any place is bounded by k
are called k-bounded nets. (Thus a safe net
is a 1-bounded net.) If a net is k-bounded
for some k but we do not know the value of
k, it is simply called bounded.

Boundedness is a very important practi-
cal property of Petri nets. If we wish to
implement a design modeled by a Petri
net, then since the capacity of any given
hardware is bounded, the Petri net must
be bounded if construction is to be possible.
In other words, if, for example, places are
to be implemented as counters, then since
every physically realizable counter can
only hold a bounded number, the net must
also be bounded.

Another property that might be impor-
tant is conservation of tokens. If tokens
are used to represent resources, then it
follows that since resources are neither
created nor destroyed, tokens should also

Computing Surveys, Vol. 9, No. 3, September 1977

be neither created nor destroyed. A Petri
net is conservative if the number of tokens
in the net is conserved. This implies that
each transition in a conservative net is
conservative, in the sense that the number
of inputs of each firable transition is equal
to the number of outputs of that transition.
More generally, weights can be defined for
each place allowing the number of tokens
to change as long as the weighted sum is
constant [62].

Notice that the above statement was
qualified to restrict it to firable transi-
tions. Consider the Petri net of Fig. 19,
which depicts a nonfirable transition.
Transitions tl and t2 are conservative.
Transition t3 is not conservative, in the
sense that if it ever fired it would decrease
the number of tokens by two. However, for
any initial marking in which the number
of tokens inp3 is zero, this transition is not
firable and hence the number of tokens in
the net is conserved. This means, then,
that the transition t3 and place P3 can be
deleted from the net, simplifying it, with
no change in its behavior. This would al-
low a simpler and cheaper implementa-
tion.

The notion of transitions that cannot
fire seems strange, and we want to be able
to identify such transitions. Note that a
transition which cannot fire is not simply a
transition which is not enabled, but rather
a transition which cannot become enabled.
A transition is dead in a marking if there
is no sequence of transition firings that
can enable it. A transition is potentially
firable if there exists some sequence that
enables it [35]. A transition of a Petri net
is live if it is potentially firable in all
reachable markings.

The importance of the concepts of live-
hess and deadness of transitions comes
from considerations in the modeling of op-
erating systems. Liveness is tied to the
concept of deadlocks and deadlock-freeness
[45]. Thus it may be important not only
that a transition be firable in a given
marking, but that it stay potentially fira-
ble in all markings reachable from that
marking. If this is not true, then it is
possible to reach a state in which the tran-
sition is dead, perhaps signifying a possi-
ble deadlock.

Petri Nets • 239

2

P3 t 3

Fmvmz 19 A Petr i net with a nonfirable transi-
tmn. Tranmtmn t3 is dead in th is marking .

A number of different definitions of live-
ness have been considered. Commoner [16]
defines four subtly different forms of live-
hess for a transition tj and a marking ~:

LI: If there exists a p ' in R (M) such
that 8(/~', tj) is defined (i.e., tj is po-
tentially firable);

L2: If for every positive integer n there
exists a transition sequence ~ such
that 8(~, ~) is defined and t~ appears
at least n times in ~;

L3: If there exists an infinite sequence
of transition firings such that 8(/~,
~) is defined and t~ appears infi-
nitely often in ~;

L4: If t~ is live (i.e., potentially firable
in all reachable markings).

Note that the implications of the four defi-
nitions of liveness are quite different (see
[53]). Thus, whenever the property of live-
ness in a Petri net is discussed, it is impor-
tant to state carefully the definition being
used, since we do not yet have a single
commonly accepted definition.

As mentioned earlier, the concept of
liveness was developed to deal with dead-
lock problems in operating systems. Other
problems in operating systems can also be
posed in terms of Petri nets. The actual
statement of these questions depends upon
the manner in which the system is
modeled. For example, access to a resource
may be modeled by a transition or a place.
The mutual exclusion problem is to assure
that at most one of perhaps several proc-
esses tries to access the resource at the
same time. Depending on the modeling
used, this will be expressed as a question
concerning whether or not two transitions

Computing Surveys, Vol, 9, No. 3, September 1977

240 • J. L. Peterson

can be enabled simultaneously or whether
or not two places may have tokens simul-
taneously.

Notice, however, that both of these
questions can be stated in terms of the
reachability of any of a set of undesirable
states. In fact, many questions can often
be reduced to the reachabdity problem.
The reachability problem is simply the fol-
lowing: Given a marked Petri net (with
marking ~) and a marking ~', is ~' reach-
able from ~? This problem is very impor-
tant to the analysis of Petri nets. It can be
considered a special case of the set reacha-
bility problem, which is to determine if a
set of markings, S = {~1, g2 gk}, is a
subset of the reachability set R(M) of a
marked Petri net.

There are many other interesting ques-
tions that might be studied with Petri
nets. Furthermore, since the questions de-
signers want to ask about their designs
depend on the projected use of the designs,
there will always be new questions. Thus
it is important to develop general tech-
niques that allow new types of questions to
be answered. The basis for the importance
of the reachability problem is that many
questions about the correctness of systems
modeled as Petri nets can be translated
into instances of this problem. For in-
stance, Hack has shown that the liveness
problem (are all transitions live?) is redu-
cible to the reachability problem and that
in fact the two problems are equivalent,
since reachability is also reducible to live-
ness [35].

Solution Techniques

While several approaches to the analysis
of Petri nets have been considered, almost
all work in this area eventually uses one
basic technique. This technique involves
finding a finite representation for the
reachability set of a Petri net, in recogni-
tion of the fact that many of the properties
of a Petri net are based on properties of its
reachability set. The representation used
is known as the reachability tree. It con-
sists of a tree whose nodes represent mark-
ings of the Petri net and whose arcs repre-
sent the possible changes in state resulting
from the firing of transitions [51, 53].

Notice, however, that the reachability
set of a marked Petri net is often infinite.
Thus, to form a finite representation of an
infinite set we must map many markings
into the same node of the tree. This many-
to-one mapping is accomplished by collaps-
ing a set of states into a node by ignoring
the number of tokens in a place of the net
when this number becomes "too large."
This is represented by using a special sym-
bol, ¢o, for the number of tokens in this
place.

The symbol co represents a value which
can be arbitrarily large. Because of this we
must interpret the operations of addition,
subtraction, and comparison as

co + a =¢0

a < ¢ o

for any natural number a. Thus, co might
be thought of as a symbol for infinity.

Each node in the reachability tree is
labeled with a marking; arcs are labeled
with transitions. The initial node (root of
the reachability tree) is labeled with the
initial marking. Given a node x in the
tree, additional nodes are added to the tree
for all markings that are directly reach-
able from the marking of the node x. For
each transition t~ which is enabled in the
marking for node x, a new node with
m a r k ~ g 8(x, tj) is created, and an arc la-
beled t~ is directed from the node x to this
new node. This process is repeated for all
new nodes.

Continuing this process will obviously
create the entire state-space. A path from
the initial marking (root) to a node in the
tree corresponds to an execution sequence.
Since the state-space may be infinite, two
special steps are taken to define a finite
reachability tree. First, if a new marking
is generated which is equal to an existing
marking on the path from the root node to
the new marking, the new (duplicate)
marking becomes a terminal node. Since
the new marking is equal to the previous
marking, all markings reachable from it
have already been added to the reachabil-
ity tree by the earlier identical marking.

Second, if any new marking x is gener-
ated which is greater than a marking y on

Computmg Surveys, Vol 9, No. 3, September 1977

the path from the root node to the marking
x, then those components of marking x
which are strictly greater than the corre-
sponding components of marking y are re-
placed by the symbol oJ. Since marking x is
greater than marking y, any sequence of
transition firings which is possible from
marking y is also possible from marking x.
In particular, the sequence that trans-
formed marking y into marking x can be
repeated indefinitely, each time increas-
ing the number of tokens in those places
which have a ¢o. Thus the number of to-
kens in these places can be made arbitrar-
ily large.

As an example of this construction, con-
sider the marked Petri net of Fig. 20. We
begin with (1, 0, 1, 0) as the root of the
tree. In this marking, we have only one
enabled transition. Thus we have a new
node corresponding to firing t3, (1, 0, 0, 1)
and an arc from (1, 0, 1, 0) to (1, 0, 0, 1).
From this marking we can fire t2, resulting
in (1, 1, 1, 0). Now, since (1, 1, 1, 0) -> (1, 0,
1, 0), we replace the second component by
oJ. This reflects the fact that we can fire
the sequence t3t2 an arbitrary number of
times and make the number of tokens in
place p2 as large as desired. In the mark-
ing (1, co, 1, 0), two transitions are ena-
bled, tl and t3. Firing these two would give
us two new nodes, (1, ~0, 0, 0) and (1, w, 0,
1). The first of these has no successors
since 8((1, co, 0, 0), t,) is undefined for all t~.
The second enables t2, which fires to give
(1, ~, 1, 0) which is identical to an earlier
node. Thus, the complete reachability tree
is as shown in Fig. 21.

Analysis Using the Reachability Tree

How is the reachability tree used for anal-
ysis? Let us consider some of the questions
raised in the previous section.

On the questions of safeness and bound-
edness, notice tha t if a Petri net is k-
bounded, then, by definition, no more than
k tokens are ever in any place. Thus the
possible values for each place are drawn
from the set {0, 1 k} and there are
only (k + 1) n possible reachable markings.
Therefore, the reachable state-space is
finite.

Petri Nets • 241 p2 p t 2

Pl 4

~3

FIGURE 20. A P e t n ne t wi th mark ing (1,0,1,0) and
infinite reachable state-space.

FIGURE 21.
Fig. 19.

(1,0,1,0)

(1,0,0,1)

(1,~,1,0)

(1 ~ , 0 , 0) (1,~,0,1)

(1,~,1,0)

The reaehabih ty tree of the Petr i net of

In the same way, consider a conserva-
tive Petri net. If we let k be the number of
tokens in the net, then we must always
have k tokens in the net. Since there are
only a finite number of ways to partition k
tokens among n places, we must again
have a finite reachability set.

Now consider the reachability tree. If
any node in the reachability tree contains
the symbol o~, then that component can
become arbitrarily large, i.e., it is not
bounded. Thus, if the symbol ~o is any-
where in the reachability tree, the reacha-
bility set is not finite and hence neither
bounded nor conservative. On the other
hand, if the co symbol does not occur any-
where in the tree, then the reachability
tree is the reachability set and both are
finite. This means that the reachability set
is bounded, and the bound can be estab-
lished by inspection. Similarly, if the

Computing Surveys, Vol. 9, No. 3, September 1977

242 • J . L. Peterson

reachability set is finite, conservation can
be determined by inspection. In fact, for a
finite reachability set, any analysis ques-
tion can be solved by inspection.

Other problems can also be solved using
the reachability tree. For example, the
coverability problem can be solved by in-
spection of the reachability tree [51, 35].
The coverability problem is the following:
Given a marked Petri net M and a mark-
ing /~, does there exist a marking/~' in
R(M) such that ~' -> re? This problem is
useful in determining whether violations
of mutual exclusion occur in a system, and
in testing transitions for liveness (dead-
lock).

The Reachability Problem

The more general questions of liveness
and reachability are not answerable by the
reachability tree. Because of the funda-
mental nature of the reachability problem
in the analysis of Petri nets and vector
addition systems- an equivalent modeling
system [51, 34]- i t has been the object of a
considerable amount of research. It has
been shown that the general reachability
problem is equivalent to several special
cases such as the zero reachability problem
(is the zero vector an element of the reach-
ability set?) [70] and the subset reachabil-
ity problem (given a nonempty subset of
places and a marking ft, is any reachable
marking equal to ~ for the specified subset
of places, with all other places allowed to
have any value?) [34]. These problems are
equivalent in that if an algorithm can be
found to solve any one of them it can be
modified to solve any of the others.

Such an algorithm has recently been
found [88]. The algorithm is very difficult
to follow and depends upon both a search
through a finite tree of possible solutions
and the recursive solution of reachability
problems for lower-dimensional state-
spaces. However, regardless of the com-
plexity of the algorithm, its existence
shows that the reachability problem is
solvable (although possibly at a high cost).

Since the liveness problem is equivalent
to the reachability problem [35], it also is
solvable.

Unsolvable Problems

Some Petri-net problems are not solvable
despite their apparent similarity to the
reachability problem. The first such prob-
lem studied was the subset problem: given
two marked Petri nets, is the reachability
set of one net a subset of the reachability
set of the other net? Rabin showed this
problem to be undecidable [9, 33]. Later
Hack showed that the equality problem-
given two marked Petri nets, is the reach-
ability set of one net equal to the reacha-
bility set of the other ne t? - i s also unde-
cidable [36].

These problems are important for appli-
cations in which one might want the Petri
nets to be optimized, but the set of reacha-
ble markings not to be changed. Unfortu-
nately, it has been shown that both of
these problems are undecidable in the
sense that there exists no general algo-
rithm which can decide, for two arbitrary
marked Petri nets, if their reachability
sets are equal or one is the subset of the
other. This proof is quite complicated. It is
based on the construction of a Petri net
which (weakly) computes the value of a
polynomial in such a way that if the equal-
ity problem is decidable then Hilbert's
tenth problem is solvable. Since Hilbert's
tenth problem is known to be unsolvable,
the equality problem is undecidable. This
in turn implies the undecidability of the
subset problem.

Complexity

While much attention has been focused on
the decidability of the reachability prob-
lem and similar problems, other aspects of
Petri net analysis procedures have also
been investigated. One aspect that has re-
cently come under investigation is the
computational complexity of the problem.
While it is not yet possible to determine
the complexity exactly, it is possible to
give its lower bounds. Lipton has shown
that the reachability problem is exponen-
tial time-hard and exponential space-hard
[64]. That is, the amount of time and mem-
ory space needed to solve the reachability
problem must be at least an exponential
function of the length of the input descrip-

Compum~g Surveys, Vol. 9, No. 3, September 1977

tion of the Petri net (in the worst case).
This is a lower bound; the actual complex-
ity could be much worse. Lipton also shows
that the coverability problem has an expo-
nential space lower bound. Rackoff [83]
has obtained an algorithm for solving cov-
erability in exponential space, showing
this to be a tight lower bound. The com-
plexity of some other problems in Petri
nets has also been considered [49].

These complexity analyses are very im-
portant in determining the usefulness of
Petri nets for the modeling and analysis of
systems. The recent discovery that the
reachability problem is decidable marked
a significant advance in the search for
analysis techniques; however, the com-
plexity bounds as well as the large number
of places and transitions needed to model
even simple systems tend to indicate that,
although analysis questions may be decid-
able using Petri nets, in the worse case the
cost of answering even simple questions
may make such analysis unfeasible.

5. PETRI NET LANGUAGES

Another area in which Petri nets have
been used is the study of formal languages
(see [79, 37]). Here Petri nets are used to
model the flow of information and control
of actions in a system. The firing of a
transition models the occurrence of an op-
eration in the modeled system. A Petri net
properly models a system if every se-
quence of actions in the modeled system is
possible in the Petri net and every se-
quence of actions in the Petri net repre-
sents a possible sequence in the modeled
system.

To represent these concepts, we label
the transitions of a Petri net; with each
transition we associate a symbol naming
the transition. Since there are only a finite
number of transitions, we can define a
finite alphabet Z which is the set of all
these symbols. A labeling function (r maps
transitions to symbols, i.e., a:T--*Z. A la-
beled marked Petri net defines a set of
strings over Z, each string corresponding
to a possible execution of the net. The set
of all possible strings corresponding to the
possible executions of a marked labeled
Petri net defines a P e t n net l anguage .

P e t r i N e t s • 243

Several varieties of Petri net languages
result from slightly different approaches to
defining the languages of a Petri net. One
entire group of languages results from the
use of different labeling policies, since re-
strictions on the allowable labeling func-
tions create restricted classes of Petri net
languages.
The free languages are those obtained

when one introduces the requirement that
all transition labels be distinct and non-
null, i.e., ~(t~) 4= ~(t~ for t~ dffi t~. This re-
quirement reflects the view that since
distinct transitions model distinct events,
they should be distinctly labeled.

A more general class of languages re-
suits if one allows a more general label
function in which many transitions may
be labeled with the same symbol. This re-
flects the view that the same action can
result from different circumstances, and
hence may be modeled by different transi-
tions. The modeling process may even in-
troduce some "extra" transitions that are
necessary for proper token movement but
do not correspond to actions of interest in
the modeled (real) system.

A third class of labeling functions allows
transitions to be labeled with the n u l l la-
bel h. A null label is defined as a label
which does not show up in the string re-
sulting from an execution of the Petri net.

As an example of the differences of these
labeling policies, consider the Petri net of
Fig. 22. Let the language under considera-
tion be the set of sequences whose net re-
sult is to move the token in place Pl to
place P4 (i.e., the set of sequences {t E
T*18((1, 0, 0, 0), t) = (0, 0, 0, I)}). If we
label the transitions with the free labeling

~l (t ,) = a al(t3) = b

~r~(t~) = c (r~(t~) = d ,

then the language is {ancbndln >-- 0}. A
nonfree but h-free labeling such as

Or2(tl) = a O'2(t3) ffi b

~(t~) = a a~(tJ = b

yields the language {a"b" In > 0}. If transi-
tion tl is assigned a null label, then the
language which results could be the regu-
lar language {ab*c}.

Computmg Surveys, Vol. 9, No. 3, September 1977

244 • J . L . Pe terson

t ~ t3 -[Qp

k.L/pl \I 2 "k.Jp 3 -It4 --
FIaum~ 22. A Petn net with marking (1,0,0,0).

The class of labeling functions is only
one of the determinates of Petri net lan-
guages. Another is the definition of the set
of final states. Remember that a language
is the set of all possible sequences result-
ing from the execution of a labeled Pe t r i
net starting in an initial marking (or one
of a finite set of initial markings) and ter-
minating in any element of a set of f ina l
m a r k i n g s . Different classes of languages
correspond to different definitions of the
set of final markings.

Four types of Petri net languages have
been defined in terms of the definition of
final markings [39]:

L-type: T h e set of final markings is de-
fined by a finite final marking setF;

G-type: Given a finite marking set F, a
final marking is any marking
which is greater than or equal to
any element of F;

T-type: A final marking is any terminal
marking (a marking in which no
transition is enabled);

P-type: All reachable markings are final
markings.

As an example of the differences be-
tween these different language classes,
consider the Petri net of Fig. 23, which is a
labeled version of the net of Fig. 22. (The
labeling shown is free, but that is not im-
portant.) For a final state set F = {(0, 0, 1,
0)}, the L-type language is {a"cb" In >- 0},
the G-type language is {amcb ~ t m >- n >- 0},
the T-type language is {amcb"d l rn >_ n >-
0}, and the P-type language is {am I m - 0}
t.) {amcb" I m >- n ~ O} U {amcb"d I m >- n
0}.

With three different kinds of labeling
functions and four different kinds of final-
state sets, twelve different classes of Petri
net languages can be defined. Despite
their differences, these classes are closely

4 a b

FIGURE 23. Labeled marked Petm ne t correspond-
mg to the ne t of Fig. 22.

related. Preliminary investigations have
shown that a number of containment rela-
tionships hold between the classes. For ex-
ample, since the labeling functions are
successively more general, all Petri net
languages with free labelings are also Pe-
tri net languages with k-free labelings
which in turn are also Petri net languages
with arbitrary labelings. It can be shown
that all P-type languages are also G-type
languages, that all G-type and T-type lan-
guages with arbitrary or k-free labelings
are L-type languages with the same type
of labeling, and that L-type languages
with arbitrary labelings are also T-type
languages. These relationships are shown
in Fig. 24, in which an arc between classes
is used to indicate that one class is con-
tained within the other. It is not known
whether other arcs might also exist or
which containments are proper.

The L-type and P-type languages have
been investigated in greater depth. L-type
languages have been shown to be closed
under union, intersection, concatenation,
concurrency, reversal and k-free homo-

ARBITRARY A-FREE FREE
LABELING LABELING LABELING

T-type T A ~ T

L-type ~ L

G-type !A ~_!

P-type !A ~ !
FIGURE 24. Relationships among

classes of Petr i ne t languages.
the

T f

L f

G f

1
~ pf

different

Computing Surveys, Vol. 9, No 3, September 1977

morphism [77, 37]. P-type languages are
more restrictive but are still closed under
union, intersection, concatenation and
concurrency [37]. Hack has developed a
characterization theorem for L-type lan-
guages showing that the class of L-type
languages is the smallest of languages
that includes a finite language and the
complete parenthesis language and is
closed under inverse homomorphism, con-
currency, intersection and k-free homo-
morphism. (The complete parenthesis lan-
guage is the context-free language over
two symbols {(,)} whose strings are
properly nested parenthesis strings [37].)

The relation of Petri net languages (of
the L-type) and other classes of languages
has also been examined. All regular lan-
guages are Petri net languages. Some con-
text-free languages are Petri net lan-
guages and some Petri net languages are
context-free, but neither class includes the
other. Their common intersection includes
regular languages and bounded context-
free languages, among others. Surpris-
ingly, the complement of a free Petri net
language is context-free [18]. All k-free
Petri net languages are context-sensitive
[77]. These relationships are illustrated in
Fig. 25. In this diagram, an arrow between
two classes of languages indicates proper
containment. Note that Petri net lan-
guages appear to be roughly equivalent to
context-free languages in complexity (and
interest).

The original impetus for studying Petri
net languages was to try to settle some of
the decidability questions for Petri nets. It
has been shown [37] that the membership
problem for Petri nets with k-free or free
labelings is decidable, but the inclusion
and equivalence problems for P, P~, L and
L ~ languages are undecidable. Many de-
cidability problems are equivalent to the
reachability problem and thus decidable.

A different approach to the study of Pe-
tri nets by the use of formal language the-
ory has been considered by Crespi-Re-
ghizzi and Mandrioli [19]. They noticed
the similarity between the firing of a
transition and the application of a produc-
tion in a derivation in which places are
nonterminals and tokens are separate in-

P e t r i N e t s • 245

TYPE- 0

CONTEXT- SENSITIVE

/
PETRI NET

\
CONTEXT- FREE

LANGUAGES ~ ~ I

REGULAR BOUNDED
CONTEXT- FREE

FmURE 25. Relationships among Petri net lan-
guages and the clasmcal language classes.

stances of the nonterminals. The major
difference of this approach is the lack of
ordering information in the Petri net con-
tained in the sentential form of the deriva-
tion. To accommodate it, Crespi-Reghizzi
and Mandrioli defined the c o m m u t a t i v e
g r a m m a r s , which are isomorphic to (gen-
eralized) Petri nets. In addition, they con-
sidered the relationship of Petri nets to
matrix, scattered-context, non-terminal-
bounded, derivation-bounded, equal-ma-
trix, and Szilard languages. For example,
it is not difficult to see that the class L r is
the set of Szilard languages of matrix con-
text-free languages [21]. Similar work by
Keller considered the class of commutative
semi-Thue systems [53]. Keller has also
pointed out that k-free languages are a
subset of real-time counter languages [26].

It should be pointed out that this entire
approach to Petri nets and languages may
represent an approach from the wrong di-
rection: Petri nets were designed to repre-
sent concurrent activity, yet the represen-
tation of a Petri net execution by a string
forces all activity to be represented seri-
ally, incorrectly implying a total ordering
between events. Some work has consid-
ered other representations of the partial
orderings resulting from concurrent activi-
ties [43, 85], but further research is needed
in this area.

6. EXTENSIONS AND SUBCLASSES

The success of any model is due to two
factors: its modeling power and its decision
power. Modeling power refers to the abil-

Computing Surveys, Vol. 9, No. 3, September 1977

246 • J . L . Pe te r son

ity to correctly represent the system to be
modeled so that the model will be a faith-
ful representation of the modeled system.
Decision power refers to the ability to ana-
lyze specific versions of the model and de-
termine properties of the modeled system
[54].

These two factors generally work at
cross purposes. Consider, for example, fi-
nite-state systems. Since the set of reach-
able states is finite, it is possible to answer
almost any question about a finite-state
model; hence such a model has very high
decision power. On the other hand, the
class of systems which can be modeled is
severely limited, which means that such a
model has very low modeling power. Tur-
ing machines, by contrast, have good
modeling power but, since most general
questions are undecidable, have poor deci-
sion power. When we increase modeling
power (and hence the complexity of the
models and the modeled systems), our
ability to algorithmically determine the
properties of the models is generally de-
creased.

Petri net models represent an attempt to
compromise between these two factors.
They have better modeling power than fi-
nite-state models while (one hopes) retain-
ing most of the farter's decision power. As
a matter of fact, Petri nets were originally
defined in answer to the limited modeling
power of finite-state models.

Not all researchers have been satisfied
with the modeling power of Petri nets,
however. It is difficult to model some
events or conditions in systems by Petri
nets, and it has been shown that the cor-
rect modeling of other relatively reasona-
ble systems is impossible [3, 57]. Thus sev-
eral proposals have been put forth for ex-
tending the modeling power of Petri nets.

Extended Petri Nets

One of the first extensions is to remove the
constraint that a place may contribute or
receive only one token from the firing of a
transition. Consider the modeling of chem-
ical reactions. Here a token in a place
represents the availability of a certain
molecule or atom. Chemical reactions are

modeled by transitions and may occur
whenever tokens indicate the availability
of the reactants. The firing of the transi-
tion models the reaction, which consumes
inputs (reactants) and produces outputs
(products). Notice that a chemical reaction
may well require more than one unit of a
particular reactant. This is modeled by al-
lowing multiple arcs between transitions
and places, signifying the number of to-
kens needed. Figure 26 illustrates a Petri
net model of a reaction that needs three
C12 and two P to produce two PCI~. In order
for the transition to fire, at least three Cl2
and two P must be available. The firing of
the transition absorbs these tokens and
produces two tokens in its output place.

Petri nets that allow multiple arcs have
been called generalized Petri nets [34, 54].
Hack has shown that these nets are equiv-
alent to ordinary Petri nets (at most one
arc between a place and a transition).
Hence although this change may increase
the convenience of use, it does not change
the fundamental modeling power or deci-
sion power of Petri nets. Most researchers
thus use generalized Petri nets in their
work, often ignoring the distinction be-
tween them and what we have defined as
Petri nets in this paper.

A more fundamental extension of Petri
nets was undertaken by a number of au-
thors [1, 5, 73] in response to difficulties in
the modeling of priority systems with Petri
nets. This extension involves so-called
zero-testing [53]: the introduction of arcs
from a place Pi to a transition t~ which
allow the transition to fire only if the place

1 ©
PCl3

F m u n 26. Petr i ne t model of a chemical reaction,
i l lus t ra t ing the concept of mult iple input and out-
pu t ares between a t rans i t ion and a place.

Comlzlting Surveys, Vol. 9, No. 3, September 19"/7

Pl ~ P2
7

P3 P4

FIOUaE 27. An extended Petri net which has no
equivalent narrowly defined Petrl net.

p, has zero tokens in it. These special arcs
have been drawn in several ways. We rep-
resent them as shown in Fig. 27. Note that
transition c2 can fire only if places P4 and
b~ each have at least one token in them
and place b l has exactly zero tokens. The
arc from b~ to c2 is called an inhibitor arc;
it gives transition cl priority over transi-
tion c2.

The addition of inhibitor arcs is a major
extension of the concept of Petri nets.
Agerwala has shown that Petri nets ex-
tended in this manner have the modeling
power of a Turing machine and hence can
also be used to show that many decision
problems are undecidable [1]. Many other
extensions of Petri nets including the in-
troduction of priorities between transi-
tions, time bounds on transition firings
[66], or constraint sets that prohibit tokens
residing simultaneously in two places [73]
are equivalent to Petri nets with inhibitor
arcs and hence to Turing machines. In
terms of modeling power Petri nets seem
to be just below Turing machines, so that
any significant extension results in Tur-
ing-machine equivalence [78].

Subclasses o! Petri Nets

It was hoped that the limitations on the
modeling power of Petri nets relative to
Turing machines would be balanced by a
compensating increase in decision power.
This appears to be the case, since for Petri
nets many decision problems are equiva-
lent to the reachability problem, which

Petri Nets • 247

has been shown to be decidable. However,
research on the complexity of the reacha-
bility problem has shown that even though
it is decidable, it is very difficult to solve.
Thus, from a practical point of view, Petri
nets may be too powerful to be analyzed.

The result of this has been the definition
of a number of subclasses of Petri nets, in
hopes of finding a subclass with (known)
decision power and still adequate model-
ing power for practical purposes. These
subclasses are defined by restrictions on
their structure intended to improve their
analyzability.

Two subclasses are most commonly con-
sidered, state machines and marked
graphs [44]. State machines are Petri nets
which are restricted so that each transi-
tion has exactly one input and one output.
These nets are obviously conservative and
hence finite-state. In fact, they are exactly
the class of finite-state machines. This is
clearly shown by considering the state
graph of a finite-state machine, as in Fig.
28a. The nodes of this graph represent the
states of the finite-state machine. An arc
from state i to state j labeled x indicates
that there is a transition from state i to
state j with input x. Note that this state
graph is nondeterministic. The graph of
Fig. 28a can be converted to an equivalent
Petri net by simply making each state a
place, and making each arc between two
places a transition. This is illustrated in
Fig. 28b. Note that this Petri net is con-
servative. If the state graph had been non-
deterministic, then the Petri net would
also have this characteristic. Finite-state
machines, being finite, have very high de-
cision power, but they are of limited use-
fulness in modeling systems which are not
finite.

Marked graphs, the dual of state ma-
chines, have also been studied extensively
[17, 44]. A marked graph is a Petri net in
which each place has exactly one input
transition and one output transition. Algo-
rithms are known for showing that a
marked graph is live and safe, and for
solving the reachability problem for
marked graphs. Thus, marked graphs
have high decision power. They have lim-
ited modeling power, however, since they

Computing Surveys, Vol. 9, No. 3, September 1977

248 J. L. Peterson

b

a P

b a

b

(a)

a b

a

(b)

FIGURE 28 E q m v a l e n t mode l s of a f in i t e - s t a t e ma -
chine. (a) S t a t e g r a p h model (b) Pe t r i n e t model .

tiple outputs for the place, then there is a
free choice as to which of the transitions is
fired.

Hack and Commoner have shown that
liveness and safeness for free-choice Petri
nets are decidable and have given neces-
sary and sufficient conditions for these
properties. Hack has also shown that free-
choice nets can model a class of systems
called production schemata which are sim-
ilar to assembly-line systems.

Other subclasses of Petri nets have been
defined [32], for example simple Petri nets,
but little analysis of them has been done to
date. Figure 29 shows allowed and disal-
lowed situations for three subclasses.
Landweber and Robertson [58] have stud-
ied the classes of conflict-free and persist-
ent Petri nets.

Related Models

Any discussion of Petri nets would be in-
complete without a mention of vector addi-
tion systems. These systems were defined
by Karp and Miller [51] and are equivalent

MARKED
GRAPHS

ALLOWED NOT ALLOWED

are able to model only those systems
whose control flow has no branches. In F~E-

CHOICE
other words, parallel activities can be eas- ~Ts
ily modeled, but not alternative activities.

The problem with modeling data-de-
pendent decisions (branches) in a Petri net
is that conflicts may arise, and nets with
conflicts seem to be difficult to analyze.
Hack has investigated the class of free-

SIMPLE choice Petr~ nets [32] in which each arc NETS
from a place is either the unique output of
the place, or the unique input to a transi-
tion. This restriction means that if there is
a token in a place then either the token
will remain in that place until its unique
output transition fires or, if there are mul-

F m u ~ 29 Dif ferences be tween t h e s u b c l a s s e s of
Pe t r i ne ts .

Computing Surveys, Vol. 9, No 3, September 1977

to Petri nets [34]. A vector addition system
is essentially a mathematical formulation,
in terms of vectors, of the markings and
transitions of a Petri net. Since the mathe-
matical formulation is more convenient
for formal manipulation than Petri net
graphs, many results are given in terms of
vector addition systems, although they ap-
ply equally to Petri nets. Vector replace-
ment systems [53] are a related (and
equivalent) model based on a generaliza-
tion of the vector addition systems.

It should also be pointed out that Petri
nets are far from the only model of concur-
rent systems to have been developed. The
many other models developed to date in-
clude program graphs [87], computation
graphs [50], message transmission sys-
tems [85], flow graph schemata [89], and
complex bilogic directed graphs [31]. Baer
has published a survey of some of these
models [6]. A comparison of the properties
of many of these models [78] has shown
that most of them are either subclasses of
Petri nets or equivalent to Petri nets.
These results have been reinforced by the
comparisons of Agerwala [2] which arrive
at much the same conclusion concerning
the relative modeling power of the various
models. The definition of equivalence must
be carefully considered, however. Lipton,
Snyder, and Zalcstein [63] have compared
models using a definition of equivalence
considerably different but no less valid
than those of Peterson and Bredt or Ager-
wala, and arrived at important differences
in the modeling power of the various
models of concurrent systems.

CONCLUSIONS

The Petri net has been defined as a model
for systems exhibiting concurrent asyn-
chronous activities. The major factors that
might affect its acceptance are concerns
regarding the modeling power and deci-
sion power of the model. Although Petri
nets are not the only models of asynchro-
nous concurrent systems, they are equiva-
lent to or include most other models. In
addition they have a certain clearness and
cleanness which permits a simple and nat-
ural representation of many systems.

Petri Nets • 249

Thus they have gained increasing accept-
ance in the last decade, and their use is
growing.

A major modeling system must provide
more than simply a convenient represen-
tation system, however. It must also pro-
vide analysis procedures that can be used
to determine properties of the modeled sys-
tem through the model. Some such analy-
sis procedures for Petri nets do exist, al-
lowing the analysis of systems for bound-
edness, conservation, coverability, and
reachability of a marking. However, other
properties, such as inclusion or equiva-
lence of two Petri nets, have been shown to
be undecidable. Even though problems
such as reachability may be decidable,
complexity results tend to indicate that
these problems may be intractable, requir-
ing too much computational time and
space to be practical. Any significant ex-
tension of the Petri net model tends to be
equivalent to a Turing machine, and
hence analysis of these extensions is not
possible due to decidability problems. The
subclasses which have been examined
have good decision properties, but may be
too limited for useful modeling. On this
topic as on many others relating to Petri
nets, much work remains to be done.

ACKNOWLEDGMENTS

I am grateful to R. M. Keller, M. Hack, L. H
Landweber, D. Mandrioh, E. L. Robertson, the ref-
erees, and the editors for their suggestions and com-
ments.

BIBLIOGRAPHY

[1] AGERWALA, T. A complete model for repre-
senttng the coordinatmn of asynchronous proc-
esses, Hopkins Computer Research Report No.
32, Computer Scmnce Program, Johns Hop-
kins Univ., Baltimore, Md., July 1974, 58 pp.

[2] AGERWALA, T. An analysis of controlhng
agents for asynchronous processes, Hopkins
Computer Research Report No. 35, Computer
Scmnce Program, Johns Hopkins Univ., Balti-
more, Md., Aug. 1974, 85 pp.

[3] AGERWALA, T.; AND FLYNN M. "Comments
on capabihtms, hmitations and 'correctness' of
Petri nets," in Proc. Ist Annual Symp Com-
puter Architecture, G. J. Lipovsh, and S. A.
Szygenda (Eds.), ACM, N.Y., 1973, pp. 81-86.

[4] ANDERSON, D W ; SPARACIO, F. J.; ANDTOMA-
SVLO, R.M. "The IBM System/360 Model 91:
Machine philosophy and instruction han-

Computing Surveys, VoL 9, No. 3, September 1977

250

[5]

• J . L . P e t e r s o n

dling,"IBMJ. R. & D. 11, 1 (Jan. 1967), 8-24.
BAss, J .L. '~Modelling for parallel computa-
tion: a case study," in Proc. 1973 Sagamore
Computer Conf. Parallel Processing, Springer-
Verlag, N.Y., 1973.

[6] BABS, J. L, "A survey of some theoretical
aspects of multiprocessing," Computing Sur-
veys 5, 1 (March 1973), 31-80.

[7] BAKER, H. G. Petri nets and languages,
Computation Structures Group Memo 68,
Project MAC, MIT, Cambridge, Mass., May
1972, 6 pp.

[8] BAKES, H.G. ~ Equivalence problems of Pe-
tri nets," MS Thesis, Dept. Electrical Engi-
neering, MIT, Cambridge, Mass., June 1973,
53 pp.

[9] BAKES, H.G. Rabin" s proof of the undecida-
bility of the reachability set inclusion problem
of vector addition systems, Computation Struc-
tures Group Memo 79, Project MAC, MIT,
Cambridge, Mass., July 1973, 18 pp.

[10] BEsN~rEIS, A.J . 'Trogram analysis for par-
allel processing," IEEE Trans. Electronic
Comp. EC-15, (Oct. 1966), 757-762.

[11] BERNSTEm, P.A. Description problems in the
modeling of asynchronous computer systems,
Tech. Rep. 48, Dept. Computer Science, Univ.
Toronto, Toronto, Canada, Jan. 1973.

[12] CBRF, V. G. '~Multiprocessors, semaphores,
and a graph model of computation," PhD The-
sis, Computer Science Dept., Univ. Calif., Los
Angeles, April 1972.

[13] CHv.N, T. C. "Overlap and pipeline process-
ing," in Introduction to computer architecture,
H. S. Stone (Ed.), Science Research Associ-
ates, Chicago, Ill., 1975, pp. 375-431.

[14] CLARK, W.A. "Macromodular computer sys-
tems," in Proc. 1967 Spring Jr. Comp Conf.,
Thompson Book Co., Washi" "ngton, D.C., 1967,
pp. 335-336.

[15] COrFMAS, E. G.; AND DENNmC, P.
J. Operating systems theory, Ch. 2, Prentice-
Hall, Englewood Cliffs, N. J., 1973, pp. 31-82.

[16] COMMON~R, F. G. Deadlocks in Petri nets,
CA-7206-2311, Applied Data Research, Wake-
field, Mass., June 1972, 50 pp.

[17] COMMONER, F.; HOLT, A. W.; EVBN, S.; AND
PNUELI, A. "Marked directed graphs," J.
Computer and Systems Science 5, (Oct. 1971),
511-523.

[18] CRF~PI-REGHIZZI, S.; AND MANDRIOLI, D.
"Properties of firing sequences," presented at
MIT Conf. Petr~ Nets and Related Methods,
MIT, Cambridge, Mass., July 1975.

[19] CRESPI-REGHIZZI, S.; AND MANDRIOLI, D.
Petri nets and commutative grammars, Inter-
nal Report No. 74-5, Laboraterio di Calcola-
tori, Instituto di Elettrotecnica ed Elettromca
del Politecnico di Milano, Italy, March 1974.

[20] CRESPI-REGHIZZI, S.; AND MANDRIOLI, D. "A
decidability theorem for a class of vector-addi-
tion systems," Information Processing Letters
3, 3 (Jan. 1975), 78-80.

[21] CEESPI-REGHIZZI, S.; AND MANDEIOLI, D.
'Tetri nets and Szilard languages," Informa-
tion and Control 33, 2 (Feb. 1977), 177-192.

[22] DBNNIS, J. B. "Modular asynchronous con-
trol structures for a high performance proces-
sor," in Record of the Project MAC Conf. Con-
current and Parallel Computatwn, ACM,
N. Y., 1970, pp. 55-80.

[23] DENmS, J. B. (Ed.), Record of the project
MAC conf. concurrent systems and parallel

computation, ACM, N. Y,, 1970, 199 pp.
[24] DRNms, J .B. , Concurrency in software sys-

tems, Computation Structures Group Memo
65-1, Project MAC, MIT, June 1972, 18 pp.;
also in Advanced course in software engineer-
ing, F. L. Bauer (Ed.), Springer-Verlag, Ber-
lin, W. Germany, 1973, pp. 111-127.

[25] DIJ~RA, E. W., ~'Cooperating sequential
processes," in Programming languages, F.
Genuys (Ed.), Academic Press, N. Y., 1968,
pp. 43-112.

[26] FISCHER, P. C.; MBYES, A. R.; Am) ROSES-
BS~, A.L. ~Counter machines and counter
languages," Mathemaacal Systems Theory 2, 3
(1968), 265-283.

[27] FUSTBK, F. "Modular implementation of Pe-
tri nets," MS Thesis, Dept. Electrical Engi-
neering, MIT, Cambridge, Mass., Sept 1971.

[28] FURTBK, F. C. "The logic of systems," PhD
Thesis, Dept. ElectricalEngineering, MIT,
Cambridge, Mass., May 1976; also Tech. Rep.
170, MIT Laboratory Computer Science, June
1976.

[29] GSNRICH, H. J. Einfache nieht-sequentieUe
Prozesse (Simple nonsequential processes),
Gesellschaft ftir Mathematlk und Datenverar-
beitung, Birlinghoven, W. Germany, 1970.

[30] GENSICH, H. J. The Petr~ net representation
of mathematical knowledge, GMD-ISF Inter-
nal Report 75-06, Institut fur Informationssys-
temforschung, Gesellschaft fiir Mathematik
und Datenverarbeitung, Birlinghoven, W.
Germany, 1975.

[31] GO,SLOW, K.P . 'Tlow of control, resource
allocation and the proper termination of pro-
grams," PhD Thesis, Computer Science Dept.,
Univ. Calif., Los Anlgeles, Dec. 1971, 219 pp.

[32] HACK, M. ~Analysls of production schemata
by Petri nets," MS Thesis, Dept. Electrical
Engineering, MIT, Cambridge, Mass.; also:
MAC TR-94, Project MAC, MIT, Feb. 1972,
119 pp; Errata: Hack, M. Correcttons to 'Anal-
ysis of production schemata by Petri nets;
Computation Structures Note 17, Project
MAC, M_IT, June 1974, 11 pp.

[33] HACK, M. A Petri net version of Rabin's un-
decidability preof for vector addmon systems,
Computation Structures Group Memo 94,
Project MAC, MIT, Cambridge, Mass., Dec.
1973, 12pp.

[34] HACK, M. Decision problems for Petrl nets
and vector addition systems, Computation
Structures Group Memo 95, Project MAC,
MIT, Cambridge, Mass., March 1974; also
Technical Memo 59, Project MAC, MIT,
March, 1975.

[35] HACK, M. The recursive equwalence of the
reachability problem and the liveness problem
for Petri nets and vector addiaon systems,
Computation Structures Group Memo 107,
Project MAC, MIT, Cambridge, Mass., Aug.
1974, 9 pp.; also in Proc. 15th Annual Syrup.
Switching and Automata, IEEE, N. Y., 1974.

[36] HACK, M. The equality problem for vector ad-
dition systems ~s undecidable, Computation
Structures Group Memo 121, Project MAC,
MIT, Cambridge, Mass., April 1975, 32 pp.;
also in Theoretical Computer Science 2, 1
(June 1976).

[37] HACK, M. Petri net languages, Computation
Structures Group Memo 124, Project MAC,
MIT, Cambridge, Mass., June 1975, 128 pp.;
also TR 159, Laboratory Computer Science,

Computing Surveys, Vol. 9, No. 3, September 1977

MIT, March 1976.
[38] HACK, M. "Decidability questions for Petri

nets," PhD Thesis, Dept. Electrical Engineer-
i_ng, MIT, Cambridge, Mass., Dec. 1975; also
TR-161, Laboratory Computer Science, MIT,
June 1976, 194 p~.

[39] HACK, M.; AND VETESSON, J. L. "Petri nets
and langnages," presented at MIT Conf. Petn
Nets and Re~ted Methods, MIT, Cambridge,
Mass., July 1975.

[40] HANSAL, A.; AND SCHWAB, G.M. On marked
graphs 111, Report LN 25.6.038, IBM Vienna
Laboratories, Vienna, Austria, Sept. 1972.

[41] HENHAPL, W. Firing sequences of marked
graphs, Report LN 25.6.023, IBM Vienna
Laboratories, Vienna, Austria, June 1972.

[42] HENHAPL, W. Firing sequences of marked
graphs II, Report LN 25.6.036, IBM Vienna
Laboratories, Vienna, Austria, June 1972.

[43] HOLT, A. W.; SAINT, H ; SHAPIRO, R. M.; AND
WARSHALL, S. Final report of the mformatton
system theory project, Tech. Rep. RADC-TR-
68-305, Rome Air Development Center, Grif-
fiss Air Force Base, N. Y., Sept. 1968.

[44] HOLT, A. W.; AND COMMONER, F. E~;ents and
condition, Applied Data Research N.Y., 1970;
also in Record Project MAC Conf. Concurrent
Systems and Parallel Computatmn, (Chapters
I, II, IV, and VI) ACM, N.Y., 1970, pp. 3-52.

[45] HOLT, R. C. "On deadlock m computer sys-
tems," PhD Thesis, Dept. Computer Science,
Cornell Umv., Ithaca, N Y., Jan. 1971; also
TR 71-91, Dept. Computer Science, Cornell
Univ.; and TR CSRG-6, Computer Science Re-
search Group, Umv. Toronto, Toronto, Can-
ada, July 1972.

[46] IZmCKL H. On marked graphs, Repo_rt LR
25.6.023, IBM Vienna Laboratories, Vienna,
Austria, Sept. 1971.

[47] IZBICKL H. On marked graphs H, Rel~_ rt LN
25.6.029, IBM Vienna Laboratories, Vienna,
Austria, Jan. 1972.

[48] JACK, L. "Graphical representation for fault
tolerant phenomena," presented at Seminar,
Dept. Electrical Engineering, Univ. Texas,
Austin, Jan. 1976.

[49] JONES, N. D.; LANDWEEER, L. H.; ANDLxEN, Y.
E. Complexity of some problems in Petri nets,
TR-276, Comp. Science Dept., Umv. Wiscon-
sin-Madison, Sept. 1976, 43 pp.; to appear in
Theor. Comp. Sci.

[50] KARP, R. M.; ANn MILLER, R.E. Troperties
of a model for parallel computation: determi-
nacy, termination, queueing," SIAM J. Appl.
Math. 14, 6 (Nov. 1966) 1390-1411.

[51] KARP, R. M.; AND MILLER, R. E. "Parallel
rogram schemata," J. Computer and Systems
cience 3, 4 (May 1969), 167-195.

[52] KASAMI, T.; TOKURA, N.; AND PETERSON, W.
W. "Vector addition systems and synchroni-
zation problems of concurrent processes,"
draft manuscript, 1974.

[53] KELLER, R.M. Vector replacement systems: a
formalism for modell~ng asynchronous sys-
tems, Tech. Rep. 117, Computer Science Labo-
ratory, Princeton Univ., Princeton, N.J., Dec.
1972; Revised: Jan. 1974, 57 pp.

[54] KELLER, R. M. Generaltzed Petrz nets as
models for system verification, Tech. Rep. 202,
Dept. Electrical Engineering, Princeton
Univ., Princeton, N.J., Aug. 1975.

[55] KELLER, R. M. "Look-ahead processors,"
Computing Surveys 7, 4 (Dec. 1975), 177-196.

Petri Nets • 2 5 1

[56] KELLER, R.M. ~Formal verif~ation of paral-
lel programs," Comm. ACM 19, 7 (July 1976),
371-384.

[57] KOSARA~U, S. R. Limitations of Dijkstra's
semaphore primitives and Petri nets, Tech.
Rep. 25, Jol~ns Hopkins Univ., Baltimore, Md.
May 1973, 5pp. ; also in Operating Systems
Review 7, 4 (Oct. 1973), 122-126.

[58] LANDWEBER, L. H.; AND ROSZRTSON, E.
L. Properties of conflict M e and perscstent
Petr~ nets, Tech. Rep. 264, Computer Sciences
Dept., Univ. Wisconsin-Madison, Madison,
Wise., Dec. 1975, 30 ~p.

[59] LAUER, P. E.; AND ~A~B~LL, R. H. A de-
scription of path expressions by Petri nets,
Tech. Rep. 64, Computing Laboratory, Univ.
Newcastle Upon Tyne, England, May 1974, 39
P! P

[60] LAUER, P. E. Path expressions as Petri nets,
or Petri nets with fewer tears, MRM 70, Com-
puting Laboratory, Univ. Newcastle Upon
Tyne, England, Jan. 1974, 61 pp.

[61] LAUTENBACH, K.; AND SCHMID, H.A. "Use of
Petri nets for proving correctness of concur-
rent process systems," in Proc. IFIP Congress
74, North-Holland Publ. Co., Amsterdam,
The Netherlands, 1974, pp. 187-191.

[62] LIEN, Y.E. ~Termination properties of gen-
eralized Petri nets," SIAM J. Computing 5, 2
(June 1976), 251-265.

[63] LIPTON, R. J.; SNYDER, L.; AND ZALCSTZIN,
Y. "A comparative study of models of paral-
lel computation," inProc. 15th Annual Syrup.
Switching and Automata, IEEE, N.Y., 1974,
pp. 145-155.

[64] LIPTON, R. "The reaehability problem and
the boundedness problem for Petri nets are
exponential-space hard," presented at MIT
Conf. Petri Nets and Related Methods, MIT,
Cambridge, Mass., July 1975; also TR-62,
Dept. Computer Science, Yale Univ., New
Haven, Conn., Jan. 1976.

[65] MELDMAN, J. A.; AND HOLT, A. W. ~Petri
nets and legal systems," Jurimetrics J. 12, 2
(Dec. 1971).

[66] MERLIN, P . A . "A study of recoverability of
computing systems," PhD. Thesis, Dept. In-
formation and Computer Science, Univ. Calif.
Irvine, 1974, 165 pp.

[67] MmUNAS, D. "Petri nets and speed independ-
ent design," Comm. ACM 16, 8 (Aug. 1973),
474-481.

[68] MILLER, R. E. A comparison of some theoreti-
cal models of parallel computation, RC 4230,
IBM T.J. Watson Research Center, Yorktown
Heights, N.Y.; also lEEE Trans. Comp. C-22,
8 (Aug. 1973), 710-717.

[69] MURATA, T.; AND CHURCH, R.W. Analysis of
marked graphs and Petri nets by matrix equa-
t/ons, Research Report MDC 1.1.8, Dept. In-
formation Engineering, Univ. Illinois, Chi-
cago Circle, Nov. 1975, 25 pp.

[70] NASH, B. O. "Reaehability problems in vec-
tor addition systems," American Math.
Monthly 80, 3 (March 1973), 292-295.

[71] NOE, J. D. A Petri net model of the CDC
6400, Report 71-04-03, Computer Science
Dept., Unlv'. Washington, 1971; also in Proc.
ACM SIGOPS Workshop on System Perform-
ance Evaluation, ACM, N.Y., 1971, pp. 362-
378.

[72] NoB, J. D.; At~-v Nu~r, G . J . "Macro E-Nets
for representation of parallel systems," IEEE

Computing Surveys, Vol. 9, No. 3, September 1977

252

[73]

• J . L . Pe terson

Trans. Comp. C-22, 8 (Aug. 1973), 718-727.
PATIL, S .S . Coordination of asynchronous
events," PhD Thesis, Dept. Electrical Engi-
neering, MIT, Cambridge, Mass., May 1970;
also MAC TR-72, Project MAC, MIT, June
1970, 236 pp.

[74] PATIL, S. S. Limitations and eapabdtttes of
Dijkstra's semaphore prtmitives for coordina-
tton among processes, Computation Structures
Group Memo 57, Project MAC, MIT, Cam-
bridge, Mass., Feb. 1971.

[75] PATIL, S. S. Ctrcutt tmplementatmn of Petri
nets, Computation Structures Group Memo
73, Project MAC, MIT, Cambridge, Mass.,
Dec. 1972, 14 pp.

[76] PATIL, S. S.; AND DENNIS, J .B . The descnp-
twn and real~zatwn of d~g~tal systems, Compu-
tation Structures Group Memo 71, Project
MAC, MIT, Cambridge, Mass., Oct. 1972; also
in Proc. S~xth Annual IEEE Computer Society
Internatl. Conf. Digest of Papers, IEEE, N.Y.,
1972.

[77] PETEmS, ON, J. L. "Modelling of parallel sys-
tems,' PhD Thesis, Dept. Electrical Engineer-
ing, Stanford Univ., Stanford, Calif., Dec.
1973, 241 pp.

[78] PETZRSON, J. L ; AND BREDT, T. H. "A com-
arison of models of parallel computation," in
roc. IFIP Congress 74, North-Holland Publ.

Co., Amsterdam, The Netherlands, 1974, pp.
466-470.

[79] PETERSON, J. L. "Computation sequence
sets," J. Computer and System Scwnces 13, 1
(Aug. 1976), 1724.

[80] P~.~I, C.A. 'Kommumkatlon mit Automa-
ton," Schriflen des Rheinlsch-Westfal-ischen
Ins~tutes ~ r Instrumentelle Mathemat~k an
der Univers~mt Bonn, Heft 2, Bonn, W. Ger-
many 1962; translation: C. F. Greene, ~upple-
ment 1 to Tech. Rep. RADC-TR-65-337, Vol.
1, Rome Air Development Center, Griffiss Air
Force Base, N.Y., 1965, 89 pp.

[81] PRTRI, C. A. "Concepts of net theory," in
Proc. Syrup. and Summer School on Mathe-
mattcal Foundations of Computer Science,
High Tatras, Sept. 3-8, 1973, Math. Inst. Slo-
vak Academy of Science, 1973, pp. 137-146.

[82] PETRI, C.A. Interpretattons of net theory, In-

terrier Bericht 75-07, Gesellschaft fur Mathe-
matik und Datenverarbeltung, Bonn, W. Ger-
many, July 1975, 34 pp.

[83] RACKOFF, C. The covering and boundedness
roblems f o r vector addition systems, Tech.

p. 97, Dept. Computer Science, Umv. To-
ronto, Toronto, Canada, July 1976, 14 pp.

[84] RAMCHANDAm, C. Analysis of asynchro-
nous concurrent systems by timed Petn nets,"
PhD Thesis, Dept. Electrical Engineermg,
MIT, Cambridge, Mass., 1974; also MAC-TR-
120, Project MAC, MIT, Feb. 1974.

[85] RIDDLE, W.E. "The modelling and analysis
of supervisory systems," PhD Thesis, Com-
puter Science Dept., Stanford Univ., Stan-
ford, Calif., March 1972, 173 pp.

[86] RIDDLE, W.E. The equwalence of Petr~ nets
and message transmissmn models, SRM 97,
Univ. Newcastle Upon Tyne, England, Aug.
1974, 11 pp.

[87] RODRIGUEZ, J .E. "A graph model for parallel
computation," PhD Thesis, Dept. Electrical
Engineering, MIT, Cambridge, Mass., Sept.
1967, 120 pp.

[88] SACERDOTE, G.; AND TENNEY, R.L. "The de-
cidability of the reachability problem for vec-
ter addition systems," (submitted for publica-
tion), Nov. 1976, 8pp.

[89] SLUTZ, D. R. '~The flow graph schemata
model of parallel computation," Phi) Thesis,
Dept Electrical Engineering, MIT, Cam-
bridge, Mass., Sept. 1968.

[90] SHAPIRO, R. M.; AND SAINT, H. ~A new ap-
proach to optimization of sequencing deci-
sions," Annual Review of Automatic Program-
mzng 6, 5, (1970), 257-288.

[91] THORNTON, J. E. Design of a computer, the
Control Data 6600, Scott, Foresman and Co.,
Glenview, Ill., 1970, 181 pp.

[92] TSICHRITZIS, D. Modular system descr~ptmn,
Tech. Rep. 33, Dept. Computer Science,Univ.
Toronto, Toronto, Canada, Oct. 1971, 20 pp.

[93] VAN LE~UWEN, J. "A partial solution to the
reachabflity-problem for vector addition sys-
toms," in Proc 6th Annual ACM Symp. The-
ory of Computing, ACM, N.Y., 1974, pp. 303-
309.

Computing Surveys, Vol 9, No. 3, September 1977

