
Construction of Occurrence Graphs with

Permutation Symmetries Aided by

the Backtrack Method

Jens B�k J�rgensen

Computer Science Department, University of Aarhus

Ny Munkegade, Bldg. 540

DK{8000 Aarhus C, Denmark

Phone: +45 89 42 31 88

Telefax: +45 89 42 32 55

E-mail: jbj@daimi.aau.dk

Abstract

This paper recalls the concept of occurrence graphs with permuta-

tion symmetries (OS-graphs) for Coloured Petri Nets. It is explained

how so-called self-symmetries can help to speed up construction of OS-

graphs. The contribution of the paper is to suggest a new method for

calculation of self-symmetries, the Backtrack Method. The method is

based on the so-called Backtrack Algorithm, which originates in com-

putational group theory. The suggestion of the method is justi�ed,

both by identifying an important general complexity property and by

obtaining encouraging experimental performance measures.

Topics. Coloured Petri Nets, reduced state spaces, occurrence graphs

with permutation symmetries, self-symmetries, computational group

theory, backtrack searches.

1

1 Introduction

Veri�cation by occurrence graphs (also known as state spaces and reachabil-

ity graphs) is obstructed by the well-known state explosion problem: Even

for relatively small systems, the occurrence graphs are often so large that

they cannot be constructed given the computer technology presently avail-

able. Alleviation of this inherent complexity problem is a major challenge

of research. Several ingenious approaches have been proposed. Among them

are occurrence graphs with permutation symmetries (OS-graphs) [7, 8, 11],

which are de�ned for Coloured Petri Nets (CP-nets or CPN) [6].

The basic observation behind OS-graphs is that quite often, some mark-

ings of a CP-net are similar, and induce similar behaviours. Such markings

are called symmetric. Based on symmetric markings, a reduced occurrence

graph called an OS-graph can be constructed, which is typically much smaller

than the ordinary full occurrence graph (O-graph). The OS-graph and the

O-graph contain the same information, and, if the graphs are �nite, a lot of

useful veri�cation results are easily derivable from either of them.

In an OS-graph, the nodes correspond to equivalence classes of mark-

ings and the arcs correspond to equivalence classes of binding elements. The

crucial task in construction of OS-graphs is to decide whether two given

markings, or two given binding elements, are equivalent. In [3], it is proved

that the equivalence test is computationally at least as hard as the graph

isomorphism problem [12], and it is speculated that the test may even be

NP-complete. Thus, it is unlikely to �nd general e�cient methods for con-

struction of OS-graphs. We must resort to pursue usable heuristics.

The work behind this paper began with a literature search within the

area of computational group theory in the pursuit of usable heuristics. As

concluded in [4], computational group theory seems to be a viable area to look

into. This paper explains how so-called self-symmetries [1, 7] are applicable.

Then, a usable heuristics for calculation of self-symmetries is presented and

justi�ed | the Backtrack Method, which is based on the so-called Backtrack

Algorithm [2, 9].

The paper is organised as follows: Section 2 describes OS-graphs in more

detail. Section 3 introduces the concept of self-symmetries and explains why

they are useful. The Backtrack Algorithm is outlined and the Backtrack

Method is de�ned in Section 4. Sections 5 and 6 demonstrate the feasibility of

the Backtrack Method to calculate self-symmetries by means of two examples.

The conclusions are drawn in Section 7. The reader is assumed to be familiar

2

with CP-nets including the terminology and notation from [6].

2 OS-Graphs

In this section, we informally explain the concept of OS-graphs. For a more

thorough description and formal de�nitions, the reader is referred to either

of [7, 8, 11].

OS-graphs are based on the notion of symmetry, which appears when a

system is composed of similar components, whose identities are immaterial

with respect to occurrence graph analysis. As an example, consider the well-

known dining philosophers system. A state of this system, in which the eating

philosophers are numbers 1 and 3, is symmetric with a state, in which the

eating philosophers are numbers 3 and 5. The �rst state can be mapped to

the second by the permutation, which rotates philosopher i into philosopher

i+2 (modulo the number of philosophers). Symmetry is also present in many

real-world systems.

De�nition of an OS-graph for a CP-net requires that two equivalence

relations are present | one on the set of markings and one on the set of

binding elements. The OS-graph has a node for each equivalence class of

reachable markings (for two equivalent markings, either both or none of them

are reachable). The OS-graph has an arc between two nodes, if and only if

there is a marking in the equivalence class of the source node in which a

binding element is enabled, and whose occurrence leads to a marking in the

equivalence class of the destination node. There is exactly one arc for each

equivalence class of binding elements with this property.

The equivalence relations are required to be on a certain form. They must

be induced by symmetry groups, which are algebraic groups. One symmetry

group is associated with each colour set of the considered CP-net. The sym-

metry group determines how the colours are allowed to be permuted, e.g., by

arbitrary permutations, by rotations only (for an �nite, ordered colour set),

or by no permutations at all.

For the atomic colour sets, which are the colour sets de�ned without refer-

ence to other colour sets (e.g., booleans or enumeration types), the symmetry

groups are chosen by the user. For the other colour sets, the structured colour

set (e.g., Cartesian products or lists), the symmetry groups are inherited, i.e.,

automatically derived, from the user-chosen symmetry groups.

The symmetry groups induce a group of permutation symmetries, whose

3

elements are functions that can be applied to markings and binding elements.

Two markings are equivalent, also called symmetric, if and only if there exists

a permutation symmetry mapping one of the markings to the other. Similarly

for binding elements.

When the symmetry groups are chosen such that inherent symmetries of

the considered CP-net are captured (in a well-de�ned way), the OS-graph

is said to be based on a consistent permutation symmetry speci�cation. The

consistency ensures that the OS-graph in fact does contain the same infor-

mation as the corresponding O-graph.

The algorithm to construct OS-graphs is a straightforward modi�cation

of the standard algorithm to construct O-graphs [7]. The test of equality

before a new marking is inserted, is replaced by a test of equivalence. In

addition, an equivalence test before insertion of a new arc is introduced.

For some CP-nets, e.g., those containing only atomic colour sets, the

equivalence test can be performed e�ciently [1]. If the group of permutation

symmetries is �nite, the test may be performed as a brute force application of

all permutation symmetries, one by one, to see if there exists one that maps

a newly generated marking to one already represented in the graph. This

works satisfactory for CP-nets with a small number of permutation symme-

tries. E.g., this is the case if all colour sets are small. However, in general,

the computational complexity of the brute force approach is prohibitive. Of-

ten, the number of permutation symmetries is exponential in the size of the

system under consideration. E�cient heuristics to aid the equivalence test

are needed.

Computer tool support for OS-graphs is provided by the Design/CPN

OS-Graph Tool [10].

3 Self-symmetries

In this section, we describe the concept of self-symmetries [1, 7], and argue

that self-symmetries are usable to speed up the construction of OS-graphs.

Let a CP-net and a consistent permutation symmetry speci�cation, de-

termining the set � of permutation symmetries, be given. The set of self-

symmetries for a marking1 M is:

1
Sets of self-symmetries are de�ned analogously for markings of places and for arbitrary

subsets of colour sets. A set of self-symmetries is what in standard algebraic terminology

is known as a set stabiliser or isotropy subgroup.

4

�M = f� 2 �j�(M) =Mg.

The set of self-symmetries can be used to speed up the construction of

the OS-graph because of two reasons, which will be described below. Subse-

quently, construction of OS-graphs by exploiting self-symmetries is compared

with the standard construction algorithm.

3.1 Fewer Equivalence Tests

The �rst reason to use self-symmetries was originally recognised by Kurt

Jensen and Peter Huber, but �rst described and formalised in [1]: Fewer

equivalence tests can be conducted.

The consistency of the permutation symmetry speci�cation ensures that

for all reachable markingsM1;M2, all binding elements b, and all permutation

symmetries �:

M1[b > M2) �(M1)[�(b) > �(M2).

Hence, for � 2 �M1
:

M1[b > M2)M1[�(b) > �(M2).

Thus, if two enabled binding elements are symmetric by a self-symmetry

of M1, only one of them needs to be processed, i.e., it is only necessary to

investigate occurrence of one of the binding elements. The other binding

element is known in advance to correspond to an arc and a destination node

already included in the graph.

This property is very important with respect to speeding up the con-

struction of OS-graphs. As noted in Section 1, the crucial and main time-

consuming task in this procedure is the equivalence test, i.e., to test if a newly

generated marking must be inserted in the graph. Thus, if the number of

newly generated markings can be reduced, a number of expensive equivalence

tests can be saved.

Self-symmetries allow for generation of fewer new markings: Each time

a new marking is inserted in the OS-graph, the set of self-symmetries is

calculated. When a marking is processed, the set of enabled binding elements

(if non-empty) is partitioned into what is called self-symmetry equivalence

classes. Two binding elements are self-symmetry equivalent, if and only if

there exists a self-symmetry of the considered marking mapping one of the

5

binding elements to the other. Then, instead of processing all enabled binding

elements, only one representative from each self-symmetry equivalence class

is processed. As a consequence, fewer new markings are generated, and, thus

need to be tested for insertion. Hence, fewer equivalence tests are conducted.

3.2 Faster Equivalence Tests

The second reason to use self-symmetries was �rst recognised and described

in [1]: Faster equivalence tests can be obtained.

Two markings M1 and M2 are equivalent if and only if the set

�M1;M2
= f� 2 �j�(M1) =M2g

is non-empty. As noted in Section 2, the brute force test of all permutations

in � to compute �M1;M2
is only sensible if � is small. In general, more

ingenuity is required. The set of self-symmetries �M1
is a subgroup of �,

and induces a partition of � into what in algebra is called cosets2. A coset

of �M1
, for 2 �, is a set on the form:

 � �M1
= f � j 2 �M1

g.

It is easy to see that for �; �0 2 � �M1
:

�(M1) = �0(M1).

Thus, to test �M1;M2
= ;, it is su�cient to test one permutation from each

coset of �M1
.

3.3 Comparison with the Standard Algorithm

Compared to the standard algorithm to construct OS-graphs (Proposition 2.5

in [7]), exploitation of self-symmetries induces additional computations: Each

time a new marking is inserted in an OS-graph, its set of self-symmetries must

be calculated. Moreover, when a marking is processed, the enabled binding

elements must be partitioned into the self-symmetry equivalence classes.

So, a natural question to ask is whether exploitation of self-symmetries

actually risks slowing down the construction of an OS-graph. The answer

2
The term coset is, without confusion, used as an abbreviation for left coset | as

opposed to right cosets, which are not considered in this paper.

6

is that it is possible, but unlikely: If the self-symmetry equivalence classes

for all markings inserted in the graph are trivial, i.e., of size 1, a slow-down

may happen, because all enabled binding elements are still processed, i.e.,

no equivalence tests are saved.

On the other hand, one single equivalence test has the same complexity

as calculation of a set of self-symmetries. Thus, each time a set of self-

symmetries can prevent a new marking from being generated, but discarded

because it is already represented in the graph, much is gained. Think, e.g.,

of an OS-graph with many thousands of nodes.

Even if the self-symmetry equivalence classes are trivial in all markings

inserted in the OS-graph, exploitation of self-symmetries may speed up con-

struction of the OS-graph anyway | namely if a more e�cient equivalence

test sometimes is possible.

Computation of the self-symmetry equivalence classes in a given marking

involves a number of (self-symmetry) equivalence tests, which, in the worst

case, is quadratic in the size of the set of enabled binding elements. For-

tunately, an equivalence test for binding elements is much faster than an

equivalence test for markings [1] (p. 52). Moreover, there is only the set of

self-symmetries to test; not the entire symmetry group.

An obvious drawback of exploitation of self-symmetries is that more space

is needed: Memory is required to store the set of self-symmetries until the

self-symmetry equivalence classes have been computed.

4 The Backtrack Method

In this section, we de�ne the Backtrack Method, which we will suggest for cal-

culation of self-symmetries for markings of CP-nets. The Backtrack Method

is based on the Backtrack Algorithm [2, 9], an algorithm from computa-

tional group theory, which was invented by the mathematician C.C. Sims

in the early seventies. We sketch the basic ideas of the Backtrack Algo-

rithm, present the method for calculation of self-symmetries, and describe

an important complexity property.

4.1 The Backtrack Algorithm

The Backtrack Algorithm searches a subgroup 	 of the group �n of all per-

mutations of the set f1; : : : ; ng. The algorithm solves the following general

7

problem: Given a property P 2 [� > ftrue; falseg] on the permutations

in 	, �nd the subset P = f� 2 	jP (�)g of permutations satisfying P . P

must adhere to the two essential Backtrack Algorithm prerequisites: First, P

must be e�ciently decidable, i.e., there must exist an e�cient algorithm to

calculate P (�) for � 2 	. Second, P must constitute a subgroup of 	.

The Backtrack Algorithm at any time maintains a result group � � P

of permutations already found to satisfy P . � is initialised to consist of the

identity function, which in known to satisfy P because of the second Back-

track Algorithm prerequisite. The Backtrack Algorithm exploits that it is

su�cient to test only one permutation from each coset of � for satisfaction of

P . For each coset, either all or none of the permutations of that coset satisfy

P | a generalisation of the reason motivating the use of self-symmetries in

the construction of OS-graphs described in Section 3.2.

The search domain of the Backtrack Algorithm is represented as a tree.

Each time a permutation satisfying P is found, � is extended and its cosets

are recomputed3. This corresponds to a pruning of the tree representation

of the search domain.

The Backtrack Algorithm is implemented in the general-purpose math-

ematics software package GAP (Groups, Algebra, and Programming) [13].

This implementation was used in the practical experiments to be described

in Sections 5 and 6.

4.2 Calculation of Self-symmetries

The Backtrack Method for calculation of self-symmetries treats the places of

the given CP-nets in some order. The marking of each place, which is a

multi-set, is split into a number of sets | one set for each positive coe�cient

appearing, containing all elements with that coe�cient. As shown in [1],

the set of self-symmetries for the marking is the intersection of the sets of

self-symmetries for these sets.

Now, assume that it is possible to �nd a bijective correspondence between

the sets derived from the marking, as described above, and sets that can be

given as argument to the Backtrack Algorithm. For each of these sets, the

3
Technical remarks: � is represented as a set of generators. Finding a permutation

satisfying P adds one new generator to �, but many more elements.

� remains a subgroup throughout the computation. Thus, computation of the cosets

are always well-de�ned

8

Backtrack Algorithm is applicable, because calculation of the set of self-

symmetries for a set is a special instance of the general problem solved by

the algorithm. The property the permutation � is a self-symmetry of the set

s can be found using the property P (�) : �(s) = s. P adheres to both of

the Backtrack Algorithm prerequisites: P is e�ciently decidable and a set of

self-symmetries, as noted previously, constitutes a subgroup.

The Backtrack Method for calculation of self-symmetries amounts to ap-

plication of the Backtrack Algorithm to each of the sets derived from the

marking combined with a computation of intersection. The method is rep-

resented as pseudo code in Figure 1. It is assumed that a CP-net, a group

of permutation symmetries SymGroup, and a marking M are given. PlaceSet

denotes the set of places of the CP-net. Upon termination of the Backtrack

Method, the set of self-symmetries for M is contained in SelfSyms.

Four auxiliary functions are used: PosCoefs returns the set of positive

coe�cients appearing in the multi-set given as argument. FindSet returns

the set of all elements in the multi-set given as �rst argument appearing with

the coe�cient given as second argument. SelfSymFunc takes a set s as argu-

ment, and returns a function, which takes a permutation as argument, and

returns true if the permutation is a self-symmetry for s, and false otherwise.

BacktrackAlg denotes the Backtrack Algorithm.

SelfSyms := SymGroup;

forall p in PlaceSet do

forall c in PosCoefs(M(p)) do

begin

s := FindSet(M(p),c);

SelfSymProperty := SelfSymFunc s;

SelfSyms := BacktrackAlg(SelfSyms, SelfSymProperty);

end;

end;

Figure 1: The Backtrack Method.

Note in Figure 1 that the calculation of intersection is done implicitly, i.e.,

by successive reductions of the initial search domain. Permutations, which

are not self-symmetries for the �rst place treated, cannot be self-symmetries

for the considered marking as such. Therefore, the group of self-symmetries

for the place treated �rst is used as search domain in the treatment of the

next place and so forth.

9

4.3 Fast Tester Property

In our process of experimenting with the Backtrack Method and trying to

understand the Backtrack Algorithm itself, we discovered an important com-

plexity property: As formally proved in [9], when the Backtrack Algorithm

searches �n for a property P satis�ed by all permutations, i.e., P = �n,

only n� 1 permutations are tested. This property will be referred to as the

fast tester property, because n � 1 is a very small number compared to the

number of permutations to test in a brute force approach, namely the size

of �n, which is n!. The fast tester property generalises to say that when a

subgroup of �n of size less than or equal to m! is searched for a property

satis�ed by all members, at most m� 1 permutations are tested.

The fast tester property has a great impact on the successful use of the

Backtrack Method: Often, a CP-net deliberately has a high degree of redun-

dancy, in the sense that the markings of some places are determined by the

markings of other places. Therefore, it is often the case that after having

treated only a few places, the set of self-symmetries is actually computed.

No further reductions of the search domain can be made. For the remaining

places, in each application of the Backtrack Algorithm, the property given as

argument is constantly true. Therefore the remaining places will be treated

very quickly.

The experiment described in Section 5 below will exhibit the practical

value of the fast tester property.

5 Experiment 1 | Data Base Managers

In this section, we describe an experiment with the Backtrack Method on

an example CP-net, the data base manager system shown in Figure 2. We

introduce the example, show how the experiment is implemented in GAP,

present performance measures, and discuss observations.

5.1 Experiment

The system consists of a number, n, of sites (in Figure 2, n = 4). Each site

contains a copy of a data base, which is maintained by a data base manager.

The data bases must be kept consistent, i.e., when a manager on one site

updates his copy of the data base, he must send a message to the others, so

that they can update their copies accordingly. While the other managers are

10

AReceive

Update

Send

MReceive

Performing

DBM

Inactive

DBM

DBM
Waiting

DBM

Unused

MES

MES

Sent

MES

Received

MES

Acknowledged

MES

Active

E

Passive

E

e

val n = 4;
color DBM = index d with 1..n declare ms;
color PR = product DBM * DBM declare mult;
fun diff(x,y) = (x<>y);
color MES = subset PR by diff declare ms;
color E = with e;
fun Mes(s) = mult’PR(1‘s,DBM-1‘s);
var s, r : DBM;

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)Mes(s)

Mes(s)

Mes(s)

ss

s s

r r

rr

e

e e

e

Figure 2: The data base manager system.

performing their updates, the manager who �rst did the update is waiting.

When a manager has updated his site, he sends an acknowledgement to the

waiting data base manager. When all sites have been updated, the waiting

manager returns to being inactive. The CP-net describes the synchronisation

mechanism, not the actual data contained in the data bases. For a more

detailed description, see [6].

In the system with n managers, the colour set DBM describing the data

base managers is atomic and naturally represented by the set f1; 2; : : : ; ng.

The colour set MES describing the messages is structured and represented by

the set of pairs f(s; r) 2 DBM� DBMjs 6= rg.

We will assume that the symmetry group for DBM is the group of all

permutations, i.e., equal to �n. The symmetry group for the structured

colour set MES is inherited from the symmetry group for DBM, by the mapping

in [�n � MES! MES] given by (�; (s; r)) 7! (�(s); �(r)).4

4
To give a complete description of the permutation symmetry speci�cation, the sym-

metry group for the atomic unit colour set E, used to model synchronisation, is fidg. The

symmetry group for auxiliary structured colour set PR, necessary to de�ne the colour set

11

The objective in the experiment is for di�erent values of n to measure

the time used by the Backtrack Method for calculation of the set of self-

symmetries for a reachable marking. For all n, the considered markings are

similar: One data base manager is on the place Waiting, and the others are

distributed evenly on the places Inactive and Performing, i.e., the size of

the marking of Inactive and the size of the marking of Performing di�er

at most with 1. The place Acknowledged is empty.

The CP-net for the data base manager system deliberately has a high

degree of redundancy. Therefore, the markings of the places Sent, Received,

Passive, and Active are determined by the markings of the other places.

5.2 Implementation

An extract of the GAP code implementing the experiment is shown in Fig-

ure 3. The code implements the Backtrack Method for this speci�c example.

Some remarks on the calculation: The Backtrack Method prescribes cal-

culation of the set of self-symmetries for a marking of a CP-net as intersection

of a number of sets of self-symmetries for sets. First of all, in all reachable

markings of the data base manager system, no proper multi-sets appear, i.e.,

no multi-sets with coe�cients greater than 1. Therefore, the splitting of a

marking into sets yield exactly one set for each place. Second, the places

Passive and Active, and the empty place Acknowledged are ignored in

the calculation. This can safely be done because a permutation which is a

self-symmetry for the markings of the places actually treated, trivially also

is a self-symmetry for the markings of these three places; again, due to re-

dundancy in the CP-net, and the fact that any permutation symmetry is a

self-symmetry for the empty multi-set.

The two prede�ned functions SubgroupProperty and Stabilizer are

used. SubgroupProperty implements the Backtrack Algorithm. It takes

a permutation group and a property satisfying the Backtrack Algorithm

prerequisites as arguments. Stabilizer is a special instantiation of the

Backtrack Algorithm, which computes the stabiliser in the given permuta-

tion group of the given set, i.e., the set of self-symmetries. Stabilizer

is directly applicable for the three places with the atomic colour set DBM.

In contrast, SubgroupProperty is used for the places with the structured

colour set MES. For these places, the Stabilizer function is not applicable,

MES, is inherited. As we shall see, neither E nor PR need to be considered in the experiment.

12

because Stabilizer takes sets of integers as argument, not sets of pairs.

SubgroupProperty is called with user-de�ned functions as property argu-

ments. The shown code is for n = 10 managers, and thus the initial search

domain is the group �10, called S10 in the code extract. The name of a place

abbreviates the marking of that place.

When the computation terminates, G6 is the set of self-symmetries for

the marking under consideration

G1 := Stabilizer(S10, Waiting);

G2 := Stabilizer(G1, Performing);

G3 := Stabilizer(G2, Inactive);

G4 := SubgroupProperty(G3, selfsym Sent);

G5 := SubgroupProperty(G4, selfsym Received);

G6 := SubgroupProperty(G5, selfsym Unused);

Figure 3: GAP code | data base manager system.

5.3 Statistics

Table 1 contains the main statistics gathered in the experiment. The table

has four columns showing, respectively, n, the size of the initial search domain

(n!), the size of the set of self-symmetries for the considered marking, and

�nally the time used for the calculation. All measures of time presented in

this paper are in milliseconds of CPU time on a Sun4 workstation5.

n Search Domain Self-symmetries Time

3 6 1 80

4 24 2 140

5 120 4 230

10 3; 628; 800 2; 880 2; 410

15 approx. 1:3 � 1013 25; 401; 600 15; 000

20 approx. 2:4 � 1019 approx. 1:3 � 1013 50; 100

Table 1: Main statistics | data base manager system.

5
The measures were obtained in late 1993, explaining why a Sun4 | as opposed to a

more modern computer | was used.

13

As basis for two of the observations to be described in Section 5.4, a

�ne-grained measure of the times to calculate the individual groups Gi in the

code extract shown in Figure 3, i.e., for n = 10, was made, and is shown in

Table 2.

i 1 2 3 4 5 6

Time 360 210 190 310 330 1; 010

Table 2: Statistics | calculation of Gi.

5.4 Observations

We now list and discuss a number of observations made during the experi-

ment.

Number of self-symmetries

The data base managers can only be on three possible places. The markings

considered for Table 1 all distribute the n data base managers as much as

possible. Distribution enforces discrimination of tokens. Because of the way

permutation symmetries are de�ned as maps from markings to markings

(in [7]), two tokens on di�erent places can never be interchanged by a self-

symmetry for the considered marking.

For a reachable marking M of the considered CP-net, the size of the set

of self-symmetries is jM(Inactive)j! � jM(Performing)j!.

The more distributed the tokens in a marking are, the lower is the num-

ber of self-symmetries for that marking. E.g., for the reachable markings

considered for Table 1, the formula above equals bn=2c! � b(n � 1)=2c!. It is

not possible to �nd reachable markings that have fewer self-symmetries. The

reachable marking with the highest number is the initial marking, where all

data base managers are on Inactive, and for which all n! permutations are

self-symmetries.

The experiment (supplemented with more measures than those presented

in Section 5.3) showed that the time for the calculation was low, when the

number of self-symmetries was high, and vice versa. Therefore, the time for

the calculation of the set of self-symmetries of other reachable markings of

14

the data base manager system will often be lower than the ones shown in

Table 1. In other words, the table shows worst-case performance measures.

Fast testing

In [1] (p. 144), calculation of the set of self-symmetries for a set over a

structured colour set is characterised as potentially complex. Calculation

of the groups G4 to G6 involved the structured colour set MES. In spite of

that, the calculations were done remarkably fast. For n = 20, the set of

self-symmetries was found in less than one minute from a search domain

of size 2:4 � 1019. The reason for the impressive speed is the fast tester

property of the Backtrack Algorithm: In the GAP code of Figure 3, after

having constructed G2, i.e., after having treated only two places, the search

domain was reduced to the set of self-symmetries for the given marking.

Consequently, G2 = G3 = G4 = G5 = G6. For n = 10, G2 had size 2; 880 which

is less than 7!. Therefore, the number of tests conducted by the Backtrack

Algorithm for the places corresponding to G3 to G6 were less than 6 for each

place.

That the actual times used for the calculations of the individual groups

di�ered, as can be seen from Table 2, was due to the fact that the tests

had di�erent complexities. The tests done in the calculation of G3 were

applications of permutations to a subset of the atomic colour set DBM, while

the tests done in the calculation of G4 to G6 were applications of permutations

to subsets of the more complex structured colour set MES. The time used

for the calculation of G6 was much higher than the other times, because the

involved tests were applications of permutations to the relative large marking

of the place Unused, which had 81 tokens.

Implicit intersection

The Backtrack Method makes successive reductions of the initial search do-

main instead of explicit intersection. Explicit intersection would involve,

for each place to calculate its set of self-symmetries in �n. Thus, for each

place, the initial search domain would be of size n!. Implicit intersection is a

straightforward but very attractive approach, because it may produce large

reductions of the search domain quickly, and thus speeds up the calculation.

In this example, the search domain was reduced two times, and each time

with a considerable factor: For n = 10, the size of the initial search domain

15

was 10! = 3; 628; 800. After the �rst calculation, it was cut down to the

size of G1 which was 9! = 362; 880, or 10 times lower than the initial search

domain. Calculating G2 reduced the search domain to size 4! � 5! = 2; 880, or

126 times lower than the previous and 1; 260 times less than the initial.

Order of places

In the GAP code of Figure 3, the places were not treated in arbitrary order.

For each step, i.e., each Gi, the place chosen to be treated, was the one that

we intuitively thought would yield the largest and/or fastest reduction of the

search domain. If the places were treated in an arbitrary order instead, a

serious deterioration of performance could appear. E.g., if the places were

treated in the reverse order of what was actually done, i.e., in order Unused,

Received, Sent, Inactive, Performing, Waiting, the time for the calcu-

lation for n = 10 would be 66; 860 milliseconds. That is about 28 times as

much as it was when the places were treated in a more sensible order. The

lesson learned is that it is important to carefully devise a sensible order in

which to treat the places.

Approximation methods

An approximation method uses necessary requirements for a permutation

symmetry to be a self-symmetry for a given marking, to reduce a given

search domain. I.e., an approximation method discards (many) permutation

symmetries which are known not to be self-symmetries.

Any reachable marking of the data base manager system has the prop-

erty that its set of self-symmetries can always be calculated using e�cient

approximation methods de�ned in [1]. This is because the reachable mark-

ings appearing in the places with the structured colour set MES always are

sets on a certain form: All pairs in such a set have the same �rst com-

ponent6, namely the identity of the data base manager who initiated the

update. It was proved in [1] (Corollary 8.23) that calculation of the set of

self-symmetries for such sets can be done e�ciently. This is not the case

for sets containing general pairs, i.e., where the �rst and second components

may take arbitrary values.

6
Except for the place Unused, but it can safely be ignored from the calculations because

of redundancy in the considered CP-net.

16

Even though an e�cient approximation method may directly yield the

set of self-symmetries, a general problem is to know that this is actually the

case. If it is not known, computational resources will be wasted in trying to

cut down on a set that cannot be reduced further. The Backtrack Algorithm

is able to detect when no further reductions are possible very quickly, due to

the fast tester property.

6 Experiment 2 | Cyclic Sets

In this section, we consider a supplementary experiment with the Backtrack

Method and Backtrack Algorithm. This experiment constitutes a harder test

than the experiment of Section 5.

We consider subsets of Cartesian product colour sets having a certain

cyclic structure, which in [1] (p. 125) are identi�ed as causing hard compu-

tational problems with respect to calculating their sets of self-symmetries.

We introduce the subsets, show how the experiment is implemented in GAP,

present performance measures, and discuss observations.

As opposed to the previous section, this section does not directly consider

complete markings of CP-nets, but merely sets that can be thought of as

arising when a complete marking is split up as prescribed by the Backtrack

Method.

6.1 Experiment

Given �10 as the group of permutation symmetries, we will consider selected

subsets of Cartesian products of f1; : : : ; 10g, i.e., subsets of f1; : : : ; 10gk for

some k 2 f1; : : : ; 10g. As an example, for k = 3, the set considered will be

f(1; 2; 3); (2; 3; 1); (3; 1; 2)g.

Given an exponent k 2 f1; : : : ; 10g and the subset sk � f1; : : : ; 10gk

de�ned by:

sk = f(1; 2; : : : ; k � 1; k); (2; 3; : : : ; k; 1); : : : ; (k; 1; : : : ; k � 1)g,

we want to �nd the set of self-symmetries for sk, i.e., the subgroup
7:

7
The precise meaning of �(sk) is that � 2 [f1; : : : ; 10gk ! f1; : : : ; 10gk] de�ned by

�(i1; : : : ; ik) = (�(i1); : : : ; �(ik)) is extended naturally to subsets of f1; : : : ; 10gk.

17

f� 2 �10j�(sk) = skg.

The objective in the experiment is for di�erent values of k to measure the

time used for this calculation by the Backtrack Algorithm.

None of the approximation methods from [1] are able to produce useful

results. E.g., one of the approximation methods applies projections: A self-

symmetry for sk must map the j'th projection of sk to itself for all j 2

f1; : : : ; kg. However, this is only a necessary requirement, not a su�cient

one. All k projections are equal to the entire set f1; : : : ; kg, and thus only

provide trivial information on the set of self-symmetries.

A self-symmetry for sk, must indeed map the subset f1; 2; : : : ; kg to itself,

but is not allowed to make an arbitrary permutation of the elements. Only

the k rotations j 7! (j + l) mod k, where l 2 f0; : : : ; k � 1g is a constant,

maps sk to sk. A self-symmetry for sk is, of course, allowed to permute the

elements of the set fk + 1; : : : ; 10g, not appearing in sk, arbitrarily. Thus,

sk only has k � (10 � k)! self-symmetries, and the projection approximation

method returned a set of size k! � (10� k)!.

6.2 Implementation

An extract of the (trivial) GAP code implementing the experiment for k =

10 is shown in Figure 4. selfsym s10 is a user-de�ned function given as

property argument to SubgroupProperty.

G := SubgroupProperty(S10, selfsym s10);

Figure 4: GAP code | cyclic sets.

6.3 Statistics

Table 3 contains the statistics gathered in the experiment. In all cases, the

initial search domain was �10, which is of size 10! = 3; 628; 800. The table has

three columns, showing, respectively, k, the size of the set of self-symmetries

for sk, and �nally the time used for the calculation.

18

k Self-symmetries Time

2 80; 640 3; 290

3 15; 120 91; 529

4 2; 880 224; 130

5 600 334; 300

6 144 881; 250

7 42 2; 269; 830

10 10 3; 407; 430

Table 3: Statistics | cyclic sets.

6.4 Observations

We now add two observations to the list from Section 5.4.

Complexity of structured colour sets

For larger values of k, the time to calculate the set of self-symmetries for sk
is high. From Table 3, it can be seen that for s10, the calculation took close

to one hour (remember, the measures of time are in milliseconds). Thus, if

there are, say, 25 sets like s10 in some marking of a CP-net, calculation of the

set of self-symmetries takes at least one day. A set of self-symmetries must

be calculated each time a new marking is inserted in an OS-graph during

construction. An OS-graph usually has many thousands of nodes. Thus, for

large values of k, the computational complexity of the calculation of the set

of self-symmetries for sk may be too high to be practically usable.

Fortunately, in practice, sets like sk appear in markings of CP-nets typ-

ically only for small values of k, say k � 3. If there are colour sets giving

rise to, e.g., sets like s10, it is unlikely that it is possible to analyse such CP-

nets with OS-graphs anyway. Sets like s2 are typical, e.g., over a Cartesian

product colour set used to model packets with a sender and a receiver in a

communication protocol. For small values of k, Table 3 showed that the sets

of self-symmetries for sk were calculated fast.

CP-nets allow other structured colour sets than Cartesian products. With

respect to calculation of self-symmetries, two of these other structured colour

sets may be treated similarly to Cartesian products. For record colour sets,

this is obvious, as they only di�er from Cartesian products because the en-

19

tries/�elds are named. With respect to list colour sets, two lists with di�erent

lengths cannot be mapped to each other by a permutation symmetry, because

of the way such a mapping is de�ned (in [7]). Therefore, a set of lists can be

split into a number of sets, one set for each length appearing. These sets can

then be treated as sets over a Cartesian product colour set. Generally in CP-

nets, lists may grow arbitrary long. However, if a CP-net is to be analysed

with OS-graphs, the user will typically have to enforce narrow restrictions on

the lengths of the lists that can appear in reachable markings. Again, this

will correspond to sk's, for only small values of k.

Better than brute force

As noted above, the Backtrack Algorithm may be too slow to calculate the

set of self-symmetries for sk, for larger values of k. However, the algorithm

is much faster than the obvious alternative, the brute force test of each

permutation in the initial search domain.

With the Backtrack Algorithm, calculation of the set of self-symmetries

for s10 took about one hour. The initial search domain contained more than

3:6 million permutations. If the brute force approach should be preferable,

it requires that it is possible to test approximately 1; 000 permutations per

second. Each test is an application of a permutation to the argument s10, a

set of size 10 consisting of tuples of size 10, and comparison of the result of the

application with s10. Using GAP, the time for such a single test was found to

be 10 milliseconds. Hence, the brute force approach only tests approximately

100 permutations per second.

Thus, the Backtrack Algorithm is about 10 times faster than the brute

force approach under some very unfavourable conditions. When the algo-

rithm only has to �nd 10 permutations out of more than 3:6 million, it will

rarely be able to make non-trivial reductions of the search domain, i.e., re-

move more than one permutation at a time. A non-trivial reduction is only

possible each time a new self-symmetry is found, in this example at most 10

times.

7 Conclusions

In this paper, we have informally presented OS-graphs and argued that self-

symmetries can be used to speed up their construction. The contribution is

20

the subsequent suggestion of the Backtrack Method for calculation of self-

symmetries, and the justi�cation of the suggestion. The justi�cation had

two parts: First, we described the important fast tester complexity property

of the Backtrack Algorithm. Subsequently, we presented empirical tests of

the performance of the Backtrack Method. The �rst experiment considered

markings of the data base manager system for various numbers of managers.

Very large groups of permutation symmetries were searched, and the sets

of self-symmetries were calculated in a remarkably short time. Then, we ex-

posed the Backtrack Method, or more precisely the Backtrack Algorithm, for

certain sets with a cyclic structure, which constituted very hard tests. Un-

der conditions often met in practice, the algorithm performed well. The two

experiments gave rise to a list of observations of importance for calculation

of self-symmetries.

The Backtrack Method is well-suited to be combined with approximation

methods. A number of e�cient approximation methods are de�ned in [1, 5].

The approximation methods can be used to reduce, often signi�cantly, the

initial search domain before the Backtrack Method is applied.

The Backtrack Method/Algorithm is only a heuristics. The performance

is not always satisfactory. One problematic case was discussed in Section 6,

but in more extreme cases, the Backtrack Algorithm performs even worse:

If a marking only has the identity function as self-symmetry, the algorithm

traverses the entire search domain without ever being able to use cosets for

non-trivial reductions because the cosets remain trivial, i.e., of size 1. This

corresponds to a brute force approach, and if the symmetry group is large,

this is not practically feasible.

In spite of a bad worst case complexity, based on the observations de-

scribed in this paper, we believe the Backtrack Method is a promising pow-

erful vehicle for calculation of self-symmetries for markings of many CP-nets

met in practice, and thus an aid for more e�cient construction of OS-graphs.

Acknowledgements

Thanks to J�rgen Brandt and Afshin Foroughipour for help to understand

the theory behind the Backtrack Algorithm (documented in [9]). Thanks to

Rikke Drewsen Andersen, S�ren Christensen, Kurt Jensen, and Lars Michael

Kristensen for reading and commenting this paper.

The work has been supported by grants from University of Aarhus Re-

21

search Foundation and the Faculty of Science at University of Aarhus.

References

[1] R.D. Andersen, J.B. J�rgensen, and M. Pedersen. Occurrence Graphs

with Equivalent Markings and Self-symmetries. Master's thesis, Com-

puter Science Department, University of Aarhus, Denmark, 1991. Only

available in Danish: Tilstandsgrafer med �kvivalente m�rkninger og

selvsymmetrier.

[2] G. Butler. Fundamental Algorithms for Permutation Groups, volume

559 of Lecture Notes in Computer Science. Springer-Verlag, 1991.

[3] E.M. Clarke, T. Filkorn, and S. Jha. Exploiting Symmetries in Temporal

Model Logic Model Checking. In C. Courcoubetis, editor, Proceedings

of the 5th International Conference on Computer Aided Veri�cation,

Elounda, Greece, volume 697 of Lecture Notes in Computer Science.

Springer-Verlag, 1993.

[4] E.A. Emerson and A.P. Sistla. Symmetry and Model Checking. Formal

Methods of System Design, Vol. 9, 1/2, 1996. Special Issue on Symmetry

in Automatic Veri�cation. Kluwer Academic Publishers.

[5] A. Foroughipour. Construction of OS-Graphs with Permutation Sym-

metries of a Coloured Petri Net Using Algebraic Algorithms. Master's

thesis, Computer Science Department, University of Aarhus, Denmark,

1994.

[6] K. Jensen. Coloured Petri Nets | Basic Concepts, Analysis Methods

and Practical Use. Vol. 1, Basic Concepts. Monographs in Theoretical

Computer Science. Springer-Verlag, 1992.

[7] K. Jensen. Coloured Petri Nets | Basic Concepts, Analysis Methods

and Practical Use. Vol. 2, Analysis Methods. Monographs in Theoretical

Computer Science. Springer-Verlag, 1994.

[8] K. Jensen. Condensed State Spaces for Symmetrical Coloured Petri

Nets. Formal Methods of System Design, Vol. 9, 1/2, 1996. Special Issue

on Symmetry in Automatic Veri�cation. Kluwer Academic Publishers.

22

[9] J.B. J�rgensen. Calculation of Self-symmetries for Markings of Coloured

Petri Nets Using a Backtrack Algorithm. Technical report, Computer

Science Department, University of Aarhus, Denmark, 1994.

[10] J.B. J�rgensen and L.M. Kristensen. Design/CPN OS-Graph Manual.

Computer Science Department, University of Aarhus, Denmark.

Online: http://www.daimi.aau.dk/designCPN/.

[11] J.B. J�rgensen and L.M. Kristensen. Computer Aided Veri�cation of

Lamport's Fast Mutual Exclusion Algorithm Using Coloured Petri Nets

and Occurrence Graphs with Symmetries. Submitted to IEEE Transac-

tions on Parallel and Distributed Systems, 1996.

[12] J. K�obler, U. Sch�oning, and J. Tor�an. The Graph Isomorphism Problem

| Its Structural Complexity. Birkhauser Boston, 1993.

[13] M. Sch�onert. GAP - Groups, Algorithm and Programming. A Refer-

ence Manual for GAP, Version 3.1. Lehrstuhl f�ur Mathematik, RWTH

Aachen, Germany, 1992.

23

