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Abstract

Performance is often a central issue in the design, development, and configura-
tion of systems. It is not always enough to know that systems work properly,
they must also work effectively. There are numerous studies, e.g. in the areas of
computer and telecommunication systems, manufacturing, military, health care,
and transportation, that have shown that time, money, and even lives can be
saved if the performance of a system is improved. Performance analysis studies
are conducted to evaluate existing or planned systems, to compare alternative
configurations, or to find an optimal configuration of a system. There are three
alternative techniques for analysing the performance of a system: measurement,
analytical models, and simulation models.

This dissertation focuses on the the use of coloured Petri nets for simulation-
based performance analysis of industrial-sized systems. Coloured Petri nets are
particularly well suited for modelling and analysing large and complex systems
for several reasons: they have an intuitive graphical representation; they are
executable; hierarchical models can be constructed; it is possible to model the
time used by different activities in a system; and mature and well-tested tools
exist for creating, simulating, and analysing coloured Petri net models.

The dissertation consists of two parts. Part II is composed of four indi-
vidual papers and constitutes the core of the dissertation. All four papers
have been published or accepted for publication as workshop papers. Part I is
the obligatory overview paper with summarises the work that has been done.
The overview paper introduces the research field of performance analysis using
coloured Petri nets, and it summarises the contents and contributions of the
four individual papers.

The first paper presents an overview of improved facilities for performance
analysis using coloured Petri nets. Personal experience has shown that peo-
ple with different backgrounds have very different needs with regards to tools
supporting simulation-based performance analysis. Inexperienced data analysts
will have a tendency to believe what a tool tells them, therefore care must be
taken to avoid generating misleading results. More experienced data analysts
generally require that more sophisticated kinds of data are generated for spe-
cific purposes. The paper presents new performance-related facilities such as
support for running multiple simulations, calculating confidence intervals, gen-
erating organised and systematic simulation output, simulating and comparing
alternative system configurations, and variance reduction techniques.

The second paper presents a framework for implementing monitoring facili-
ties that observe, inspect, and control simulations of coloured Petri nets. During
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the past decade, a number of libraries and tool extensions have been developed
for tools supporting coloured Petri nets, including support for data collection,
message sequence charts, updating domain-specific graphics, and communica-
tion between simulators and other processes. While there are many advantages
to having this extra functionality, there are a number of disadvantages as well.
The most serious problem is that it is often necessary to modify the behaviour
of a model in order to use the libraries and tool extensions. With this frame-
work it becomes possible to make an explicit separation between modelling the
behaviour of a system and monitoring the behaviour of the model. As a result,
cleaner and more understandable models can be created.

The third paper presents a novel method for adding auxiliary information to
coloured Petri net models. Coloured Petri nets models can be used for several
fundamentally different purposes such as functional analysis, visualisation, and
performance analysis. It is seldom the case that the exact same model can
be used for a variety of different purposes, as it is frequently necessary to
make small or large modifications to the model in order to obtain a model
that is appropriate for another purpose. There are a number of disadvantages
associated with modifying a model. Making the modifications can be time
consuming and error-prone. It is tiresome to maintain several different versions
of a model during development. More importantly, there is no guarantee that
the behaviour of the model will not be affected by the modifications that are
made. The main advantages of the proposed method are: auxiliary information
can be defined separately from a model, the auxiliary information is shown to
affect the behaviour of a model in a very limited and predictable manner, and
it is easy to enable and disable the auxiliary information.

The fourth paper is a case study in which the performance of a web server
was analysed using coloured Petri nets. This case study has shown that it is
relatively easy to analyse the performance of an industrial-sized system using
coloured Petri nets and the improved performance facilities that are described
in the first paper. The case study demonstrated that typical users of coloured
Petri nets are not experienced performance analysts, and that this fact ought
to be taken into consideration when developing performance-related facilities
for coloured Petri net tools.
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Chapter 1

Introduction

performance (noun) the manner in which or the efficiency with which some-
thing reacts or fulfils its intended purpose.

- Random House Webster’s College Dictionary

This chapter introduces the research field of performance analysis using
coloured Petri nets. Section 1.1 gives a general introduction to performance
analysis. Section 1.2 provides a brief introduction to coloured Petri nets. Sec-
tion 1.3 gives an introduction to performance analysis using coloured Petri nets.
Section 1.4 presents the motivation and aims of this dissertation. Section 1.5
gives an overview of the work done and the structure of this dissertation, and
it includes an outline for the remainder of this overview paper.

1.1 Performance Analysis

Performance is often a central issue in the design, development, and configura-
tion of systems. It is not always enough to know that systems work properly,
they must also work effectively. There are numerous studies, e.g. in the areas
of computer and telecommunication systems, manufacturing, military, health
care, and transportation, that have shown that time, money, and even lives
can be saved if the performance of a system is improved. Performance analysis
studies are conducted to evaluate existing or planned systems, to compare alter-
native configurations, or to find an optimal configuration of a system. There are
three alternative techniques for analysing the performance of a system: mea-
surement, analytical models, and simulation models. There are advantages and
drawbacks to each of these techniques.

Measuring the performance of a system can provide exact answers regarding
the performance of the system. The system in question is observed directly —
no details are abstracted away, and no simplifying assumptions need to be made
regarding the behaviour of the system. However, measurement is only an option
if the system in question already exists. The measurements that are taken may
or may not be accurate depending on the current state of the system. For
example, if the utilization of a network is measured during an off-peak period,
then no conclusions can be drawn about either the average utilization of the
network or the utilization of the network during peak usage periods.
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4 Chapter 1. Introduction

Analytical models, such as Markovian models [60], can provide exact results
regarding the performance of a system. The results are exact, in that they are
not estimates of the performance of the system. However, the results provided
by analytical models may or may not be accurate, depending on the assumptions
that have been made in order to create the model. In many cases it is difficult to
accurately model industrial-sized systems with analytical models. In fact, Jain
[69] has observed that when analysing computer systems “analytical modeling
requires so many simplifications and assumptions that if the results turn out to
be accurate, even the analysts are surprised.”

Simulation-based performance analysis can be used as an alternative to an-
alytical techniques. Simulation can rarely provide exact answers, but it is pos-
sible to calculate how precise the estimates are. Furthermore, larger and more
complex models can generally be created and analysed without making restric-
tive assumptions about the system. There are two main drawbacks to using
simulation: it may be time consuming to execute the necessary simulations, and
it may be difficult to achieve results that are precise enough. Simulation-based
performance analysis of a model involves a statistical investigation of output
data, the exploration of large data sets, the appropriate visualisation, and the
verification and validation of simulation experiments.

Performance analysis is both an art and a science. One of the arts of per-
formance analysis is knowing which of these three analysis technique to use
in which situation. Measurement can obviously not be used if the system in
question does not exist. Simulation should probably not be used if the system
consists of a few servers and queues, in this case queueing networks [78] would be
a more appropriate method. Simulation and analytic models are often comple-
mentary. Analytic models are excellent for smaller systems that fulfil certain
requirements, such as exponentially distributed interarrival periods and pro-
cessing times. Simulation models are more appropriate for large and complex
systems with characteristics that render them intractable for analytic models.
Performance analysts need to be familiar with a variety of different techniques,
models, formalisms and tools. Creating models that contain an appropriate
level of detail is also an art. It is important to include enough information to
be able to make a reasonable representation of the system, however, it is equally
important to be able to determine which details are irrelevant and unnecessary.

Simulation-based performance analysis is the focus of this dissertation. One
of the sciences associated with simulation studies is the application of the appro-
priate statistical techniques when analysing simulation output. After a model
has been created and validated, there are a multitude of decisions that need
to be made before a study can proceed. Experimental design [84] is concerned
with determining which scenarios are going to be simulated and how each of
the scenarios will be simulated in a simulation study. For each scenario in a
simulation study one needs to decide how many simulations will be run, how
long the simulations will be, and how each scenario will be initialised. Both the
length of a simulation and the number of replications run can have a significant
impact on the performance measure estimates. Making arbitrary, unsystematic
or improper decisions is a waste of time, and the simulation study may fail to
produce useful results [69].
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In some studies, the scenarios may been given, and the purpose of the
study may be to compare the performance of the given configurations with a
standard or to choose the best of the configurations. If the scenarios are not
predetermined, then the purpose of the simulation study may be to locate the
parameters that have the most impact on a particular performance measure or
to locate important parameters in the system. Sensitivity analysis [77] investi-
gates how extreme values of parameters affect performance measures. Gradient
estimation [84], on the other hand, is used to examine how small changes in
numerical parameters affect the performance of the system. Optimisation [3]
is often just a sophisticated form of comparing alternative configurations, in
that it is a systematic method for trying different combinations of parameters
in hope of finding the combination that gives the best results.

1.2 Coloured Petri Nets

This dissertation focuses on the the use of coloured Petri nets [70, 80] (CP-nets
or CPN) for performance analysis. CP-nets are a graphical modelling language
that model both the states of a system and the events that change the system
from one state to another. CP-nets combine the strengths of Petri nets [103]
(PN) and programming languages. The formalism of Petri nets is well suited for
describing concurrent and synchronising actions in distributed systems. Pro-
gramming languages can be used to define data types and manipulation of data.
In timed CP-nets [71], which are described in more detail below, a global clock
models the passage of time. Large and complex models can be built using hier-
archical CP-nets in which modules, which are called pages in CPN terminology,
are related to each other in a well-defined way. Without the hierarchical struc-
turing mechanism, it would be difficult to create understandable CP-nets of
real-world systems.

CP-nets can be used in practice only because there are mature and well-
tested tools supporting them. The Design/CPN tool [31, 40] was first released
in 1989, and it supports editing, simulation, and analysis of CP-nets. CPN
Tools [37] was released in October 2001 and will eventually replace Design/CPN.
CPN Tools has a new GUI with state-of-the-art interaction techniques [16],
such as two-handed input, toolglasses and marking menus, and an improved
simulator [96]. The inscription language, i.e. the language for defining data
types and for modifying data, for both tools is the programming languages is
Standard ML [100, 116].

Petri nets provide a framework for modelling and analysing both the per-
formance and the functionality of distributed and concurrent systems. A dis-
tinction is generally made between high-level Petri nets and low-level Petri
nets. CP-nets are an example of high-level Petri nets which combine Petri nets
and programming languages and which are aimed at modelling and analysing
realistically-sized systems.. Low-level Petri nets to have a simpler graphical
representation, and they are well suited as a theoretical model for concurrency.
The Petri Net World web site [105] contains extensive descriptions of the many
kinds of Petri nets and of PN tools.
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Figure 1.1: Top-level view of CP-net of stop-and-wait protocol.

Example Figure 1.1 shows the most abstract view of a timed, hierarchical
CPN model. The model represents a stop-and-wait protocol from the data link
control layer of the OSI network architecture. In Part I of this dissertation,
the model will be referred to as the stop-and-wait model. The details of the
model are not discussed here, as the model will only be used to introduce basic
concepts related to CP-nets. The model is taken from [80], and it is used as an
example in the paper that is discussed in Chapters 2 and 7.

The stop-and-wait protocol provides reliable communication in a system
which consists of a sender transmitting data packets to a receiver across an un-
reliable, bi-directional communication channel. The sender accepts data packets
from protocols in the upper layers of the OSI network architecture. Similarly,
the receiver passes packets that have been properly received to the upper layers
of the protocol stack. The stop-and-wait model consists of a number of pages,
and Fig. 1.1 shows the page named SWprotocol. The Upper Layers Send page gen-
erates workload for model. The Communication Channel page provides a simple
model of an unreliable network in which packet loss and overtaking can occur.
The protocol is modelled in detail in the Sender and Receiver parts of the model.

Figure 1.2 shows the Sender part of the stop-and-wait model. The states of
a CP-net are represented by a number of tokens positioned on places, which
are drawn as ellipses. No tokens are shown in Fig 1.2. Each token carries a
data value. The data value may be simple, such as an integer or a string, or it
may be complex, such as a pair consisting of a list of integers and a boolean.
The events of a CP-net are represented by means of transitions, which are
drawn as rectangles. When an event happens, i.e. when a transition occurs,
tokens are removed from the input places for the transition, and new tokens are
added to the output places for the transition. A place is an input place for a
transition if there is an arc from the place to the transition. Output places are
defined analogously. The arc inscriptions on the arcs connected to a transition
determine which tokens are removed and added when the transition occurs.

In timed CP-nets, each token is allowed to carry a time value, also called a
time stamp, in addition to the token value. Intuitively, the time stamp describes
the earliest model time at which the token can be used, i.e., removed by the
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Figure 1.2: Sender page of stop-and-wait model.

occurrence of a transition. To model that an event takes r time units, we
let the corresponding transition create time stamps for its output tokens that
are r time units larger than the clock value at which the transition occurs.
This implies that the tokens produced are unavailable for r time units. The
execution of a timed CP-net is time driven, and it works in a way similar to
that of event queues found in many languages for discrete-event simulation.
The system remains at a given model time as long as there are transitions that
can occur. When no more transitions can occur, the system advances the clock
to the next model time at which transitions can occur.

1.3 Performance Analysis using Coloured Petri Nets

There is a large body of research concerning performance analysis using a va-
riety of classes of Petri nets and Petri net-related formalisms. Most of this
research focuses on solving analytical models that are automatically generated
from the Petri net models. The size, complexity, and time concept for CP-nets
prohibit the generation and solution of analytical models from CPN models.
Therefore, performance analysis using CP-nets must rely on simulation to cal-
culate performance measures for a model.

During a simulation of a CP-net, the CP-net can contain and generate
quite a bit of quantitative information about the performance of a system,
such as queue length, response time, throughput, etc. The previous section
described how to model the states and events of a system using places, tokens
and transitions. In other words, it described how to model the functionality of
a system. Let us consider how CP-nets can be used to model and analyse the
performance of a system.
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Example When analysing the performance of a system, one is often inter-
ested in measuring the performance of system when it processes a particular
kind of workload. For example, the workload for the stop-and-wait protocol
is data packets, and when studying a bank the workload would be customers.
With CP-nets it is possible to use both fixed workloads, i.e. workloads that
are predetermined at the start of a simulation, and dynamic workloads. In the
Upper Layers Send page, packets are generated on-the-fly during a simulation.

A timed CP-net can model how much time certain activities take. In most
cases it is insufficient to model the average amount of time that a certain activ-
ity takes – it is necessary to include a more precise representation of the timing
of the system. A user-defined function in the stop-and-wait model calculates
an appropriate interarrival period each time a new packet arrives. The function
is called each time a particular transition occurs. One model parameter deter-
mines whether the periods between packet arrivals are constant or exponentially
distributed, and another parameter determines the average amount of time that
passes between the arrival of two successive packets. Similar parameters and
functions are used for determining the network delay and network reliability in
the Communication Channel page.

For the stop-and-wait protocol, there are several performance measures of
interest, including average queue length for the queue of packets waiting to be
sent, average packet delay and network utilization. Packet delay is the time
from which a packet is put in the Send buffer on the sender side until it is
properly received by the receiver. Network utilization is the percentage of time
in which the network is busy transmitting data frames or acknowledgement
frames. The data channel is bi-directional, and the utilization of each direction
of the channel can be measured. Changing the values of parameters mentioned
above can have profound effects on the performance of the system.

Performance measures are calculated by observing and extracting data from
the states and events of a CP-net during a simulation. Let us consider how the
average queue length can be calculated for the stop-and-wait model. The queue
of packets is modelled by a list of packets which is found on the place Send in
the Sender page. The length of the queue changes either when a new packet is
added to the list or when a packet is removed from the list. These events are
modelled by the occurrence of the Generate transition in the Upper Layers Send

page and the Accept transition in the Sender page, respectively. Therefore, the
queue length can be measured accurately if the length of the list on the place
Send is measured each time one of these two transitions occurs. The process
of extracting the length of the queue from the state of the CP-net is referred
to as collecting data. The length of the queue varies over time, therefore, the
average queue length should be calculated as the time-average queue length.
The time-average queue length is a weighted average of the possible queue
lengths (0, 1, 2, . . . ) weighted by the proportion of time during the simulation
that the queue was at that length. To calculate the time-average queue length
during a simulation, the length of the list is weighted with the amount of time
that passes before the length of the list changes. The sum of these values is
calculated during a simulation, and the average queue length is equal to this
sum divided by the length of the simulation (measured in modelled time units).
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The necessary information must obviously be contained in the model in
order to observe it. However, the user also needs a way to extract the data
during simulation. The Design/CPN Performance Tool [87], which will also be
referred to as the Performance Tool, can be used to extract and save data from
CP-nets during simulations. Each performance measure is calculated by a user-
defined data collector. A data collector consists of two user-defined functions:
the predicate function determines when data is to be collected for a particular
performance measure, and the observation function determines what data is
to be collected. An observation function is invoked each time its associated
predicate function returns true. Both functions can observe and extract data
from all states that are reached and all events that occur during a simulation
of a CP-net. Both functions must be written by the user, but template code
can be generated to assist the user in creating the functions.

Figure 1.3 shows the two performance functions for a data collector named
Queue Length that calculates the time-average queue length for the stop-and-
wait model. The predicate function, Queue LengthPred, is invoked after every
step in a simulation. It returns true whenever either the Accept transition
or the Generate transition occurs. Otherwise, the predicate function returns
false. When the predicate function returns true, the observation function,
Queue LengthObs, will be evaluated. Most of the code in Fig. 1.3 was generated
automatically by the Performance Tool. The user only had to add true and
false in lines 3-5 and all of line 14, which measures the length of the one list
on place Send.

fun Queue LengthPred (net marking, binding element) = 1

let 2

fun filterFun (Bind.Sender’Accept (1, {sn,sent,packets,p,dframe})) = true 3

| filterFun (Bind.UpperLayersSend’Generate (1, {packets,i})) = true 4

| filterFun = false 5

in 6

filterFun binding element 7

end; 8

9

fun Queue LengthObs (net marking, binding element) = 10

let 11

val mark Send = PerfMark.Sender’Send 1 net marking 12

in 13

List.length (ms to col (striptime mark Send)) 14

end; 15

Figure 1.3: Performance functions for measuring queue length of packets.

The Performance Tool produces two kinds of simulation output. During a
simulation, the data values that are extracted by observation functions can be
used to calculate statistics and saved in observation log files. Figure 1.4 shows
a performance report that contains statistics for five performance measures for
the stop-and-wait model. The average queue length during that particular
simulation was 18.15. Figure 1.5 shows how the length of the queue evolved
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TIMED STATISTICS:

Name Count Sum Average Maximum

----------------------------------------------------------

Queue Length 1150 907424 18.15 37

----------------------------------------------------------

UNTIMED STATISTICS:

Name Count Sum Average Maximum

----------------------------------------------------------

Utilization 914 9184 10.05 18

Packet Delay 562 22230 39.56 234

Transmit Success 1627 1274 0.78 1

Time Outs 352 352 1.00 1

----------------------------------------------------------

Current step: 6030

Current time: 50006

Figure 1.4: Performance report.
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Figure 1.5: Graph of contents of an
observation log file.

during the simulation that lasted for 50000 units of model time. The graph was
obtained by plotting the contents of the observation log file that was maintained
for the Queue Length data collector.

1.4 Motivation and Aims of Dissertation

Coloured Petri nets is a general modelling language that have the potential
for being used for performance analysis, but in practice it rarely is. As men-
tioned previously, other forms of Petri nets are frequently used for performance
analysis, but they generally rely on analytical models which require that cer-
tain assumptions are made about the behaviour of the system. When using
simulation-based performance analysis, fewer assumptions need to be made
about the system in order to model or analyse its behaviour.

We have seen an example of how a CPN model can contain and generate
quite a bit of quantitative information about the performance of the model
during a simulation. Until recently, the information was neither easily accessible
nor frequently used. To help remedy this problem, Bo Lindstrøm and I designed
and implemented the Design/CPN Performance Tool which was the main topic
of our Master’s thesis [88], and which we implemented while we were working as
part-time student programmers. The Performance Tool was put to practical use
in several projects, and it was fully integrated into version 4.0 of Design/CPN
which was released in September, 1999.

The goal of the work in this dissertation has been to further investigate
and facilitate the practical use of CP-nets for performance analysis of realistic,
industrial-sized systems. Coloured Petri nets are well suited for modelling and
analysing real-world systems. This, in fact, is one of the goals of the CPN
Group at the University of Aarhus:

“The development of CPN has been driven by the desire to develop
an industrial-strength modelling language – at the same time the-
oretically well-founded and versatile enough to be used in practice
for systems of the size and complexity found in typical industrial
projects.” [80]
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To achieve this goal the developers maintain that it is important to support
research in all aspects of CP-nets, i.e. theoretical foundation, tool support,
and large-scale practical applications. The work presented in this dissertation
continues in this spirit.

One aim of this dissertation is to introduce simulation-based performance
analysis to the world of CP-nets. In the past, simulation has most often been
used for debugging, validation, and for investigating logical correctness of sys-
tems. There are relatively few studies concerning performance analysis using
high-level Petri nets, and there seems to be only very limited research in the
area of using high-level Petri nets for simulation-based performance analysis.
This is somewhat surprising since there is an incredibly active simulation com-
munity, as evidenced by the number of conferences, journals and societies re-
lated to simulation (see, for example, [66] for a collection of simulation-related
links). However, there seems to be very little overlap between the simulation
community and the Petri net community

In order to use CP-nets for performance analysis, it must be possible to
collect data from CP-nets during simulation. This, in turn, means that the
necessary data must be accessible in the model, and there must be support for
extracting data and generating reliable simulation output. The Design/CPN
Performance Tool provides reasonable support for extracting data during sim-
ulations, but as we shall see, it provides only very limited support for proper
simulation output analysis. Cleaner, more understandable CPN models can be
created if there is an explicit separation between modelling the behaviour of a
system and observing the behaviour of the model. In other words, it should not
be necessary to add places or transitions or to modify net inscriptions for the
sole purpose of extracting information regarding the performance of the model.

1.5 Outline of Dissertation

This dissertation consists of two parts. The main body of work done during
the course of my PhD studies is documented in four papers [90, 89, 127, 126].
All four of these papers have been accepted for presentation at international
workshops. Part II of this dissertation (Chapters 7-10) consists of these four
papers. The publication history and status for each of the papers can be found
below and at the start of the appropriate chapter.

Part I (Chapters 1-6) of this dissertation constitutes the obligatory overview
paper which summarises the work described in the papers in Part II of the
dissertation. The remainder of Part I is organised as follows:

Chapter 2 summarises the paper Performance Analysis using Coloured Petri
Nets [126]. The paper will appear in the proceedings of the Tenth Inter-
national Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems (MASCOTS’02). The paper that was
submitted to MASCOTS’02 is contained in full in Chapter 7, a shorter
version of the paper will appear in the proceedings of MASCOTS’02. The
paper contributes to the area of tool support for CP-nets.
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Chapter 3 summarises the paperTowards a Monitoring Framework for Discrete-
Event System Simulations [90]. The paper presents joint work with Bo
Lindstrøm, and it will appear in the proceedings of the 6th International
Workshop on Discrete Event Systems (WODES’02). The paper is con-
tained in full in Chapter 8. The paper contributes to the area of tool
support for CP-nets.

Chapter 4 summarises the paper Annotating Coloured Petri Nets [89]. The
paper presents joint work with Bo Lindstrøm, and it will appear in the
proceedings of the Fourth Workshop and Tutorial on Practical Use of
Coloured Petri Nets and the CPN Tools (CPN’02). The paper is contained
in full in Chapter 9. The paper contributes to the area of CP-net theory.

Chapter 5 summarises the paper Simulation Based Performance Analysis of
Web Servers [127]. The paper presents joint work with Søren Christensen
and Lars M. Kristensen and Kjeld Mortensen, among others. The paper
has been published in Proceedings of the 9th International Workshop on
Petri Nets and Performance Models, pages 59-68, IEEE, 2001. The paper
is contained in full in Chapter 10. The paper contributes to the area of
practical applications of CP-nets.

Chapter 6 concludes the overview paper by summarising the main contribu-
tions of the dissertation and by discussing directions for future work.

Chapters 2-5 each consist of three sections. The first section provides, if
necessary, an introduction to the specific topic(s) addressed in the paper in
question. In some cases, the first section will also provide background infor-
mation regarding the context in which the work was done. The second section
provides a summary of the paper in question, together with a brief evaluation
of the methods and techniques that were used. The third section provides a
survey of related work and compares the results in the paper with the related
work.

Readers’ Guide Detailed knowledge about CP-nets is not required to un-
derstand this overview paper, which constitutes Part I of this dissertation. The
reader is assumed to have a basic understanding of Petri nets. It is, however,
an advantage to have a good understanding of CP-nets when reading Part II
of this dissertation. Readers without knowledge of CP-nets and who wish to
study this dissertation in more detail are referred to “The Practitioner’s Guide
to Coloured Petri Nets” [80] which provides a practical introduction to coloured
Petri nets. Furthermore, readers who are interested in understanding the for-
mal definitions and proof in Chapter 9 would benefit from a firm understanding
of CP-nets as defined by Jensen in [70]. No statistical knowledge is required.
Any statistical terminology that is introduced will be informally described, and
Sect. 2.1.2 provides a brief introduction to some of basic concepts related to
simulation-based performance analysis. Readers who are interested in learning
more about output-data analysis and experimental design methods that are
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applicable to real-world problems are referred to Law & Kelton’s well-known
Simulation Modeling & Analysis [84].

The papers in Chapters 7-10 can be read in any order. They have, how-
ever, been organised in the order in which, I feel, they make the most signifi-
cant contributions towards facilitating the practical use of CP-nets for perfor-
mance analysis of industrial-sized systems. Tool support for conducting reliable,
simulation-based performance analysis using CP-nets is presented in [126]. Fa-
cilities which support explicit separation between modelling the behaviour of
a system and observing the behaviour of a model are presented in [90]. These
facilities support the creation of cleaner and more understandable CP-nets. A
method for introducing auxiliary information into CP-nets without affecting the
behaviour of the CP-net is the topic of [89]. The addition of such information
can often aid in analysing the performance of a CP-net. Finally, the case study
presented in [127] discusses how CP-nets and the newly developed performance
facilities can be used to analyse the performance of a web server.

This dissertation addresses three, very large research areas: (coloured) Petri
nets, performance analysis, and simulation analysis. In Part I of this disserta-
tion, the term simulation analysis covers both output-data analysis and exper-
imental design, i.e. the determination of which simulation experiments should
be executed. My expertise is primarily within the area of CP-nets. During my
PhD studies, I have obtained a basic understanding of the other two areas, but
I am, by no means, an expert in either of these two areas. When discussing
work that is related to my own, it would be impossible to report on the state-
of-the-art within all three fields. I will approach the discussion of related work
from a CPN point-of-view. However, I will also discuss my work in the broader
contexts of simulation analysis and performance analysis.





Chapter 2

Performance Tools for Coloured Petri Nets

This chapter discusses the paper “Performance Analysis using Coloured Petri
Nets.” Section 2.1 discusses the motivation behind the further development of
performance facilities for Design/CPN, and it provides an informal introduc-
tion to concepts related to simulation-based performance analysis. Section 2.2
summarises the main contributions of the paper and evaluates the techniques
that were applied. Section 2.3 discusses related work.

2.1 Introduction and Background

The goal of the work on which this paper is based was to improve support for
simulation-based performance analysis using CP-nets. With the Performance
Tool (described in Sect. 1.3) it is fairly easy to extract data, calculate some
statistics, and save all data observations during a simulation of a CP-net. The
facilities were intentionally designed to be general and flexible. However, for
standard data collection and analysis purposes, they require too much effort on
the part of the user: all data collectors must be defined by a user, there is no
standard support for automatically running multiple simulations, and care must
be taken to ensure that simulation output is not deleted when a new simulation
is run. The tool provides high-level support for data collection from CP-nets,
but it lacks support for reliable statistical analysis of the resulting simulation
output.

2.1.1 Motivation

Simulation analysis is not simply an exercise in computer programming and
data collection. According to simulation experts [69, 84] some of the common
drawbacks to simulation studies are:

• Statistical techniques are used improperly

• There is a tendency to have greater confidence in the results of a study if
a large volume of numbers are produced during the study

• A great deal of time is often spent developing the model, but little effort
is made to properly analyse the output

15
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• Analysts are experts in the use of modelling tools or in the domain of the
system being modelled, but they do not know how to analyse or interpret
data

These were precisely some of the problems that were encountered when
using the Performance Tool in various projects. With the Performance Tool, it
was suddenly possible to generate huge amounts of data, but the users of the
tool were inexperienced data analysts, and the data that was produced during
a single simulation was often interpreted to be the answer.

A message that appears repeatedly in performance analysis literature is that
performance analysts should know something about probability, statistics, and
statistical analysis techniques. In my experience, both at the University of
Aarhus and as a visitor at the University of California at Los Angeles, it is easy
to disregard or to be unaware of this seemingly obvious recommendation. Un-
fortunately, quite sophisticated and elegant performance modelling tools can be
used for questionable simulation studies. At first glance, some simulation stud-
ies appear quite sound, but upon closer inspection the studies are unconvincing.
Often there is no apparent systematic approach to defining experiments, and
values for system parameters seem to be chosen arbitrarily. Furthermore, it is
often unclear whether proper statistical techniques are used to analyse output
data. These problems can be avoided, to some extent, by supporting sound
statistical techniques directly in modelling tools.

I had the rather unique opportunity to take, and then a year later, team-
teach a course on simulation, modelling and analysis with a particular emphasis
on data analysis techniques. When I took the course, it was only offered for
students in the Operations Research (OR) Department. Through this course I
learned about the basics of what data analysts need for doing proper statistical
analysis of simulation output. When I was involved in teaching the course, it
was offered jointly by the OR and Computer Science (CS) departments. In this
course, the students primarily used the Arena simulation package [75, 5] for
modelling and analysing a variety of different systems. The course included a
brief introduction of CP-nets to expose the students to an alternative modelling
language.

My involvement in these two courses has been a valuable learning experi-
ence. I observed that the students from different backgrounds approached their
modelling and analysis projects very differently. The OR students were very
concerned with designing good simulation studies and doing proper analysis of
the simulation output, and they were generally not as critical when it came
to validating the functionality of their models. The CS students, on the other
hand, were very concerned with creating valid models, but their analysis of
their simulation output was generally weak. These experiences have provided
valuable insights into the needs of different users. Inexperienced data analysts
will have a tendency to believe what a tool tells them, therefore care must be
taken to avoid generating misleading simulation output. More experienced data
analysts generally require that more sophisticated kinds of data are generated
for specific purposes.
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The typical user of CP-nets is not likely to be an expert data analyst, and
this has influenced the further development of performance facilities for CP-
nets. By providing simple output-analysis facilities, a user is allowed to focus
on the analysis of the data rather than the manipulating or post-processing
of the data. The kind of simulation output that is generated may also provide
some hints regarding the proper analysis of the data. New performance facilities
should assist a CPN user in a simulation study rather than lead an inexperi-
enced data analyst directly into the major pitfalls associated with simulation
studies. New performance features have been designed such that users have an
opportunity to use the facilities without being an experienced programmer or
an expert CPN user. On the other hand, the features are still general enough
that experts will be able to tailor the performance facilities to their needs.

2.1.2 Basic Concepts Related to Simulation

Before presenting the new performance facilities, this section will provide an in-
formal introduction to basic concepts related to simulation-based performance
analysis. References will be provided for more formal and precise definitions of
each of these concepts. Simulation output data are random, therefore appro-
priate statistical techniques must be used both to design and and to interpret
simulation experiments.

Terminating and Non-terminating Systems Simple statistical techniques
exist for using simulation models to analyse terminating and non-terminating
systems1 which are defined in turn below.

Terminating systems are characterised by having a fixed starting condition
and a naturally occurring event that marks the end of the system. An example
of a terminating system is a work shift that starts at 8 am and ends at 4 pm at a
car assembly plant. For terminating systems the initial conditions of the system
generally affect the desired measures of performance. The purpose of simulating
terminating systems is to understand their behaviour during a certain period
of time, and this is also referred to as studying the transient behaviour2 of the
system. Terminating simulations3 are used to simulate terminating systems.
The length of a terminating simulation is determined either by the system itself,
if the system is a terminating system, or by the objective of a simulation study.
For example, the goal of a performance study may be to analyse the performance
of the work shift at the assembly plant either during the whole shift or only
during the time it takes to assemble the first ten cars after the work shift has
started. The length of a terminating simulation can be determined by a fixed
amount of time, e.g. 8 hours, or it can be determined by some condition, e.g.
the completion of the tenth car.

In a non-terminating system, the duration of the system is not finite. The
Internet exemplifies a non-terminating system. Non-terminating simulations
are used to simulate non-terminating systems. In a non-terminating simulation,

1For more details regarding (non-) terminating systems, see, e.g., pg. 27 in [13].
2For more details regarding transient and steady-state behaviour, see, e.g., Sect. 9.2 in [84].
3For more details regarding (non-) terminating simulations, see, e.g., Sect. 9.3 in [84].
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there is no event to signal the end of a simulation, and such simulations are typ-
ically used to investigate the long-term behaviour of a system. Non-terminating
simulations must, of course, stop at some point, and it is a non-trivial prob-
lem to determine the proper duration of a non-terminating simulation. If the
behaviour of the system becomes fairly stable at some point, then there are
simple techniques for analysing the steady-state behaviour of the system us-
ing non-terminating simulations. When analysing steady-state behaviour using
non-terminating simulations, it is often useful to be able to specify a warmup
period4 in which data is not collected because the model has not yet reached a
steady state. Determining when, or if, a model reaches steady state is also a
complicated issue.

Estimating Performance Measures Performances measures that are cal-
culated via simulation are generally only estimates of the true performance
measures. Confidence intervals5 can be used to indicate how precise estimates
of a performance measure are. In order to calculate accurate confidence inter-
vals, it must be possible to collect estimates that are independent and identically
distributed6 (IID). Intuitively, performance measure estimates are IID if they
are not related to each other and if they have the same probability distribu-
tion. Let us consider examples of estimates that are not IID. The amount of
time that customer number n waits in a queue at a bank is not likely to be
independent from the amount of time that customer number n − 1 waits in
the queue, because customer n must often wait behind customer n − 1, i.e.
the queue delays for these two customers are not independent. The average
arrival rate for customers at a bank from 9-10 am and the average arrival rate
for customers from 12-1 pm are probably not identically distributed since more
customers are likely to come during lunch hour. When studying terminating
systems, IID estimates of performance measures must be collected from a num-
ber of independent, terminating simulations. Let us consider examples of IID
estimates. If one estimate of the average queue delay of bank customers is cal-
culated for each of a number of terminating simulations, then these estimates of
the average queue delay are independent. Similarly, if the average arrival rate
of customers between 9-10 am is calculated for each terminating simulation,
then these estimates are likely to be identically distributed. When studying
steady-state behaviour, there are several different techniques for collecting IID
estimates from both terminating and non-terminating simulations.

Variance Reduction Techniques One of the drawbacks of simulation-based
performance analysis is that it can take a long time to run one simulation. This
problem is amplified if many simulations need to be run. Variance-reduction
techniques 7 (VRT) can sometimes be used to reduce the number or length of
simulations that need to be run. The variance reduction techniques known as

4For more details regarding warmup, see, e.g., Sect. 9.5.1 in [84].
5For more details regarding confidence intervals, see, e.g., Sect. 4.5 in [84].
6For more details regarding IID data, see, e.g., p.12 in [84].
7For more details regarding variance-reduction techniques, see, e.g., Chapter 11 in [84].
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common random numbers (CRN) and synchronisation are particularly useful
when comparing alternative system configurations. With CRN, the same ran-
dom numbers are used in each configuration, and synchronisation is achieved if
each random number is used for the same purpose in each configuration. Not
only can CRN reduce the number or length of simulations that need to be run,
but it also implies that a fairer comparison of the configurations can be made
because the experimental conditions are the same for each configuration [54].

2.2 Main Contributions

Th paper “Performance Analysis using Coloured Petri Nets” presents new facil-
ities for performance analysis using CP-nets. The paper focuses on how CP-nets
can be used to analyse network protocols, but the facilities that are discussed
can be used to analyse any kind of system. Network protocols are particularly
interesting because it is often important to analyse both the functionality and
the performance of a protocol, and CP-nets is a formalism that can be used to
analyse these two aspects of a system. The model from Sect. 1.2 is used as an
example in the paper. The facilities have been designed to assist inexperienced
data analysts.

The first contribution of the paper is to present practical applications of
so-called monitors when using CP-nets to study the performance of systems.
A monitor is a mechanism that can observe (or monitor) the states and events
of a CP-net during a simulation, and that can take appropriate actions based
on the observations. Monitors can be used both to inspect and to control a
simulation. Monitors are a concrete realisation of the monitoring framework
that is discussed in Chapters 3 and 8.

The paper discusses several kinds of monitors that have been implemented.
A simulation breakpoint monitor controls a simulation of the stop-and-wait
model by stopping a simulation when a packet is retransmitted for the third
time. This example also illustrates how several different monitors can interact
in order to achieve a common goal. Currently, Design/CPN and CPN Tools
only provide support for properly stopping a simulation when either a given
number of steps have occurred or when a given amount of model time has
passed. While it is possible to use workarounds, e.g. by raising exceptions, to
stop a simulation, it is not recommended since valuable data can be lost when a
simulation is unexpectedly interrupted. Simulation breakpoint monitors should
prove to be extremely useful for defining domain-specific or model-specific simu-
lation breakpoints. A monitor for creating message sequence charts [67] (MSC)
illustrates how the performance of a network protocol can be visualised.

Data collection monitors represent the data collection facilities that are be-
ing developed for the new simulator for Design/CPN and CPN Tools. These
monitors are similar to the data collectors in the Performance Tool. As with all
other monitors, data collection monitors can extract data from the states that
are reached and the events that occur during a simulation of a CP-net. New
standard monitors can be used, e.g., to calculate the average number of tokens
on a place or to count the number of times a particular transition occurs during
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a simulation. Standard monitors are largely predefined and model-independent.
Support, in the form of template code, is also provided for defining more spe-
cialised or model-dependent data collection monitors.

The second contribution of the paper is the introduction of facilities sup-
porting statistically reliable analysis of one configuration of a CP-net. Two of
the major pitfalls in simulation studies are 1) regarding the results of a sin-
gle terminating simulation as the “true answers” and 2) the improper use of
statistical techniques. Several new features have been added in an attempt to
avoid these problems. A new batch script, which is just an ML function, will
run a given number of independent, terminating simulations, and data is auto-
matically collected and saved during each simulation. New batch data collection
monitors can be used to calculate confidence intervals for IID performance mea-
sure estimates that are collected from independent simulations.

Simulation output is crucial for performance analysis. It is used both for
analysing the performance of the system and for presenting the results of the
analysis. Therefore, it is important that a simulation modelling tool generates
output that is useful for data analysts. The individual data values that are ob-
served by a data collection monitor can be saved in observation log files. Simula-
tion performance reports and new batch performance reports contain statistics
that are calculated for single simulations and batches of simulations, respec-
tively. Both types of performance reports can be now saved in two new formats
(LATEX and HTML) in addition to plain text. Additional facilities can be used
to save all simulation output in a simple, yet organised directory system. A
batch status file provides information about the status of each individual simu-
lation, including number of steps taken, model time at the end of the simulation,
reason why the simulation stopped, and the directory in which the output was
saved. Two kinds of scripts for plotting the contents of observation log files
with gnuplot [53] can now be generated. The IID performance measure esti-
mates from the independent simulations are also saved in a file, which can be
post-processed by the user.

The third contribution of the paper is the introduction of facilities that
support the analysis of several different configurations of a CP-net. Simula-
tion studies can be made for many different reasons, including analysing the
performance of one system, comparing the performance of several given config-
urations, locating the model parameters that have the most significant impact
on a particular performance measure, or finding the combination of parameters
that gives the best results. Inherent in most of these activities is the need to be
able to run multiple simulations for different system configurations. Another
new batch script will automatically run a given number of simulations for dif-
ferent system configurations, assuming that the different configurations can be
specified by changing numerical parameters in a CP-net.

Support has also been added for using the variance reduction technique of
common random numbers and synchronisation. The paper provides an example
that illustrates the effects of using varying degrees of CRN and synchronisation
when comparing alternative system configurations. It is shown that compar-
ing two configurations is relatively easy using standard simulation output to
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calculate paired-t confidence intervals8. Paired-t confidence intervals indicate
whether the performance of two configurations are significantly different.

The new facilities that are presented in this paper should prove to be useful
when using CP-nets for performance analysis. The typical CPN user is likely to
be neither an experienced performance analyst nor an experienced data analyst.
The facilities have been designed with this in mind, and they have been designed
to aid and assist inexperienced data analysts. All of the statistical techniques
that are discussed in this paper are standard, well-known, and relatively sim-
ple techniques, and there is plenty of room for improvement. For example,
there must be better support for running and analysing non-terminating simu-
lations, but this can be achieved by making some straightforward changes to the
batch script for running a number of independent simulations. These facilities
have been implemented and have undergone preliminary testing. However, it is
clearly important that the various facilities should be improved and integrated
into one CPN tool.

2.3 Related Work

The topic of the paper is facilities for modelling and analysing the performance
of systems. The area of related work is virtually limitless. Therefore, in this
section I will limit the discussion of related work primarily to a survey of the
prominent results within the area of (simulation-based) performance analysis
using Petri nets. A brief comparison will be made of performance tools for
Petri nets and a widely-used commercial simulation package (Arena) in order
to provide a sense of the similarities and differences between these two kinds of
tools.

2.3.1 Petri Nets for Performance Analysis

There are many different classes of Petri nets that are used for performance
analysis, and they all share the common trait of being timed models. Most
of the current research concerning Petri nets and performance analysis focuses
on using low-level Petri nets, such as Stochastic Petri nets [93, 10] (SPN),
Generalized Stochastic Petri Nets [1] (GSPN), Deterministic Stochastic Petri
Nets [86] (DSPN), and the closely related Stochastic Activity Nets [112] (SANs).
Each of these kinds of Petri nets require that some, if not all, transitions have
exponentially distributed firing delays and atomic firing policy. Under certain
circumstances, alternative firing delays can be used in, e.g. GSPNs and DSPNs.
The most well-known and widespread PN and PN-related tools for performance
analysis are GreatSPN [29, 57], DSPNexpress [85, 42], TimeNET [51, 119] and
UltraSAN [120, 113]. In the following, I will refer to these tools as the PN
performance tools. Stochastic well-formed nets [28] (SWN) are are a high-level
variant of GSPNs in which there are tight restrictions on which data types may
be used to define token values and on the kinds of arc inscriptions that are

8For more details regarding paired-t confidence intervals, see, e.g., Sect. 10.2 in [84].
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allowed. SWNs are also supported in the GreatSPN tool. These are the most
commonly used tools and Petri net classes in the area of performance analysis
and Petri nets.

Analytical models can be automatically generated from the Petri nets men-
tioned above. The analytical models can then be solved using sophisticated
techniques to give exact values for the performance measures that have been
defined for the net in question. Many analytical models require that it is possi-
ble to generate a full state space9 for the system in question. One problem that
can arise when using state spaces to derive performance measures is connected
to the state explosion problem [121] which means that even for small configu-
rations of a system the number of reachable states may be very large or even
infinite. When the state space of a system is too large, then it may be difficult,
if not impossible, to generate the analytical models needed for performance
analysis. In some cases the state explosion problem can be avoided by using
small and unrealistic configurations of the system, but this is not desirable if
the goal of a study is to analyse a realistic configuration of an industrial-sized
model. If an analytical model can be generated and solved, then it is certainly
advantageous to be able to calculate exact performance measures, but the re-
liability of the results may be compromised if unrealistic assumptions, such as
exponentially distributed time delays, need to be made about the system in
order to model it with Petri nets.

Simulation is always an alternative when analytical models cannot be de-
rived for the types of Petri nets that have been mentioned here. The PN per-
formance tools have long histories in supporting both analytic and simulation-
based performance analysis using Petri nets. In addition to Design/CPN and
CPN Tools, the ExSpect [122, 43] and Artifex [7] tools also support simulation
of CP-nets. As we have seen, it is possible to use CP-nets and simulation for
performance analysis. An advantage of using CP-nets for performance analy-
sis is that fewer assumptions need to be made regarding the behaviour of the
system being modelled, e.g. time delays do not have to be exponentially dis-
tributed. Furthermore, the state explosion problem is not an issue when using
simulation. The main drawback of simulation is that it can only be used to es-
timate the performance of a model. Additional drawbacks of simulation-based
performance analysis are discussed below.

2.3.2 Simulation Analysis

As mentioned previously, in this dissertation the phrase simulation analysis
covers both output-data analysis and experimental design, i.e. the determina-
tion of which simulation experiments should be executed. This section discusses
how the established PN performance tools support simulation analysis.

Data Analysis There are actually two types of data analysis associated with
simulation studies: input-data analysis and output-data analysis. Input-data
analysis typically involves fitting raw data from the domain of the study to

9A full state space is essentially a graph representing all of the reachable states and state
changes of a system.
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probability distributions which can then be used to represent the corresponding
aspect in the model. Examples of software that can be used for input-data
analysis can be found in [117]. This is an important topic and is relevant for
many simulation studies, but it is beyond the scope of this dissertation.

Output-data analysis is concerned with the analysis of data that is gener-
ated during simulations. The reliability of a simulation study depends on the
use of sound statistical analysis techniques. Most of the PN performance tools
can run terminating and non-terminating simulations, and performance mea-
sures can be calculated for transient and steady-state behaviour. In the PN
performance tools, the method for stopping all terminating simulations is to
stop them after a certain amount of time has passed. In other words, the tools
do not support the use of model-specific stop criteria. In many of the tools men-
tioned, it is possible to specify the length of the warmup period when running
non-terminating simulations. In some cases, TimeNET can even automatically
detect the proper length of the warmup period. When the user specifies the
warmup period, there is no guarantee that the period specified actually corre-
sponds to a reasonable warmup period. If the individual data observations from
a number of independent simulations are available, a graphical procedure [84],
due to Welch, can be used to estimate the proper length of the warmup period.
The new performance facilities for CP-nets provide basic support for running
and analysing terminating simulations, but the most obvious weakness of the
facilities is the lack of explicit support for analysing steady-state behaviour.

Most simulation software has capabilities for providing 95% confidence in-
tervals, and this holds true for the PN performance tools. Many of the tools can
also calculate 90% and 99% confidence intervals, and the confidence intervals
can be calculated in order to obtain a user-specified absolute or relative pre-
cision. The confidence intervals that are presented in my paper are calculated
using a fixed-sample size, i.e. the number of simulations that were run. This
is easy to implement, but it is not very flexible since an analyst cannot specify
how precise the confidence intervals should be.

Simulation Output Simulation output it crucial for simulation-based per-
formance analysis. It is used both for analysing the performance of the system
and for presenting the results of the analysis. Therefore, it is important that a
simulation modelling tool generates output that is useful for data analysts.

The PN performance tools save the calculated performance measures in
files. Some of the tools can also dynamically update the values of performance
measures in the GUI of the tool during a simulation. Many of the tools also
use gnuplot to create and save various kinds of graphs of performance mea-
sures. In some cases the user is able to specify some aspects of the graphs,
such as labels and scales, while other tools use predetermined formats. None of
these tools appear to save the individual data values that are used to calculate
performance measures during a single simulation. However, TimeNET can dy-
namically graph the evolution of performance measures during one simulation.
While the data values from one terminating simulation can generally not be
used to reliably estimate a performance measure, they can be extremely useful
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for visualising the behaviour of the system during the simulation. For example,
plotting the evolution of the length of a queue during a simulation can be quite
helpful , e.g. when discussing the behaviour of the model with non-PN experts,
when debugging the model, and when estimating the warmup period.

Comparing Configurations Simulation is often used to compare alternative
system configurations, therefore it is useful if there is support for defining and
automatically simulating alternative configurations. In the PN performance
tools that provide support for comparing different configurations, different con-
figurations are defined by changing the values of numerical parameters. Some
tools can only automatically vary the value of one parameter, while other tools
are able to automatically vary a set of numerical parameters.

The new performance facilities for CP-nets also contain support for defining
and simulating configurations that are specified by changing numerical param-
eters in a CP-net. A advantage of CP-nets is that there is the potential for
varying the values of non-numerical parameters, when defining different con-
figurations. Examples of non-numerical parameters are queueing or caching
strategies that are declared as colour sets, or names of input files that contain
predefined workload. However, the PN performance tools have the added flex-
ibility that both simulation and analytical models can be used to analyse each
of the configurations.

After defining and simulating different configurations, it is necessary to com-
pare the performance of the different configurations. As usual, only sound sta-
tistical techniques should be used to evaluate whether there is a significant
difference between the performance of two or more systems. When comparing
configurations with GreatSPN, one estimate of each performance measures for
each configuration are saved in one file. Several PN performance tools generate
graphs that can provide a sense of whether two configurations are significantly
different. However, since neither the results from GreatSPN nor the graphs
contain an indication of how precise the estimates of performance measure are,
there is no guarantee that the performance of the configurations are actually
significantly different. The graphing facilities in the PN performance tools re-
quire little effort on the part of a user, but in some cases the comparisons of two
configurations will be inconclusive based on the information that is available.
The new performance facilities for CP-nets require more work on the part of
the user because the user must always post-process the data, e.g. to calculate
paired-t confidence intervals. However, by post-processing data it is possible to
conclude whether or not there is a significant difference based on the available
data.

Rare Events Some performance studies deal with understanding the be-
haviour of systems in extreme situations. For example, the goal of the study
may be to examine what happens when a vital component in the system fails,
or when the system experiences a sudden unexpected burst in incoming work-
load. Under normal circumstances, these events occur only rarely, and this
can complicate simulation studies because extremely long simulations need to



2.3. Related Work 25

be run in order to collect sufficient amounts of data regarding the rare events.
One case study [94] used CP-nets to study failures and so-called feared events,
which are both rare events, in oil tanks in cars. In this study, long simulation
times were avoided because it was possible to translate a simple CP-net of the
oil tank to a recursive ML function with which the performance of the oil tank
could be observed. It was up to 500 times faster to evaluate the ML function
than to run a simulation of the corresponding CP-net. Presumably it is very
rare that a simple ML function can be derived from a CP-net, in which case
better support is needed for studying rare events in CPN simulations.

Special techniques are supported in UltraSAN [98] and TimeNET [74] for
alleviating the problem of long simulation times when studying rare events.
Previously intractable simulations may become tractable when employing these
techniques, thus allowing the analysis of new kinds of systems.

2.3.3 Commercial Simulation Package

PN performance tools may provide state-of-the-art methods for generating and
calculating analytical models, but they do not provide state-of-the-art support
for simulation-based performance analysis. This section briefly compares PN
performance tools with a commercially available simulation package. Arena
has been chosen as a representative example of the commercially available,
graphically-based simulation tools. Personal experience with the package is one
obvious reason for choosing Arena. However, since Arena is licensed to over
5000 customers and is used by over 500 educational institutions [5], it seems
fair to assume that it is one of the widely-used simulation packages.

Arena provides support for all aspects of simulation modelling and analy-
sis. Models are generally built using drag-and-drop graphical representations
of predefined modules, such as queues, servers, transport entities, and logical
modules (e.g. if-statements and while-loops). If input data is available for the
system being modelled, then Arena can fit the data to a probability distribution
which can then be used to represent the data in the model. Both terminating
and non-terminating simulations can be run for studying transient and steady-
state behaviour. Output reports contain statistics for standard and user-defined
performance measures. All data that is collected during simulations is saved in
a database. The database is accessed by a data-analysis component in Arena
that can, e.g. post-process data, plot graphs of data from single simulations,
and compare different configurations using reliable statistical techniques. A
user can manually define a set of different model configurations that should be
simulated and analysed. Arena can also automatically search for an optimal
configuration of a system.

While the performance facilities in Arena are more advanced than the per-
formance facilities in any of the PN performance tools, the package also has its
drawbacks. The modelling language in Arena is a general language that is not
theoretically well-founded. Therefore, there is no support for verifying the log-
ical correctness of an Arena model. (Coloured) Petri nets have the advantage
that they can be used for both performance and functional analysis of systems.
Another drawback to Arena is that some of the predefined modules are quite
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complicated. When using the textbook introduction to Arena version 3.0 [75],
a user is shown how to build rather complicated models quite fast. While this
provides instant satisfaction, problems arise when inexperienced users attempt
to build models of systems that are significantly different from the examples
in the book. It may take slightly longer to learn how to build (C)PN models,
but once a user knows the basics, it becomes possible to model many different
kinds of systems.



Chapter 3

Monitoring Simulations

monitor (verb) to watch, keep track of, or check usually for a special purpose

- Merriam-Webster’s Collegiate Dictionary

This chapter discusses the paper “Towards a Monitoring Framework for
Discrete-Event System Simulations.” Section 3.1 introduces the concept of
monitoring simulations. Section 3.2 summarises the main contributions of the
paper and evaluates the techniques that were applied. Section 3.3 discusses
related work.

3.1 Introduction and Background

The basic tasks for simulators of CP-nets are: to calculate the initial marking,
to locate the transitions that can occur in each marking, to select the transition
that should occur next, and to transform the current marking to the next
marking according to the occurrence rule. In order to analyse the performance
of a CP-net, it is necessary to carry out additional tasks during a simulation. At
a minimum, it must be possible to observe the markings that are reached during
a simulation, to extract data from the markings, and to calculate statistics from
the data. If the data is to be saved in a file, then the file needs to be opened,
updated, and closed at appropriate points during the simulation.

More advanced support for performance analysis can be provided if addi-
tional functionality is supported. For example, additional performance mea-
sures can be calculated if occurring transitions can also be observed. Moreover,
accurate stopping criteria for terminating simulations can be defined if a sim-
ulator supports additional functionality. CPN simulators can generally stop
a simulation after a certain number of steps have been taken or after a cer-
tain amount of model time has passed. When running terminating simulations
it is often useful to be able to define domain-specific simulation stop criteria.
For example, a simulation study may be interested in measuring the average
packet delay for the first 100 packets in the stop-and-wait model from Sect. 1.2.
Supporting functionality for visualising the performance of a CP-net during a
simulation, using e.g. MSCs or domain-specific graphics, also has several ad-
vantages: it is a quite useful debugging technique, it is helpful during initial

27
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attempts to find reasonable parameter values, and it becomes possible for non-
CPN experts to understand and discuss the behaviour of the CP-net.

We introduce the term monitoring to generically describe any activity re-
lated to observing, inspecting, controlling or modifying a simulation of a CP-
net. In other words, a process monitors a simulation if the process examines a
CP-net during the simulation, periodically extracts information from the CP-
net, and uses the information for a specific purpose. Examples of processes
that monitor CPN simulations are the mechanisms that collect data or update
MSCs in Design/CPN.

A simulation of a CP-net can be monitored in two different ways. The
first option is to take advantage of the expressiveness of the CPN formalism
and the inscription languages and encode monitoring functionality directly in
a CPN model. This can be achieved by adding extra places and transitions
to the net and by using functions that have side effects. Encoding monitoring
functionality directly in a CP-net has the advantage that it does not require any
extra effort on the part of developers of CPN simulators. However, adding extra
net structure or complicated functions may affect the behaviour of the model in
unexpected or undesirable ways. In addition, incorporating extra functionality
in a model is time consuming for a modeller.

An alternative that would avoid the problem of introducing unwanted be-
haviour into a CP-net is to extend the functionality of the simulator with explicit
support for monitoring. This, of course, requires more work for the developers
of a simulator. The main advantage is that it supports the creation of cleaner,
more understandable models.

A number of libraries and tool extensions have been developed for moni-
toring simulations in Design/CPN during the past decade. These libraries in-
clude support for creating MSCs [92], updating domain-specific graphics [106],
communicating between the simulator and other processes [49], and collecting
data [87]. These libraries and tool extensions can be used both to inspect and
to control a simulation of a CP-net. In Design/CPN, monitoring activities are
often encoded in code segments which are associated with transitions. A code
segment contains arbitrarily complex SML code that is evaluated when the cor-
responding transition occurs. In this way, it is possible to access monitoring
facilities when a transition occurs. Many published CPN models also include
net structure, inscriptions, or entire pages that do not model any aspect of the
modelled system. These extra elements are used solely to execute auxiliary
(non-CPN) functionality, such as opening files, generating complicated initial
markings, or collecting data and calculating statistics. Until recently, code seg-
ments have been the only means for separating modelling the behaviour of a
system and monitoring the behaviour of a model in Design/CPN.

3.2 Main Contributions

The main contribution of this paper is a general framework for designing and
implementing monitoring facilities in CPN tools. We use the term monitor to
denote any mechanism which inspects or monitors the states and events of a
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if check (event, state)
then act (observe (event, state), state)

Figure 3.1: General functionality of a monitor.

CPN model, and which can take an appropriate action based on the observa-
tions. A simpler version of the stop-and-wait model is used in the paper to
illustrate how monitors can be created and used. One of the goals of the moni-
toring framework is to make it possible to use monitors to inspect or control a
simulation without having to alter models.

Based on our experiences, we have identified general patterns in how ad hoc
monitoring is done. In general, each monitor can be divided into three logical
parts. The first part checks when the monitor should make an observation. The
second part observes a specific value from the model. For the third part, each
different kind of monitor acts in a particular manner based on the observation
made. Figure 3.1 illustrates the proposed general functionality of a monitor.
In some cases it may also be useful for a monitor to be able to initialise some
values and conclude some work after monitoring a simulation.

During a simulation, a monitor should be able to inspect the current state
of the model and the most recently occurred event during a simulation. In ad-
dition to the current state and the most recently occurred event, it is useful if
the monitor has access to the simulator of the model, and to the simulator en-
vironment. Access to the simulator makes it possible to, e.g. stop a simulation,
while access to the simulator environment may give additional possibilities such
as accessing global variables, functions, and file systems. If monitors are able
to act on the state of the model, then care must be taken because the semantics
of CP-nets could be violated if used improperly. The paper also provides a
proposal for the complete interface of monitors. The interface includes three
functions named check, observe, and act.

There are several advantages of using this common framework for creating
monitors within a given tool. The main advantage is that it becomes possible
to make an explicit separation between modelling the behaviour of a system
and monitoring the behaviour of the model. Support for monitors can be im-
plemented directly in simulators, and the simulator can automatically activate
monitors at appropriate points during a simulation. As a result, it should not be
necessary to alter models in order to monitor them during simulations. Another
advantage is that by having a common interaction technique for all monitors it
may be easier for users to use a variety of existing monitors. We also believe
that the use of standards improves the extensibility of tools. In other words, it
should become easier to add new monitoring techniques without using ad hoc
solutions, and the implementation of new monitors may be simpler due to reuse
of code.

A second contribution of the paper is the identification of a number of
different monitoring activities that can be described by the following categories.
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File access monitors are used to read and write information in files. Simulation
control monitors are used e.g., to start and stop simulations, to determine
the length of sub-simulations, or to select the order in which certain events
occur. Visualisation monitors can be used to visualise the behaviour of the
system during a simulation, e.g. by updating MSCs or domain-specific graphics.
Performance monitors measure and report on the performance of the system.
Communication between a simulator and an external process can be controlled
via communication monitors. Finally, property monitors can be used to do
functional analysis of a model. Functional analysis is concerned with proving
that the system behaves as expected or that certain state or event properties
hold for the system. In Design/CPN it is possible to construct all of these
different kinds of monitors using the monitoring framework.

The third contribution of the paper is to illustrate how monitors can be
created for CP-nets. In a CPN tool, it should be possible for a user to select
parts of a model and then have the tool automatically deduce which elements
represent the state of the system and which elements represent events in the
system. Using the information selected by a user, it is possible for the tool to
generate much of the code that is required for creating a monitor that satisfies
the proposed interface for monitors. Many monitors can be constructed so
that they are (relatively) independent of the specific model. That makes it
possible to integrate so-called standard monitors into the tool. A user only
needs to specify minor parts of a standard monitor – the rest of the monitor
is predefined. Examples of standard monitors are a data collection monitor
that calculates the average number of tokens on a given place or a log-file
monitor that makes it possible to write in a file each time a specific transition
occurs. We also recommend that a tool should support a variety of standard
monitors with varying degrees of flexibility. In other cases, it may be useful
to be able to create new types of monitors or monitors that are completely
model-dependent. Therefore, it is also useful that the user can create monitors
from scratch. If users create monitors that conform to the monitor interface,
then it should be relatively easy for tool developers to incorporate the new
monitors into the tool or to create libraries of monitors that can be shared
among users. If both standard and user-defined monitors are supported, the
monitoring facilities should be both easy to use and still very general.

The framework is presented in general terms that are not specific to CP-nets.
Therefore, the framework may serve as a reference for implementing different
types of monitors for other kinds discrete-event system (DES) simulation mod-
els. The motivation for expressing the framework in non-CPN specific terms
came from the realisation that many of the monitoring-related issues, that are
discussed in Sect. 3.1, are probably also faced by developers of other DES sim-
ulator. The description of the basic tasks of a CPN simulator from Sect. 3.1
describe the basic tasks for DES simulators if marking is replaced by state and
transition is replaced by event. Many DES simulators already contain monitor-
ing facilities similar to what is discussed above, such as support for: updating
domain-specific graphics, collecting data, and saving information in files.

The framework presented in this paper has a number of strengths and weak-
nesses. The framework supports the philosophy that there should be a clear
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distinction between modelling the behaviour of a system and monitoring the
behaviour of the model. We have shown that it is possible to use the framework
to create monitors for Design/CPN. The use of these monitors should promote
the creation of CPN models that are cleaner and more understandable than
some of the CPN models that have been created in the past. By standardising
the interface to monitors it should be easier for users to learn to use a vari-
ety of different kinds of monitors, and it should be easier for tool developers
to implement new monitors, including monitors that are suggested by users.
The monitoring framework is presented in very general terms and can serve
as inspiration and a reference for implementing different types of monitors for
discrete-event system modelling tools.

The major weakness of the paper is reflected in the title: it is a proposal
for working towards a monitoring framework for DES simulators. No studies
have been done to see if the framework is actually applicable when developing
other kinds of DES simulators. The framework would probably also have wider
appeal if it were expressed in an object-oriented language rather than SML.
Furthermore, I am currently the only user of the few monitors that have been
created for Design/CPN. We will only be able to evaluate the ease-of-use and
practicality of the monitors when monitors are fully integrated into a CPN tool
and are released for general use.

3.3 Related Work

Monitoring is a term that has been introduced to provide a generic term which
covers a number of related, yet distinctly different, facilities in CPN simulators.
We are unaware of any similar concepts. This section discusses related work
regarding different approaches to monitoring simulations, and specific examples
of performance-related monitors in other PN tools.

3.3.1 General Monitoring Techniques

Many simulation tools support monitoring capabilities that are not directly
related to modelling and simulating the behaviour of systems. Support for
accessing the monitoring functionality is provided in several different ways.
Some monitors are seamlessly incorporated in predefined modules, while other
monitors must be hard-coded by a user directly in a model.

Module-Specific Monitors Many simulation tools provide libraries of pre-
defined, or template, modules that can be combined to create models. Examples
of standard modules are queues, resources, and workload generators. Predefined
monitors can be associated with predefined modules. For example, most tools
that have queue modules can automatically calculate average queue length and
average queue delay. Arena provides standard monitoring facilities for many
standard modules. By activating a couple of check boxes in Arena, a user can
activate monitoring facilities that will measure the performance of a queue and
that will animate the state of the queue during a simulation. The benefits of
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predefined monitors are that they are very easy to use, they generally monitor
the most relevant aspects of the corresponding module, and they do not affect
the behaviour of a model.

Augmenting Models If predefined monitors are not available, then it may
be possible to augment models in order to access available monitoring facilities.
ExSpect supports several monitoring activities such as data collection and ani-
mation, which will be discussed in more detail below. All monitoring facilities
are only able to monitor the markings of places, and each monitor can monitor
only one place. This means that all relevant information must be encoded in
token values, and some monitoring facilities require that a place has a particu-
lar colour set. As a result, many models created in ExSpect will contain extra
places and transitions that do not model the behaviour of the system in ques-
tion. On the other hand, the monitoring facilities in ExSpect are easy-to-use,
flexible, and general.

It may not be necessary to add extra nodes or modules to a model in order
to access monitoring facilities. In some cases it may be possible to exploit
the modelling language or to use workarounds in the modelling tool in order to
monitor a simulation. For example, many of the net inscriptions in CP-nets may
be arbitrarily complex, and if the inscription language is fairly expressive, then
it should be possible to encode monitoring facilities directly in net inscriptions.
An excellent example of a tool in which there is ample opportunity to exploit the
modelling language and the tool is the Renew [109] tool for reference nets [81]
which are high-level nets. The inscription language for Renew is Java [45], and
arbitrary Java methods can be called when evaluating transition inscriptions.
As a result, the Renew tool implicitly supports many monitoring activities,
since all of Java’s functionality can be accessed from net inscriptions.

Related Frameworks It has been suggested that the monitoring framework
resembles the Observer pattern, which addresses related issues in the area of
software development. Even though I am not terribly familiar with patterns, I
would like to address this suggestion because it seems like a reasonable claim.
A quick search on the WWW can give a general idea about the nature and
purpose of patterns and the Observer pattern. According to Appelton [4], a
pattern can be defined thusly:

“. . . a pattern involves a general description of a recurring solution to
a recurring problem replete with various goals and constraints. But
a pattern does more than just identify a solution, it also explains
why the solution is needed!”

Based on this definition, I would be inclined to agree that the monitoring frame-
work resembles a pattern. The monitoring framework proposes a solution to
the problem of observing and extracting information from the states and events
of CPN simulations, and we have also discussed why we need a solution to the
problem.

The Observer pattern addresses the specific problem of keeping multiple
views of a single object in sync with the object [99], according to the web site for
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Object Oriented Tips. Furthermore, the web site includes the following quote
regarding the Observer pattern from the highly esteemed Design Patterns [50]:

“The Observer pattern describes how to establish these relation-
ships. The key objects in this patterns are subject and observer. A
subject may have any number of dependent observers. All observers
are notified whenever the subject undergoes a change in state. In
response, each observer will query the subject to synchronize its
state with the subject’s state.”

Clearly, there is a similarity between the Observer pattern and the monitoring
framework. Monitors are comparable to observers, and the state of a CPN
model could certainly be a subject. What is not so obvious, however, is how
the events, i.e. the occurring transitions, in a CPN simulation fit into the equa-
tion. What would it mean for a transition to “undergo a change in state”?
While the monitoring framework coincides with the Observer pattern on some
levels, the monitoring framework and the Observer pattern do not address the
same problem. The monitoring framework addresses the problem of extracting
information from different objects, while the Observer pattern addresses the
problem of synchronising different views of a single object. Is it reasonable to
apply the Observer pattern to solve a problem that it is not intended to ad-
dress? Furthermore, it is unclear whether an observer may observe more than
one subject similar to the way in which a monitor can observe several places
and transitions in a CP-net. At the moment I am unable to answer these ques-
tions, due to my limited knowledge of patterns. However, the comparison of
the monitoring framework to the Observer pattern is certainly worth further
investigation.

3.3.2 Data Collection

There are many ways in which a simulation can be monitored in a performance
study. Extracting data during a simulation is the most obvious example of
performance-related monitoring. By necessity, all Petri net tools that support
performance analysis must monitor simulations in order to collect data. In low-
level PNs, places contain a number of indistinguishable tokens. In high-level
PNs, tokens carry arbitrarily complex data values. Consequently, distinctly
different kinds of data can be extracted from simulations for low-level and high-
level PNs.

Low-Level Petri Nets Data collection monitoring is never reflected in low-
level PN models; it is always implemented directly in the tools. Most of the
tools that support low-level PNs can automatically calculate some performance
measures, such as average number of tokens on a place, token distributions, or
transition throughput. User-defined performance measures can also be calcu-
lated by many of these tools through the use of reward functions [10]. Reward
functions are defined from markings to real numbers. Standard formulas can
be used to calculate, e.g., the average reward during a simulation or the proba-
bility that a certain condition of the net is true, In the tools, simple expressions
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can be used to calculate the expected number of tokens on a place. For ex-
ample, E(#P2) will calculate the expected number of tokens, i.e. the average
number of tokens, on place P2. Similarly, the probability that the marking of
place P2 will be less than 3 can be expressed as P(E(#P2)<3). Grammars are
provided for constructing linear combinations of these kinds of expressions, as
a result it is possible to define more model-dependent performance measures.
Compared to the check and observe functions1 that need to be defined for
data collection monitors, such expressions have the considerable advantage of
simplicity – they are much easier to define and understand. Furthermore, these
expressions can be used to calculate performance measures using simulation or
analytic methods.

In UltraSAN and its successor Möbius [33], a performance measure can be
calculated by monitoring both places and transitions2. A performance measure
is defined by a reward structure [111] consisting of two kind of reward functions:
a rate reward and an impulse reward. A rate reward is similar to a reward
function, as defined in [10]. An impulse reward is defined from transitions to
real numbers. The reward calculated by a particular reward structure is the
sum of the rate reward and impulse reward that is calculated. Each rate reward
is defined as a set of predicate/function pairs that are similar to the check
and observe functions for data collection monitors. The predicates define the
conditions in which the rate reward return user-defined values. In all other
situations the rate reward returns zero.

Reward structures are similar to the data collection facilities in data collec-
tion monitors. One major difference is that the check and observe functions
can be defined for subsets of reachable markings and occurring transitions. Rate
and impulse rewards must be defined for all reachable markings and all transi-
tions because it must be possible to calculate a reward for a reward structure
using either simulation or analytic models. Users must be aware that impulse
functions can only be defined for timed transitions, i.e. it is not possible to
calculate performance measures that are dependent on untimed transitions.

High-Level Petri Nets The potential exists for collecting different kinds of
data from high-level PNs. When examining markings, it is possible to extract
a data value based on the values of the tokens on places. For example, recall
that in the stop-and-wait model, the queue of packets waiting to be sent is
modelled as a list, and the length of the queue corresponds to the length of
the list. Similarly, it may be possible to examine the data values of the tokens
that are added and removed when a transition occurs during a simulation. In a
CP-net, the arc inscriptions can contain variables. When a transition occurs, all
variables from the surrounding arcs are bound to specific values that correspond
to data values for the tokens that are added and removed. In Design/CPN it
is possible to extract information from the binding of the variables of each
transition that occurs.

1The check and observe functions for data collection monitors are analogous to predicate
and observation functions for data collectors in the Performance Tool.

2In SAN terminology transitions are actually called activities.
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Performance measures for SWNs can be calculated in GreatSPN, which is
the most advanced PN performance tool for high-level PNs. For many years,
it was only possible to calculate simple performance measures, such as aver-
age number of tokens on a place or average transition throughput. With the
most recent release3 of GreatSPN, it is possible to calculate refined performance
measures. For a place this means that it is possible to calculate three kinds of
measures: average number of tokens regardless of colour, average number of to-
kens for each colour in the colour set of the place, and average number of tokens
that satisfy criteria based on the colour set. Similar measures can be defined for
transitions. As for GSPNs, it also is possible to calculate the probability that a
certain logical condition is satisfied, and to combine estimates of averages and
probabilities in order to create more model-dependent performance measures.
Even though it is now possible to define performance measures based on the
average number of particular kinds of tokens on a place, it is apparently still
not possible to define performance measures that are based on data extracted
from token values.

In the ExSpect tool, all performance-related data can be viewed during a
simulation using dashboard objects. Dashboard objects are graphical objects
that can be used to examine and change the contents of places during a simula-
tion. For example, a graphical representation of a thermometer can display the
number of tokens on a place, and a text box can display the token value of the
token that was most recently added to a place. There are many different kinds
of dashboard objects for displaying performance-related data, but, as mentioned
previously, they require that all performance-related data is encoded into token
values on one place. Performance measures can not be calculated by directly
observing transition occurrences. In order to calculate performance measures
that are related to transitions, such as the number of times a particular transi-
tion occurs, it is necessary to incorporate the relevant information into a place
that is connected to the transition. The newly created data collection monitors
can extract data from both markings and bindings of occurring transitions.

3.3.3 Additional Performance-Related Monitors

In addition to collecting data, there are a number of other kinds of monitoring
facilities that are useful in performance studies. This section discusses a number
examples of such monitors, including simulation breakpoint monitors which
were introduced in Sect. 2.2.

Simulation Breakpoints It must be possible to define when a terminating
simulation should stop. The most common method for stopping a terminating
simulation is to stop it after a certain amount of model time has passed. This is
the most common method because it is often the only method that is available
in a simulator, and this is true for the PN performance tools. More precise
stopping criteria can be defined if it is possible to monitor a simulation. ExSpect
is one of the few PN tools that support advanced stopping criteria. In ExSpect

3GreatSPN2.0.2 was released in October 2001.
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it is possible to indicate that a simulation must stop when the contents of a
place changes. Defining such stop criteria is easy – the user clicks on a checkbox
in a dialog box, but, again, the contents of the place must model the condition
for stopping a simulation. Simulation breakpoint monitors are more flexible
since they can examine a number of places and transitions, but they are more
difficult to define because a user must write an appropriate check function for
the monitor.

File Access Being able to access files during a simulation is also extremely
useful. There are several advantages to using input files for generating workload
for a high-level PN model. These files can contain large amounts of domain-
specific information that may be difficult to include directly in net inscriptions
in a model. If input files are used, it becomes possible to use the same workload
for a model and the system being modelled, which is particularly useful when
calibrating the behaviour of the model with the behaviour of the system. Fur-
thermore, using the same workload for several different models, may have the
same effect as using CRN for reducing the variance in performance measures.
In ExSpect it is possible to use files to create initial markings for places. Renew
supports the use of input files by virtue of the use of Java as the inscription
language. These issues are not relevant for low-level PNs since workload for
low-level PNs are indistinguishable tokens.

A variety of useful kinds of information can also be saved in files during
simulations. Individual data values (rewards) that are observed can be saved
and used to visualise the behaviour of a model during one simulation, or the
data can be post-processed, e.g. to find the proper length of the warmup period.
The reward that are calculated in tools for low-level PNs are only only used
to calculate measures, but the data collected by monitors can also be saved in
files. With ExSpect it is also possible to export the history of the contents of a
place. When a token is added to a place, its token value can be saved in a file
or exported directly to an executable file (.exe) file. Workload that is generated
in one model can also be saved during a simulation and then later imported
into another model, as mentioned above.

Domain-Specific Animation Many CPN projects [24, 107, 91] have shown
that it can be extremely beneficial to use domain-specific graphics to animate
the behaviour of a CP-net during a simulation. Few PN tools support moni-
toring techniques for updating such graphics during simulations. The ExSpect
tool is one notable exception. Both standard, e.g. MSC, and user-defined dash-
board objects can be used to animate and visualise the behaviour of a CPN
model during simulation. Dashboard objects are easy to use as there are several
predefined dashboard objects, and the tool provides excellent support for cre-
ating user-defined dashboard objects. In contrast, the Mimic library [106] for
Design/CPN is difficult to use for inexperienced users, and there are currently
no libraries of graphical objects. Since all Java functionality can be accessed
in transition inscriptions in Renew, the Renew tool also implicitly supports the
use of domain-specific graphics.



Chapter 4

Annotating Coloured Petri Nets

annotation (noun) a note added by way of comment or explanation

- Merriam-Webster’s Collegiate Dictionary

This chapter discusses the paper “Annotating Coloured Petri Nets.” Sec-
tion 4.1 introduces the concept of annotations. Section 4.2 summarises the main
contributions of the paper and evaluates the techniques that were applied. Sec-
tion 4.3 discusses related work.

4.1 Introduction and Background

CP-nets can be used for several fundamentally different purposes such as func-
tional analysis, visualisation, and performance analysis. It is seldom the case
that the exact same CP-net can be used for a variety of different purposes,
as it is frequently necessary to make small or large modifications to a CP-net
in order to obtain a CP-net that is appropriate for another purpose. These
modifications include adding places and transitions, adding code segments, and
modifying colour sets and arc inscriptions. There are a number of disadvan-
tages associated with modifying a model. Making the modifications can be time
consuming and error-prone. More importantly, there is no guarantee that the
behaviour of the model will not be affected by the modifications that are made.

Up to this point it has only been partially possible to use a CPN model
for different purposes without having to change the CPN model itself. With
the current tools, it is possible to do, e.g. performance analysis without adding
transitions and places for the sole purpose of doing the performance analysis.
The monitors described in Chapter 3 also support a separation between mod-
elling the behaviour of a system and monitoring the behaviour of a model. In
the future, it may be possible to use monitors rather than code segments or
extra places and transitions to access auxiliary facilities, such as the libraries
for generating MSCs or for updating domain-specific graphics. Unfortunately
however, it is often necessary to add extra information to colour sets and arc
inscriptions to hold, e.g. history information for the objects modelled by the
tokens. An example of such history information is the arrival time for a packet
in the stop-and-wait model.

37
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There are many situations in which it would be useful to augment some
token values in a CP-net with information that is not related to modelling the
behaviour of the system in question. We use the term annotations to refer to
pieces of information that are not necessary for determining the behaviour of
a model. The arrival time of a packet is an example of an annotation that is
useful in the context of performance analysis, assuming that the behaviour of
the model does not depend on the arrival time of a packet.

Annotations are particularly useful when analysing the performance of CPN
models. In order to calculate performance measures for a CPN model, data
must be collected from the model during a simulation. Section 1.3 describes
how the average length of the queue of packets waiting to be sent in the stop-
and-wait model can be calculated. The length of the queue, i.e. the length of
a list which is a token value, is measured periodically, and the length of the
queue is used to calculate the average length of the queue. This particular
performance measure can be calculated by extracting data from information
that is naturally available in the model.

Other kinds of performance measures can be calculated if additional infor-
mation is introduced into the model. Tokens in CP-nets can carry complex
token values. Consequently, it should be possible to measure packet delay, i.e.
the amount of model time that passes from when a packet it added to the
queue at the sender until the packet is successfully received by the receiver.
Figure 4.1 shows how the stop-and-wait model should be modified in order to
measure packet delay. Figure 4.1.(a) shows the Upper Layers Send module in
which packets are generated and added to the queue. The declaration of the
data type for a packet (Packet) can be seen in the box beneath the model. A
packet is a string. The easiest way to measure packet delay is to augment the
Packet data type with additional information, so that it contains the time at
which the packet is added to the queue. Figure 4.1.(b) shows the modifications
that need to be made in order to incorporate this auxiliary information into the
Upper Layers Send module. The data type for a packet is changed to be a pair
where the first element is a string and the second element is of type Time. The
arc inscription on the arc from Send to Generate Packets must also be updated
to include the time at which a packet is generated (the function call time()
is assumed to return the current model time). At least one arc inscription in
the Receiver module will also have to be changed in order to easily inspect the
arrival time of packets when they are received.

It is quite useful to add this kind of auxiliary information to a CP-net for
the purposes of performance analysis. However, in most cases it will not be
as easy as it was for this example. In more realistically sized models, more
auxiliary information will be added to tokens, more declarations will have to
be changed, and more arc inscriptions will have to be modified.

4.2 Main Contributions

Many CPN users are familiar with the problem of maintaining several slightly
different versions of a CP-net in order to analyse different aspects of a system. In
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Figure 4.1: Generating and adding packets to the queue. (a) Packet arrival
time ignored. (b) Arrival time included in packet.

many cases, extra information needs to be added to (or removed from) colour
sets in a CP-net in order to obtain a CP-net that is appropriate for a given
purpose. This is true even for very simple CP-nets — consider, for example, the
resource allocation system that is found in Jensen’s volumes on CP-nets [70, 71].
In the system there are two kinds of processes (p and q) which allocate and
deallocate different amounts of R, S and T resources. At least three variations
of the resource allocation CP-net can be found in these volumes. Figures 4.2.(a)
and 4.2.(b) show two of the three variations: part (a) shows the basic CP-
net which models the basic aspects of the system, and part (b) shows the
extended CP-net which includes cycle counters for the p and q processes. The
net structure is the same for the two CP-nets, but many of the colour sets
and net inscriptions in the basic CP-net have been manually modified in order
to obtain the extended CP-net. The cycle counters are a good example of
annotations: they represent auxiliary information that is useful for analysing
the system, but they do not determine the behaviour of the system, nor do
they represent any aspect of the system being modelled. It can be shown using
complicated proofs (see [71] for details) that the behaviour of the two CP-nets is
very similar – essentially, every reachable marking of the CP-net in Fig. 4.2.(b)
is the same as a reachable marking of the CP-net in Fig. 4.2.(a) if the cycle
counters are removed.

The main contribution of this paper is a method for augmenting tokens
in a CP-net with auxiliary information that affects the behaviour of the CP-
net in a very limited and predictable manner. With this method, annotations
are not integrated into colour sets and arc inscriptions in a CP-net; rather,
they are defined separately from the CP-net in so-called annotation layers.
An annotation layer defines annotations and how the annotations are to be
associated with the tokens in a particular CP-net. An annotation layer is always
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Figure 4.2: Resource allocation system. (a) Basic CP-net. (b) Extended CP-
net with counters. (c) Annotated CP-net with counters defined in annotation
layer. (d) Matching CP-net with counters.

defined for one particular CP-net which is called the underlying CP-net of the
annotation layer. An annotated CP-net is a pair consisting of an annotation
layer and its underlying CP-net. Figure 4.2.(c) shows an annotated CP-net
for the resource allocation system. The underlying CP-net is shown in grey (it
is the same as the CP-net in Fig. 4.2.(a)). The annotation layer is shown in
black. The annotation layer contains auxiliary declarations and auxiliary net
inscriptions, such as auxiliary colour sets and auxiliary arc inscriptions that
are similar to their counterparts in CP-nets. Places with auxiliary colour sets
are called annotated places. In Fig. 4.2.(c), places A-E are annotated places,
each with auxiliary colour set I. Informally, in an annotated CP-net every
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token carries a token colour, and some tokens carry both a token colour and
an annotation. A token that carries both a colour and an annotation is called
an annotated token. Just like a token colour, an annotation may be arbitrarily
complex. Annotated places are the only places that can contain annotated
tokens.

Rather that defining semantics for annotated CP-nets, we define a transla-
tion from an annotated CP-net to a regular CP-net, called the matching CP-net,
where the annotations become an integrated part of the matching CP-net. Fig-
ure 4.2.(d) shows the matching CP-net for the annotated CP-net in Fig. 4.2.(c).
The translation is straightforward: the net structure for the matching CP-net
is the same as the original CP-net, and the net inscriptions from the original
CP-net and the annotation layer are combined to form net inscriptions in the
matching CP-net. Translating an annotated CP-net to a matching CP-net must
be straightforward because it must implemented in a CPN tool. A marking of
a matching CP-net is said to cover a marking of its underlying CP-net, if the
two markings are equal when annotations are ignored in the first marking. A
binding1 of a transition in a matching CP-net is also said to cover a binding
of the corresponding transition in the underlying CP-net, if the bindings are
equal for all of the variables of the transition in the underlying CP-net. The
set of variables of a transition in a matching CP-net always contains the set of
the variables from the corresponding transition in the underlying CP-net. Sim-
ilarly, a step2 in a matching CP-net can be said to cover a step in its underlying
CP-net.

When certain conditions are fulfilled, we can guarantee that adding anno-
tations will affect the behaviour of the underlying CP-net in a very limited
and predictable way. For example, one requirement is that every auxiliary arc
expression must evaluate to a single annotation, in contrast to regular arc ex-
pressions which must evaluate to multi-sets of colours. If a matching CP-net is
derived from an annotated CP-net with a so-called sound annotation layer, then
the following properties hold. Every marking of the matching CP-net covers a
marking in its underlying CP-net, and every step in the matching CP-net covers
a step in the underlying CP-net. Furthermore, every marking in the underlying
CP-net, can be covered by a marking in the matching CP-net, and every step
in the underlying CP-net can be covered by a step in the matching CP-net.
The initial marking of the matching CP-net covers the initial marking of its
underlying CP-net. An occurrence sequence in the matching CP-net covers
an occurrence sequence in its underlying CP-net. Similarly, every occurrence
sequence in the underlying CP-net, can be covered by at least one occurrence
sequence in the matching CP-net. When these properties hold, the behaviour
of the matching CP-net is said to match the behaviour of its underlying CP-net.

Defining annotations in layers makes it possible to make modular defini-
tions of both a CP-net and one or more layers of auxiliary information that can
be used for various purposes. Since annotations are defined separately from

1A binding of a transition t is a function that assigns a proper value to each of the variables
of t, and the guard of t must evaluate to true for the given values (Def. 2.6 in [70]).

2A step is a multi-set of binding elements, where a binding element is a pair (t,b) consisting
of a transition t and a binding of t (Def. 2.7 in [70]).
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a CP-net, it easy to disable annotations if a CP-net is to be used for another
purpose. By defining several different layers of annotations, it is possible to
maintain several versions of a CP-net and thereby to use the same basic CP-
net for various purposes by adding, removing, or combining annotation layers.

This paper presents a potentially useful method for augmenting tokens in a
CP-net with auxiliary information. There are several advantages to the method.
The method supports the separation of modelling the behaviour of a system and
monitoring the behaviour of the model, since non-essential information is not
included in the colours of the tokens in the underlying CP-net. Furthermore,
it is shown that when certain conditions are fulfilled, the annotations that are
added to a CP-net will affect the behaviour of the CP-net in a very limited and
predictable manner. No new semantics need to be defined for annotated CP-
nets, since an annotated CP-net can be automatically translated to a regular
CP-net. Several annotation layers can be defined for a CP-net for a variety of
different purposes, such as data collection, updating MSCs, or communication
with other processes, and it should be easy to enable and disable one or more
layers of auxiliary information. Annotations should be particularly useful when
using CP-nets for performance analysis.

The major drawback for the proposed method is that it has not yet been
used in practice. Clearly, it is important that support for annotations be im-
plemented in a CPN tool in order to investigate the practicality and usefulness
of the proposed method. In addition, some of the definitions and requirements
that are presented in the paper are unnecessarily restrictive. For example, it is
only possible to add annotations to a CP-net if all arcs from annotated places to
transitions have arc expressions that evaluate to a single colour, and it is only
possible to add one particular annotation to a multi-set of colours. Many of
the requirements and restrictions are included because we wanted to define the
annotation rules so that they are straightforward to implement, to use and to
understand. Practical experience with the method may show us how to weaken
or remove the restrictions.

4.3 Related Work

It is frequently helpful to add auxiliary information to models in order to analyse
different aspects of a system. However, it is not always clear what impact the
auxiliary information has on the behaviour of the model. This section discusses
alternative methods for adding auxiliary information to models, methods for
comparing the behaviour of different models, and the use of formal methods for
performance analysis.

4.3.1 Adding Auxiliary Information

Models can contain two kinds of information: information that is necessary for
modelling the behaviour of the system, and auxiliary information that does not
influence the behaviour of the model. In some cases, it is possible to analyse
additional aspects of a system when auxiliary information can be added to
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models. We have seen how annotations can be used in CP-nets to measure, e.g.
average packet delay. This is possible only because relevant information can be
associated with each token. Measuring average packet delay is more complicated
when using low-level Petri nets or SANs because the tokens cannot carry any
information. For example, average packet delay could be measured using a
technique similar to what is used by Sanders and Meyers [111] to measure
average response time for jobs in a multiprocessor system. Average response
time must be calculated as the number of jobs in the system divided by the
average arrival rate of jobs. This requires a detailed understanding both of the
model and of relevant statistical formulas.

In high-level PNs tokens can carry information. In ExSpect all auxiliary
information must be hard-coded in token colours, in contrast to defining an-
notations separate from a CP-net. However, a user can use standard building
blocks and predefined colour sets which contain many useful kinds of auxiliary
information. For example, the object colour set has components for arrival
time, processing time, and object type, which can be updated and monitored
at appropriate times during a simulation. The generator building block gener-
ates tokens with object data values, and it will, e.g. add the appropriate arrival
time to a token colour when a particular transition occurs.

General simulation packages often have a notion of entities, where entities
represent, among other things, objects that move about in the system being
modelled. Entities could be used to model, e.g. packets in a computer network,
customers in a bank, or cars in an assembly plant. Auxiliary information can
be associated with entities using attributes which contain information that is
specific for individual entities. Attributes can contain information that deter-
mine the behaviour of the model, such as a customer type that determines how
a customer is added to a priority queue. Attributes can also contain auxiliary
information which does not influence the behaviour of the system but which
does aid in analysing the behaviour of the model. An example of this kind of
attribute is the arrival time of a customer.

Incorporating auxiliary information in a model generally requires either
manually encoding the information in the model or building the model with
predefined modules and data types. The advantages of using standard mod-
ules and data types is that they are easy to use and they generally contain
the information that is relevant for most situations. Problems arise, however,
when a user is confronted with a new kind of system which cannot be properly
modelled by the standard modules and data types. Models containing auxiliary
information will generally be more complicated than models that do not contain
auxiliary information. As a result, the models with auxiliary information may
be more difficult to understand and to validate. With annotations, auxiliary
information can be added to a model without modifying the model and without
affecting the behaviour of the model.

4.3.2 Comparing Behaviour

Work that is closely related to our notion of annotations can be found in Lakos’
work on abstraction [83]. He defines a so-called colour refinement within the
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context of behaviour-respecting abstractions of CP-nets. This colour refinement
is used to specify more detailed behaviour in sub-modules by extending colour
sets to larger domains. The refined colours are only visible in the sub-modules,
and the refined colours will typically contain information that is necessary for
modelling the behaviour of the system in question. This colour refinement cor-
responds somewhat to our way of extending colour sets by adding annotations
to colours, and it respects the behaviour of the CP-net. I am not aware of work
other than our own that addresses the issue of introducing auxiliary information
into a CP-net (or any other type of simulation model) while at the same time
preserving the behaviour of the CP-net. Nor do I know of any other method
that can be used to automatically enable or disable auxiliary information when
analysing different aspects of one particular model.

The Renew tool supports a relaxed syntax [81] for defining reference nets
that allows the addition of auxiliary information to a model without affecting
the behaviour of the model. The tool allows the use of untyped places and
untyped variables. In other words, a place can contain tokens with token values
from many different data types, and arcs can be used to add and remove any
kind of token from these places. Adding auxiliary information to the initial
marking of untyped places will not affect the behaviour of the model, assuming
that the auxiliary information never needs to be attached to a token on a typed
place. When a transition occurs, the auxiliary information can be accessed via
the binding of an untyped variable in transition inscriptions. The tool requires
that all variables on arcs from transitions to typed places must be typed, and
if one variable is typed then all variables in the model must be typed.

It is often useful to know that two different models have equivalent, or at
least very similar behaviour. When analysing the functionality of a system, an
analyst may develop and validate a fairly detailed model which captures many
aspects of the system. For example, a model of an application layer protocol,
such as HTTP, may contain a detailed description of lower-level protocols such
as TCP or IP. When the time comes to analyse the behaviour of the model,
the model may be too detailed, and the desired analysis methods cannot be
employed, e.g. full state space analysis cannot be used because the state space
is infinite. It is then up to the user either to try to reduce the complexity of
the model in such a way that the behaviour of the model is preserved, or to
find alternative analysis methods that can handle the problem. For example,
when modelling and analysing HTTP, it should not be necessary to include a
detailed description of TCP, in which case the parts of the model representing
TCP could be simplified in an attempt to obtain a smaller state space. In some
cases, a user must use elaborate proofs to show that the results obtained by
analysing the reduced model or by using an alternative analysis technique are,
in fact, applicable for the original model.

Several techniques exist for comparing the behaviour of different models and
for comparing different behavioural representations of the same model. A com-
mon technique for testing the behavioural similarities of two process algebraic
models is the use of bisimularities [22], where a (weak) strong bisimulation is a
binary relation that shows that two process algebraic models have (observably)
identical behaviour. It must be possible to investigate the complete behaviour
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of each model in order to show that two models are bisimilar. There are also
rules for reducing low-level Petri nets [20] and for reducing CP-nets [58] to nets
with similar behaviour. An alternative to reducing a model itself is to try to
reduce the size of the state space of the model in order to analyse the behaviour
of the model. State spaces with equivalence classes [70] is a technique that can
be used to group similar markings and binding elements together in order to
generate a representation of the behaviour of the model that is smaller than the
full state space of the model. The techniques mentioned above require reducing
either a model or the representation of the behaviour of the model in order to
obtain a smaller, alternative representation with similar behaviour. In contrast
to these techniques, we have shown that adding annotations to a CP-net will
result in a CP-net which behaves very similarly to the original CP-net. I am
not aware of any other techniques for augmenting a model that preserves the
behaviour of the model.

4.3.3 Performance Analysis and Formal Methods

A large amount of research is concerned with using formal methods to anal-
yse the performance of systems, and a recent summer school [23] provided an
introduction to the formal methods that are most commonly used for perfor-
mance analysis. Formal methods are characterised by Clarke et al. [34] as
mathematically-based languages, techniques and tools for specifying and veri-
fying systems, and formal specification uses a language with a mathematically
defined syntax and semantics. The formal methods that are most commonly
used for performance analysis are (G)SPNs, SWNs, SANs, the Performance
Evaluation Process Algebra (PEPA) language [62], and queueing networks [78].
The PEPA Workbench [102, 52] supports the PEPA language, and Möbius [33]
is an innovative, multi-paradigm modelling tool that supports the creation and
analysis of models consisting of components that are expressed in different for-
malisms, such as SAN, PEPA, and SPN.

Many of the formal methods that are used for performance analysis were
derived from formal methods that originally were only used for functional anal-
ysis of systems. Formal methods, such as Petri nets, activity nets, and process
algebras, are used both to specify and verify system behaviour. Timing infor-
mation was added to these formal methods in order to support modelling and
analysis of both functionality and performance of systems. Many of the result-
ing formal methods, such as (G)SPNs, SANs, and stochastic process algebras,
require that time delays are, for example, all exponentially distributed. When
these requirements are fulfilled, it is possible to derive an analytical model, such
as a continuous-time Markov chain, from the original model.

There are a number advantages associated with using formal methods for
performance analysis. One major advantage is the fact that they can describe
the behaviour of a system in an unambiguous way. Moreover, the same model
can potentially be used to analyse both the functionality and the performance
of a system, since an untimed model can be created for functional analysis,
timing information can be added, and the performance of the model can then
be analysed. Markovian models, which are also a formal methods, can provide
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exact values for relevant performance measures, and advanced techniques exist
for solving such models. However, it is often to difficult to manually define
accurate Markovian models, therefore it is also advantageous that Markovian
models can be automatically generated from higher-level specifications, such as
SANs and GSPNs.

There are also a number of disadvantages to using formal methods for per-
formance analysis. In 1996, Clarke observed that some of the problems with
formal methods are: the notations were too obscure, the techniques did not
scale, and the tool support was inadequate or too hard to use. On a positive
note, Petri nets are becoming more widely accepted, case studies have shown
that formal methods can be used to analyse the performance of industrial-sized
systems (see Sect. 5.3.3), and the most widely used PN performance tools are
quite stable. While there have been improvements in these areas during the
past decade, these problems still exist. For example, textual PEPA models
are not easy to understand, industrial-sized models can rarely be analysed us-
ing Markovian models due to the state explosion problem, and tools that are
developed in academic research groups frequently use state-of-the-art analysis
techniques, but they are sometimes difficult to use, poorly documented, and
not terribly robust. With respect to these problems, commercial products that
are based on informal modelling languages are likely to be more popular (and
useful) than formal methods for several reasons: industrial-sized models can be
built using predefined, drag-and-drop modules of familiar components; every
syntactically-correct model can be simulated; customer support is provided for
mature, stable, and well-documented tools; and for the average user it is still
fairly time consuming to learn to understand a formal method.



Chapter 5

Case Study: Analysis of Web Servers

This chapter discusses the paper “Simulation Based Performance Analysis of
Web Servers.” Section 5.1 introduces the CAPLAN project in which the work
presented in this paper was done. Section 5.2 summarises the main contribu-
tions of the paper and evaluates the techniques that were applied. Section 5.3
discusses related work.

5.1 Introduction and Background

The CAPLAN project [26] was a collaborative project between the CPN group
at the University of Aarhus, the Hewlett-Packard Corporation, and the Danish
National Centre for IT Research. The project ran from January 1998 until
January 1999. The purpose of the CAPLAN project was to investigate the use
of CP-nets for model-based capacity planning of distributed computing envi-
ronments. The CAPLAN project developed CPN models of three distributed
applications selected by Hewlett-Packard. This served as a basis for evaluating
the usefulness of CP-nets and Design/CPN for capacity modelling of distributed
systems. The CAPLAN project was judged to be successful, and the collabo-
ration between the three parties continued as the HP-CPN Centre [65].

This paper presents the results from the first subproject of CAPLAN which
was concerned with capacity planning and performance analysis of a web server
environment. Two goals of this subproject were to develop tool support for
using CP-nets for performance analysis and to investigate the practicality of
using CP-nets to analyse the performance of real-world systems. As student
programmers, Bo Lindstrøm and I developed the Design/CPN Performance
Tool in conjunction with this project.

5.2 Main Contributions

The initial phase of the CAPLAN project considered a concrete representative
example of a distributed computing environment in the form of a simple web
server environment. My contributions to this project and paper deal with the
simulation-based performance analysis of the CPN web model that was con-
structed by other project members. My contributions are summarised here and
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will be described in more detail below. This was the first project that put the
Performance Tool to practical use. The CPN web model was validated and
calibrated by comparing performance results from simulation with the perfor-
mance which was measured in a corresponding physical environment. Using
the validated model, simulation experiments were run in order to examine the
effects of varying the arrival rates of requests on the performance of the web
server. Additional experiments were undertaken in order to compare the per-
formance of different configurations, e.g. faster CPU and faster disk, with the
basic configuration corresponding to the actual web server.

The web server that was modelled was an Intel Pentium II 266 MHz pro-
cessor based PC equipped with a local disk, and 160 MB RAM of internal
memory. For the experiments the web server application was configured as a
single threaded web server with cache disabled. The aim was to configure the
web server and choose parameters in a way which made it possible to put heavy
load on the server by means of relatively few requests. As a consequence, the
configuration was not realistic and was far from optimal with respect to per-
formance of the web server. However, this rather disabled configuration was
better suited for initial efforts to calibrate the performance of a CPN model
with the performance of a complex real-world system.

Workload for the actual web server was generated by a trace client that
takes as input a web access log file and then makes a replay of the get-requests
contained in the web access log file. Each get-request (entry) in a web access
log contains a time stamp, specifying when the requests are to be made, and
a specification of the document requested. Access log files were generated af-
ter analysing a real log file from a local web server. It was determined that
the file sizes fit a Weibull distribution with an average file size of approxi-
mately 5KB. To avoid any effect related to the file cache of the web server all
get-requests in the generated workload are for distinct files. Due to time con-
straints, a detailed analysis of neither the request times nor temporal locality
of requests in the web access log file was undertaken. We assumed that the
workload during peak hours was 5-10 requests/second, which is not an unrea-
sonable expectation judging by what has been observed within other academic
environments [6]. Furthermore, we assumed that the interarrival times between
requests are exponentially distributed. This is not the most accurate model
for request arrivals [6], but time constraints prohibited us from making a more
precise analysis and representation of arrival rates.

The size and complexity of the CPN web model precluded using state space
analysis to fully validate the functional correctness of the model, but interactive
simulations and MSCs were used extensively to validate the logical behaviour of
the model. While these techniques can never ensure that a model is error-free,
they are useful for finding obvious modelling errors, and they can confirm that
the model behaves as expected in a variety of situations.

The goal of the calibration process was to obtain a match between the per-
formance results obtained by simulation and the performance results measured
in the actual web server environment and in this way to obtain a validated CPN
web model. In this phase, web access log files were used to generate the same
requests for both the real web server and the CPN web model. The process of
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calibrating the model parameters consisted of a number of iterations of adjust-
ing parameters in the model, running simulations, and comparing the results
to the performance of the actual web server.

Another contribution of the paper was that we illustrated the kind of per-
formance results which can be obtained from lengthy simulations of the CPN
web model. When considering the performance of a web server, several per-
formance measures are of interest. Resource utilization of the CPU and local
disk in the web server and of the network denotes the percentage of time in
which each resource is busy processing jobs. Response time, i.e. the time from a
client initiates a get-request by opening the TCP connection until the response
is received, is also of interest. This is the delay observed from the point-of-view
of a client. Response time is highly variable since it depends largely on the size
of the document that has been requested.

During the performance analysis phase of the project, workload for the CPN
web model was generated on-the-fly. The requests that were dynamically gen-
erated during a simulation fulfilled the same criteria as the workload that was
described above, i.e., the file sizes of the requested documents were generated
from the Weibull distribution, and the interarrival periods between requests
were exponentially distributed.

The facilities that were discussed in Chapter 2 were used to analyse the
performance of the CPN web model. Initial experiments examined the effects
of varying the request arrival rates for between 5 and 50 requests/second. The
new performance facilities were used to run a number of independent simu-
lations, to collect data for each simulation, to save simulation output in an
organised directory structure, and to calculate confidence intervals for the rel-
evant performance measures. Each simulation corresponded to 30 minutes of
activity in the web server environment. The average utilization of the different
resources and the average response time was investigated for different workload
intensities. Increasing the arrival rate of requests increased the utilization of
all resources, but the increase in utilization of the network was not as large as
for the resources in the web server since the capacity of the network was quite
large (5 Mb/sec.). The new performance facilities were also used to simulate
and compare the performance of alternative configurations of the web server.
Paired-t confidence intervals were used to compare the utilization of resources in
the original model configuration with utilization of resources in configurations
in which the CPU was faster, the disk was faster, and caching was enabled.

Another contribution of the project was a modelling framework for dis-
tributed computing environments. The framework was developed by other
project members. The framework is based on a building-block approach which
divides the components of CPN models into three distinct layers: a structural
layer describing clients, servers, networks, and their relationship; an applica-
tion layer describing the applications running on the servers and the clients;
and a resource layer describing the resources, i.e., CPUs, disks, and commu-
nication channels, of the system. This means that the CPN model includes
both a functional view of the system represented by the application layer, and
a performance view represented by the resource layer. Separating the parts of
the model giving a functional description (the application layer) from the parts



50 Chapter 5. Case Study: Analysis of Web Servers

of the model describing the use of resources implies that it is easy to make
the transition from a CPN model focusing on performance to a CPN model
focusing on the logical correctness of the system. This can be done by simply
disabling the pages in the resource layer since all aspects of the CPN model
related to performance are isolated in this layer. Of course, one must ensure
that the resource layer does not affect the functionality of the application and
structural layers. The framework provides no guidelines regarding this problem,
and in practice it will generally be difficult and time consuming to show that
the resource layer does not affect the functionality of the application layer.

This project made several useful contributions regarding the practicality
of using CP-nets for performance analysis. One of the conclusions from this
project is that it is relatively easy to collect data from CP-nets for performance
analysis. It is no more difficult to develop CPN models for performance analysis
than for other types of analysis, and defining data collectors for calculating
performance measures was also relatively easy. An additional advantage of
using Design/CPN was that the same workload could be used for both the
actual system and the model of the system during the calibration phase of the
project.

This project revealed that more sophisticated support for performance anal-
ysis using CP-nets was required, in addition to support for data collection,. As
inexperienced data analysts, we experienced some of the pitfalls associated with
simulation-based performance analysis: statistical analysis techniques were im-
properly applied, results from one simulation were taken to be the true answers,
and a great deal of time was spent modelling the system and little effort was
spent analysing the simulation output. Even though the modelling and ini-
tial analysis of the CPN web model was completed by May 1999, it was not
until March 2001 that proper analysis of the performance of the model was
undertaken using the performance facilities that are described in Chapter 2.

It may be argued that the CPN web model is simplistic: the server was
configured to run with only one thread, caching was disabled, and the work-
load of get-requests was not realistic. However, a goal of the project was to
compare the performance results obtained by simulations with the performance
monitored in a corresponding physical environment. Therefore, a web server
environment which could be setup and controlled within the scope of the project
was important. The main goal of this project was to investigate the feasibility
of using CP-nets to analyse the performance of industrial-sized systems, i.e. our
main purpose was not to make detailed analysis of the performance of a web
server.

5.3 Related Work

In this case study, we used a graphically-based, formal method to build and
analyse the performance of a fairly detailed model of a web server. This section
discusses work related to these areas. There are numerous modelling languages
and tools to choose among, and a comparison and discussion of various possi-
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bilities is found below. The problem of building industrial-sized models with
formal methods is also considered. The section ends with surveys of industrial
case studies using formal methods and case studies of web environments.

5.3.1 Modelling Languages, Formalisms and Tools

There are a multitude of languages and formalisms for modelling and analysing
the performance of discrete-event systems. Some languages are text-based,
while others have a graphical representation. The semantics of modelling lan-
guages vary from informal or ad hoc to formal and well-defined. Some simula-
tion packages are designed for modelling and simulating one particular kind of
system, and other packages can be used to model almost any kind of system.
The advantages and disadvantages of these diverse kinds of modelling languages
are discussed below.

Textual simulation languages, such as SIMNET [118], SIMAN [101], and
Parsec [9], are essentially high-level programming languages with simulation-
related primitives and run-time systems that are specialised for running DES
simulations. These languages are very general since they can be used to model
virtually any kind of discrete-event system. The main drawback to these lan-
guages is that the models can be difficult to create and understand because the
syntax of the modelling language is complex and confusing. Models that are
graphically-based, such as Petri nets or Arena models, are often more intuitive
to both to create and to understand. This can facilitate discussions between
modellers and experts from the system domain. An interactive simulation of
a graphical model is also a much more intuitive debugging mechanism than
text-based debuggers. A survey of simulation software [117] reveals that the
majority of popular simulation packages provide support for graphical model
construction.

Some of the formal methods that can be used to model and analyse the
performance of systems were discussed in Sect. 4.3. The primary advantage
of using formal methods is that they have well-defined semantics, and it is
possible to model the behaviour of a system in an unambiguous way. The
models in other simulation packages, such as Arena or SIMNET, may not have
well-defined semantics, and situations may arise in a simulation in which the
model behaves differently than a user expects due to the fact that the tool
implements an ad hoc semantics. For example, if two events can happen at
the same time, a user may expect that one of the events will be chosen non-
deterministically, when in fact the simulation tool will always be predisposed
to choose one event before the other. Unfortunately, this kind of problem can
also be found in tools that support formal methods. For example, if two or
more transitions were concurrently enabled in an older version of a high-level
PN tool [7], then the transitions would occur in an order determined by the
alphabetical order of their names rather than occurring concurrently or in a
non-deterministic order.

The modelling languages (e.g. PNs, SANs, PEPA, and SIMAN) and simu-
lation packages (e.g. Arena and SIMNET) that have been discussed until this
point have all been general-purpose tools that can be used to model many dif-
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ferent kinds of systems. These tools are very general and flexible. However, a
user must spend a significant amount of time building models, validating the
models, and, finally, analysing the behaviour of the models. Other tools are
tailor-made for modelling and analysing one particular kind of system. For ex-
ample, GloMoSim [8] is a simulator environment for ad hoc wireless networks,
and Woflan [124] is a Petri net-based tool for analysing business workflows.
An advantage of domain-specific tools is that they often provide libraries of
validated modules representing elements in the domain area. For example,
GloMoSim has models of many network protocols from several layers of the
OSI network architecture. This means that models can be built fairly quickly
and easily by combining and parameterising the predefined modules. Another
advantage of domain-specific tools is that they generally provide good support
for analysing relevant aspects of the systems in question. For example, Glo-
MoSim automatically measures throughput and packet delay in the different
layers of the network architecture, while Woflan checks, e.g. that a workflow
process definition is sound, i.e. that it is always possible to complete a task. A
disadvantage of using domain-specific modelling tools is that it may be difficult
or impossible to create models of systems that are only slightly different from
the systems and modules that the tools support.

5.3.2 Formal Methods and Industrial-Sized Models

Perhaps the biggest obstacle in using formal methods for analysing the perfor-
mance of systems is that the techniques do not necessarily scale well to large,
industrial-size models. This is true for both specifying and analysing the be-
haviour of the system. Section 2.3 discussed how the state explosion problem
can prohibit the generation of analytical models which are often used in con-
nection with formal methods. It may be possible to avoid the state explosion
problem by using small and unrealistic configurations of the system, but this is
not desirable if the goal of a study is to analyse a realistic configuration of an
industrial-sized model.

Even specifying an industrial-sized system using formal methods may be
problematic. This problem concerns the accuracy of the models that can be
created. For some formal methods assumptions must often be made about the
system in order to use the analytical models that are available. For example,
it must often be assumed that all delays within the system are exponentially
distributed if analytical models are to be derived from, e.g., GSPNs, SWNs,
SANs or PEPA models. DSPNs allow both deterministic delays and exponential
delays, but only one deterministic transition may be enabled in each marking.
In some cases, these assumptions may not be realistic, or they may be too
restrictive, and the accuracy of the calculated performance measures can be
affected by the assumptions that have been made.

When using, e.g. low-level, non-hierarchical Petri nets [39] or PEPA, it can
be quite difficult to create an understandable model of an industrial-sized sys-
tem. Complex and complicated models can be difficult to debug and validate.
Many tools for low-level PNs only support the creation of monolithic, flat mod-
els. Large examples of such models are often incomprehensible, despite the fact
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that they are created using an intuitive, graphically-based language. Several
formal methods have mechanisms for creating large and complex models from
smaller, more understandable components. The replicate and join operators
for SANs make several copies of a SAN, and connect SANs by merging places
and transitions, respectively. Recently, a composition mechanism [11] has been
defined for SWNs. While smaller and more understandable modules can be
composed into one large model, even the developers admit that the composi-
tion tool is not easy to use, there are no methods for validating the composition,
and the resulting composed models are hardly readable [47]. Structuring mech-
anisms exist for creating hierarchical CP-nets and hierarchical queueing Petri
nets [15, 63] (Hi-QPN). With these mechanisms it is possible to create a num-
ber of related modules, create new modules from existing modules, and reuse a
module in several parts of a model. Furthermore, it is possible to capture dif-
ferent levels of abstraction of the modelled system within one model. The CPN
web model presented in this paper consists of 27 pages, 96 places, and 37 transi-
tions. It would have been extremely difficult to create a comprehensible model
of this size without some kind of decomposition or abstraction mechanism.

5.3.3 Industrial Case Studies

There are a large number of case studies of concerned with analysing the perfor-
mance of industrial-sized systems. Conferences, such as the Winter Simulation
Conference [128] and those sponsored by SIGMETRICS [114], contain numerous
examples of performance studies in the areas of computers and telecommunica-
tions, manufacturing, transportation, health care, and military. The homepage
for the Arena software package [5] contains references to many studies in which
significant amounts of time and money have been saved due to the results of
performance studies that are based on Arena models. It is beyond the scope of
this dissertation to provide an overview of the state-of-the-art results regard-
ing performance studies of industrial-sized systems. The discussion here will
be restricted to discussing case studies in which formal methods were used to
model and analyse realistically-sized systems, and to case studies regarding web
servers and web traffic.

Formal Methods Formal methods have been used to study the performance
of many kinds of systems. PEPA models have been used to analyse multimedia
streams [21] and hierarchical wireless networks [46]. Interesting performance
results were obtained in each of these studies, and sophisticated techniques
were used to exploit symmetries in a model in order to reduce the state space
needed for generating the necessary Markovian model. However, neither of the
models were terribly understandable people who are not familiar with process
algebras, and there is no discussion of how the behaviour of the model was
validated. Contact centers [47], and ATM switches [48] have been analysed
using SWNs. It is interesting to note that the users and developers of these
formalisms view simulation-based analysis as somewhat unsatisfactory: “the
size of the [SWN] models will only allow simulation [. . . ], while an interesting
open problem is how to derive from these models some more compact ones to be
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used for performance evaluation purposes” [18]. Admittedly, simulation cannot
provide the exact results that analytical models can. However, in at least one
study, the authors’ fail to comment on whether it is reasonable to assume that
all time delays in the system are exponentially distributed, and whether this
assumption has an impact on the performance measures that were obtained.

CP-nets have previously used in other projects on performance analysis
in areas such as ATM networks [35], alternative TCP implementations [38],
and bank transaction processing [27]. These studies revealed that there was
room for improvement in the area of using CP-nets for performance analysis.
In the ATM and bank transaction studies, the modellers were responsible for
defining how data was to be collected during a simulation, and in both cases all
data collection functionality was hard-coded directly in the models. The bank
transaction model contained an entire page that was only used for extracting
data and saving the data in files. It is also unclear whether the conclusions of
the ATM study are reliable. The ATM study compared the performance of four
different flow control algorithms for six types of traffic, and only one simulation
was used for each configuration. Since each simulation represented 3 seconds
of real time, it seems unlikely that the simulations could be considered steady-
state simulations, in which case it is insufficient to run only one simulation for
each configuration. The performance study of the CPN web model has shown
that it is easy to collect data from a CP-net during a simulation without having
to incorporate data collection functionality directly in the model. Furthermore,
the new performance facilities should aid inexperienced data analysts in defining
reliable simulation experiments.

Web Servers and Web Traffic In the literature, there are several papers on
performance analysis of web servers. Many of these papers present measurement
studies that focus on workload characterisation [6, 14, 82] or measurement of,
e.g., resource utilization and response time [2, 41]. Analytic models have been
used to analyse the performance of HTTP over several transport protocols [61]
and for capacity planning of web servers [41]. As one of the few simulation stud-
ies of web servers, [123] presents an end-to-end queueing model of a web server
environment. These studies provide excellent insight into the performance of
web servers, and have made significant contributions to the understanding of
web workloads. Our work provides a modelling framework that can be used for
both performance analysis and functional analysis of web servers, in particular,
and of distributed systems, in general.
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Conclusions and Future Work

This chapter concludes Part I of this dissertation. Section 6.1 summarises
the main contributions of this dissertation. Section 6.2 presents a number of
directions for future work.

6.1 Summary of Contributions

As stated in Sect. 1.4, the goal of my research has been to investigate and facili-
tate the practical use of CP-nets for performance analysis of realistic, industrial-
sized systems. The research presented here contributes to the development of
tools, theory, and practical application of CP-nets for performance analysis.
The main contributions of the work are summarised below.

• The development of facilities supporting reliable, simulation-based per-
formance analysis using CP-nets [126]. The facilities provide means for
running independent simulations, collecting data from each simulation,
saving simulation output systematically, and calculating confidence inter-
vals for estimates of performance measures. Additional support is pro-
vided for defining, simulating, and comparing different configurations of
a given CP-net.

• The development of facilities for monitoring simulations of CP-nets [90].
With monitors it becomes possible to make an explicit separation between
modelling the behaviour of a system and monitoring the behaviour of the
model. As a result, cleaner and more understandable CPN models can
be created. Monitors provide a common interface for mechanisms that
inspect and control simulations of CP-nets. Monitors can be used for
diverse purposes, such as animation and visualisation, communication
between CPN simulators and other processes, and data collection. The
monitoring framework served as a basis for implementing several standard
data collection monitors.

• A novel method for adding auxiliary information to CP-nets [89]. The
main contribution of this paper is the definition of annotations which can
be used to add auxiliary information to a CP-net in order to facilitate
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the use of the CP-net for a particular purpose. The main advantages
of using annotations are: annotations are defined separately from a CP-
net, annotations affect the behaviour of a CP-net in a very limited and
predictable manner, and it is easy to enable and disable one or more layers
of annotations.

• Performance analysis of a web server using CP-nets [127]. This case study
has shown that it is relatively easy to analyse the performance of an
industrial-sized system using CP-nets and the newly developed perfor-
mance facilities. An advantage of using Design/CPN is that it allowed us
to use the same workload for both the actual web server and the CPN
web model during the calibration phase of the project. The case study
demonstrated that typical CPN users are not experienced performance
analysts, and that this fact ought to be taken into consideration when
developing performance-related facilities for CPN tools.

Several new facilities and tool extensions that have been developed in con-
junction with the research presented in this dissertation. The new performance
facilities (batch scripts, output management facilities, etc.), which build upon
the Performance Tool, have been implemented as an extension to Design/CPN
Version 4.0.x. These facilities are complete enough to be usable, but they are
not polished enough to be included in a released version of Design/CPN. The
facilities can be obtained by contacting the author. Prototype monitoring facil-
ities have been implemented for CPN Tools. These facilities include the basic
functionality for creating data collection and simulation breakpoint monitors
from user-defined check and observe functions. Several standard data collec-
tion monitors have also been implemented. The prototype monitoring facilities
lack the following important components: a GUI for defining monitors, facili-
ties for reporting on syntactical errors that are found in user-defined check and
observe functions, and support for MSC monitors.

6.2 Future Work

Coloured Petri nets are well suited for modelling and analysing real-world sys-
tems, and they have the potential for being used for performance analysis, but
in practice they rarely are. In the past, each individual user was responsible
both for incorporating data collection functionality in their models and for ap-
plying proper statistical techniques when analysing simulation output. After
the introduction of the Performance Tool, users no longer need to define their
own data collection functionality. I believe that the primary obstacle in us-
ing CP-nets for performance analysis is the lack of performance-related tool
support. A number of ideas for future work which could help to remedy this
problem are discussed below.

The most obvious first step towards alleviating the problem of insufficient
tool support for performance analysis is to consolidate and integrate the new
performance facilities that are discussed in Chapters 2 and 7 in one CPN tool.
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Since CPN Tools is poised to become the successor to Design/CPN, these fa-
cilities must be integrated in CPN Tools. Not only should the facilities be
integrated in CPN Tools, they must also be improved. For example, there
is currently no explicit support for analysing the steady-state behaviour of a
CP-net. It is only possible to run a given number of independent, terminating
simulations. To fix this problem the batch script for simulating one configu-
ration of a CP-net could be extended relatively easily to provide support for
running non-terminating simulations. Simple techniques are also available for
calculating confidence intervals to obtain a user-specified or relative precision.
An effort has been made to create facilities for standard data collection and
analysis, i.e. these facilities do not require any programming by the user. In-
corporating standard data collection monitors in CPN Tools would also be
beneficial. The introduction of proper types of simulation output and support
for sound statistical techniques will aid inexperienced data analysts in doing
performance analysis of systems.

If the interest for using CP-nets for performance analysis increases, then
there are a number of ways in which the tool support for performance analysis
could be improved. High-level support could be provided for sensitivity analysis,
gradient analysis, or optimisation techniques. Sensitivity analysis investigates
how extreme values of parameters affect performance measures, while gradient
estimation examines how small changes in parameters affect the performance
of the system. Optimisation is often just a sophisticated form of comparing
alternative configurations, in that it is a systematic method for trying different
combinations of parameters in hope of finding the combination that gives the
best results.

Additional support could also be developed for comparing alternative con-
figurations of CPN models. Chapter 2.2 discussed a batch script which can be
used run a number of simulations with the purpose of comparing the perfor-
mance of alternative configurations of a CP-net. A similar script was used in a
recent Australian PhD dissertation [55] to specify a number of configurations of
a CP-net and then to carry out state space analysis for each configuration. It
would be interesting to examine the similarities between these two scripts and
to investigate the usefulness of providing generalised support for comparing
alternative configurations by means of different kinds of analysis.

Better support for monitors and annotations should also be provided. A
number of improvements for the monitoring facilities are outlined at the end
of the previous section, i.e. in Sect. 6.1. As mentioned previously, annotations
have not been used in practice. It would be interesting to implement prototype
support for annotations in order to investigate the practicality and usefulness of
the proposed method. There are a number of techniques that are employed in
the GUI for CPN Tools that are well suited for implementing annotation layers.
Beaudouin et al. [17] advocate separating objects and commands relevant to a
specific activity into layers. For example, a CP-net could be defined in one
layer, while a simulation layer could be used to show the actual markings and
enabled transitions of the CP-net during a simulation. It would be quite natural
to implement annotation layers in such layers. Annotated tokens could be shown
when simulation and annotation layers are enabled together, while regular, non-
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annotated tokens could be shown if the annotation layer was disabled during
a simulation. The methods that are used for defining groups [16, 37] could
also prove to be useful for defining annotation layers. When defining a group,
the graphical representation of a CP-net is initially dimmed, and objects are
then highlighted when they are added to the group. Similarly, when defining
annotations, places and arcs could be highlighted to indicate that they are
annotated places and annotated arcs.
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Chapter 7

Performance Tools for Coloured Petri Nets

The paper “Performance Analysis using Coloured Petri Nets” presented in this
chapter has been accepted for presentation at the Tenth IEEE/ACM Inter-
national Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS’02). A shorter version of the paper
will appear [126].

[126] Performance analysis using coloured Petri nets. To appear in the pro-
ceedings of the Tenth IEEE/ACM International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS’02), 2002.

This chapter contains the paper that was submitted to MASCOTS’02. The
paper that was submitted to the symposium is longer than the final paper [126].
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Performance Analysis using Coloured Petri Nets

Lisa Wells∗

Abstract

This paper provides an overview of improved facilities for performance
analysis using coloured Petri nets. Coloured Petri nets are well suited
for modeling and analyzing large and complex systems for several rea-
sons: hierarchical models can be constructed, complex information can be
represented in the models, it is possible to model the time used by dif-
ferent activities in a system, and mature and well-tested tools exist for
creating, simulating, and analyzing coloured Petri net models. The pa-
per describes steps that have been taken to make a distinction between
modeling the behavior of a system from observing the behavior of a model.
Performance-related facilities are discussed, including facilities for running
multiple simulations, generating statistically reliable simulation output,
and comparing alternative system configurations. This paper will focus
on how coloured Petri nets can be used to analyze network protocols, but
the facilities discussed here can be used to analyze any kind of system.

7.1 Introduction

Performance is often a central issue in the design, development and configu-
ration of systems. Performance analysis studies are conducted to evaluate an
existing system, to compare alternative system configurations, or to find an op-
timal configuration of a system. Many different kinds of models, including both
simulation and analytical models, are used to analyze the performance of a wide
variety of systems. Some tools support performance analysis of one particular
kind of system, e.g. GloMoSim [8] is a simulator for wireless ad hoc networks.
These tools often provide libraries of validated models from one particular do-
main, and the models can be combined and parameterized in order to analyze
a particular system. There are also general simulation modeling packages, such
as Arena [76] and SIMNET [118], that are good for analyzing the performance
of many different kinds of systems, but these packages provide limited support
for functional analysis of a system.

A large body of research is concerned with using formal methods for perfor-
mance analysis [23], this includes research on Petri nets [108], stochastic activity
nets [110] and process algebras [62]. Most of the current research concerning for-
mal methods and performance analysis use analytical methods, such as Markov

∗Department of Computer Science, University of Aarhus, Åbogade 34, 8200 Århus N,
Denmark. E-mail: wells@daimi.au.dk.
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processes, for performance analysis. An advantage of using analytical models is
that they can provide definitive answers regarding the performance of a model.
However, for even small configurations of a system it may be impossible to gen-
erate the analytical models needed for performance analysis due to the state
explosion problem. Furthermore, it can be difficult to create accurate and un-
derstandable models of industrial-sized systems when using, e.g. low-level Petri
nets.

Coloured Petri nets [70, 80] (CP-nets or CPN) are well suited for modeling
and analyzing large and complex systems for several reasons: hierarchical mod-
els can be constructed, complex information can be represented in the token
values and inscriptions of the models, it is possible to model the time used by
different activities in a system, and mature and well-tested tools exist for cre-
ating, simulating, and analyzing CPN models. There are relatively few studies
that focus on performance analysis using high-level Petri nets, and even fewer
that focus on simulation-based performance analysis using high-level CP-nets.
Simulation has primarily been used for debugging, validation, and checking of
logical correctness, and as a result, there is minimal support for simulation-
based performance analysis using high-level Petri nets. This paper will discuss
how coloured Petri nets and simulation can be used for analyzing the perfor-
mance of industrial-sized systems.

This paper provides an overview of improved facilities for performance anal-
ysis using coloured Petri nets. This paper will focus on how CP-nets can be
used to analyze network protocols, but the facilities discussed here can be used
to analyze any kind of system. Network protocols are particularly interest-
ing because it is often important to analyze both the functionality and the
performance of a protocol. The functionality of a protocol can be analyzed to
determine whether the protocol provides the service that it should, e.g. reliable,
stream-based communication over unreliable networks, and whether there are
ambiguities or unforeseen problems with a protocol specification. Performance
analysis of a network protocol can examine, for example, how well the proto-
col handles different types of traffic, how fast the protocol responds to changes
in the environment, as well as packet delay and utilization of communication
channels.

CP-nets and the Design/CPN tool [31, 40] have been used to analyze many
computer and telecommunication systems. Verification studies have analyzed
the functionality of protocols, e.g. WAP [56], RSVP [125] and BeoLink [30], and
intelligent networks in telephone systems [25]. A few performance studies have
also been done, e.g. in the areas of web servers [127], ATM network algorithms
[36], and comparisons of TCP implementations [38].

The paper is structured as follows. Section 7.2 introduces a CPN model of
a stop-and-wait protocol that will be used as an example throughout the pa-
per. Section 7.3 discusses steps that have been taken to separate modeling the
behavior of a system from analyzing the behavior of the system. Section 7.4
presents the improved facilities for Design/CPN and related tools that sup-
port data collection and performance analysis using CP-nets. Finally, Sect. 7.5
discusses related work.
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Figure 7.1: CPN model of stop-and-wait protocol.

7.2 Example: Stop-and-Wait Protocol

This section presents a CPN model that will be used as a running example
throughout the rest of the paper. The example is a model of a stop-and-wait
protocol from the data link control layer of the OSI network architecture. The
protocol is quite simple, but it is sufficient for introducing the most interesting
new concepts related to using CP-nets for performance analysis of network pro-
tocols (and other systems). A detailed description of the model is not provided
here, but a thorough description of the model can be found in [80] which pro-
vides a general introduction to coloured Petri nets and related analysis methods.
The following description of the model is taken from [80].

Figure 7.1 shows an overview of a timed, hierarchical CPNmodel of the stop-
and-wait communication protocol. The system consists of a sender transmitting
data packets to a receiver across an unreliable, bi-directional communication
channel. The sender accepts data packets from protocols in the upper layers
of the OSI network architecture. Similarly, the receiver passes packets that
have been properly received to the upper layers of the protocol stack. The
Upper Layers Send module generates workload for the Sender module in this CPN
model. The Communication Channel is a module that provides a simple model
of an unreliable network in which packet loss and overtaking can occur. The
stop-and-wait protocol is modeled in detail in the Sender and Receiver parts of
the model.

Figure 7.2 shows the Sender part of the CPN model. The states of a CP-net
are represented by a number of tokens positioned on places, which are drawn
as ellipses. Each token carries a data value, such as an integer or a string. The
events of a CP-net are represented by means of transitions, which are drawn
as rectangles. Incoming packets from the upper layers are added to a packet
buffer (Send). The sender can only accept (Accept) a new packet from the upper
layer after an acknowledgment has been received for the previous packet. If
an acknowledgment has been received, then status of the sender (NextSend)
indicates the sequence number for the next packet. When a packet is accepted,
a sequence number is added to the packet to form a data frame which then is
ready to be sent (Ready). The status of the sender is changed to reflect that
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Figure 7.2: Sender module of stop-and-wait CPN model.

it is sending a packet that has not yet been acknowledged. It takes 5 units of
time to process each incoming packet from the upper layers.

When a data frame is sent (Send DataFrame), two things happen. The data
frame is transformed to a frame which is sent to the network interface (Transmit

Data). It takes 5 units of time to complete this process. At the same time,
a copy of the data frame is retained at the sender (Waiting) in case the data
frame needs to be retransmitted later. The function TExpire() determines how
long the sender will wait before retransmitting the data frame. If the time out
period expires before an acknowledgment is received, then the data frame is
retransmitted (TimeOut). In this model, unlimited retransmissions are allowed.

When the receiver receives a frame, it sends an acknowledgment back to
the sender indicating the sequence number of the next packet that it expects
to receive (rn). Thus, when the sender receives an acknowledgment (Receive
AckFrame) it must compare the sequence number in the acknowledgment with
the sequence number of the packet that it last sent (sn). If rn>sn, then the
receiver has properly received the most recent packet, i.e. the packet with se-
quence number sn has been acknowledged, and the sender is free to accept the
next packet from the upper layers. On the other hand, if rn≤sn then the status
of the sender remains unchanged since an acknowledgment for an old packet
has been received. Processing an acknowledgment also takes 5 units of time.

The above primarily describes the functionality of the system. Let us con-
sider how CP-nets can be used to analyze the performance of the system. We
have mentioned that the model contains information about how much time cer-
tain activities take. In the Upper Layers module, packets are generated on-the-fly
during a simulation. A parameter in the model indicates whether the periods
between packet arrivals are constant or exponentially or uniformly distributed.
Another parameter indicates the average amount of time that passes between
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the arrival of two successive packets. Similar parameters are used for determin-
ing the network delay and network reliability in the Communication Channel.

For this system, there are several performance measures of interest, includ-
ing average queue length of packets waiting to be sent, average packet delay
and network utilization. Packet delay is the time from which a packet is put
in the Send buffer on the sender side until it is properly received by the re-
ceiver. Network utilization is the percentage of time in which the network is
busy transmitting data frames or acknowledgment frames. The data channel is
bi-directional, and it is possible to measure the utilization of each direction of
the channel. Changing the values of parameters mentioned above will can have
profound effects on the performance of the system. In Sect. 7.4 we will see how
the performance of systems can be analyzed using CP-nets.

7.3 Monitoring System Behavior

A number of libraries and tool extensions have been developed for Design/CPN
during the past decade. These libraries include support for message sequence
charts [92], updating domain-specific graphics [106], communication between
the simulator and other processes [49], and data collection [87]. These facilities
can be used both to inspect and to control a simulation of a CP-net. While there
are many advantages to having this extra functionality, there are a number of
disadvantages as well. The most serious problem is that it is often necessary
to add extra information into a CPN model in order to be able to use the
facilities mentioned above. This extra information can be both extra places or
transitions and auxiliary values in the data types for the tokens in the CP-net.
For example, it may be necessary to add an extra place and transition to a CP-
net in order to create a communication channel to another process. Introducing
extra information into the model may have unexpected and undesirable effects
on the behavior of the model. In this section, we will discuss new facilities
with which it is possible to use the libraries mentioned above without having
to modify a CP-net.

7.3.1 Monitors

Ideally in a simulation tool, there should be a clear distinction and separation
between modeling the behavior of the system and monitoring the behavior of
the system (model). A new framework, called the monitoring framework [90]
has been introduced in an attempt to provide inspiration for how to obtain this
separation for discrete-event system simulators. One of the most important
goals of the monitoring framework is to make it possible to inspect or control
a simulation without having to modify a model.

The monitoring framework has been used to implement so-called monitors
for the new CPN simulator [96] that is available in both Design/CPN and
CPN Tools [16, 37], which is a new CPN tool that will be the successor to
Design/CPN. A monitor is a mechanism that can observe or monitor the states
and events of a CP-net during a simulation, and that can take appropriate
actions based on the observations. More specifically, a monitor is activated
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if check (event, state)
then act (observe (event, state), state)

Figure 7.3: Monitoring functions.

after each step in a simulation, and if certain conditions are met, then it will
observe the current state of the model and/or the most recently occurring event,
and take appropriate actions based on the observation just made. Each monitor
contains three functions, check, observe, and act, that perform these services.
The relationship between these functions is shown in Fig. 7.3.

A monitor will generally have one purpose, such as updating a log file,
updating a message sequence chart, or collecting data. A number of standard
monitors that can be used for any CP-net have been defined. It is also possible
for a user to define monitors that are tailor-made for a specific CP-net.

7.3.2 Examples of Monitors

In this section we will consider two monitors that have been created for the
stop-and-wait model. The monitor in the first example is used to stop a simu-
lation when the sender retransmits a data frame for the third time. The second
monitor is used to create a message sequence chart that illustrates the trans-
mission and reception of frames between the sender and receiver. In Sect. 7.4
we will see how monitors can be used for analyzing the performance of the
stop-and-wait protocol.

Simulation Breakpoints

Monitors can be used to control a simulation, for example, by defining break-
points during a simulation. Any number of monitors can be defined for a given
CP-net, and monitors can interact with each other. For example, one standard
monitor can count the number of times the sender retransmits a data frame, a
second monitor resets the first monitor each time a new packet is accepted from
the upper layers, and a third monitor can stop a simulation when it observes
that the sender has retransmitted a data frame three times. In this case, the
third monitor has to access the counter of the first monitor in order to determine
if three retransmissions have occurred.

Let us see how these three monitors are defined. It is easy to create the
standard monitor that counts how many times the sender retransmits packets.
In this case the user must just select, i.e. click on the appropriate node in the
GUI of the CPN tool, the TimeOut transition in the CP-net and then indicate
that a simple counter monitor must be created. Assume that the monitor is
named NumOfTimeOuts. This monitor will increment a counter each time the
sender retransmits a packet. This counter cannot be used alone because it will
count all retransmissions of all packets, i.e. it does not differentiate between
retransmissions of different packets. As mentioned above, a second monitor
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Figure 7.4: Message sequence chart.

must be created for reseting the counter monitor each time a new packet is
accepted. In this case the user must select the Accept transition and then
indicate that generic template code for the three monitoring functions from
Fig. 7.3 must be generated. This template code must then be modified by
the user in order to obtain the desired functionality. In this case, the check
and observe functions do not need to be changed, and the user will only have
to add NumOfTimeOuts.reset() to the body of the act function in order to
reset the first monitor. An example of code for a monitor will be shown in the
next section. The final monitor is defined in a similar manner, but template
code can be generated for simulation breakpoints rather than generic template
code. Only template code for a check function is generated, and the user
has to add (NumOfTimeOuts.Count())=3 to the body of the function. When
these monitors are used during a simulation of the stop-and-wait CP-net, the
simulation will stop if the sender retransmits a particular packet three times.
It is possible to resume a simulation after it has been stopped at a breakpoint.
With monitors it is very easy to define a domain-specific, simulation breakpoints
without having to modify the CP-net either by adding extra places and arcs,
or by adding extra information to certain events.

Message Sequence Charts

Monitors can also be used to create message sequence charts. MSCs are partic-
ularly useful when analyzing the behavior of network protocols, since they can
be used to illustrate the transmission of messages. They are also very useful for
debugging CPN models. Figure 7.4 shows an MSC that was generated during
a simulation of the stop-and-wait model in Design/CPN. The MSC contains a
new type of arrow which are called two-step arrows [89]. The difference between
two-step arrows and the original arrows in MSCs is that the arrows are drawn
differently. An ordinary arrow is drawn when one event occurs. In contrast,
a two-step arrow can be drawn after two different events have occurred. The
slope of the arrows indicate the passage of time; arrows in traditional MSCs are
always horizontal.

When using monitors to draw MSCs, all of the functions that are used
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to update an MSC are gathered together in one place. With monitors, it is
possible for the user to get an overview of the places and transitions that a
monitor observes without having to examine all places and transitions in the
CP-net. With monitors it is also very easy to inspect the state of a CPN model
during a simulation.

7.4 Performance Analysis using CP-nets

This section discusses the facilities that provide support for doing simulation
based performance analysis using CP-nets. A tool developer must understand
the needs of users in order to create a tool that can be used in practice. Per-
sonal experience using several different simulations tools with students with
mixed backgrounds (operations research and computer science) has shown that
people with different backgrounds have very different needs with regards to
simulation output. Inexperienced data analysts will have a tendency to believe
what a tool tells them, therefore care must be taken to avoid generating mislead-
ing simulation output. More experienced data analysts generally require that
more sophisticated kinds of data are generated for specific purposes. Therefore,
developers of tools supporting performance analysis need to strive to provide
simulation output that is statistically reliable, and that is useful for both ex-
perienced and inexperienced data analysts. These observations have influenced
the development of the performance facilities for Design/CPN and CPN Tools.
New facilities, that are described below, provide both support for generating
statistically reliable simulation output and running multiple simulations.

7.4.1 Data Collection

The data collection facilities are based on monitors, and each performance mea-
sure is calculated by a data collection monitor. The simulators and performance
facilities for Design/CPN and CPN Tools are implemented in Standard ML [100]
(SML). Figure 7.5 shows the code1 for a data collection monitor that calculates
the average number of packets in the sender’s packet buffer. The monitor is
named PacketQueue. It is not important to understand the details of Fig. 7.5,
but the functionality of the monitor will be described in general terms. In or-
der to calculate the average number of packets in the buffer it is sufficient to
measure the number of packets in the buffer only when the number of packets
changes, i.e. either when a new packet is added to the buffer or when a packet
is removed from the buffer. The Event data type shows that this monitor only
observes two kinds of events: Generate and Accept events. The monitor will be
activated only when the transitions Generate (in the Upper Layers Send module,
not shown) and Accept occur. For this monitor, the check function only needs
to return true each time it is evaluated, i.e. it will return true when either the
Generate event or the Accept event occurs. The observe function is then called to
measure the number of packets in the buffer, and this is achieved by measuring
the length of the one list that is found on the place Send. Most of the code in

1The code in Fig. 7.5 has been edited for clarity.
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structure PacketQueue = 1

struct 2

datatype Event = 3

Generate of int * {i, packets} 4

| Accept of int * {sn, packets, p, dframe} 5

6

fun check (event, (SendMark: PacketBuffer list)) = 7

true; 8

9

fun observe (event, (SendMark: PacketBuffer list)) = 10

if (length SendMark)>0 11

then length(hd SendMark) 12

else 0; 13

14

fun act (observedval, (SendMark: PacketBuffer list)) = 15

DataCollection.update(index, observedval); 16

17

fun monitor (event: Event, moduleInstance) = 18

let 19

val SendMark = 20

PlaceSend.getMarking(moduleInstance) 21

in 22

if check(event, SendMark) 23

then act(observe(event, SendMark), 24

(SendMark)) 25

else () 26

end; 27

end 28

Figure 7.5: Data collection monitor.

Fig. 7.5 is generated completely automatically. The user is only responsible for
defining the bodies of the check and observe functions, represented by lines 8
and 11-13, respectively. In order to define a data collection monitor, template
code can always be generated, and it is up to the user to make any necessary
modifications to the code. In many cases, it will not be necessary to make any
changes at all.

Standard data collection monitors that can be used to calculate a variety of
different performance measures have been defined. For example, one standard
data collection monitor calculates the average number of tokens on a place
during a simulation. The average number of tokens on a place could represent,
e.g. average queue length, utilization of processors in a multi-processor system,
or average available buffer space. Counting the number of times a particular
event occurs has also be implemented as a standard monitor, and this could
be used for counting the number of retransmissions or the number of packets
lost. Data collection monitors provide a more intuitive interface for accessing
performance measures than what was previously available in Design/CPN.

The individual data values that are observed by a data collection monitor
can be saved in a log file, referred to as an observation log file, and can be used to
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calculate statistics. Three kinds of statistics can be calculated: tally statistics2,
time-persistent statistics3, and counter statistics. Examples of tally statistics
are average, minimum and maximum packet delays. The average number of
packets in the packet buffer is an example of a time-persistent statistic. Counter
statistics are simple sums, and the monitor NumOfTimeOuts from Sect. 7.3.2 is
a good example of a counter statistic (assuming that it is not reset each time a
new packet arrives).

7.4.2 Analysis of One System

Performances measures that are calculated via simulation modeling are gener-
ally only estimates of the true performance measures. One of the dangers of
using simulation for performance analysis is accepting the output statistics from
a single simulation of a model as the “true answers” [84]. To compound the
problem even further, analysis of output data from one simulation is sometimes
done using statistical formulas that assume independence when in fact the data
is dependent, and is a problem in the Design/CPN Performance Tool [87] (also
referred to as the Performance Tool). New features have been developed that
provide support for properly analyzing the behavior of a system.

Multiple Simulations One of the desirable features for simulation modeling
tools is a single command to make several simulation runs (replications) of
a given model. No such command currently exists in Design/CPN, but the
simulator contains a number of SML functions that can be used to, for example,
initialize the state of the monitor, run simulation, and collect data. Several of
these primitives have been combined to create a simple batch script (which is
just an SML function) which can be used to run a given number of independent,
terminating simulations. Data is automatically collected and saved during each
simulation. Each terminating simulation can provide one estimate for each of
the performance measures that have been defined for a particular model.

Confidence Intervals Confidence intervals can be used to indicate how pre-
cise an estimate of a performance measure is. Given a set of estimates of a
performance measure, it is easy to calculate confidence intervals. However, the
estimates must be independent and identically distributed (IID) in order to cal-
culate an unbiased estimate of the variance of the estimates of the performance
measure. IID estimates of performance measures can be collected from simula-
tions by using the batch script from above and batch data collection monitors.
Batch data collection monitors are created before running a number of simu-
lations, updated after each simulation, and then used to calculate confidence
intervals which will be saved in a batch performance report.

2Tally statistics are called untimed statistics in the Design/CPN Performance Tool, and
they are also referred to as discrete-time statistics in performance-related literature.

3Time-persistent statistics are called timed statistics in the Performance Tool, and they
are also referred to as continuous-time statistics in performance-related literature.
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Simulation Output Simulation output it crucial for performance analysis.
It is used both for analyzing the performance of the system and for presenting
the results of the analysis. Therefore, it is important that a simulation modeling
tool generates output that is useful for data analysts. The output should also
be in formats that can be used immediately because it is much better to spend
time analyzing the data rather than post-processing it or converting it to a
format that can be used in reports or presentations.

Several different forms of simulation output can be automatically generated.
At the end of a single simulation, all statistics from the simulation can be saved
in a simulation performance report. The simulation performance reports that
are generated by the Performance Tool can contain misleading information.
These reports contained the variance and standard deviation for data values
that were collected from a single simulation. In most cases these values are not
likely to be IID, in which case the calculated standard deviation and variances
were biased estimates of the true standard deviation and variance. In the
new facilities, these values are not calculated for data values that are collected
during a single, terminating simulation. Both simulation and batch performance
reports can now be saved in plain text, LATEX and HTML formats, thus sparing
the user from having to manually convert plain text files to either of these
formats.

Additional facilities can be used to create a simple, yet organized system
for simulation output. When running the simple batch script from above, all
simulation output will be saved in a directory named batch n, where n is an
integer generated by the output management facilities. Figure 7.6 shows an
example of the directory structure and files that are created when running a
batch of three simulations of the stop-and-wait model. The directory batch n

.../batch n/
BatchStatusFile.txt
BatchPerfReport.txt
Overview.gpl
PacketQueue.gpl
PacketQueue iid.log
Utilization.gpl
Utilization iid.log
sim 1/

PerfReport.html
PacketQueue.log
Utilization.log

sim 2/
[. . . ]

sim 3/
[. . . ]

Figure 7.6: Directory structure with simulation output management.

will contain a batch status file that provides information about the status of
each individual simulation. The directory also contains a group of directories
sim 1, sim 2, . . . , sim m, where m is the number of simulations run in the batch.
The observation files for the i’th simulation are saved in the sim i directory,
and a performance report (in the desired format) is saved here as well. After
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all simulations have been run, confidence intervals can be calculated and saved
in a batch performance report in the batch n directory.

In addition to the systematic creation of directories for simulation output,
two new kinds of files can be generated. The first is gnuplot [53] scripts. One
kind of gnuplot script can be used to plot the contents of observation files in the
sim 1 to sim m directories. If an observation log file named PacketQueue.log
has been generated for each simulation, then the gnuplot script PacketQueue.gpl
can be used to plot the observation log files named PacketQueue.log in the
sim directories. A similar gnuplot script will be generated for each other set
of similarly named observation log files. The Overview.gpl gnuplot script will
load and plot all of the other gnuplot scripts one after the other.

The other new kind of files contains data that was used for calculating
confidence intervals. At the end of a simulation the Avrg statistic is accessed
from the PacketQueue data collection monitor. The average is then used to
update both a batch data collection monitor (with the same name) and a file
named PacketQueue iid.log in the batch directory. When the confidence
intervals are calculated there will be an entry in the batch performance report
which contains the average and 95% confidence interval for the values found in
PacketQueue iid.log.

7.4.3 Comparing Alternative Configurations

Simulation studies can be made for many different reasons. The purpose of some
studies may be to compare the performance of several given configurations or
to choose the best of the configurations. If the scenarios are not predetermined,
then the purpose of the simulation study may be to locate the parameters that
have the most impact on a particular performance measure or to locate impor-
tant parameters in the system. Sensitivity analysis investigates how extreme
values of parameters affect performance measures [77]. Gradient estimation, on
the other hand, is used to examine how small changes in the parameters affect
the performance of the system. Optimization is often just a sophisticated form
of comparing alternative configurations, in that it is a systematic method for
trying different combinations of parameters in hope of finding the combination
that gives the best results. Inherent in all of these activities is the need to be
able to run simulations for different configurations regardless of whether the
configurations are very different from each other or whether there is only a
slight change from one configuration to another. Comparing configurations is,
in turn, dependent on running many simulations.

Another batch script has been developed for running simulations for a num-
ber of different system configurations. This batch script can be used if a new
configuration can be specified by changing numerical parameters in a CP-net.
The user must specify a range of values that one or more parameters should
take on, and the batch script will ensure that system parameters are changed
between simulations, and that a given number of simulations are run for all
given combinations of parameter values. A configuration status file contains the
values of the parameters for each configuration, and it indicates which batch
directory contains the output for each configuration.
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One well-known technique for comparing two alternative system configura-
tions is to calculate the so-called paired-t confidence interval for the expected
difference for a given performance measure. With this technique, n IID esti-
mates of the performance measure are needed from each of the two configura-
tions. These estimates can be obtained by running n independent replications of
each of the simulations. Then the estimates from each configuration are paired,
and the difference is calculated for each pair. Whether or not the performance
of two system configurations are significantly different can be tested by calcu-
lating a confidence interval for the expected value of the difference between the
estimates. If the confidence interval for the expected difference between perfor-
mance measures contains zero, then one must conclude the two configurations
are not significantly different, based on the available observations.

The batch script that was introduced in this section can only be used to
run simulations for the different configurations. There is no integrated support
for actually comparing the results of the simulations. However, the output that
is generated is extremely useful for comparing two configurations, as will be
shown in the next section.

7.4.4 Variance Reduction

One of the drawbacks of simulation analysis is that it can take a long time to
run a simulation. This problem is amplified if many simulations need to be run
in order to achieve desired confidence intervals. Variance-reduction techniques
(VRT) can sometimes be used to reduce the number or length of simulations
that need to be run. The goal of variance reduction is to reduce the variability
of estimates of performance measures without affecting the expected value.

If two different system configurations are compared using different random
numbers for every simulation, then it may be difficult to determine whether
differences in performance measures should be attributed to the use of different
random numbers or to actual differences in the system configurations. Using
common random numbers (CRN) when comparing alternative system configu-
rations is a useful and practical variance-reduction technique. The idea of CRN
is to use the same source of randomness, i.e. the same random numbers, for each
of the configurations being studied. The effects of CRN may be improved if the
simulator can be forced to use the same random numbers for the same purpose
in each configuration. This process is called synchronizing the random num-
bers. Not only is CRN a useful statistical technique because it may mean that
fewer or shorter simulations can be run in order to achieve the desired precision
of estimates, but it also implies that a fairer comparison of the configurations
can be made because the experimental conditions are the same for each config-
uration [54]. Support has been added for using CRN when simulating CP-nets
precisely because of the appeal of this notion of fairer comparisons.

The easiest way to implement synchronization is to use different sources
of random numbers for each random input process. Therefore, the random
number generator that is used to generate random variates in Design/CPN has
been modified, such that it can provide 10 streams of random numbers with
one million independent random numbers in each stream. The random seeds
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Figure 7.7: Effects of CRN when comparing system behavior.

for each of the streams can be reset. By using a separate stream for each
source of randomness in a model, it is possible to achieve a certain degree of
synchronization for simulations of two different system configurations.

In Design/CPN and CPN Tools there are two sources of random numbers.
One random number generator is used to select which event should occur when
there is more than one event that can happen at a given time. The second
random number generator is used to implement the random variate generators.
This means that the second random number generator is used to generate both
interarrival times and network delays in the stop-and-wait model. By using one
stream for generating arrival times and another stream for network delays, it
is possible to achieve a certain degree of synchronization for simulations of two
different configurations of the stop-and-wait model.

The effects of CRN will be illustrated by comparing two different configu-
rations of a CPN model4 of a queuing system. Comparisons of the two con-
figurations were made in which varying degrees of CRN and synchronization
were used. Analytical methods can be used to show there is a significant dif-
ference in the performance measure for the two given configurations [84]. In
this example, we will see whether we can draw the same conclusion based on
simulation output from 20 simulations of each configuration, and we will see
how the outcome of the comparison can be affected by using various degrees of
CRN.

Figure 7.7 shows the paired-t confidence intervals that were used to com-
pare the configurations. In the first three comparisons, there was no attempt
to synchronize the use of random numbers. In the comparison labeled No CRN,
common random numbers were not used at all, and the confidence interval con-
tains zero. Therefore, based on the available observations, one must conclude
that the two system configurations are not significantly different. For the com-

4The example is taken from Chapter 11 in [84] and compares the average queue delay for
the first 100 jobs in an M/M/1 queuing system and an M/M/2 queuing system.
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parison labeled CRN in RVG, common random numbers were used for generating
random variates, but independent random numbers were used for selecting the
order in which concurrently enabled events should happen. A comparison of
these two configurations also reveals that they are not significantly different,
but the confidence interval for the difference in their performances is slightly
shorter than that of the No CRN comparison. This indicates that there was a
slight reduction in variance when some common random numbers were used.
Using CRN both for selecting events and for generating random variates leads
to a similar reduction in length of the confidence interval, as can be seen for the
comparison labeled CRN all. However, the conclusion of the comparison must
still be that the two systems are not significantly different. Both CRN and
synchronization of random numbers were used for in the comparison labeled
CRN, Sync. This is the only comparison from which one can properly conclude
that the performance of the two system configurations is significantly different
based on the available observations. Furthermore, it is also possible to deter-
mine which configuration is better based on the average difference between the
two configurations.

The paired-t confidence intervals were calculated using the files from the
batch directories that contain IID estimates of performance measures from each
simulation. The paired-t confidence intervals were calculated by post-processing
these files with an external application. The post-processing of data took less
than 15 minutes, and this is due to the fact that the necessary data was readily
available and easy to import into an external program.

7.5 Conclusion and Related Work

This paper has presented an overview of improved facilities supporting simulation-
based performance analysis using coloured Petri nets. With monitors it is pos-
sible to make an explicit separation between modeling the behavior of a system
and observing the behavior of a system. As a result, cleaner, more under-
standable CPN models can be created, and the risk of introducing undesirable
behavior into a model is reduced. Facilities exist for running multiple simula-
tions, generating statistically reliable simulation output, comparing alternative
system configurations, and reducing variance when comparing configurations.
Most of the facilities presented here have been implemented, however, some
have been implemented for Design/CPN and others for CPN Tools. Therefore,
not all of them work together. Since CPN Tools will be the successor to De-
sign/CPN, a current project is working on updating and porting the facilities
from Design/CPN to CPN Tools, and the performance-related facilities will be
incorporated into CPN Tools as part of this project.

There are many other tools that support performance analysis using dif-
ferent types of Petri nets [104]. GreatSPN [1, 29, 57] supports both low-level
Petri nets and stochastic well-formed nets, which comprise a subset of CP-
nets. It uses sophisticated analytic models to calculate performance measures,
and simulation-based performance analysis is also an option. The performance
measures that can be calculated are model-independent, e.g. it is possible to
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calculate the average number of tokens on places, the probability that a token
will contain a given number of tokens, and the average throughput of tokens.
No support is provided for comparing alternative system configurations, and
few facilities are available for visualizing the behavior of a model.

UltraSAN [120, 113] and its successor Möbius [33] support the use of both
simulation and analytic methods for performance analysis using stochastic ac-
tivity networks (SANs). Studies can be defined for comparing alternative sys-
tem configurations, and simulation output is saved systematically in groups of
related directories and files. SANs are similar to low-level Petri nets, which
means that it can be difficult to create, debug, and validate SAN models of
industrial-sized systems.

ExSpect [122] is a CPN tool that is, in some respects, similar to Design/CPN.
In contrast to Design/CPN, a number of libraries of frequently used modules
is provided with the tool. It is relatively easy to build a CP-net using these
modules. With ExSpect it is also possible to calculate model-dependent perfor-
mance measures by examining token values, and MSCs can also be generated.
However, all information that is used for calculating performance measures and
updating MSCs must be hard-coded directly in a model, and there is no support
for running multiple simulations.

A general-purpose simulation tool such as Arena [76] provides sophisticated
and excellent support for analyzing the performance of many kinds of systems.
With such a tool it is possible to analyze the behavior of systems using both
terminating and non-terminating simulations, to compare alternative system
configurations, and search for optimal system configurations. However, it is
virtually impossible to analyze the functionality of a system using such a sim-
ulation package.

There are certain disadvantages associated with using simulation based per-
formance analysis: no definitive answers can be provided, and it may take a
long time to run enough simulations in order to calculate sufficiently accurate
performance measures. However, it is the best alternative for analyzing the
behavior of industrial-sized models.
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Monitoring Simulations

The paper “Towards a Monitoring Framework for Discrete-Event System Simu-
lations” presented in this chapter has been accepted for presentation at the 6th
International Workshop on Discrete-Event Systems 2002 (WODES’02) [90].

[90] B. Lindstrøm and L. Wells. Towards a monitoring framework for dis-
crete event-system simulations. To appear in the proceedings of the 6th
International Workshop on Discrete Event Systems (WODES’02), 2002.

This chapter is, except for minor typographical changes, the same as the
paper [90].
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Towards a Monitoring Framework for
Discrete-Event System Simulations

Bo Lindstrøm∗ Lisa Wells∗

Abstract

This paper presents a framework for tools for monitoring discrete-event
system models. Monitoring is any activity related to observing, inspecting,
controlling or modifying a simulation of the model. We identify general
patterns in how ad hoc monitoring is done, and generalise these patterns
to a uniform and flexible framework. A coloured Petri net model and
simulator are used to illustrate how the framework can be used to create
various types of monitoring tools. The framework is presented in general
terms that are not specific to any particular formalism. The framework
can serve as a reference for implementing different types of monitors in
discrete-event system simulators.

8.1 Introduction

A variety of formalisms, e.g. finite-state machines [64], statecharts [59], and
Petri nets [108], exist and are used in practice for modelling and analysing
discrete-event systems. Furthermore, mature and well-tested tools exist for
building and analysing models based on these formalisms. Such tools are pri-
marily focused on providing support for the formalism and related analysis
methods, such as simulation or state space exploration. However, in many
situations it has proven to be useful to be able to augment rigorously based
tools with additional functionality that is not directly related to the formal-
ism. For example, during a simulation of a high-level Petri net model it can
often be useful to examine the states and events of the system, periodically ex-
tract information from the states and events, and then use the information for
very diverse purposes, such as: stopping the simulation when a certain state is
reached, visualisation of behaviour using message sequence charts [67] (MSC),
or data collection for performance analysis.

Based on our experiences with implementing and using Design/CPN [40]
which is a tool for coloured Petri nets (CP-nets or CPN) [70, 71], we have ob-
served that the design and implementation of efficient and effective tool support
for a specific formalism is generally focused on the formalism, while extracting
information for other purposes is typically done using ad hoc methods. That

∗Department of Computer Science, University of Aarhus, Åbogade 34, 8200 Århus N,
Denmark. E-mail: blind,wells@daimi.au.dk.
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means that for each different kind of information that can be extracted from a
simulation and processed, a new mechanism is implemented for extracting the
information. Some of these ad hoc methods are directly reflected in the mod-
els, e.g. it becomes necessary to add new events that are used solely to extract
information. This can introduce errors into the models and is undesirable.

Even though the extracted information may be used for different purposes,
the way the information is extracted is often similar. This means that it is
possible to create a general mechanism for defining how to extract information
from a model. In this paper, we will use the term monitor to denote any mecha-
nism which inspects or monitors the states and events of a discrete-event system
model, and which can take an appropriate action based on the observations.
For example, a monitor of a communication protocol model could inspect the
events during a simulation of the model and update a message sequence chart
each time an event corresponding to the transmission of a message takes place.

The purpose of this paper is to present a general monitoring framework
for discrete-event system simulators that can be used to standardise monitors
within a given tool and to unify interaction with monitoring facilities. In other
words, we present a flexible framework that can be used for defining many
different types of monitors. It is our experiences with implementing the data
collection facilities [87] and using other ad hoc monitoring techniques in De-
sign/CPN that has inspired us to create the monitoring framework. The data
collection facilities were designed and implemented such that they could be
used without having to make any modifications to a model. One of the goals of
the monitoring framework is to make it possible to use monitors to inspect or
control a simulation without having to alter models. With monitors it becomes
possible to make an explicit separation between modelling the behaviour of the
system and monitoring the behaviour of the model.

There are several advantages of using a common framework for defining
monitors. One advantage of having a common interaction technique for all
monitors in one simulator is that it may be easier for users to learn and use a
variety of existing monitors. We also believe that the use of standards improves
the extensibility of tools. In other words, it should become easier to add new
monitoring techniques without using ad hoc solutions, and the implementation
of new monitors may be simpler due to reuse of code.

Flexible and standardised monitoring facilities should also make it easier to
extend the use of monitoring to a wider area, by making it easier to define and
integrate new monitors into a tool using the monitoring framework. In addition,
we believe that a standardised and common approach where the monitoring,
to some extent, is independent of the model itself will extend the usability
of analysis tools for discrete-event systems. For example, using monitors for
communicating with external processes or for updating domain-specific graphics
may extend the use-domain of formal methods, as it becomes possible for people
unfamiliar with a given formalism to use monitors to interact with a “black box”
containing the formalism in order to do system analysis.

The framework will be described using general terms from discrete-event
systems. When we discuss concrete monitors, coloured Petri nets will be used
as a representative example of a formalism for modelling and analysing discrete-
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event systems. It should, however, be easy to translate the meaning to any
discrete-event system formalism with concepts for states and events.

The paper is structured as follows: Section 8.2 motivates the framework by
presenting a CPN model of a communication protocol. The model is used to
illustrate some of the monitors which can be used, e.g. to gain knowledge about
the behaviour of the model. Section 8.3 presents the general monitoring frame-
work for simulation models of discrete-event systems. Section 8.4 describes how
the monitors presented in Sect. 8.2 can be realised using the general framework
presented in Sect. 8.3. Finally, Sect. 8.5 concludes and gives directions for future
work.

8.2 Example: Monitoring a Communication Proto-

col

In this section, we will present an example model and then use it to illustrate
how different monitoring tools can be used. Even though the model itself is
fairly simple, many realistic and practical monitors can be used to inspect and
modify the state of the model during simulations. The model is taken from [71]
which contains a detailed description of both the model and timed coloured
Petri nets.

8.2.1 The Communication Protocol

The example that we will consider is a model of a simple communication pro-
tocol. This protocol is used to ensure reliable transmission of packets across
an unreliable network, i.e. a network in which overtaking and packet loss can
occur. Each packet includes a sequence number which is used to ensure that
packets are received once and only once, and in the proper order. After a
packet has been received, an acknowledgement is returned to the sender. This
acknowledgement contains the sequence number of the packet that the receiver
expects to receive next. Since both packets and acknowledgements can be lost,
the sender uses a timeout mechanism to trigger periodic retransmission of a
packet which has not yet been acknowledged.

Figure 8.1 shows a timed CPN model of this communication protocol. The
model was created in Design/CPN, in which prototype monitoring facilities
have been developed. The model consists of a Sender part (left-hand side), the
Network part (middle), and a Receiver part (right-hand side).

The sender sends packets (Send Packet), where a packet consists of a sequence
number and the data to be sent. Moreover, the sender has a counter (NextSend)
which indicates the number of the next packet to be sent. This counter is
updated whenever an acknowledgement is received (Receive Ack). A constant
timeout period of wait units of time is defined, and a packet is retransmitted if
an acknowledgement is not received within this period of time.

The network transmits packets (Transmit Packet) from the sender/network
interface (A) to the network/receiver interface (B). Similarly, acknowledgements
are transmitted (Transmit Ack) from the receiver to the sender. Packet loss is
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Figure 8.1: Timed communication protocol.

modelled by the OK function which is non-deterministic. The time that it takes
to transmit packets and acknowledgements is determined by the Delay function.

Each time the receiver receives a packet (Receive Packet), it must decide
whether to accept or reject the packet. For this purpose the receiver maintains
a counter (NextRec) indicating which packet should be accepted next. If the
expected packet arrives, then the packet is saved (Received), the counter is in-
cremented, and an acknowledgement with the next expected sequence number
is sent back to the sender. When an unexpected packet arrives, the packet
is discarded, the counter remains unchanged, and an acknowledgement is sent
back to the sender.

8.2.2 The Monitors

Several different types of monitors can be used both to control and modify a
simulation of this model and to examine the behaviour of the model. All of the
described monitoring activities could be incorporated directly into the model at
the cost of modifying the model to contain states or events that are not found
in the communication protocol.

In our work, we have observed a number of monitoring activities that can
be described by the following categories, and specific examples of each category
will be described in detail below. File access monitors are used to read and write
information in files. Simulation control monitors are used e.g., to start and stop
simulations, to determine the length of sub-simulations, or to select the order in
which certain events occur. Visualisation monitors can be used to visualise the
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Packet 1 received at time 190, EXPECTED
Packet 1 received at time 255, DISCARD - expecting 2
Packet 2 received at time 337, EXPECTED

Figure 8.2: Excerpt from the log file for the receiver.

behaviour of the system during a simulation, e.g. by updating message sequence
charts or domain-specific graphics. Performance monitors measure and report
on the performance of the system. Communication between a simulator and
an external process can be controlled via communication monitors. Finally,
property monitors can be used to do functional analysis of a model. Functional
analysis is concerned with proving that the system behaves as expected or that
certain state and/or event properties hold for the system. Let us now consider
specific examples from these categories of monitors.

Simulation Stop Monitor Suppose the simulation of the communication
model should be stopped after a given number of packets have been received
in the correct order. This type of stop criteria is completely dependent on the
model and the system, in contrast to more general and model-independent types
of stop criteria such as stopping after a given number of events have taken place
or after a certain amount of model time has passed. Stopping a simulation after
a certain number of packets have arrived using only general stop criteria would
generally require modifying the model, e.g. by adding an event that could occur
only after the required packets have arrived. In contrast, a simulation control
monitor could be used to inspect either the states or the events of the system
and then stop the simulation when the required packets had arrived without
having to modify the model.

Log-File Monitor It may be useful to maintain a receiver log file containing
information about the packets that were received. For example, the log file
could contain the sequence numbers of the packets that were received, the time
at which they were received, as well as noting which packets were received in
the correct order. Figure 8.2 shows an excerpt from a file that was generated
by a log-file monitor when simulating the protocol model. Such a log file could
be used for debugging purposes or for analysing the system, e.g. for analysing
arrival rates. A log-file monitor is a file access monitor which can only write
strings in a file.

Message Sequence Chart Monitor MSCs have proven to be useful for
visualising the behaviour of communicating processes. In the context of UML,
MSCs are used for specifying communication patterns, while they are often used
for analysing communication patterns within the context of CP-nets. MSCs
provide a high-level view of communication patterns that may not be obvi-
ous if one were restricted to inspecting every simulation event involving the
communicating processes.
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Figure 8.3: MSC for communication protocol.

Figure 8.3 is a MSC that was generated by a visualisation monitor. The
MSC shows that the packet with sequence number 1 (Packet 1) was sent to the
network by the sender three times. The first time Packet 1 was sent, it was lost
on the network. Then Packet 1 was sent, transmitted across the network, and
received by the receiver. The receiver responded by sending an acknowledge-
ment with the sequence number for the next expected packet (Ack 2) back to
the sender across the network. Finally, a timeout occurred, and Packet 1 was
sent one last time before the acknowledgement from the receiver was received
by the sender.

Data Collection Monitor Monitors can also be used to measure the perfor-
mance of a system by collecting numerical data during a simulation. The data
that is collected can be used to calculate statistics or saved in files which can
be post-processed after a simulation finishes. For example, the protocol model
could be used to measure the proportion of received packets that are discarded.
This performance measure could be of particular interest when using simula-
tion to find a reasonable value for the timeout period when the approximate
network delay and rate of packet loss are known. A data collection monitor,
which is one type of performance monitor, measuring the ratio of discarded
packets among all received packets would simply have to observe the events
corresponding to the reception of packets (Receive Packet), and calculate the
proportion of discarded packets in an appropriate manner.

Communication Monitors Communication with external processes can be
very useful when simulating models of discrete-event systems, as the external
processes can augment the functionality of the simulation tool in a variety of
ways. For example, an external process could provide input or workload for the
model, or the external process could also be used to process data that has been
extracted from the model during simulation.

Communication channels can also be used for two-way communication be-
tween a simulator and an external process. The external process could be, for
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example, a real system that is built on top of the communication protocol. Al-
ternatively, the external process could be another simulator that is simulating
a model of a system that is built on top of the communication protocol.

State Property Monitor Ideally, functional analysis of a discrete-event sys-
tem should be done by examining all of the reachable states and state transitions
of the system, i.e. the full state space of the system. However, in many cases, it
may not be possible to analyse (or even generate) a full state space due to the
state explosion problem. In such a situation, an alternative, albeit somewhat
unsatisfactory, solution is to determine whether or not the property holds for
selected simulations using property monitors.

A state property for the communication protocol that ought to hold for all
states is that the value of the counter in the sender (NextSend) should always be
either less than or equal to the value of the counter in the receiver (NextRec).
This property can be checked during a simulation by a property monitor that
examines and compares the value of these two counters in every state during
a simulation. At the end of the simulation, the monitor will report whether or
not the property held.

It is important to remember that a property monitor that is used during
a simulation cannot necessarily prove that a property holds for a model, as
the monitor only examines one sequence of states and state transitions that
correspond to a partial state space. While a property monitor cannot prove that
a property holds, they can be helpful when debugging and validating models.

8.3 Monitoring Framework

In this section we describe a general monitoring framework which can be used
to create different types of monitors in modelling tools for discrete-event sys-
tems. In Sect. 8.3.1 we give a description of the essential parts of a monitor.
Section 8.3.2 presents the interface of a monitor. To use the framework in a
concrete tool, the tool must be able to inspect or access both events and states
of a model during a simulation.

8.3.1 Functionality of Monitors

In this section we present our proposal for the architecture of a monitor. We
describe the components of a monitor and how the components interact with
each other.

Architecture of Monitors In Sect. 8.2 several different monitors were pre-
sented, e.g. monitors for collecting data, maintaining message sequence charts,
and communicating with external processes. By considering these monitors in
detail, we identify a common pattern in how these monitors operate. Each
monitor can be divided into three logical parts:

1. Check: When should the monitor make an observation.
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if check (event, state)
then act (observe (event, state), state)

Figure 8.4: Relation between monitor functions.

2. Observe: How is the observation computed.

3. Act: Based on the observation, what action is to be made.

As an example, consider the log-file monitor in Sect. 8.2.2. For the log-file
monitor, the check determines that the file should be updated when a packet is
received (Receive Packet). The observation defines the string that is to be added
to the file. The action updates the file with the observed string. The state of
the model is left unchanged.

Figure 8.4 illustrates the general functionality of a monitor. When, what and
how an action is to be made is defined by three functions: the check function,
the observe function, and the act function. For most monitors the following
control flow takes place. First, the check function is evaluated to determine
when an action is to be performed. When the check function evaluates to true,
then the observe function is evaluated to observe a value. Finally, the act
function uses the observed value to do a specific and monitor-dependent action.
In other words, the observed value can be used to update the state of the model,
the state of the simulator, and/or the environment of the simulator (e.g. file
system or communication channels).

A monitor must be activated periodically during a simulation, i.e. the state-
ment from Fig. 8.4 needs to be evaluated occasionally for each monitor. How-
ever, a monitor must only be activated at well-defined points during a simulation
to avoid inconsistency. Some obvious examples of points for activating a moni-
tor during a simulation are the following: after each event during a simulation;
after certain events occurs; after a certain amount of time; after a specific num-
ber of events. Furthermore, it must be possible to examine one or more states of
the model, each time the monitor is activated. In our experience with monitors
for CP-nets, it has been sufficient to activate monitors after events have com-
pleted, at which point the current state of the model can be inspected. In other
words, after an event occurs, the statement from Fig. 8.4 is evaluated for each
monitor, and both the check and observe functions are able to inspect both
the current state of the model and the most recently occurring event. However,
the future may show that some monitors may need to be able to inspect, e.g.
all previous states and occurring events, or all potential next events which can
occur from the current state.

Domain and Range of Monitors We have indicated in Fig. 8.4 that a
monitor must at least be able to inspect the current state of the model and the
most recently occurring event during a simulation. In addition to the current
state and the most recently occurring event, it is useful that both the check,
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observe, and act functions have access to the simulator of the model, and to the
simulator environment. Access to the simulator makes it possible to, e.g. stop
a simulation, while access to the simulator environment may give additional
possibilities such as accessing global variables, functions, and external files.
Accessing the simulator environment is necessary when implementing a log-file
monitor, since a log-file monitor needs to access the file system to be able to
save files.

Monitors where the act function updates the simulator environment are
only inspecting the behaviour of the system, and do not change the state of the
model or the simulator. However, monitors where the act function modifies the
state of the model or controls the simulator have to be handled with care. If it
is possible to change the state of the model during a simulation, the semantics
of the formalism can be violated if used improperly.

Initialising and Concluding Monitors Before a monitor can be used it
may need to be initialised. In addition, after having used the monitor for moni-
toring a model, it may need to wrap up the work. These activities are different
than the normal invocation of the monitor; they are related to initialising and
concluding a monitor. For example, before the log-file monitor can write to a
file, the file needs to be opened, and the file should be closed at the end of a
simulation.

For several different kinds of monitors it is useful to be able to perform
special activities before the check function is evaluated for the first time, and
after the act function has been evaluated for the last time. In our experience
the following different points of automatically initialising a monitor are useful:
never, when the state of the model is initialised, or before each (sub-)simulation.
Similarly, we have observed that there are two useful options for automatically
concluding a monitor: never or after each simulation.

8.3.2 Interface of Monitors

In this section we provide a detailed specification for the interface of a monitor.
Figure 8.5 shows the interface of a monitor, which is specified as a Standard
ML [100] signature.

A monitor contains four local types: event, state, observeType, and
actState. The type event defines what events the monitor can inspect. The
state type defines the part of the state of the model which the monitor can in-
spect. The observeType type defines the return type for the observe function.
The actState type defines the return type for the act function. The actState
type is unit for monitors which are only inspecting the model and its environ-
ment, but which do not update the state of the model or the simulator. For
monitors which can modify the state of the model or simulator, the type will
be given by the type of the state of the simulator.

Once the local types of the monitor have been defined, the functions check,
observe, and act can be created. Based on the current state and the most
recently occurring event, the check function must be defined to return true
only when the observe and act functions should be invoked. In other words,
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datatype monitorInitMode = NeverInit | AtInitState | AtSimStart
datatype monitorConcludeMode = NeverConclude | AfterSim

signature MONITOR = sig
type event
type state
type actState
type observeType

val check : event * state −> bool
val observe : event * state −> observeType
val act : observeType * state −> actState
val monitor : event * state −> unit

val init : state −> state
val conclude : state −> state

val init mode : monitorInitMode
val conclude mode : monitorConcludeMode

end

Figure 8.5: Interface of a monitor.

the check function defines when the monitor should be activated. When the
check function evaluates to true, the observe function is invoked. The purpose
of the observe function is to inspect the state of the model or the most recently
occurring event (or the environment) and to extract the value to be used by
the act function which takes the appropriate action for the monitor.

The monitor function is called by the simulation tool during a simulation to
activate the monitor. The monitor function takes care of invoking the check,
observe, and act functions in the correct order as illustrated in Fig. 8.4. In
other words, it is the responsibility of the simulation tool to call the monitor
function often enough so that the check function is is able to detect the points
at which the observe and act functions are to be called.

The functions taking care of initialising and concluding a monitor are speci-
fied by the init and conclude functions. As mentioned in the previous section,
a monitor may be initialised and concluded at different points during its use.
That information is stored in the variables init mode, and conclude mode using
the corresponding data types monitorInitMode and monitorConcludeMode.

8.4 Concrete Monitors

In this section we will discuss how monitors for simulations of CPN models
can be created based on the framework presented in Sect. 8.3. We will also
discuss the advantages of providing support for both standard and user-defined
monitors.
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8.4.1 Creating a Log-File Monitor

In this section we describe a log-file monitor which is a monitor that can be
used for any CPN model. Most of a log-file monitor can be predefined, i.e. it
will be the same for all log-file monitors, independent from the model being
monitored. Only minor parts of the monitor have to depend on the specific
model. A log-file monitor contains predefined functions for opening, updating,
and closing a file. In other words, the init, act, and conclude functions will
be predefined. Only the check and observe functions have to be created by
the user for defining when to observe the model and how to create the string
to be saved.

Let us see how the log-file monitor from Sect. 8.2.2 can be created. Recall
that the log-file monitor should update a file each time the receiver receives a
packet. Each update should contain information that is specific for the partic-
ular packet that was received, i.e. the sequence number of the packet, the time
the packet was received, and whether or not the packet contained the expected
sequence number. The black parts of Fig. 8.6 indicate the parts of the protocol
model which provide relevant information for creating a log-file monitor that
will generate such a log file for the receiver.

In a CPN tool, it is possible for a user to select parts of a model and
then have the tool automatically deduce which elements represent (part of) the
state of the system and which elements represent events in the system. This
is due to the fact that CPN models consist of only two types of nodes: places
(represented by ellipses) which model the state of the system, and transitions
(represented by rectangles) which model the events of the system. Using the
information selected by a user, it is possible for the tool to generate much of the
information that is required for creating a monitor that satisfies the interface
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shown in Fig. 8.5. This particular log-file monitor updates a file after each
event that corresponds to the receiver receiving a packet, and these events are
modelled by the transition Receive Packet and the arcs surrounding the transition.
The variables in the arc inscriptions contain information specific to the event
of receiving a packet: k is the value of the counter in the receiver, and (n,p) is
the packet that has been received, where n is the sequence number, and p is the
payload or data of the packet.

datatype ReceiverLogEvent = 1

Receive Packet of {n: INT, p: DATA, k: INT} 2

3

structure ReceiverLog : MONITOR = struct 4

5

type event = ReceiverLogEvent 6

type state = unit 7

type actState = unit 8

type observeType = string 9

10

fun check (Receive Packet {n,p,k}, currentState) = true 11

12

fun observe (Receive Packet {n,p,k}, currentState) = 13

"Packet "^Int.toString(n)^ 14

" received at time"^ 15

timeToString(time())^", "^ 16

(if n=k then "EXPECTED\n" 17

else ("DISCARD - expecting "^ 18

Int.toString(k)^"\n")) 19

20

val fileID = ref TextIO.stdOut 21

22

fun act (observeStr, currentState) = 23

(TextIO.output(!fileID,observeStr); ()) 24

25

fun init (currentState) = 26

((fileID := TextIO.openOut("ReceiverLog")); 27

currentState) 28

fun conclude (currentState) = 29

(TextIO.closeOut(!fileID); currentState) 30

val init mode = AtSimStart 31

val conclude mode = AfterSim 32

33

fun monitor(anEvent, currentState) = 34

if check (anEvent, currentState) 35

then act (observe (anEvent, currentState), 36

currentState) 37

else () 38

end 39

Figure 8.7: Code for log-file monitor.

Defining the log-file monitor is fairly easy in Design/CPN. The complete
code for the log-file monitor can be seen in Fig. 8.7, and a description of how the
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code was generated follows. After the user selected the Receive Packet transition,
Design/CPN generated template code for the check and observe functions for
the log-file monitor, and the template code that was generated is equivalent
to lines 11 and 13 in Fig. 8.7. Since the user selected only the Receive Packet

transition, it is implicitly assumed in Design/CPN that the check function
returns false after all other events in the system. As a consequence, the check
function should always return true, since the log file should always be updated
when a packet is received, regardless of the particular values of the sequence
number, the payload, or the receiver’s counter. Therefore, the user does not
need to make any changes to the template code for the check function. The
body of the observe function is the only part of this monitor that the user had
to define. In this case, the user only had to write a few lines of SML code (lines
14-19 in Fig. 8.7) in order to generate a file that resembles the excerpt shown
in Fig. 8.2.

After the user defined the check and observe functions, Design/CPN checked
the syntax of the functions and automatically generated the code that is shown
in Fig. 8.7. Note that the user never needs to see more than the check and
observe functions. The user chose to name the monitor ReceiverLog. The
type event for this monitor corresponds to the occurrences of the event Receive

Packet. The monitor does not explicitly examine any portion of the state of
the model, therefore the type state is a trivial data type. However, the mon-
itor will implicitly examine some of the state, e.g. the value of the counter in
the receiver, but this information is available in the specification of the event
Receive Packet. A log-file monitor cannot be used to change the state of the
model or the simulator, therefore the actState is also a trivial data type. The
observeType for the monitor will be string, since the observe function must
generate a string which will be saved in the file. The log file will be opened at
the start of the simulation (AtSimStart) when the init function is called by
the simulator. Similarly, the file is closed by the conclude function at the end
of a simulation (AfterSim).

The monitor will be invoked only when a packet is received by the receiver.
This is achieved by augmenting the implementation of the event Receive Packet

to call the monitor function for the log-file monitor. As mentioned previously,
the check function should always return true (because it will only be evaluated
when a packet is received), the observe function will return a string that is
dependent on the contents of the packet, and the predefined act function will
save the string in a file.

8.4.2 Standard and User-Defined Monitors

Based on the monitoring framework presented in Sect. 8.3, it is possible to
construct many different types of monitors. More specifically, it is possible to
construct all of the different types of monitors that were discussed in Sect. 8.2.
At first glance, it appears that many of the monitors are dependent on the
model that they inspect. This would seem to indicate that it would be rather
time consuming and difficult for users to define and use monitors. However, it
turns out that many monitors can be constructed so that they are (relatively)
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independent of the specific model. That makes it possible to integrate so-called
standard monitors into the tool. Using standard monitors the user only needs
to specify minor parts of the monitor – the rest of the monitor is predefined.

The example of the log-file monitor for the receiver’s log is an excellent
example of a standard monitor. By simply selecting a portion of a model, the
majority of the code for the monitor can be automatically generated by the
tool, and the user only needs to make simple modifications to the code that is
generated. For this standard log-file monitor, it is only possible for the user to
change the body of the check and observe functions

There are likely to be other situations in which such a log-file monitor is
insufficient or too rigidly defined. In the example above, it is impossible to read
from the file in question. Therefore, it would be helpful for a tool to support
a variety of monitors with varying degrees of flexibility. For example, support
could be provided for file access monitors that only read or only write strings
in files, that record the sequence of events that occur in a simulation, or that
observe the state of model and open a file for reading when certain conditions
are fulfilled.

In other cases it may be useful to be able to create new types of monitors
or monitors that are completely model-dependent. Therefore, it is also useful
that the user can create monitors from scratch. If users create monitors that
conform to the interface shown in Fig. 8.5, it should be relatively easy for tool
developers to incorporate the new monitors into the tool or to create libraries
of monitors that can be shared among users, thus extending the usability and
flexibility of a simulation tool.

8.5 Conclusion and Future Work

In this paper we have presented a framework for monitoring simulations of
discrete-event systems. The purpose of the monitoring framework is to serve as
a reference for implementing different types of monitors in discrete-event system
modelling tools. The reason for developing this monitoring framework is that
most monitors we have seen use the same way to define when to monitor, what
to monitor, while only the action based on the monitoring will be different for
different monitors. Prototype monitoring facilities based on the framework have
been developed and used, and some of the monitors that we have considered are:
data collection monitors, message sequence chart monitors, and communication
monitors. These examples show that monitors can be used for widely different
purposes. This paper is one step in the direction of unifying how monitors are
implemented within a given tool.

There are several ideas for future work in this field. In this paper we have
only considered monitoring of simulations. However, most of the monitors may
also be applied to state spaces. The implication of applying the same monitors
to both simulations and state spaces is twofold. Consider a data collection
monitor to be used to collect data during simulations. It cannot only be applied
to simulations, it can also be applied to paths in the state space to collect data
from the entire state space of a model. Likewise, property monitors applied to
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state spaces may also be applied on simulations. The implication is that early
model checking or simple analysis of a model can be conducted during initial
simulations of a model – during the modelling phase – without constructing
state spaces. After completing a model, the same monitors can be applied to
the complete state space. The consequence is that time is saved by using the
same monitors for both simulation and state space analysis.





Chapter 9

Annotating Coloured Petri Nets

The paper “Annotating Coloured Petri Nets” presented in this chapter has
been been accepted for presentation at the Fourth Workshop and Tutorial on
Practical Use of Coloured Petri Nets and the CPN Tools (CPN’02) [89].

[89] B. Lindstrøm and L. Wells. Annotating coloured Petri nets. To appear
in the proceedings of the Fourth Workshop and Tutorial on Practical Use
of Coloured Petri Nets and the CPN Tools (CPN’02), 2002.

This chapter is, except for minor typographical changes, the same as the
paper [89].
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Annotating Coloured Petri Nets

Bo Lindstrøm∗ Lisa Wells∗

Abstract

Coloured Petri nets (CP-nets) can be used for several fundamentally
different purposes like functional analysis, performance analysis, and vi-
sualisation. To be able to use the corresponding tool extensions and li-
braries it is sometimes necessary to include extra auxiliary information in
the CP-net. An example of such auxiliary information is a counter which
is associated with a token to be able to do performance analysis. Mod-
ifying colour sets and arc inscriptions in a CP-net to support a specific
use may lead to creation of several slightly different CP-nets – only to
support the different uses of the same basic CP-net. One solution to this
problem is that the auxiliary information is not integrated into colour sets
and arc inscriptions of a CP-net, but is kept separately. This makes it
easy to disable this auxiliary information if a CP-net is to be used for
another purpose. This paper proposes a method which makes it possible
to associate auxiliary information, called annotations, with tokens without
modifying the colour sets of the CP-net. Annotations are pieces of infor-
mation that are not essential for determining the behaviour of the system
being modelled, but are rather added to support a certain use of the CP-
net. We define the semantics of annotations by describing a translation
from a CP-net and the corresponding annotation layers to another CP-net
where the annotations are an integrated part of the CP-net.

9.1 Introduction

Coloured Petri nets (CP-nets or CPNs) were formulated by Kurt Jensen [70, 71]
with the primary purpose of specifying, designing, and analysing concurrent sys-
tems. The tools Design/CPN [31, 40] and CPN Tools [37] have been developed
to give tool-support for creating and analysing CP-nets. Ongoing practical use
of CP-nets and Design/CPN in industrial projects [72] have identified the need
for additional facilities in the tools.

One industrial project described in [26] illustrated that CP-nets can be used
for performance analysis by predicting the performance of a web server using
a CPN model. As part of this project, the Design/CPN Performance Tool [87]
was developed as an integrated tool extension supporting data collection during
simulations. Later, work was done to extend and generalise these data collection
facilities to serve as a basis for a common so-called monitoring framework [90].

∗Department of Computer Science, University of Aarhus, Åbogade 34, 8200 Århus N,
Denmark. E-mail: blind,wells@daimi.au.dk.
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Other projects have shown that visualisation of behaviour using so-called mes-
sage sequence charts (MSCs) [67] is very useful in combination with CP-nets.
As a consequence, a library [92] has been developed for creating MSCs during
simulations. Other similar libraries are Mimic [106], which is used for visuali-
sation, and Comms/CPN [49], which is used for communicating with external
processes.

The fact that a CPN model can be used for several fundamentally different
purposes like functional analysis, performance analysis, and visualisation means
that it is desirable that the tool extensions and libraries can be used without
having to modify the CPN model itself. It should be possible to use a CPN
model, for e.g. performance analysis, without having to add extra places, tran-
sitions, and colour sets purely for the purpose of collecting data. Optimally,
the auxiliary information should not be integrated into colour set and arc in-
scriptions of a CPN model, but should be kept separately, so that it is easy to
disable this information if the CPN model is to be used for something else.

Up to this point it has only been partially possible to use a CPN model
for different purposes without having to change the CPN model itself. With
the current tools, it is indeed possible to do, e.g. performance analysis without
adding transitions and places for the sole purpose of doing the performance
analysis. Unfortunately however, it is often necessary to add extra information
to colour sets and arc inscriptions to hold, e.g. performance-related information
such as the time at which a certain event happened.

This paper presents work on separating auxiliary information from a CPN
model by proposing a method which makes it possible to associate auxiliary
information, called annotations, with tokens without modifying the colour sets
of the CPN model. Annotations are pieces of information that are not essential
for determining the behaviour of the system being modelled, but rather are
added to support a certain use of the CPN model. A CP-net that is equipped
with annotations is referred to as an annotated CP-net. In an annotated CP-net,
every token carries a token colour, and some tokens carry both a token colour
and an annotation. A token that carries both a colour and an annotation is
called an annotated token. Just like a token value, an annotation may contain
any type of information, and it may be arbitrarily complex.

Annotations are defined in annotation layers. Defining annotations in layers
makes it possible to make modular definitions of both a CP-net and one or
more layers of auxiliary information that can be used for varying purposes. By
defining several different layers of annotations, it is possible to maintain several
versions of a CP-net and thereby to use the same basic CP-net for various
purposes by adding, removing, or combining annotation layers. An advantage
of the annotation layers is that they are defined so that they affect the behaviour
of the original CP-net in a very limited and predictable way. Every marking
of an annotated CP-net is the same as a marking in the original CP-net, if
annotations are removed.

In the following, we will assume that the reader is familiar with CP-nets as
defined in [70]. The first half of this paper provides an informal introduction to
annotations and an example of how annotations can be used in practice. The
second half of the paper provides a formal definition of annotations and proof of
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the fact that annotations affect the behaviour of a CP-net in a very limited way.
In this paper, we will only discuss how to annotate non-hierarchical, untimed
CP-nets. However, timed and hierarchical CP-nets can also be annotated using
similar techniques.

The paper is structured as follows. Section 9.2 presents the well-known
resource allocation system CP-net, which will be used as a running example
throughout the paper, and discusses existing ways of including auxiliary infor-
mation in CP-nets. In Sect. 9.3 we informally introduce our proposal for how
to annotate CP-nets. Section 9.4 discusses how multiple annotation layers can
be used for visualisation using MSCs. In Sect. 9.5 we give the formal definitions
for annotating CP-nets. Finally, in Sect. 9.6 we conclude and give directions
for future work.

9.2 Motivation

It is seldom the case that the exact same CP-net can be used for a variety of
different purposes, as it is frequently necessary to make small modifications to
a CP-net in order to obtain a CP-net that is appropriate for a given purpose.
Consider for example the resource allocation system that is found in Jensen’s
volumes on CP-nets [70, 71]. At least three variations of the resource allocation
CP-net can be found in these volumes: a basic version (shown in Fig. 9.1)
suitable for full state space analysis; an extended version (shown in Fig. 9.2)
which is extended with cycle counters for the p and q processes; and a timed
version with cycle counters and timing information which could be used for
performance analysis.

The basic version in Fig. 9.1 purely models the basic aspects of the resource
allocation system, and thereby only models the parts of the system that are
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common for any use of the CP-net. However, even for such a simple system as
the resource allocation system, it is indeed necessary to have slightly different
versions of the same CP-net in order to support different kinds of use. In other
words, modifications of the basic CP-net are made only to support a certain
use, and the modifications may limit other uses of the modified CP-net because
the modifications may change the behaviour.

An example of a situation where the basic version does not contain sufficient
information is when we need to be able to count how many cycles each of the p
and q processes make in the resource allocation system. The extended CP-net
in Fig. 9.2 shows how the basic CP-net can be extended with such auxiliary
information. First of all, the colour set U has been extended to the product
colour set UxI to include an integer for the counter in every process token. In
addition, the arc inscriptions have been modified to pass on and to update the
cycle counters. The cycle counters for the p and q processes are increased each
time a p or q token passes the transition T5. The initial marking has also been
modified to include the initial values of the cycle counters. Using this extended
CP-net it is possible to determine the number of cycles a process has completed
by inspecting the counter of the corresponding tokens.

The version extended with the cycle counters is not useful for all kinds of
analysis. This is due to the fact that the cycle counters for the p and q processes
increase each time the p and q tokens pass transition T5, thus resulting in an
infinite state space. Therefore, the extended version with cycle counters may
be inappropriate for certain kinds of state space analysis. The effect of the
cycle counters on the state space can be factored out using equivalence classes,
however, it may be annoying to have to remember to manually take care of
such auxiliary information before doing state space analysis. In contrast, the
state space for the basic CP-net without the cycle counters is finite. This means
that the full state space can be generated and analysed, e.g. to prove that the
system never reaches a deadlocked state.

Analysing the performance of the resource allocation system is another kind
of analysis that requires auxiliary information to be maintained for the tokens
in the CP-net. The timed CP-net from [71] could be used to measure the
average processing times for each of the two processes. This timed CP-net can
be created by modifying the CP-net in Fig. 9.2 by changing the colour set UxI
to a timed colour set, and by adding an auxiliary component to the colour set
to be used for recording the time when a process restarts a cycle,1 i.e the time
at which a q process is removed from place A or the time at which a p process is
removed from place B. This value can then be used to calculate the processing
time for a given process when it passes the T5 transition. If the timed CP-
net should be used for a purpose where the auxiliary information should be
ignored, it should often be removed. In the tool Design/CPN, it is easy to
disable time, i.e. to consider a timed CP-net as an untimed CP-net. However,
auxiliary components that have been added to the colour sets also need to be
removed by manually modifying the colour sets and arc inscriptions.

1The colour set U could be modified to consist of pairs (u,t) where u∈U is a process and
t∈TIME is the time at which the process started processing.
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From the examples presented above it should now be clear that when us-
ing CP-nets for different purposes it is often necessary to maintain different
versions of a CP-net with slightly different behaviour. The reason for main-
taining different versions is, as mentioned, that it may be necessary to be able
to include auxiliary information in tokens. However, the auxiliary information
may be extraneous or even disastrous for other uses, e.g. consider the effects
of the cycle counters on the size of the state space. Including extra informa-
tion in a CP-net often requires modification of colour sets, arc expressions, and
initialisation expressions.

9.3 Informal Introduction to Annotated CP-nets

In this section we will informally present a method for augmenting tokens in
a CP-net with extra or auxiliary information that affects the behaviour of the
CP-net in a very limited and predictable manner. To do this we introduce the
concept of an annotation which is very similar to a token colour in that an
annotation is an additional data value that can be attached to a token. An
annotation layer is used to define annotations and how these annotations are to
be associated with tokens in a particular CP-net. An annotation layer cannot
be defined independently from a specific CP-net. Therefore, it is always well-
defined to refer to the unique CP-net for which an annotation layer is defined.
We will refer to this unique CP-net as the underlying CP-net of an annotation
layer. An annotated CP-net is a pair consisting of an annotation layer and
its underlying CP-net. We define the semantics of annotations by describing
a translation from an annotated CP-net to a CP-net without annotations, re-
ferred to as the matching CP-net. In practice, the annotations are integrated
into the matching CP-net when the translation is made. Section 9.3.1 gives
an informal introduction to annotations and annotation layers. Section 9.3.2
describes the intuition of how to translate an annotated CP-net to a matching
CP-net. Section 9.3.3 discusses the behaviour of the matching CP-net, and it
discusses how the behaviour of the matching CP-net is similar to the behaviour
of the underlying CP-net. The formal definition of annotated CP-nets follows
in Sect. 9.5.

9.3.1 Annotation Layer

To get an intuitive understanding of how annotations can be used, let us see how
the cycle counters that were discussed in Sect. 9.2 can be added as annotations.
Recall that Fig. 9.2 shows how the CP-net from Fig. 9.1 can be modified to
include the cycle counters as part of the token colours.

Figure 9.3 contains an annotated CP-net for the basic CP-net for the re-
source allocation system from Fig. 9.1. In Fig. 9.3 the elements from the anno-
tation layer are shown in black, whereas the underlying CP-net is shown in grey.
The annotation layer contains auxiliary declarations and auxiliary net inscrip-
tions, where the auxiliary net inscriptions consist of auxiliary arc expressions,
auxiliary colour sets, and auxiliary initialisation expressions.
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Figure 9.3: Annotated CP-net for the resource allocation system.

The colour set I is declared in the first line of the auxiliary declarations.
Places A, B, C, D and E have auxiliary colour set I which means that tokens on
these places will be annotated tokens that carry integer annotations. A token
that carries the annotation n has completed the cycle n times. Places with
auxiliary colour sets are called annotated places. The token value for a token
on an annotated place has both a token colour and an annotation. Not all
places will contain annotated tokens, therefore, some places will not have an
associated auxiliary colour set.

All of the annotated places that have an initialisation expression in the
underlying CP-net must also have an auxiliary initialisation expression in the
annotation layer. Places A and B have the auxiliary initial expression 0. This
expression means that all tokens on places A and B will have annotation 0 in
the initial marking.

All arcs that are connected to annotated places have an auxiliary arc ex-
pression. In Fig. 9.3, most auxiliary arc expressions consist of the variable i
which has type I. Variable i is declared in the annotation layer, therefore, it
may only be used within the annotation layer, i.e. it cannot be used in the
underlying CP-net. In contrast, variables, colour sets, functions, etc. that are
declared in the underlying CP-net may be used both in the underlying CP-net
and in the annotation layer. However, certain conditions must be fulfilled in
order to ensure that using the same elements in both the annotation layer and
the underlying CP-net does not affect the behaviour of the underlying CP-net.
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These conditions will be discussed further in Sect. 9.5.2.
Let us consider the intuition behind the auxiliary arc expressions on the arcs

surrounding transition T5. In the underlying CP-net, T5 can occur whenever
there is one token on place E, and this must still be true in an annotated version
of the CP-net. Informally, the interpretation of the two types of arc expressions
surrounding T5 is that when transition T5 occurs with, e.g. binding <x=q,
i=5>, one token with colour q and annotation 5 will be removed from place E.
One token with colour q and annotation 5+1=6 will be added to place A, and
the empty multi-set of annotated tokens will be added to place B. On the other
hand, if T5 occurs with binding <x=p, i=3>, then one token with colour p and
annotation 3+1=4 will be added to place B, and no tokens will be added to place
A. In both bindings, multi-sets of (non-annotated) e tokens are also added to
places T and S, which are non-annotated places.

The intuition behind the auxiliary inscriptions that have been discussed
until now is fairly straightforward. There are, however, some restrictions on
the kinds of auxiliary arc expressions that are allowed in order to ensure that
annotations have only limited influence on the behaviour of the underlying
CP-net. All of the auxiliary arc expressions on arcs from annotated places to
transitions consist only of variables, and this is not accidental. For example,
the auxiliary arc expression i on the arc from C to T3 must not be replaced
with, e.g. the constant 4, which would require that when removing a token from
C the annotation must be 4. Allowing such an auxiliary arc expression would
mean that the behaviour of the matching CP-net and the underlying CP-net
would no longer be similar. Sections 9.5.2 and 9.5.3 discuss the restrictions
about which kinds of auxiliary arc expressions are allowed.

9.3.2 Translating an Annotated CP-net to a Matching CP-net

Rather than defining the semantics for annotated CP-nets, we will define the
semantics of annotations by describing how an annotated CP-net can be trans-
lated to an ordinary CP-net, which is referred to as the matching CP-net. The
discussion above should have provided a sense of what kinds of annotations the
tokens should have and of how an annotated CP-net for the resource allocation
system should behave. The annotation layer (referred to as A and shown in
black in Fig. 9.3) and the underlying CP-net (referred to as CPN and shown in
Fig. 9.1) constitute an annotated CP-net for the resource allocation system. In
this section, we will show how the various auxiliary inscriptions fromA and the
inscriptions from CPN are translated to inscriptions in the matching CP-net
(referred to as CPN∗ and shown in Fig. 9.4). The general rules for translat-
ing an arbitrary annotation layer and its underlying CP-net are presented in
Sect. 9.5.3. In the following, we shall say that a place/arc is annotated/non-
annotated in a matching CP-net (like Fig. 9.4) if it is annotated/non-annotated
in the corresponding annotated CP-net (like Fig. 9.3).

The rules are simple for translating an annotated CP-net to a matching
CP-net. CPN and CPN∗ have the same net structure. The colour sets for non-
annotated places in CPN∗ are unchanged with respect to CPN; in the example,
the colour sets for places R, S and T are unchanged. The colour sets for the
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Figure 9.4: Matching CP-net for the resource allocation system.

annotated places are now product colour sets which are products of the original
colour sets and the auxiliary colour sets. The colour set for annotated places
A-E in CPN∗ is UxI which is a product of colour set U (the colour set of places
A-E in CPN) and auxiliary colour set I (the auxiliary colour sets fromA). The
tokens on an annotated place p in CPN∗ are said to have an annotated colour
(c,a), where c is a colour (from the colour set of p in CPN), and a is an
annotation (from the auxiliary colour set of p inA). The set of colour sets for
CPN∗ is the union of the set of colour sets from CPN, the set of auxiliary colour
sets fromA, and the set of product colour sets for annotated places.

In the previous section, the intuitive meaning of several auxiliary expressions
was that a given annotation should be added to all elements in a multi-set
of colours. This is the meaning of, for example, all of the auxiliary initial
expressions. Let us define a function Annotate that, given an arbitrary multi-
set and an arbitrary annotation, will annotate all of the elements in the multi-set
with the annotation. This function is used in several net inscriptions in CPN∗.

Let us consider how the initialisation expressions are created for CPN∗. The
initialisation expressions for non-annotated places (R, S and T) are unchanged,
and evaluating these expressions yields non-annotated multi-sets (1 è,3 è, and
2`e respectively). The initial markings for annotated places in CPN∗ must
be multi-sets of annotated colours. Place A has the initialisation expression
Annotate (3`q) 0, which evaluates to 3̀ (q,0) tokens which correspond to the
desired multi-set of three annotated tokens, each with colour q and annotation
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0. Note, in particular, that if the annotations are removed from the multi-set
3 (̀q,0), then we obtain the multi-set 3 q̀ which is exactly the multi-set that is
obtained when evaluating the initialisation expression for A in the underlying
CP-net. Similarly, place B has an initial marking of two tokens, each with colour
p and annotation 0. The initial markings of the remaining places are empty.

The arc expressions of CPN and the auxiliary arc expressions ofA are com-
bined in a similar manner to create arc expressions for CPN∗. If the type of
an arc expression in CPN, expr, is a single colour, then the arc expression in
CPN∗ is the pair (expr, aexpr), where aexpr is the auxiliary arc expression
inA. The arc expressions for most annotated arcs in Fig. 9.4 have this form.
When the type of an arc expression is a multi-set of colours, then the arc ex-
pression for CPN∗ is Annotate expr aexpr. The arc expressions for the arcs
from transition T5 to places A and B were created in this manner. The next
section discusses how the behaviour of the matching CP-net is similar to the
behaviour of the underlying CP-net.

9.3.3 Behaviour of Matching CP-nets

In a matching CP-net some places contain annotated tokens, other places con-
tain non-annotated tokens, and occurrences of binding elements can remove
and add both regular, non-annotated tokens and annotated tokens. Figure 9.5
shows a marking of the matching CP-net, CPN∗. The marking of place A con-
tains two tokens – one with colour (q,4), the other with colour (q,5). This
corresponds to a marking in the annotated CP-net of Fig. 9.3 where A has one
token with colour q and annotation 4 and another token with colour q and an-
notation 5. Similarly, place B contains three tokens with colours (p,5), (p,6)
and (q,1). This corresponds to a marking in the annotated net where B has
one token with colour p and annotation 5, another token with colour p and
annotation 6, and a third token with colour q and annotation 1. Finally, places
S and T each contain two non-annotated tokens with colour e.

We say that the behaviour of the matching CP-net matches the behaviour
of its underlying CP-net. Informally this means that every occurrence sequence
in the matching CP-net is also an occurrence sequence in the underlying CP-
net if annotations are ignored. Furthermore, for every occurrence sequence in
the underlying CP-net, it is possible to find at least one matching occurrence
sequence in the matching CP-net which is identical to the occurrence sequence
from the underlying CP-net when annotations are ignored. Consider, for ex-
ample, a marking, M, of the basic CP-net from Fig. 9.1, in which there are
two e tokens on places S and T, two q tokens on place A, and two p tokens
and one q token on place B. The binding element (T2, 〈x=p〉) is enabled in
M. The marking of the matching CP-net in Fig. 9.5 is the same as marking M
if annotations are ignored. The occurrence of either (T2, 〈x=p, i=5〉) or (T2,
〈x=p, i=6〉) in the matching CP-net will result in markings that are equal M′

where M[(T2, 〈x=p〉)〉M′ when annotations are ignored. A formal definition of
matching behaviour can be found in Sect. 9.5.4.
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Figure 9.5: Marking of the matching CP-net for the resource allocation system.

9.4 Using Annotation Layers in Practice

This section discusses how to use several annotation layers for the basic CP-net
of the resource allocation system presented in Fig. 9.1 in Sect. 9.2. The purpose
of this section is to illustrate that multiple annotation layers can be added on
top of each other without changing the original model, and to illustrate some
of the uses of annotations. We will discuss an example of how annotations can
be used for visualising simulation results. In particular we will consider how
message sequence charts (MSCs) can be created using annotations.

A MSC can be used, e.g. to visualise the use of resources. Figure 9.6 de-
picts a MSC for the basic CP-net of the resource allocation system. The MSC
contains two vertical lines which represent the activities of allocating and deal-
locating resources in the resource allocation system. An arrow represents the
dependency between the allocation and deallocation of an S or an R resource.

The MSC in Fig. 9.6 visualises a sequence of allocations of resources by the
p and q processes. The arrows for p processes are dashed. The MSC shows
that first the q process makes a full cycle where it first allocates an R and
an S resource when T1 occurs, and an additional S resource when T2 occurs.
The R resource is deallocated when T3 occurs, and the two S resources are
deallocated when T5 occurs. The last five arrows show a situation where two p
processes interleave with a q process. First the q process allocates an R and an
S resource, but then two cycles of p processes appear (the two dashed arrows)



9.4. Using Annotation Layers in Practice 109

Allocate
Resource

T1
T2

T1

T2

T2

T2

Deallocate
 Resource

T3

T5

T5

T5

T3
T5

  

R(q)
S(q)

S(q)

2*S(p)

2*S(p) R(q)S(q)

S(q)

Figure 9.6: Message sequence chart for the resource allocation system.

before the q process continues the cycle. This interleaving is explicitly visualised
by the arrows started by T1 and ended by T3 and T5, and crossing the arrows
representing the two p processes.

A MSC can be generated automatically from a simulation of a CP-net.
However, first it is necessary to specify which occurrences of binding elements
in the CP-net should generate which arrows in the MSC. Normally, an arrow in
a MSC is created when a single transition occurs. However, arrows as illustrated
above correspond to two events: one for creating the start-point and one for
creating the end-point of an arrow. Such arrows are defined by means of these
two points. First the start-point of the arrow is given. Then some other events
may appear, and then the event leading to ending the arrow is given. For CP-
nets this means that the occurrence of one transition may define the start-point
of an arrow while the occurrence of another transition may define the end-point
of an arrow. We call such arrows two-event arrows.

When using two-event arrows, it is often necessary to annotate a token to
hold information of which arrows have been started but not ended yet. In
other words, a token must hold the arrow-id of the start-point of the arrow
when the first transition occurs and keep it until a transition supposed to end
the arrow consumes the token. To avoid modifying the colours of the the CP-
net, annotations can be used. Figure 9.7 depicts how the basic CP-net for the
resource allocation system can be annotated to generate the MSC in Fig. 9.6.
The contents of the annotation layer are shown in black, while the underlying
CP-net is shown in grey. The annotation colour MSC is an integer which has the
purpose of holding the start-point id of an arrow, while the annotation colour
MSCs is a list of MSC ids. We do not give the details of the functions msc start
and msc stop here, however, they are used to set the start-point and end-point
of each arrow. In addition each of the functions return a list of arrow-ids of
the non-stopped arrows. This list becomes an annotation for the underlying
colour. As this example illustrates, we allow auxiliary arc expressions to have
side effects. However, the side effects may not affect the behaviour of the
underlying CP-net.
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The annotation layer in Fig. 9.3 from Sect. 9.3.1 adds a cycle counter to
the CP-net. The value of the cycle counter could be included on the arrows
in Fig. 9.6 in addition to the type of resource and process. To obtain this,
an annotation layer that resembles the MSC Annotation Layer in Fig. 9.7 can be
added on top of the cycle counter annotation layer in Fig. 9.3. We will refer
to this new annotation layer as Cycle MSC Annotation Layer. In the Cycle MSC

Annotation Layer it is possible to refer to the annotations of the Cycle Counter

Annotation Layer from the MSC Annotation Layer.
Figure 9.8 depicts some of the possible ways to add annotation layers on

top of each other. Notice that an alternative to adding the Cycle MSC Annotation

Layer on top of the Cycle Counter Annotation Layer, is to add the original MSC

Annotation Layer on top of the Cycle Counter Annotation Layer. This makes sense
even though the annotations in Cycle Counter Annotation Layer are not used in the
MSC Annotation Layer.

Basic CP-net

MSC 
Annotation Layer 

Cycle Counter 
Annotation Layer 

Cycle MSC 
Annotation Layer 

Figure 9.8: Structure of annotation layers for a basic CP-net.
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If we had not been able to use an annotation layer for creating the MSC, we
would have had to create a new CP-net by adding and modifying the colours
of the basic CP-net. For example, the colour sets of the places A, B,C, D, and
E should also hold the MSCs colour set. In addition, so-called code segments
possibly had to be added to execute the the msc start and msc stop function
calls, and the arc-expressions had to be modified to include the MSC variable
m. In other words, we had to modify the CP-net model itself to generate the
MSCs. If the information for updating MSCs is included directly in the CP-
net, then it would be difficult to disable the updating of the MSCs, and there
is no guarantee that the modifications would not affect the behaviour of the
underlying CP-net in unexpected ways.

9.5 Formal Definition of Annotated CP-nets

In this section, we will formally define annotated CP-nets. We will start by
introducing some new terminology. We will then define annotation layers, and
we will discuss how an annotation layer and a CP-net can be translated into
a matching CP-net. We want to define the annotation rules so that they are
straightforward to use and understand. To achieve this it turns out to be con-
venient only to allow annotation of those input arcs of transitions where the arc
expressions are uniform with multiplicity one (i.e. always evaluate to a single
token colour). For output arcs there are no similar restrictions. If an input arc
expression is uniform with multiplicity larger than one, it is usually easy to split
the arc into a number of arcs that each have multiplicity one. The requirement
can be formally expressed as:

Requirement 1. Let CPN=(Σ, P, T, A, N, C, G, E, I) be a CP-net as defined in
Def. 2.5 in [70]. Let PA⊆P be the set of annotated places. The following must
hold in order to be able to annotate CPN:

∀ p∈PA: ∀ a∈A such that N(a)=(p,t), E(a) must be uniform with multi-
plicity 1.

This requirement may seem very restrictive. However, in our experience,
the kinds of arc inscriptions that are currently not possible to annotate are
rarely used in practice. Therefore, the definitions presented here should prove
to be useful for annotating many of the CP-nets that are used in practice.

Section 9.5.1 introduces terminology regarding multi-sets of annotated colours.
Section 9.5.2 defines annotation layers by describing the auxiliary net inscrip-
tions that are allowed in the annotation layer. Section 9.5.3 presents rules for
translating a CP-net and an annotation layer into the matching CP-net, and
it discusses the relationship between markings, binding elements, and steps in
a matching CP-net and its underlying CP-net. Section 9.5.4 defines matching
behaviour. Finally, Sect. 9.5.5 discusses the use of multiple annotation layers.
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9.5.1 Multi-sets of Annotated Colours

In the previous section we used expressions such as: 1̀ (p,5)+1̀ (p,6)+1̀ (q,1)
to denote the marking of annotated places2 in a matching CP-net. This indi-
cates that the marking consists of three tokens with colours (p,5),(p,6) and
(q,1). However, within the context of annotated CP-nets, this marking can
also be interpreted to represent a multi-set of annotated tokens: two tokens
with colour p and annotations 5 and 6, and one token with colour q and anno-
tation 1. Multi-sets of annotated elements are ordinary multi-sets3 of so-called
annotated elements.

Definition 1. For a non-empty set of elements, S, and a non-empty set of
annotations, AN, an annotated element (from S) is a pair (s,a), where s∈S and
a∈AN. π((s,a))=s is the projection of the annotated element (s,a) onto the
non-annotated element s.

A multi-set of annotated elements over S×AN is a multi-set over S×AN.

If am is a multi-set of annotated elements (of S), then am determines an ordinary
(non-annotated) multi-set amπ over S, where amπ(s) = (

∑
a∈AN am(s, a))`s.

π(am) is the projection of am onto the non-annotated multi-set determined by am.

If am is multi-set over S×AN, m is a multi-set over S, and π(am)=m, then am is
said to cover m, and we say that m is covered by am.

In Sect. 9.3.2 we informally defined the function Annotate that will add
a given annotation to all elements in a given multi-set. Let us now formally
define Annotate.

Definition 2. Given an annotation a∈AN and a multi-set m=
∑

s∈S m(s)̀ s over
a set S, the function Annotate is defined to be:

Annotate m a =
∑
s∈S

m(s)`(s, a)

which is a multi-set of annotated elements of S, i.e. a multi-set with type
(S×AN)MS .

As a consequence of Defs. 1 and 2, π(Annotate m a) = m, for all multi-sets
m and all annotations a.

9.5.2 Annotation Layer

We are now ready to define an annotation layer. An annotation layer is used
solely to determine how to add annotations to tokens for a subset of the places
in a CP-net. An annotation layer consists of elements that are similar to their

2The first paragraph in Sect. 9.3.2 explains what we mean when we refer to an annotated
place in a matching CP-net.

3Multi-sets as defined in Def. 2.1 in [70]
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counterparts in CP-nets. An annotation layer contains auxiliary net inscrip-
tions, and each auxiliary net inscription is associated with an element of the net
structure of the underlying CP-net. When translating an annotation layer and
its underlying CP-net to the matching CP-net, these auxiliary net expressions
will be combined with their counterparts from the underlying CP-net to create
colour sets, initialisation expressions and arc expressions for the matching CP-
net. There are, however, additional requirements for each of the concepts. An
explanation of each item in the definition is given immediately below the def-
inition. A similar remark applies for many of the other definitions in this paper.

Definition 3. Let CPN=(Σ, P, T, A, N, C, G, E, I) be a CP-net. An annota-
tion layer for CPN is a tupleA=(ΣA, PA, AA, CA, EA, IA) where

i. ΣA is a finite set of non-empty sets, called auxiliary colour sets, where
Σ⊆ΣA.

ii. PA⊆P is a finite set of annotated places.

iii. AA⊆A is the finite set of annotated arcs, where AA= A(PA).

iv. CA is an auxiliary colour function. It is a function from PA into ΣA.

v. EA is an auxiliary arc expression function. It is defined from AA into
expressions such that:

∀ a∈AA: Type(EA(a))=CA(p(a)) ∧ Type(Var(EA(a)))⊆ΣA

vi. IA is an auxiliary initialisation function. It is a function from PA into
closed expressions such that:

∀ p∈PA: Type(IA(p))=CA(p).

i. The set of auxiliary colour sets is the set of colour sets that determine the
types, operations and functions that can be used in the auxiliary net inscrip-
tions. The auxiliary colour sets determine the type of annotations that the
tokens on the annotated places carry. All colour sets from the underlying CP-
net can be used as auxiliary colour sets. Additional auxiliary colour sets may
be declared within an annotation layer.

ii. The set of annotated places are the only places that are allowed to contain
annotated tokens.

iii. The annotated arcs are exactly the surrounding arcs for the places in PA.

iv. The auxiliary colour function, CA, is a function from PA into ΣA, and is
defined analogously to the colour function for CP-nets. Thus, for all p∈PA,
CA(p) is the auxiliary colour set of p.

v. Auxiliary arc expressions are only allowed to evaluate to a single annotation
of the correct type. If the arc expression of an arc is missing in CPN, then we
require that its auxiliary arc expression is also missing inA.



114 Chapter 9. Annotating Coloured Petri Nets

vi. The auxiliary initialisation function maps each annotated place, p, into a
closed expression which must be of type CA(p), i.e. a single annotation from
CA(p). If the initial expression of place p is missing in CPN, then we require
that its auxiliary initial expression is also missing inA.

9.5.3 Translating Annotated CP-nets to Matching CP-nets

We will now define how to translate an annotated CP-net, (CPN,A), to a new
CP-net, CPN∗, which is called a matching CP-net. CPN∗ and CPN have the
same net structure. Net inscriptions for non-annotated places, non-annotated
arcs, and transitions in CPN∗ are unchanged with respect to CPN. In contrast,
net inscriptions for annotated places and annotated arcs in CPN∗ are obtained
by combining net inscriptions from CPN with their counterpart auxiliary net
inscriptions inA. A matching CP-net is defined below.

Definition 4. Let (CPN,A) be an annotated CP-net, where CPN=(Σ, P, T,
A, N, C, G, E, I) andA=(ΣA, PA, AA, CA, EA, IA) is a annotation layer. We
define the matching CP-net to be CPN∗=(Σ∗, P∗, T∗, A∗, N∗, C∗, G∗, E∗, I∗)
where

i. Σ∗=ΣA∪{C(p)×CA(p) | p∈PA}.
ii. P∗=P

iii. T∗=T

iv. A∗=A

v. N∗=N

vi. C∗(p) =
{

C(p) if p/∈PA
C(p)×CA(p) if p∈PA

vii. G∗=G

viii. E∗(a) =
{

E(a) if a/∈AA
Annotate E(a) EA(a) if a∈AA

ix. I∗(p) =
{

I(p) if p/∈PA
Annotate I(p) IA(p) if p∈PA

i. {C(p)×CA(p) | p∈PA} is the set of product colour sets for the annotated
places in CPN∗.

ii. + iii. + iv. + v. The places, transitions, arcs, and node function in
CPN∗ are unchanged with respect to CPN.

vi. Defining the colour function C∗ is straightforward. The colour set for a
non-annotated place in CPN∗ is the same as its colour set in CPN. The colour
set for an annotated place p in CPN∗ is C(p)×CA(p).
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vii. The guard function in CPN∗ is unchanged with respect to CPN.

viii. The arc expression for a non-annotated arc a in CPN∗ is the same as the
arc expression for a in CPN. If the arc expression for a is missing in CPN, then
its arc expression will also be missing in CPN∗. This is shorthand for empty, as
usual for CP-nets. The arc expression for an annotated arc a in CPN∗ is derived
from the arc expression for a in CPN and the auxiliary arc expression for a in
A. The expression Annotate (E(a)) (EA(a)) will yield a multi-set with type
(C(p(a))×Type(EA(p(a))))MS which is exactly (C(p(a))×CA(p(a)))MS , as re-
quired. If an arc expression (for an annotated arc) evaluates to a single colour in
CPN, then we allow the arc expression for CPN∗ to be the pair (E(a), EA(a))
where the first element is the arc expression from CPN, and the second ele-
ment is the auxiliary arc expression fromA. This is shorthand for the multi-set
1`(E(a), EA(a)).

ix. If p is not an annotated place, then the initial expression of p in CPN∗ is
unchanged with respect to CPN. If the initial expression of a place is missing
in CPN, then its initial expression will also be missing in CPN∗. A miss-
ing initial expression is shorthand for the empty. For an annotated place
p, the expression Annotate (I(a)) (IA(a)) will yield a multi-set with type
(C(p(a))×Type(IA(p(a))))MS which is exactly (C(p(a))×CA(p(a)))MS , as re-
quired. I∗(p) is a closed expression for all p, since I(p) is a closed expression for
all p, and IA(p) is closed for all p∈PA. When the type of the initial expression
for an annotated place in the underlying CP-net is a single colour, then we
allow the the initial expression in CPN∗ to be the pair (I(p),IA(p)) that is
uniquely determined by the initial expression of p in CPN and the auxiliary
initial expression of p inA. This is shorthand for 1`(I(p),IA(p)).

Covering Markings, Bindings and Steps

We will now define what it means for markings, bindings and steps of a match-
ing CP-net to cover the markings, bindings and steps of its underlying CP-net.
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Definition 5. Let (CPN,A) be an annotated CP-net with matching CP-net
CPN∗. We then define three projection functions π that map a marking M∗

of CPN∗ into a marking M of CPN, a binding b∗ of a transition t in CPN∗

into a binding b of t in CPN, and a step Y∗ of CPN∗ into a step Y of CPN,
respectively.

i. ∀p∈P∗: (π(M∗))(p) =
{

M∗(p) if p/∈PA
π(M∗(p)) if p∈PA

ii. ∀ v∈Var(t): (π(b∗))(v)=b∗(v), where Var(t) are the variables of t in CPN.

iii. (π(Y∗)) =
∑

(t,b∗)∈Y ∗ (Y∗(t,b∗))`(t,π(b∗))

If π(M∗)=M, π(b∗)=b, and π(Y∗)=Y, then we say that M∗, b∗, and Y∗ cover
M, b, and Y, respectively. We also say that M, b, and Y are covered by M∗, b∗,
and Y∗, respectively.

i. Given a marking of a matching CP-net, π will remove the annotations from
the tokens on annotated places, and it will leave the markings of non-annotated
places unchanged. A marking of a matching CP-net covers a marking of its un-
derlying CP-net, if the two markings are equal when annotations in the first
marking are ignored.

ii. Given a binding of a transition in CPN∗, π removes the bindings of the
variables in Var∗(t)\Var(t), i.e. π removes the bindings of the variables of t
that are not found in CPN. A binding of a transition in CPN∗ covers a binding
of the corresponding transition in CPN when the variables that are found in
both CP-nets are bound to the same value.

iii. For each binding element (t,b∗) in Y∗, π removes the bindings of the
variables of t that are not found in CPN.

We define similar functions that map the set of markings (M∗), the set of
steps (Y∗), the set of token elements (TE∗), and the set of binding elements
(BE∗) of CPN∗ into the corresponding sets in CPN:

π(M∗)={π(M∗): M∗∈M
∗}

π(TE∗)={(p, c∗) | p/∈PA and c∗∈C∗(p)} ∪ {(p, π(c∗)) | p∈PA and c∗∈C∗(p)}
π(Y∗)={π(Y∗): Y∗∈Y

∗}

π(BE∗) = {(t,π(b∗))| (t,b∗)∈BE∗}

Sound Annotation Layers

Definition 3 defines the syntax for elements in annotation layers, but it does
not guarantee that annotations do not affect the behaviour of the underlying
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CP-net. Instead of specifying which kinds of auxiliary arc inscriptions are al-
lowed, we will define a more general property that has to be satisfied.

Definition 6. Let (CPN,A) be an annotated CP-net with matching CP-net
CPN∗. A is a sound annotation layer if the following property is satisfied:

∀M∈M, ∀ Y∈Y, ∀M∗∈M
∗: M[Y〉 ∧ π(M∗)=M ⇒ ∃ Y∗∈Y

∗: π(Y∗)=Y ∧ M∗[Y∗〉

where M and Y are the set of markings and the set of steps, respectively, for
CPN, and M

∗ and Y
∗ are the analogous sets for CPN∗.

Assume that the step Y is enabled in the marking M in the underlying CP-
net. Let M∗ be a marking of CPN∗ that covers M. Definition 6 states that it
must be possible to find a step Y∗ that covers Y, and Y∗ must be enabled in
M∗. The soundness of an annotation layer is essential for showing that for every
occurrence sequence in the underlying CP-net, there is at least one matching
occurrence sequence in the matching CP-net which is identical to the occurrence
sequence from the underlying CP-net when annotations are ignored.

The auxiliary arc expressions on input arcs to a transition will be used, in
part, to determine if the transition is enabled in a given state of the matching
CP-net. By limiting the kinds of auxiliary arc expressions that are allowed on
input arcs to transitions, it is possible to guarantee that annotations cannot
restrict the enabling of a transition in the matching CP-net with respect to
what is allowed in the underlying CP-net. Exactly which kinds of auxiliary
arc expressions should be allowed may be decided by the implementors of tools
supporting CP-nets. It is also the responsibility of tool implementors to prove
that their allowable set of auxiliary arc expressions fulfil Def. 6. An example of
an allowable auxiliary arc expression for arc a is a single variable v. However,
v must also fulfil the following: v may not found in any arc expressions for
the arcs surrounding t(a), and v may not be found in any other auxiliary arc
expression for input arcs to t(a).

9.5.4 Matching Behaviour

In the previous sections we have stated that the behaviour of a matching CP-
net matches the behaviour of its underlying CP-net. Informally this means that
every occurrence sequence in a matching CP-net corresponds to an occurrence
sequence in the underlying CP-net, and for every occurrence sequence in the
underlying CP-net, it is possible to find at least one corresponding occurrence
sequence in the matching CP-net. If a matching CP-net is derived from a CP-
net and a sound annotation layer, then the following theorem shows how the
behaviour of the matching CP-net matches the behaviour of its underlying CP-
net.
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Theorem 1. Let (CPN, A) be an annotated CP-net with a sound annotation
layer. Let CPN∗ be the matching CP-net derived from (CPN,A). Let M0, M,
and Y denote the initial marking, the set of all markings, and the set of all
steps, respectively, for CPN. Similarly, let M∗

0, M
∗, and Y

∗ denote the same
concepts for CPN∗. Then we have the following properties:

i. π(M∗)=M ∧ π(M∗
0)=M0.

ii. π(Y∗)=Y.

iii. ∀ M∗
1, M∗

2∈M
∗, ∀ Y∗∈Y

∗: M∗
1[Y

∗〉M∗
2 ⇒ π(M∗

1)[π(Y∗)〉π(M∗
2)

iv. ∀ M1,M2∈M, ∀ Y∈Y, ∀ M∗
1,M

∗
2∈M

∗:

M1[Y〉M2 ∧ π(M∗
1)=M1 ⇒ ∃Y∗∈Y

∗: π(Y∗)=Y ∧ M∗
1[Y

∗〉M∗
2 ∧ π(M∗

2)=M2

i. The markings of a matching CP-net cover the markings of its underlying
CP-net. The markings of the underlying CP-net are covered by the markings
of the matching CP-net. The initial marking of a matching CP-net covers the
initial marking of its underlying CP-net.

ii. The steps of a matching CP-net cover the steps of its underlying CP-net.
The steps of the underlying CP-net are covered by the steps of the matching
CP-net.

iii. An occurrence sequence of length one in the matching CP-net covers an
occurrence sequence of length one in its underlying CP-net. In other words, if
marking M∗

2 is reached by the occurrence of Y∗ in marking M∗
1 in CPN∗, then

π(M∗
2) will be reached by the occurrence of π(Y∗) in π(M∗

1) in CPN.

iv. An occurrence sequence of length one in the underlying CP-net can be
covered by an occurrence sequence of length one in the matching CP-net. If M2

is reached by the occurrence of Y in M1 in CPN, and if marking M∗
1 in CPN∗

covers M1, then it is always possible to find a step Y∗ in CPN∗, such that Y∗

covers Y and is enabled in M∗
1. If the occurrence of Y

∗ in M∗
1 yields the marking

M∗
2, then M∗

2will cover M2.

The proof for Theorem 1 can be found in Appendix 9.A.

9.5.5 Multiple Annotation Layers

The previous sections have discussed how to create a single annotation layer for
a CP-net. The purpose of introducing an annotation layer is to make it possible
to separate annotations from the CP-net, and to annotate a CP-net for several
different purposes like, e.g. performance analysis and MSCs. However, if only
one annotation layer exists, then it is not possible to easily disable, e.g. only
the annotations for performance analysis, while still using the annotations for
MSCs. The reason is, that all annotations have to be written in the one and only
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annotation layer. This motivates the need for multiple layers of annotations.
When multiple annotation layers are allowed, then independent annotations can
be written in separate annotation layers, and thereby making it easy to enable
and disable each of the independent annotation layers.

Definition 7 defines multiple annotation layers. Multiple annotation layers
are defined using the fact that a single annotation layer,A1, and a CP-net, CPN,
is translated to another CP-net, CPN∗

1. Seen from another annotation layer,
A2, CPN∗

1 is essentially the same as CPN aside from the added annotations,
and can therefore be annotated with an annotation layerA2. The consequence
of this definition is thatA2 can refer to annotations inA1. In general, anno-
tations in annotation layerAi can refer to annotations in annotation layerAj

when j ≤ i.

Definition 7. Let CPN be a CP-net and let A1, A2, ..., An be annotation
layers for CPN. Let τ be the translation from an annotation layer A and a
corresponding CP-net CPN to CPN∗, as defined in Sect. 9.5.3. Then CPN∗

with multiple annotation layers is defined by:

CPN∗ = τ(. . . τ(τ(CPN,A1),A2),An)

9.6 Conclusion

In this paper we have discussed annotations for CP-nets where annotations are
used to add auxiliary information to tokens. Auxiliary information is needed to
support different uses of a single CP-net, such as for performance analysis and
visualisation, thus the information should not have influence on the dynamic
behaviour of a CPN model. One of the advantages of using annotations instead
of manually extending the colour sets in a CPN model is that annotations are
specified separately from the colour sets and arc inscriptions. That means that
it is easy to enable and disable annotations from being part of the simulation.
This is a great advantage when using a model for several purposes such as
functional analysis, performance analysis, and visualisation. In addition, it
is a great advantage that the behaviour of the matching CP-net matches the
behaviour of the underlying CP-net in a very specific and predictable way.

Related work is considered in, e.g. Lakos’ work on abstraction [83], where
behaviour-respecting abstractions of CP-nets have been investigated, and a so-
called colour refinement is proposed. This colour refinement is used to specify
more detailed behaviour in sub-modules by extending colour sets to larger do-
mains. The refined colours are only visible in the sub-modules, and the refined
colours will typically contain information that is necessary for modelling the
behaviour of the system in question. This colour refinement somewhat corre-
sponds to our way of extending colour sets by adding annotations to colours.
We are not aware of any other work that addresses the problem of introducing
auxiliary information into a CP-net (or any other type of simulation model)
while at the same time preserving the behaviour of the CP-net. Nor do we
know of any other method that can be used to automatically enable or dis-
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able different kinds of instrumentation when analysing different aspects of one
particular model.

ExSpect [122] is another tool for CP-nets. The tool provides libraries of so-
called building blocks that provide support for, e.g., creating message sequence
charts and performance analysis. Each building block is similar to a substitution
transition and its subpage in Design/CPN. In ExSpect all information that is
necessary for updating a MSC or for collecting performance data is included in
token colours. Reading the relevant data from token values and processing it
is also encoded directly into the model via the building blocks. For example,
the building block that can be used to calculate performance measures contains
a place which holds the current result. When a certain transition occurs, a
new value can be read from a binding element, and the result on this place is
updated accordingly. While the building blocks are very easy to use, no attempt
is made to separate auxiliary information from a CP-net, and the behaviour of
the CP-net also reflects behaviour that is probably not found in the system
being modelled.

There are many issues that can be addressed in future work regarding anno-
tations. The techniques that have been presented here have not yet been used in
practice. Clearly, it is important that support for annotations be implemented
in a CPN tool in order to investigate the practicality and usefulness of the pro-
posed method. Future work includes additional research on dealing with arc
inscriptions that do not evaluate to a single colour on input arcs to transitions.
In addition, further work is required to improve our proposal of how to add
annotations to multi-sets of tokens. The definition of annotation layers states
that it is only possible to add one particular annotation to all elements in a
multi-set that is obtained by evaluating either an initial expression or an arc
expression on an output arc from a transition. This is unnecessarily restrictive,
and it should be generalised to make it possible to add different annotations
to different elements in a multi-set. Practical experience with annotations may
also show that the definition of annotation layers should be extended to include
the possibility of defining guards in annotation layers.

In this paper we have only considered how to add annotations to existing
arcs expressions, and thereby only considered how to annotate existing tokens.
However, it might be useful also to be able to add net structure to the anno-
tation layers. As an example, a place could be added only to the annotation
layer with a token to hold a counter with the number of occurrences of a tran-
sition. Allowing additional net structure at the annotation layers would make
it possible to take advantage of the powerfulness of the graphical notation of
CP-nets when encoding the logics of the annotations.

We have only discussed separating the auxiliary annotations and the CP-
net from each other. This could be generalised to also allow splitting a CP-net
into layers where more layers can be combined to specify the full behaviour of
a CP-net. In other words, the specification of the behaviour in a CP-net could
be split in more layers. As an example, reconsider the resource allocation CP-
net in Fig. 9.1 in Sect. 9.2. The loop handling the resource on the place R (R,
T1, B, T2, C, and T3) is to some extent independent from the remaining model
(even though it has impact on the behaviour). This loop could be separated
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from the remaining CPN model into a new layer to emphasise the fact that the
loop is an extra requirement that can be added to the system. This facility
could turn out to be very useful when a modeller is simplifying a CP-net to,
e.g. be able to generate a sufficiently small state space to be able to analyse
it. It would be a matter of moving the parts of the net structure that should
not be included when generating the state space to another layer, and then
only conduct the analysis on the remaining parts of the CP-net. This could
be obtained by disabling the layer with the unneeded behaviour, and the state
space could be generated. The advantage is that now a single model exists with
layers specifying different behaviour which can be enabled or disabled – instead
of having several similar models. Finally, such layers can also make it easier to
develop tools where more people can work on a model concurrently, when they
operate on different layers.
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9.A Proof of Matching Behaviour

Theorem 1 (same as in Sect. 9.5.4) Let (CPN, A) be an annotated CP-net
with a sound annotation layer. Let CPN∗ be the matching CP-net derived from
(CPN,A). Let M0, M, and Y denote the initial marking, the set of all markings,
and the set of all steps, respectively, for CPN. Similarly, let M∗

0, M
∗, and Y

∗

denote the same concepts for CPN∗. Then we have the following properties:

i. π(M∗)=M ∧ π(M∗
0)=M0.

ii. π(Y∗)=Y.

iii. ∀ M∗
1, M

∗
2∈M

∗, ∀ Y∗∈Y
∗: M∗

1[Y
∗〉M∗

2 ⇒ π(M∗
1)[π(Y

∗)〉π(M∗
2)

iv. ∀ M1,M2∈M, ∀ Y∈Y, ∀ M∗
1,M

∗
2∈M

∗:

M1[Y〉M2 ∧ π(M∗
1)=M1 ⇒ ∃Y∗∈Y

∗: π(Y∗)=Y ∧ M∗
1[Y

∗〉M∗
2 ∧ π(M∗

2)=M2

Proof: The proof is a simple consequence of earlier definitions and Jensen’s
definitions for CP-nets [70]. Let TE, (t,b), and BE denote the set of all token
elements, a binding element, and the set of all binding elements, respectively,
for CPN. Similarly, let TE∗, (t,b∗), BE∗ denote the same concepts for CPN∗.

Before showing that the above properties hold, we will show that the following
holds for all annotated arcs:

∀ (t,b∗), ∀ a∈AA∩A(t): π(E∗(a)〈b∗〉)=E(a)〈π(b∗)〉. (†)
Let (t,b∗) and a∈AA∩A(t) be given.
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π(E∗(a)〈b∗〉) Def. 4.viii
= π((Annotate E(a) EA(a))〈b∗〉) Defs. 1&2

= E(a)〈b∗〉
Def. 5.ii

= E(a)〈π(b∗)〉

Property i. We will show that M=π(M∗). It is straightforward to show that
π(M∗)=(π(TE∗))MS, and the proof is therefore omitted. From Def. 2.7 in [70]
we have that M=TEMS. Thus it is sufficient to show that TE=π(TE∗). The
definition of π(TE∗) gives us:

π(TE∗)={(p, c∗) | p/∈PA and c∗∈C∗(p)} ∪ {(p, π(c∗)) | p∈PA and c∗∈C∗(p)}

which by the definition of C∗ (Def. 4.vi) is equivalent to:
π(TE∗)={(p, c) | p/∈PA and c∈C(p)} ∪ {(p, π(c∗)) | p∈PA and c∗∈C(p)×CA(p)}

which by the definition of the projection of annotated elements (Def. 1) is
equivalent to:

π(TE∗)={(p, c) | p/∈PA and c∈C(p)} ∪ {(p, c) | p∈PA and c∈C(p)}
the two sets can be combined and we have:

π(TE∗)={(p, c) | p∈P and c∈C(p)} Def. 2.7in [70]
= TE

To show that π(M∗
0)=M0, we will show that ∀p∈P∗: (π(M∗

0))(p)=M0(p).
Consider non-annotated places:

∀p/∈PA: (π(M∗
0))(p)

Def. 5.i
= M∗

0(p) = I∗(p) Def. 4.ix
= I(p) = M0(p)

Consider annotated places:

∀p∈PA: (π(M∗
0))(p)

Def. 5.i
= π(M∗

0(p)) = π(I∗(p)) Def. 4.ix
= π(Annotate I(p) IA(p))

Defs. 1&2
= I(p) = M0(p)

Property ii. We must show that Y=π(Y∗). It is straightforward to show that
π(Y∗)= (π(BE∗))MS, therefore the proof is omitted. From Def. 2.7 in [70] we
have that Y=BEMS, therefore it is sufficient to show that BE=π(BE∗), which
we will do by showing: (t,b′)∈π(BE∗)⇔ (t,b′)∈BE.

Let us show ⇒: Let (t, b′)∈π(BE∗) be given. There exists (t,b∗)∈BE∗ such
that (t, π(b∗))=(t, b′) (by definition of π(BE∗)). b∗ is a binding of t in CPN∗,
therefore for all v∈Var∗(t), where Var∗(t) is the set of variables for t in CPN∗,
b∗(v)∈Type(v), and b∗ fulfils the guard of t in CPN∗, i.e. G∗(t)〈b∗〉.

From Def. 5.ii we have that for all v∈Var(t), (π(b∗))(v)=b∗(v), and we know
that b∗(v)∈Type(v). Since G∗(t)=G(t) (Def. 4.vii) and Var(G(t))⊆Var(t), we
can conclude that G(t)〈π(b∗)〉, i.e. π(b∗) fulfills the guard of t in CPN. From
the definition of a binding (Def. 2.6 in [70]), we have that π(b∗) is a binding for t
in CPN, therefore (t, π(b∗))=(t,b′) is a binding element for CPN, i.e. (t, b′)∈BE.

Let us show ⇐: Let (t, b′)∈BE be given. Using arguments that are similar to
the above it is straightforward to show that b′ fulfills the guard for t in CPN∗,
i.e. G∗(t)〈b′〉. The binding b′ does not bind the variables in Var∗(t)\Var(t).
Define a new function b∗ on Var∗(t):
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b∗(v) =
{

b′(v) if v∈Var(t)
an arbitrary value from Type(v) if v∈Var∗(t)\Var(t)

According to Def. 2.6 in [70], b∗ is a binding for t in CPN∗. Therefore, (t, b∗)
is a binding element for CPN∗. By definition of b∗, we have that π(b∗)=b′, and
as a result, (t, b′)∈π(BE∗).

Property iii. We must show that ∀ M∗
1, M

∗
2∈M

∗, ∀ Y∗∈Y
∗: M∗

1[Y
∗〉M∗

2 ⇒
π(M∗

1)[π(Y
∗)〉π(M∗

2)

We will first show that π(M∗
1)[π(Y

∗〉. By the enabling rule (Def. 2.8 in [70]) we
have that:

∀p∈P∗:
∑

(t,b∗)∈Y ∗

∑
a∈A(p,t)

E∗(a)〈b∗〉 ≤ M∗
1(p) (∗)

Consider non-annotated places and non-annotated arcs. Since E∗=E for all non-
annotated arcs (by Def. 4.viii), and M∗

1=π(M∗
1) for all non-annotated places (by

Def. 5.i), it follows from (∗) that:
∀p/∈PA:

∑
(t,b∗)∈Y ∗

∑
a∈A(p,t)

E(a)〈b∗〉 ≤ (π(M∗
1))(p)

which by the fact that π(b∗)=b∗ for all variables in Var(E(a)) (by Def. 5.ii) and
the definition of π(Y∗) (Def. 5.iii) is equivalent to:

∀p/∈PA:
∑

(t,π(b∗))∈π(Y ∗)

∑
a∈A(p,t)

E(a)〈π(b∗)〉 ≤ (π(M∗
1))(p) (∗∗)

Consider annotated places and annotated arcs. From Def. 1 and (∗), it follows
that:

∀p∈PA: π(
∑

(t,b∗)∈Y ∗

∑
a∈A(p,t)

E∗(a)〈b∗〉) ≤ π(M∗
1(p))

which by Defs. 1 and 5.i is equivalent to:
∀p∈PA:

∑
(t,b∗)∈Y ∗

∑
a∈A(p,t)

π(E∗(a)〈b∗〉) ≤ (π(M∗
1))(p)

which by (†) and the definitions of π(b∗) and π(Y∗) is equivalent to:
∀p∈PA:

∑
(t,π(b∗))∈π(Y ∗)

∑
a∈A(p,t)

E(a)〈π(b∗)〉 ≤ (π(M∗
1))(p)

which together with (∗∗) and the enabling rule gives us that π(M∗
1)[π(Y

∗)〉.

Next we have to prove that the marking reached when Y∗ occurs in M∗
1 covers

the marking that is reached when π(Y∗) occurs in π(M∗
1), i.e. that π(M∗

1)[π(Y
∗)〉π(M∗

2).
A proof similar to the above can be used to show this, and the proof is therefore
omitted.

Property iv. We must show that ∀ M1,M2∈M, ∀ Y∈Y, ∀ M∗
1,M

∗
2∈M

∗:
M1[Y〉M2 ∧ π(M∗

1)=M1 ⇒ ∃Y∗∈Y
∗: π(Y∗)=Y ∧ M∗

1[Y
∗〉M∗

2 ∧ π(M∗
2)=M2

Let M1[Y〉M2 in CPN be given. It is straightforward to show that it is always
possible to find M∗

1∈M
∗ such that π(M∗

1)=M1, thus the proof is omitted. Since
CPN∗ is a matching CP-net that is derived from an annotated CP-net with a
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sound annotation layer, and π(M∗
1)=M1, Def. 6 tells us that there exists Y∗∈Y

∗

such that π(Y∗)=Y and M∗
1[Y

∗〉.

We have only left to show that the marking reached after Y occurs in M1 is
covered by the marking reached when Y∗ occurs in M∗. Since M1[Y〉M2 in
CPN, the occurrence rule (Def. 2.9 in [70]) gives us that:

∀ p∈P: M2(p) = (M1(p) -
∑

(t,b)∈Y

∑
a∈A(p,t)

E(a)〈b〉) +
∑

(t,b)∈Y

∑
a∈A(t,p)

E(a)〈b〉 (�)

Since M∗
1[Y

∗〉 in CPN∗, the occurrence rule gives us that:
∀p∈P∗: M∗

2(p) = (M∗
1(p) -

∑
(t,b∗)∈Y ∗

∑
a∈A(p,t)

E∗(a)〈b∗〉)+
∑

(t,b∗)∈Y ∗

∑
a∈A(t,p)

E∗(a)〈b∗〉 (��)

In other words, M∗
1[Y

∗〉M∗
2. We must now show that π(M∗

2)=M2.

We will show that π(M∗
2)=M2 for non-annotated places. We have found M∗

1,
such that π(M∗

1)=M1. We have that M∗
1=π(M∗

1) and M∗
2=π(M∗

2) for non-
annotated places (by Def. 5.i). For all non-annotated arcs E∗=E (by Def. 4.viii).
It follows from these facts and (��) that:

∀p/∈PA: (π(M∗
2))(p) = (M1(p) -

∑
(t,b∗)∈Y ∗

∑
a∈A(p,t)

E(a)〈b∗〉)+
∑

(t,b∗)∈Y ∗

∑
a∈A(t,p)

E(a)〈b∗〉

which by the fact that π(b∗)=b∗ for all variables in Var(E(a)) (by Def. 5.ii) and
the fact that π(Y∗)=Y is equivalent to:
∀p/∈PA: (π(M∗

2))(p) = (M1(p) -
∑

(t,b)∈Y

∑
a∈A(p,t)

E(a)〈b〉) +
∑

(t,b)∈Y

∑
a∈A(t,p)

E(a)〈b〉 (� � �)

We will show that π(M∗
2)=M2 for annotated places. From the definition of π

for multi-sets and markings (Defs. 1 and 5.i) and from (��), it follows that:
∀p∈PA: (π(M∗

2))(p) = ((π(M∗
1))(p) -

∑
(t,b∗)∈Y ∗

∑
a∈A(p,t)

π(E∗(a)〈b∗〉))

+
∑

(t,b∗)∈Y ∗

∑
a∈A(t,p)

π(E∗(a)〈b∗〉)

which by (†) and the fact that π(M∗
1)=M1 is equivalent to:

∀p∈PA: (π(M∗
2))(p) = (M1(p) -

∑
(t,b∗)∈Y ∗

∑
a∈A(p,t)

E(a)〈b∗〉)+
∑

(t,b∗)∈Y ∗

∑
a∈A(t,p)

E(a)〈b∗〉

which by the definitions of π(b∗) and π(Y∗), and the fact that all variables in
E(a) are bound by π(b∗) is equivalent to:

∀p∈PA: (π(M∗
2))(p) = (M1(p) -

∑
(t,b)∈Y

∑
a∈A(p,t)

E(a)〈b〉) +
∑

(t,b)∈Y

∑
a∈A(t,p)

E(a)〈b〉

which together with (�) and (� � �) gives us that π(M∗
2)=M2.

✷



Chapter 10

Case Study: Analysis of Web Servers

The paper “Simulation Based Analysis of Web Servers” presented in this chap-
ter has been published as a workshop paper [127].

[127] L. Wells, S. Christensen, L. M. Kristensen, and K. Mortensen. Sim-
ulation based performance analysis of web servers. In R. German and
B. Haverkort, editors, Proceedings of the 9th International Workshop on
Petri Nets and Performance Models, pages 59–68. IEEE, 2001.

This chapter is, except for minor typographical changes, the same as the
paper [127].
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Simulation Based Performance Analysis
of Web Servers

Lisa Wells∗ Søren Christensen∗ Lars M. Kristensen∗

Kjeld H. Mortensen∗

Abstract

This paper presents a general framework for modeling distributed com-
puting environments for performance analysis by means of Timed Hierar-
chical Coloured Petri Nets. The proposed framework was used to build
and analyze a Coloured Petri Net model of a HTTP web server. Analysis
of the performance of the web server model reveals how the web server
will respond to changes in the arrival rate of requests, and alternative con-
figurations of the web server model are examined. These are the results
of a research project conducted in cooperation between the CPN Centre
and Hewlett-Packard Corporation on capacity planning and performance
analysis of distributed computing environments.

10.1 Introduction

The Internet and the World Wide Web (WWW) have experienced exponential
growth since their inception. Popular web sites receives millions of hits per
day, and it is not uncommon for these sites to exhibit extremely high response
times. High response times are a source of frustration for users, and with the
growing use of web sites for e.g., electronic commerce this may damage the
reputation of the company offering the web site, leading to loss of business. As
a consequence, it is important to be able to identify bottlenecks, predict future
capacity shortcomings, and determine the most adequate or cost effective way to
reconfigure such distributed computing environments to overcome performance
problems and cope with increasing workload demands.

This paper presents one of the first results of the CPN Centre which is a
research project conducted as a cooperation between the CPN Group at the
University of Aarhus and Hewlett-Packard (HP) Corporation. One of the goals
of the CPN Centre is to investigate the use of Coloured Petri Nets (CP-nets or
CPNs) [70, 71, 72, 80] and simulation as an underlying technology for perfor-
mance analysis and capacity planning of distributed computing environments.
In the initial project phase the goal has been to establish a proof-of-concept.
It was therefore decided to consider a concrete representative example of a

∗CPN Centre, Department of Computer Science, University of Aarhus, Åbogade 34, 8200
Århus N, Denmark. E-mail: wells,schristensen,lmkristensen,khm@daimi.au.dk.
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distributed computing environment in the form of a simple web server environ-
ment. It is the main results of this first subproject which is the subject of this
paper.

The main result of the first subproject has been the development of a mod-
eling framework for distributed computing environments. This framework is
based on a building-block approach dividing the components of the CPN models
into three distinct layers: a structural layer describing clients, servers, networks,
and their relationship; an application layer describing the applications running
on the servers and the clients; and a resource layer describing the resources, i.e.,
CPUs, disks, and communication channels, of the system. This means that the
CPN models includes both a functional view of the system represented by the
application layer, and a performance view represented by the resource layer.

A second result has been the simulation based performance analysis of the
constructed CPN model. The CPN model was validated and calibrated by
comparing performance results from simulation with the performance which
can be observed in a corresponding physical environment, for details see [79].
Using the validated model, simulation experiments were run in order to examine
the effects of varying the arrival rates of requests on the performance of the
web server. Additional experiments were undertaken in order to compare the
performance of different configurations, e.g. faster CPU and faster disk, with
the basic configuration corresponding to the actual web server.

For construction and simulation of the CPN models we rely on the De-
sign/CPN tool [31, 40]. The simulator of Design/CPN has previously been
used in other projects on performance analysis e.g., in the areas of high-speed
interconnects [32], and ATM networks [36]. For collecting data about the per-
formance of the CPN web model during simulations, we have used the De-
sign/CPN Performance Tool [87]. This tool makes it possible to collect data
about the performance of the considered system during lengthy simulations
without having to modify or make extensions to the CPN model itself.

In the literature, there are several papers on performance analysis of web
servers. Many of these papers present measurement studies that focus on work-
load characterization [6, 14, 82] or measurement of, e.g., resource utilization and
response time [2, 41, 68]. Analytic models have been used to analyze the perfor-
mance of HTTP over several transport protocols [61] and for capacity planning
of web servers [41]. As one of the few simulation studies of web servers, [123]
presents an end-to-end queueing model of a web server environment. Although
these studies provide excellent insight into the performance of web servers, and
have made significant contributions to the understanding of web workloads,
none provide a framework that can be used for both performance analysis and
functional analysis of web servers, in particular, and of distributed systems,
in general. Furthermore, the proposed framework can be useful for answering
“what if” questions concerning possible alternative web server configurations
or workloads.

This paper is organized as follows. Section 10.2 provides the necessary back-
ground on web servers and timed hierarchical CP-nets for understanding the
rest of the paper. The reader is assumed to have some background knowledge
on the basic concepts of High-level Petri Nets [73]. Section 10.3 describes the
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physical web server, and explains how workload for the web server and the simu-
lation model was obtained. Section 10.4 introduces the framework for modeling
of distributed computing environments and illustrates how it can be used to
model a HTTP web server. Section 10.5 presents performance results obtained
by making simulations of the constructed CPN model. Finally, Sect. 10.6 sums
up the conclusions from the project.

10.2 Background

This section provides the background on web servers, and the time and hier-
archy concepts of CP-nets sufficient for understanding the rest of this paper.
Section 10.2.1 reviews web servers and the HTTP protocol. A detailed treat-
ment of these concepts can be found in e.g., [115]. Section 10.2.2 reviews the
time concept of CP-nets. Section 10.2.3 reviews the hierarchy concepts of CP-
nets. A detailed treatment of the time concept and the hierarchy concept of
CP-nets can be found in [71] and [72], respectively.

10.2.1 Web servers

The fundamental service offered by a web server is access to the documents
stored at the web server to web clients. These documents are typically Hyper-
text Markup Language (HTML) [97] documents but may also be e.g., graphics
or plain ASCII files. Documents stored at the web server are typically accessed
by web clients using a web browser. The main components of a web server
consist of a hardware platform (e.g., CPU and disk), an operating system, the
web server application, and the documents stored at the web server.

Web Client Web Server

TCP SYN 

TCP SYN/ACK 

TCP ACK 

HTTP GET

HTTP GET REPLY

TCP FIN 

TCP ACK 

TCP FIN 

TCP ACK 

Figure 10.1: HTTP Client-Server Communication.

Communication between the server and the clients is based on the Hyper-
text Transfer Protocol (HTTP) [115]. HTTP is an application level protocol
build on top of TCP/IP [115]. Communication between a client and a server



130 Chapter 10. Case Study: Analysis of Web Servers

is always in the form of a request-response pair initiated by the client. The
Message Sequence Chart [67] shown in Fig. 10.1 depicts the typical communi-
cation between a server (Web Server) and a client (Web Client) which successfully
requests and receives a document from the server. The topmost three arrows
corresponds to the opening of a TCP connection between the client and the
server. The opening of a TCP connection consist of a three-way handshake
(exchange of the messages TCP SYN, TCP SYN/ACK, and TCP ACK) between
the client and the server. When the TCP connection has been established, the
client requests the document by sending a HTTP GET message to the server
specifying the document requested. In the following this will be referred to
as a get-request. The server will now retrieve the document from its disk or
possibly from memory if cached. Caching can improve web server performance,
and the caching strategy can be chosen to maximize cache hit rate or minimize
disk I/O’s dependent on the bottleneck of the web server in question [6]. After
retrieving the document, it is then transmitted to the client in one or more
HTTP GET REPLY messages using the established TCP connection. Finally, the
bidirectional TCP connection is closed in both directions using the TCP FIN and
TCP ACK messages.

Throughout this paper we will consider HTTP/1.0 [19]. This means that
if a requested HTML document contains e.g., inline images then such images
are requested separately using the same communication pattern as described
above. In particular this means that a TCP connection is opened for each
subdocument. A newer version of the HTTP protocol, i.e. HTTP/1.1 [44],
includes the notion of persistent connections to avoid the overhead of opening
separate TCP connections. It is rather straightforward to modify the CPN
model presented in this paper to reflect HTTP/1.1.

10.2.2 Timed Coloured Petri nets

The time concept of CP-nets is based on the introduction of a global clock. The
clock values represent model time, and they may either be integers, i.e. discrete
time, or reals, i.e. continuous time. In addition to the token value, we allow
each token to carry a time value, also called a time stamp. Intuitively, the time
stamp describes the earliest model time at which the token can be used, i.e.,
removed by the occurrence of a binding element.

In a timed CP-net a binding element is said to be colour enabled when it
satisfies the enabling rule for untimed CP-nets, i.e., when the required tokens
are present at the input places and when the guard of the transition evaluates
to true. However, to be enabled, the binding element must also be ready. This
means that the time stamps of the tokens to be removed must be less than or
equal to the current model time.

The marking of places with a timed colour set (type) is a timed multi-set
of token values. A timed multi-set is similar to a multi-set, except that each
member of the multi-set carries a time stamp. To model that an event takes r
time units, we let the corresponding transition create time stamps for its output
tokens that are r time units larger than the clock value at which the transition
occurs. This implies that the tokens produced are unavailable for r time units.
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The execution of a timed CP-net is time driven, and it works in a way similar
to that of event queues found in many languages for discrete-event simulation.
The system remains at a given model time as long as there are colour enabled
binding elements that are ready for execution. When no more binding elements
can be executed at the current model time, the system advances the clock to
the next model time at which binding elements can be executed. Each marking
exists in a closed interval of model time (which may be a point, i.e., a single
moment).

10.2.3 Hierarchical Coloured Petri nets

The basic idea underlying hierarchical CP-nets is to allow the modeler to con-
struct a large model from a number of smaller CP-nets called pages. These
pages are then related to each other in a well-defined way as explained below.

In a hierarchical CP-net, it is possible to relate a so-called substitution tran-
sition (and its surrounding places) to a separate CP-net called a subpage. A
subpage provides a more precise and detailed description of the activity repre-
sented by the transition. Each subpage has a number of port places and they
constitute the interface through which the subpage communicates with its sur-
roundings. To specify the relationship between a substitution transition and
its subpage, we must describe how the port places of the subpage are related
to so-called socket places of the substitution transition. This is achieved by
providing a port assignment. When a port place is assigned to a socket place,
the two places become identical. The port place and the socket place are just
two different representations of a single conceptual place. More specifically, this
means that the port and the socket places always have identical markings.

It should be noted that substitution transitions never become enabled and
never occur. Substitution transitions work as a macro mechanism. They al-
low subpages to be conceptually inserted at the position of the substitution
transitions – without doing an explicit insertion in the model.

10.3 The ITCHY environment

In this section we describe the hardware and software constituting the perfor-
mance analysis and capacity planning laboratory environment. The environ-
ment is used for making performance measurements which can be compared
with the simulation results of the CPN model. The capacity planning labora-
tory environment has been named ITCHY after the name of the web server. A
detailed description of the ITCHY environment can be found in [79].

10.3.1 Server configuration

The web server is an Intel Pentium II 266 MHz processor based PC equipped
with a local disk, and 160 MB RAM of internal memory. The server is running
Windows NT 4.0 and has a Microsoft web server application installed. For the
experiments the web server application was configured as a single threaded web
server with cache disabled. The aim has been to configure the web server and
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choose parameters in a way which makes it possible to put heavy load on the
server by means of a single client (to which we will return in a moment) and
relatively few requests. As a consequence, the configuration is not realistic and
is far from optimal with respect to performance of the web server. However,
this rather disabled configuration is better suited for initial experiments and for
judging the accuracy of the CPN model. In order to model a multi-threaded
server, the only change that needs to be made in the CPN model is to change
the value of a parameter which determines the number of web server threads.

10.3.2 Workload model

It is obviously impractical to involve thousands of users to generate a realistic
web workload. Thus we need to generate the workload by means of software.
In this section we explain how a sufficiently realistic workload can be generated
such that performance measurements for different parameter configurations can
be obtained.

The approach taken is that of using a trace client. A trace client takes
as input a web access log file and then makes a replay of the get-requests
contained in the web access log file. Each get-request (entry) in a web access
log contains a time stamp, specifying when the requests are to be made, and a
specification of the document requested. The log can be real or automatically
generated. A real log extracted from some existing web server is easy to use
with the trace client but is lacking flexibility with respect to the variation of
experiments. Automatically generated log files are harder to create because one
needs to investigate statistical models, however the flexibility is more beneficial
compared with using a real log file.

We made a simple statistical model of workloads with focus on file size
distribution, because it is one of the important factors in a realistic workload.
In order to estimate the distribution of file sizes, a web access log file covering
a period of one month was analyzed. The Windows-based application Curve
Expert determined that the best fit was the Weibull distribution [84], with the
following distribution function: F (x) = 1− 1.2393187 ∗ exp−0.024458885x0.475

Figure 10.2 shows the fitted Weibull distribution and the file sizes from the
web access log file in question (DAIMI log). The average file size is approxi-
mately 5KB. To avoid any effect related to the file cache of the web server all
get-requests in the generated workload are for distinct files.

Due to time constraints, a detailed analysis of neither the request times nor
temporal locality of requests in the web access log file was undertaken. The
log file covered a period of one month, and it was observed that the average
request rate was 1 request/second. In the following, we will assume that the
workload during peak hours is 5-10 requests/second, which is not an unrea-
sonable expectation judging by what has been observed within other academic
environments [6]. Furthermore, we will assume that the interarrival times be-
tween requests are exponentially distributed. This is not the most accurate
model for request arrivals [6], but it proved to be sufficient for our purposes.
In future experiments, the SURGE [14] tool could be used to generate accurate
workload for web servers.
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Figure 10.2: Distribution of file sizes.

10.4 Modeling framework

In this section we present the developed modeling framework. As we introduce
the basic ideas in the modeling framework, we will also present the constructed
CPN model of the web server. In the following, the CPN model of the web
server will be referred to as the CPN web model.

The modeling framework is based on the idea of logically dividing the pages
of the CPN model into three layers: the structural layer representing the system
architecture; the application layer representing the various applications running
on the clients and servers of the modeled system; the resource layer representing
the resources present in the considered system.

The structural layer of the modeling framework is motivated by the observa-
tion that a distributed computing environment, by definition, consists of several
interconnected computers or workstations communicating using, e.g., local area
networks (LANs), wide area networks (WANs), routers and gateways. There-
fore, the model has to identify these components as well as their relationship
which constitutes the architecture of the distributed computing environment
under consideration.

The application layer of the modeling framework is motivated by the ob-
servation that a main component in a distributed computing environment is
the applications e.g., the web servers, database servers, and file servers running
on the different workstations. The relationship between these applications are
often based on the client/server paradigm. The communication between clients
and servers in the form of requests and responses has a high impact on the
performance of a distributed computing environment. It is typically the per-
formance of the service offered by these applications which is of interest when
analyzing the performance of a distributed system.

When applications are executing and communicating, they make use of the
resources in the environment e.g., CPUs, disks, LANs, and WAN connections.
It is the use of these resources imposed by the different applications which
determines the utilization of resources and the performance of the considered
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Figure 10.3: CPN web model overview.

system. Since we aim at conducting performance analysis of distributed com-
puting environment, these resources must also be represented in the models.

Although the idea of using a layered approach is not new in the area of dis-
tributed systems, e.g. consider the OSI layers for network architectures [115],
we have not seen another modeling framework that explicitly divides the func-
tional view and the performance view of a system into separate layers within a
model. Separating the parts of the model giving a functional description (the
application layer) from the part of the model describing the use of resources
implies that it is easy to make the transition from a CPN model focusing on
performance to a CPN model focusing on the logical correctness of the system.
This can be done by simply disabling the pages in the resource layer since all
aspects of the CPN model related to performance are isolated in this layer. The
separation also means that during the development of a CPN model, one can
first construct the structural and application layers of the CPN model, validate
that this functional description behaves as expected, and subsequently add the
use of resources and conduct performance analysis of the considered system. Of
course, one must ensure that the resource layer does not affect the functionality
of the application and structural layers. Unfortunately, we were unable to do
any functional analysis of our model, due to time constraints. The focus of
this particular project was to investigate the use of Coloured Petri Nets and
simulation for performance analysis. However, in the future, we do intend to
use our modeling framework to do both functional and performance analysis of
distributed computing environments.

Figure 10.3 provides an overview of the pages constituting the CPN web
model. Each node in Fig. 10.3 represents a page in the CPN model, and is
named according to the page in the CPN model it represents. An arc leading
from one node to another node means that the latter is a subpage of the former.
The pages CpnWeb, Server, Network, and Client are the pages at the structural
layer of the CPN model. They describe the architecture of the considered
system as consisting of a server part (left), a client part (right), and a network
part (middle).

The pages Resource and OSandHardware constitute the resource layer of the
CPN model. In the CPN web model there are three different resources: the
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CPU resource of the server, the disk resource of the server, and the network
resource corresponding to the LAN between the server and the client. We do
not consider, e.g., the CPU resource of the client part since our main concern
will be to analyze the performance of the server and not the performance of the
clients. The OSandHardware page is used only to initialize the server resources,
and the Resource page is described in more detail below.

The remaining pages are associated with the application layer of the CPN
model, and they constitute four basic building blocks: a HTTP web server
building block, a web client building block, a TCP protocol building block, and
a building block describing parts of the HTTP protocol. The TraceClient page
generates requests according to a web access log file, such as those described
in Sect. 10.3. Page InputLog (lower right) enables the CPN model to read in
web access log files and to use these as workload specification for driving the
simulations. The SimpleClient page generates requests on-the-fly based on a
user-defined workload specification.

In this paper we will not go into detail with all pages of the CPN web model.
In the following three subsections we will instead present selected examples of
pages from the three different layers of the CPN model.

10.4.1 Structural layer

We now give an example of a page from the structural layer of the CPN web
model. Figure 10.4 depicts the CpnWeb page which provides the most abstract
view of the model. The substitution transitions Server, Network, and Client cor-
respond to the the three main parts of the CPN model. Place Network Buffer is
used to model packets in transit between the clients and the server.

Server
HS

Network
HS

Client
HS

Network
Buffer

AdrxPacks

Figure 10.4: The CpnWeb Page.

10.4.2 Application layer

The application layer of the CPN web model is made up of the HTTP web
server, which is the only application under consideration in the presented model.
Below we give two examples of pages from the application layer of the server
part of the CPN web model.

Figure 10.5 depicts the page HTTP ServerGet. This page models the program
executed by the threads of the HTTP server. Each thread repeatedly executes
a loop in which get-requests from the clients are processed. The loop consists
of the opening a TCP connection, represented by the substitution transition
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TCP OpenConn, handling the request (HTTP GetURL), and closing the TCP con-
nection (TCP CloseConn). All three phases require the execution of certain jobs
which are put as tokens on place Jobs. We will return to how jobs are repre-
sented when we present the resource layer of the CPN web model. All three
phases require access to the network represented by place Server Buffer, and han-
dling a get-request may require access to the memory cache of the HTTP web
server, represented by place Cache.

Jobs

AdrxJobKind

P I/O
Server
Buffer

AdrxPacks

P I/O

Begin

Thread

P In

Closing
ThreadxAdr

TCP_CloseConn
HS

Cache

AdrxCache

P I/O

HTTP_GetURL
HS

TCP_OpenConn
HS

Opened
ThreadxAdr

Figure 10.5: The HTTP ServerGet Page.

To illustrate the interplay between the application layer and the resource
layer in terms of how the application layer requests resources at the resource
layer, we now consider the page SendResponse which describes the behavior
of the HTTP web server when sending the requested document back to the
client. This page is shown in Fig. 10.6. Note that SendResponse is a subpage of
HTTP ServerGetURL (not shown) which is, in turn, a subpage of HTTP ServerGet.

Sending the response of the get-request back to the client consists of the
two phases modeled by the transitions Read URL and Send Response. Transition
Read URL models the web server thread, represented by (i,app), checking the file
attributes of the requested document, fetching the document from either cache
or disk, writing the get-request into the servers web access log, and possibly
updating the cache. Jobs for the CPU and disk resources are created by the
function CreateJobs on the arc from Read URL to Jobs. Disk resources are always
needed to read the file attributes of the document and to write the server access
log. If the response code is HTTP OK, then additional resources are needed.
CPU resource is always needed to search through the cache, and in case of a
cache hit, CPU resource is needed to read the document from main memory.
In case the document is not cached, some disk resource is needed to read the
document from the disk. When these jobs have been executed, as described by
the arc inscription on the arc from the place Jobs to the transition Send Response,
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the response can be sent. Transition Send Response puts a packet on the network
according to the determined response.
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P Out
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ThreadxAdr
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ThreadxServerGetParams
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Response
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wait
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URL

[cache_hit = CheckCache(url,cache)]

ServerCache
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P I/O

((i,app) ,client,respcode,urlsize)
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packs^^[{to = client, from = THREAD (i,app), 
                  size = (case respcode of 
                                 HTTP_OK  => urlsize                             
                                 | otherwise => 0) + (HTTPGetRespSize ()),
                 cont = HTTP_GETResp  respcode}])

CreateJobs ((i,app),cache_hit,url,urlsize,respcode)

case respcode of 
         HTTP_OK  => 5‘(THREAD (i,app),READY)
       | HTTP_NOTMOD => 2‘(THREAD (i,app),READY)
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((i,app) ,(THREAD thread,url,urlsize,respcode,tstamp))

(APP app,UpdateCache (url,urlsize,time()) cache)

(APP app,cache)

(adr,packs)

Figure 10.6: The SendResponse Page.

10.4.3 Resource layer

A resource is characterized by the capability of executing jobs. Execution of
jobs at resources takes time and determines the progress of time in the CPN
model. The concepts of resources and jobs of the resource layer facilitate making
performance analysis based on the CPN model. In this modeling framework,
the resource layer of the CPN model is the only part of the CPN model where
the time constructs of CP-nets are directly exploited. They are only exploited
indirectly at the application layer using the interface between the application
and the resource layer as illustrated in Fig. 10.6.

The page Resource, shown in Fig. 10.7, is the central page at the resource
layer of the CPN web model and will be explained in more detail below. Recall
that three kinds of resources are currently considered: the CPU resource of the
server, the disk resource corresponding to the local disk of the server, and the
network resource between the clients and the server. In Fig. 10.7 the resources
are located as tokens on the place Resource. Resources are described by the
colour set Resource which identifies the different attributes of a resource, e.g.
the state attribute reflects whether the resource is idle or running, and the
parameter attribute describes, among other things, the speed of the resource.

Now let us return to Fig. 10.7. Jobs arrive for the resource at the in-
put/output port place Jobs. The different kinds of jobs are described by the
colour set JobKind. Each kind of job has an attribute which specifies the size
of the job. When a thread or an application requests use of a resource, e.g., a
CPU resource, it will put a token on place Jobs, as was illustrated in Fig. 10.6.
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Figure 10.7: The Resource Page.

When the job has been executed at the resource, a token will be put on place
Jobs to signal that the job has been processed. For example, when a CPU or
disk job has been executed, it becomes READY. When a network job has been
executed, i.e., the packet has been transmitted, it becomes TRANSMITTED.

Transition Job Arrival adds a newly arrived job to the job queue of the cor-
responding resource. Function ValidateJob ensures that the job and the re-
source match. This makes sure, for example, that threads can only request CPU
resources of the computer on which the thread is executing. Transition Sched-

ule Job is responsible both for scheduling jobs at the resource and for removing
completed jobs.

The colour set Resource of place Resource is timed. The time stamp of a
resource token residing on this place is calculated by the function NextEvent,
and it corresponds to the time at which the next scheduling of a job on the
resource is to take place. This is a very important construction in order to make
simulations tractable since it, in practice, significantly reduces the number of
steps which have to be executed during simulations.

10.4.4 Model validation

We will now consider both the validation of the logical behavior of the model
and the calibration of the parameters of the model. A detailed description of
the validation and calibration processes can be found in [79, 95].

The size and complexity of the CPN web model precluded using state space
analysis to fully validate the functional correctness of the model, but interactive
simulations and Message Sequence Charts were used extensively to validate the
logical behavior of the model. While these techniques can never ensure that
a model is error-free, they are useful for finding obvious modeling errors, and
they can confirm that the model behaves as expected in a variety of situations.

The goal of the calibration process is to obtain a match between the perfor-
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mance results obtained by simulation and the performance results measured in
the ITCHY environment and in this way to obtain a validated CPN web model.
In this phase web access log files were used to generate the same requests for
both the ITCHY environment and the CPN web model. The CPN web model
has a number of parameters which can be adjusted. The values for many of
these parameters were known, e.g. size of TCP packets, the speed of the server
disk, and the effective speed of the network. However, the main difficulty was
estimating the parameters of the CPU and the parameters related to the use of
CPU resource, e.g., establishing a TCP connection or processing a get-request.
The process of calibrating the CPU parameters consisted of a number of itera-
tions of adjusting parameters in the model, running simulations, and comparing
the results to the performance of the actual web server. For a more thorough
description of the calibration process, see [95].

10.5 Performance analysis

In this section we show how the performance of the web server can be analyzed
by means of the CPN web model presented in the previous section. We do so by
illustrating the kind of performance results which can be obtained from lengthy
simulations of the CPN web model.

10.5.1 Simulation experiments

This section briefly describes the simulation experiments that were run. During
the performance analysis phase of the project, workload for the CPN web model
was generated on-the-fly. The requests that were dynamically generated during
a simulation fulfilled the same criteria as the workload that was described in
Sect. 10.3.2, i.e., the file sizes of the requested documents were generated from
the Weibull distribution, and the interarrival periods between requests were
exponentially distributed. The performance of the web server was examined for
request arrival rates of 5, 10, 20, 40 and 50 requests/second. Ten independent
simulations were executed for each system configuration that was examined,
and each simulation corresponded to 30 minutes of activity in the web server
environment. 95% confidence intervals were calculated for the performance
measures in question.

10.5.2 Performance measures

When considering the performance of a web server, several performance mea-
sures are of interest. Resource utilization of the CPU and local disk in the web
server and of the network denotes the percentage of time in which each resource
is busy processing jobs. Response time, i.e. the time from a client initiates a
get-request by opening the TCP connection until the response is received, is
also of interest. This is the delay observed from the point-of-view of a client.
Response time is highly variable since it depends largely on the size of the
document that has been requested.
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10.5.3 Changing arrival rates

This section focuses on the performance of a web server under different workload
intensities. Recall that we have assumed that requests arrive at a rate of 5-10
requests/second during peak hours. Let us consider how the performance of
the web server may be affected by an increase in the arrival rate of requests.
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Figure 10.8: Resource utilization.

Figure 10.8 shows the 95% confidence intervals for the average utilization of
the different resources under different workload intensities. The disk utilization
is largest and the network utilization is lowest for all arrival rates. When
the arrival rate is 10 request/second, the average utilization of the server’s
disk is 10.67%, the average utilization of the CPU of the web server is 7.66%,
and the average utilization of the network is 1.98%. Increasing the arrival
rate of requests to 50 requests/second, increases the average utilization of the
web server’s CPU and disk to 40.25% and 56.03%, respectively. The average
utilization of the network is also increased to 10.23%. The increase in utilization
of the network is not as large as for the resources in the web server since the
capacity of the network is quite large (5 Mb/sec.).

The average response time is also affected by the arrival rate of requests
to the server. Figure 10.9 shows the 95% confidence intervals for average re-
sponse time for the aforementioned arrival rates. When the request arrival
rate is 10 requests/second, then the average response time is 17.37 ms, i.e. the
client receives a response almost immediately. For a much heavier workload of
50 requests/second, the average response time is 82.44 ms. Even though the
response is still very fast, it is noticeably slower for heavy workloads.

10.5.4 Alternative configurations

The CPN web model can also be used to analyze and compare the performance
of alternative configurations of the web server. Suppose that the peak arrival
rate of requests doubles to approximately 20 requests/second. The utilization
of the resources of the server will increase, the quality of service that the web
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Figure 10.9: Average response time.

server can provide will be affected, and response times for clients may increase.
Let us examine several alternative configurations of the web server. Suppose
that the available options are:

1. The configuration of the CPN web model corresponding to the ITCHY
web server.

2. As in 1, but with a CPU that is twice as fast.

3. As in 1, but with a disk that is twice as fast.

4. As in 1, but using a cache that can hold a large percentage of the most
frequently requested documents.

Ten independent simulations were run for each of these configurations, and sev-
eral comparisons of the different configurations were made. Paired-t confidence
intervals [84] were used to determine whether or not there is a significant dif-
ference in the utilization of both the CPU and disk for the configurations that
were compared.

Table 10.1 provides an overview of the comparisons that were made and
the conclusions that can be drawn from the comparisons. The first column in
Table 10.1 is simply a name of the comparison. The numbers in columns 2-4
correspond to the numbered configurations above. Consider, for example, the
second row in Table 10.1. The name of the comparison that has been made
is fastdisk. In this comparison, configurations 3 and 1 were compared. The
paired-t confidence intervals for this comparision reveal that the disk utilization
for configuration 3 is lower than the disk utilization for configuration 1, as is
expected. Based on the observations that have been made, there is no significant
difference between the utilization of the CPU for the two configurations.
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Configuration with
Configuration lowest utilization

Comparison A B CPU Disk
fastcpu 2 1 2 –
fastdisk 3 1 – 3
cache 4 1 4 4
cpudisk 2 3 2 3
cpucache 2 4 2 4
diskcache 3 4 4 4

Table 10.1: Comparison of configurations.

10.6 Conclusions

In this paper we have presented a framework for construction of CPN models
for performance analysis of distributed computing environments. It was demon-
strated how the framework can be used to build a CPN model of a web server
environment consisting of a HTTP web server and web clients connected to a
LAN. In this modeling framework there is a clear separation within a model
between the components which model the functionality of the system and the
components which model the performance related aspects of the system. Thus,
it is relatively simple to observe the functionality by simply choosing to disable
the performance related components in the system. Carefully designed exper-
iments and the use of sound statistical methods allow us to make informed
choices when we need to improve the overall performance of the system. The
model can also be used to investigate the effect on performance of reconfiguring
the web server in different ways.

It may be argued that the CPN web model is simplistic in the sense that it
only considers a web server with clients connected to the same local area net-
work as the web server. In practice, clients often communicate with a web server
using the Internet. However, a main goal of the project was to compare the
performance results obtained by simulations with the performance monitored
in a corresponding physical environment. Therefore, a web server environment
which could be setup and controlled within the scope of the project was impor-
tant. Along these lines one may instead view the CPN model as modeling a
web server for an intranet of a company.

Many simplifying assumptions have been made about the web server and
its workload during this project. Future work with the web server model could
include: using more realistic workload with proper arrival rates and consider-
ing temporal locality in the request stream, using a multi-threaded server, and
modeling HTTP/1.1. Recent work investigates the impact of different designs
of the TCP protocols [61] and caching strategies [6] on the performance of web
servers. This is an aspect of web server performance which we have not con-
sidered in this paper. However, it is worth mentioning that with the proposed
framework for construction of CPN models, which makes a clear distinction
between system architecture, applications, and resources, could also serve as a
foundation for investigating different web server design alternatives.
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