
Principal Component Analysis

Mark Richardson

May 2009

Contents

1 Introduction 2

2 An Example From Multivariate Data Analysis 3

3 The Technical Details Of PCA 6

4 The Singular Value Decomposition 9

5 Image Compression Using PCA 11

6 Blind Source Separation 15

7 Conclusions 19

8 Appendix - MATLAB 20

1

1 Introduction

Principal Component Analysis (PCA) is the general name for a technique which uses sophis-
ticated underlying mathematical principles to transforms a number of possibly correlated
variables into a smaller number of variables called principal components. The origins of
PCA lie in multivariate data analysis, however, it has a wide range of other applications, as
we will show in due course. PCA has been called, ’one of the most important results from
applied linear algebra’[2] and perhaps its most common use is as the first step in trying to
analyse large data sets. Some of the other common applications include; de-noising signals,
blind source separation, and data compression.

In general terms, PCA uses a vector space transform to reduce the dimensionality of large
data sets. Using mathematical projection, the original data set, which may have involved
many variables, can often be interpreted in just a few variables (the principal components).
It is therefore often the case that an examination of the reduced dimension data set will
allow the the user to spot trends, patterns and outliers in the data, far more easily than
would have been possible without performing the principal component analysis.

The aim of this essay is to explain the theoretical side of PCA, and to provide examples of
its application. We will begin with a non-rigorous motivational example from multivariate
data analysis in which we will attempt to extract some meaning from a 17 dimensional
data set. After this motivational example, we shall discuss the PCA technique in terms
of its linear algebra fundamentals. This will lead us to a method for implementing PCA
for real-world data, and we will see that there is a close connection between PCA and the
singular value decomposition (SVD) from numerical linear algebra. We will then look at
two further examples of PCA in practice; Image Compression and Blind Source Separation.

2

2 An Example From Multivariate Data Analysis

In this section, we will examine some real life multivariate data in order to explain, in simple
terms what PCA achieves. We will perform a principal component analysis of this data and
examine the results, though we will skip over the computational details for now.

Suppose that we are examining the following DEFRA1 data showing the consumption in
grams (per person, per week) of 17 different types of foodstuff measured and averaged in
the four countries of the United Kingdom in 1997. We shall say that the 17 food types are
the variables and the 4 countries are the observations. A cursory glance over the numbers
in Table 1 does not reveal much, indeed in general it is difficult to extract meaning from
any given array of numbers. Given that this is actually a relatively small data set, we see
that a powerful analytical method is absolutely necessary if we wish to observe trends and
patterns in larger data.

England Wales Scotland N Ireland

Cheese 105 103 103 66
Carcass meat 245 227 242 267
Other meat 685 803 750 586

Fish 147 160 122 93
Fats and oils 193 235 184 209

Sugars 156 175 147 139
Fresh potatoes 720 874 566 1033

Fresh Veg 253 265 171 143
Other Veg 488 570 418 355

Processed potatoes 198 203 220 187
Processed Veg 360 365 337 334

Fresh fruit 1102 1137 957 674
Cereals 1472 1582 1462 1494

Beverages 57 73 53 47
Soft drinks 1374 1256 1572 1506

Alcoholic drinks 375 475 458 135
Confectionery 54 64 62 41

Table 1: UK food consumption in 1997 (g/person/week). Source: DEFRA website

We need some way of making sense of the above data. Are there any trends present which
are not obvious from glancing at the array of numbers? Traditionally, we would use a
series of bivariate plots (scatter diagrams) and analyse these to try and determine any
relationships between variables, however the number of such plots required for such a task
is typically O(n2), where n is the number of variables. Clearly, for large data sets, this is
not feasible.

PCA generalises this idea and allows us to perform such an analysis simultaneously, for many
variables. In our example above, we have 17 dimensional data for 4 countries. We can thus
’imagine’ plotting the 4 coordinates representing the 4 countries in 17 dimensional space.
If there is any correlation between the observations (the countries), this will be observed in
the 17 dimensional space by the correlated points being clustered close together, though of
course since we cannot visualise such a space, we are not able to see such clustering directly.

1Department for Environment, Food and Rural Affairs

3

The first task of PCA is to identify a new set of orthogonal coordinate axes through the
data. This is achieved by finding the direction of maximal variance through the coordinates
in the 17 dimensional space. It is equivalent to obtaining the (least-squares) line of best fit
through the plotted data. We call this new axis the first principal component of the data.
Once this first principal component has been obtained, we can use orthogonal projection2

to map the coordinates down onto this new axis. In our food example above, the four 17
dimensional coordinates are projected down onto the first principal component to obtain
the following representation in Figure 1.

Figure 1: Projections onto first principal component (1-D space)

−300 −200 −100 0 100 200 300 400 500
−1

−0.5

0

0.5

1

PC1

EngWal Scot N Ire

This type of diagram is known as a score plot. Already, we can see that the there are two
potential clusters forming, in the sense that England, Wales and Scotland seem to be close
together at one end of the principal component, whilst Northern Ireland is positioned at
the opposite end of the axis.

The PCA method then obtains a second principal coordinate (axis) which is both orthogonal
to the first PC, and is the next best direction for approximating the original data (i.e. it
finds the direction of second largest variance in the data, chosen from directions which
are orthogonal to the first principal component). We now have two orthogonal principal
components defining a plane which, similarly to before, we can project our coordinates
down onto. This is shown below in the 2 dimensional score plot in Figure 2. Notice that the
inclusion of the second principal component has highlighted variation between the dietary
habits present England, Scotland and Wales.

Figure 2: Projections onto first 2 principal components (2-D space)

−300 −200 −100 0 100 200 300 400 500
−400

−200

0

200

400

PC1

P
C

2

Eng

Wal

Scot

N Ire

As part of the PCA method (which will be explained in detail later), we automatically obtain
information about the contributions of each principal component to the total variance of the
coordinates. In fact, in this case approximately 67% of the variance in the data is accounted
for by the first principal component, and approximately 97% is accounted for in total by
the first two principal components. In this case, we have therefore accounted for the vast
majority of the variation in the data using a two dimensional plot - a dramatic reduction
in dimensionality from seventeen dimensions to two.

2In linear algebra and functional analysis, a projection is defined as a linear transformation, P , that maps

from a given vector space to the same vector space and is such that P
2 = P .

4

In practice, it is usually sufficient to include enough principal components so that somewhere
in the region of 70 − 80% of the variation in the data is accounted for [3].

This information can be summarised in a plot of the variances (nonzero eigenvalues) with
respect to the principal component number (eigenvector number), which is given in Figure
3, below.

Figure 3: Eigenspectrum

1 2 3 4
0

5

10

15
x 10

4

eigenvector number

ei
ge

nv
al

ue

We can also consider the influence of each of the original variables upon the principal
components. This information can be summarised in the following plot, in Figure 4.

Figure 4: Load plot

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−1

−0.5

0

0.5

1

effect(PC1)

ef
fe

ct
(P

C
2)

CheeseCarcass meatOther meatFishFats and oilsSugars

Fresh potatoes

Fresh VegOther Veg

Processed potatoesProcessed Veg
Fresh fruit Cereals

Beverages

Soft drinks

Alcoholic drinks
Confectionery

Observe that there is a central group of variables around the middle of each principal
component, with four variables on the periphery that do not seem to be part of the group.
Recall the 2D score plot (Figure 2), on which England, Wales and Scotland were clustered
together, whilst Northern Ireland was the country that was away from the cluster. Perhaps
there is some association to be made between the four variables that are away from the
cluster in Figure 4 and the country that is located away from the rest of the countries
in Figure 2, Northern Ireland. A look at the original data in Table 1 reveals that for
the three variables, Fresh potatoes, Alcoholic drinks and Fresh fruit, there is a noticeable
difference between the values for England, Wales and Scotland, which are roughly similar,
and Northern Ireland, which is usually significantly higher or lower.

PCA has the ability to be able to make these associations for us. It has also successfully
managed to reduce the dimensionality of our data set down from 17 to 2, allowing us
to assert (using Figure 2) that countries England, Wales and Scotland are ’similar’ with
Northern Ireland being different in some way. Furthermore, using Figure 4 we were able to
associate certain food types with each cluster of countries.

5

3 The Technical Details Of PCA

The principal component analysis for the example above took a large set of data and iden-
tified an optimal new basis in which to re-express the data. This mirrors the general aim of
the PCA method: can we obtain another basis that is a linear combination of the original

basis and that re-expresses the data optimally? There are some ambiguous terms in this
statement, which we shall address shortly, however for now let us frame the problem in the
following way.

Assume that we start with a data set that is represented in terms of an m × n matrix, X

where the n columns are the samples (e.g. observations) and the m rows are the variables.
We wish to linearly transform this matrix, X into another matrix, Y, also of dimension
m × n, so that for some m × m matrix, P,

Y = PX (1)

This equation represents a change of basis. If we consider the rows of P to be the row
vectors p1,p2, . . . ,pm, and the columns of X to be the column vectors x1,x2, . . . ,xn, then
(3) can be interpreted in the following way.

PX =
(

Px1 Px2 . . . Pxn

)

=

p1.x1 p1.x2 · · · p1.xn

p2.x1 p2.x2 · · · p2.xn

...
...

. . .
...

pm.x1 pm.x2 · · · pm.xn

= Y

Note that pi, xj ∈ R
m, and so pi.xj is just the standard Euclidean inner (dot) product.

This tells us that the original data, X is being projected on to the columns of P. Thus, the
rows of P, {p1,p2, . . . ,pm} are a new basis for representing the columns of X. The rows
of P will later become our principal component directions.

We now need to address the issue of what this new basis should be, indeed what is the
’best’ way to re-express the data in X - in other words, how should we define independence

between principal components in the new basis?

Principal component analysis defines independence by considering the variance of the data
in the original basis. It seeks to de-correlate the original data by finding the directions in
which variance is maximised and then use these directions to define the new basis. Recall
the definition for the variance of a random variable, Z with mean, µ.

σ2

Z = E[(Z − µ)2]

Suppose we have a vector of n discrete measurements, r̃ = (r̃1, r̃2, . . . , r̃n), with mean µr.
If we subtract the mean from each of the measurements, then we obtain a translated set
of measurements r = (r1, r2, . . . , rn), that has zero mean. Thus, the variance of these
measurements is given by the relation

σ2

r =
1

n
rrT

If we have a second vector of n measurements, s = (s1, s2, . . . , sn), again with zero mean,
then we can generalise this idea to obtain the covariance of r and s. Covariance can be
thought of as a measure of how much two variables change together. Variance is thus a
special case of covariance, when the the two variables are identical. It is in fact correct to
divide through by a factor of n − 1 rather than n, a fact which we shall not justify here,
but is discussed in [2].

6

σ2

rs =
1

n − 1
rsT

We can now generalise this idea to considering our m × n data matrix, X. Recall that m

was the number of variables, and n the number of samples. We can therefore think of this
matrix, X in terms of m row vectors, each of length n.

X =

x1,1 x1,2 · · · x1,n

x2,1 x2,2 · · · x2,n

...
...

. . .
...

xm,1 xm,2 · · · xm,n

=

x1

x2

...
xm

∈ R
m×n, xi

T ∈ R
n

Since we have a row vector for each variable, each of these vectors contains all the samples
for one particular variable. So for example, xi is a vector of the n samples for the ith

variable. It therefore makes sense to consider the following matrix product.

CX =
1

n − 1
XXT =

1

n − 1

x1x1
T x1x2

T · · · x1xm
T

x2x1
T x2x2

T · · · x2xm
T

...
...

. . .
...

xmx1
T xmx2

T · · · xmxm
T

∈ R
m×m

If we look closely at the entries of this matrix, we see that we have computed all the
possible covariance pairs between the m variables. Indeed, on the diagonal entries, we
have the variances and on the off-diagonal entries, we have the covariances. This matrix is
therefore known as the Covariance Matrix.

Now let us return to the original problem, that of linearly transforming the original data
matrix using the relation Y = PX, for some matrix, P. We need to decide upon some
features that we would like the transformed matrix, Y to exhibit and somehow relate this
to the features of the corresponding covariance matrix CY.

Covariance can be considered to be a measure of how well correlated two variables are. The
PCA method makes the fundamental assumption that the variables in the transformed ma-
trix should be as uncorrelated as possible. This is equivalent to saying that the covariances
of different variables in the matrix CY, should be as close to zero as possible (covariance
matrices are always positive definite or positive semi-definite). Conversely, large variance
values interest us, since they correspond to interesting dynamics in the system (small vari-
ances may well be noise). We therefore have the following requirements for constructing
the covariance matrix, CY:

1. Maximise the signal, measured by variance (maximise the diagonal entries)

2. Minimise the covariance between variables (minimise the off-diagonal entries)

We thus come to the conclusion that since the minimum possible covariance is zero, we are
seeking a diagonal matrix, CY. If we can choose the transformation matrix, P in such a
way that CY is diagonal, then we will have achieved our objective.

We now make the assumption that the vectors in the new basis, p1,p2, . . . ,pm are orthogo-
nal (in fact, we additionally assume that they are orthonormal). Far from being restrictive,
this assumption enables us to proceed by using the tools of linear algebra to find a solution
to the problem. Consider the formula for the covariance matrix, CY and our interpretation
of Y in terms of X and P.

7

CY =
1

n − 1
YYT =

1

n − 1
(PX)(PX)T =

1

n − 1
(PX)(XTPT) =

1

n − 1
P(XXT)PT

i.e. CY =
1

n − 1
PSPT where S = XXT

Note that S is an m×m symmetric matrix, since (XXT)T = (XT)T (X)T = XXT . We now
invoke the well known theorem from linear algebra that every square symmetric matrix is
orthogonally (orthonormally) diagonalisable. That is, we can write:

S = EDET

Where E is an m×m orthonormal matrix whose columns are the orthonormal eigenvectors
of S, and D is a diagonal matrix which has the eigenvalues of S as its (diagonal) entries.
The rank, r, of S is the number of orthonormal eigenvectors that it has. If B turns out to
be rank-deficient so that r is less than the size, m, of the matrix, then we simply need to
generate m − r orthonormal vectors to fill the remaining columns of S.

It is at this point that we make a choice for the transformation matrix, P. By choosing
the rows of P to be the eigenvectors of S, we ensure that P = ET and vice-versa. Thus,
substituting this into our derived expression for the covariance matrix, CY gives:

CY =
1

n − 1
PSPT

=
1

n − 1
ET (EDET)E

Now, since E is an orthonormal matrix, we have ETE = I, where I is the m × m identity
matrix. Hence, for this special choice of P, we have:

CY =
1

n − 1
D

A last point to note is that with this method, we automatically gain information about the
relative importance of each principal component from the variances. The largest variance
corresponds to the first principal component, the second largest to the second principal
component, and so on. This therefore gives us a method for organising the data in the
diagonalisation stage. Once we have obtained the eigenvalues and eigenvectors of S = XXT ,
we sort the eigenvalues in descending order and place them in this order on the diagonal of
D. We then construct the orthonormal matrix, E by placing the associated eigenvectors in
the same order to form the columns of E (i.e. place the eigenvector that corresponds to the
largest eigenvalue in the first column, the eigenvector corresponding to the second largest
eigenvalue in the second column etc.).

We have therefore achieved our objective of diagonalising the covariance matrix of the
transformed data. The principal components (the rows of P) are the eigenvectors of the
covariance matrix, XXT , and the rows are in order of ’importance’, telling us how ’principal’
each principal component is.

8

4 The Singular Value Decomposition

In this section, we will examine how the well known singular value decomposition (SVD)
from linear algebra can be used in principal component analysis. Indeed, we will show that
the derivation of PCA in the previous section and the SVD are closely related. We will not
derive the SVD, as it is a well established result, and can be found in any good book on
numerical linear algebra, such as [4].

Given A ∈ R
n×m, not necessarily of full rank, a singular value decomposition of A is:

A = UΣVT

Where
U ∈ R

n×n is orthonormal

Σ ∈ R
n×m is diagonal

V ∈ R
m×m is orthonormal

In addition, the diagonal entries, σi, of Σ are non-negative and are called the singular

values of A. They are ordered such that the largest singular value, σ1 is placed in the (1, 1)
entry of Σ, and the other singular values are placed in order down the diagonal, and satisfy
σ1 ≥ σ2 ≥ . . . σp ≥ 0, where p = min(n, m). Note that we have reversed the row and column
indexes in defining the SVD from the way they were defined in the derivation of PCA in
the previous section. The reason for doing this will become apparent shortly.

The SVD can be considered to be a general method for understanding change of basis, as
can be illustrated by the following argument (which follows [4]).

Since U ∈ R
n×n and V ∈ R

m×m are orthonormal matrices, their columns form bases for,
respectively, the vector spaces R

n and R
m. Therefore, any vector b ∈ R

n can be expanded
in the basis formed by the columns of U (also known as the left singular vectors of A) and
any vector x ∈ R

m can be expanded in the basis formed by the columns of V (also known
as the right singular vectors of A). The vectors for these expansions b̂ and x̂, are given by:

b̂ = UTb & x̂ = VTx

Now, if the relation b = Ax holds, then we can infer the following:

UTb = UTAx

⇒ b̂ = UT (UΣVT)x ⇒ b̂ = Σx̂

Thus, the SVD allows us to assert that every matrix is diagonal, so long as we choose the
appropriate bases for the domain and range spaces.

How does this link in to the previous analysis of PCA? Consider the n × m matrix, A,
for which we have a singular value decomposition, A = UΣVT . There is a theorem from
linear algebra which says that the non-zero singular values of A are the square roots of the
nonzero eigenvalues of AAT or ATA. The former assertion for the case ATA is proven in
the following way:

ATA = (UΣVT)T (UΣVT)

= (VΣTUT)(UΣVT)

= V(ΣTΣ)VT

9

We observe that ATA is similar to ΣTΣ, and thus it has the same eigenvalues. Since ΣTΣ

is a square (m×m), diagonal matrix, the eigenvalues are in fact the diagonal entries, which
are the squares of the singular values. Note that the nonzero eigenvalues of each of the
covariance matrices, AAT and ATA are actually identical.

It should also be noted that we have effectively performed an eigenvalue decomposition for
the matrix, ATA. Indeed, since ATA is symmetric, this is an orthogonal diagonalisation
and thus the eigenvectors of ATA are the columns of V. This will be important in making
the practical connection between the SVD and and the PCA of matrix X, which is what
we will do next.

Returning to the original m × n data matrix, X, let us define a new n × m matrix, Z:

Z =
1√

n − 1
XT

Recall that since the m rows of X contained the n data samples, we subtracted the row
average from each entry to ensure zero mean across the rows. Thus, the new matrix, Z has
columns with zero mean. Consider forming the m × m matrix, ZTZ:

ZTZ =

(

1√
n − 1

XT

)T (

1√
n − 1

XT

)

=
1

n − 1
XXT

i.e. ZTZ = CX

We find that defining Z in this way ensures that ZTZ is equal to the covariance matrix of
X, CX. From the discussion in the previous section, the principal components of X (which
is what we are trying to identify) are the eigenvectors of CX. Therefore, if we perform
a singular value decomposition of the matrix ZTZ, the principal components will be the
columns of the orthogonal matrix, V.

The last step is to relate the SVD of ZTZ back to the change of basis represented by
equation (3):

Y = PX

We wish to project the original data onto the directions described by the principal compo-
nents. Since we have the relation V = PT , this is simply:

Y = VTX

If we wish to recover the original data, we simply compute (using orthogonality of V):

X = VY

10

5 Image Compression Using PCA

In the previous section, we developed a method for principal component analysis which
utilised the singular value decomposition of an m × m matrix ZTZ, where Z = 1√

n−1
XT

and X was an m × n data matrix.

Since ZTZ ∈ R
m×m, the matrix, V obtained in the singular value decomposition of ZTZ

must also be of dimensions m × m. Recall also that the columns of V are the principal
component directions, and that the SVD automatically sorts these components in decreasing
order of ’importance’ or ’principality’, so that the ’most principal’ component is the first
column of V.

Suppose that before projecting the data using the relation, Y = VTX, we were to truncate
the matrix, V so that we kept only the first r < m columns. We would thus have a matrix
Ṽ ∈ R

m×r. The projection Ỹ = ṼTX is still dimensionally consistent, and the result of
the product is a matrix, Ỹ ∈ R

r×n. Suppose that we then wished to transform this data
back to the original basis by computing X̃ = ṼỸ. We therefore recover the dimensions of
the original data matrix, X and obtain, X̃ ∈ R

m×n.

The matrices, X and X̃ are of the same dimensions, but they are not the same matrix, since
we truncated the matrix of principal components V in order to obtain X̃. It is therefore
reasonable to conclude that the matrix, X̃ has in some sense, ’less information’ in it than
the matrix X. Of course, in terms of memory allocation on a computer, this is certainly
not the case since both matrices have the same dimensions and would therefore allotted the
same amount of memory. However, the matrix, X̃ can be computed as the product of two
smaller matrices (Ṽ and Ỹ). This, together with the fact that the ’important’ information
in the matrix is captured by the first principal components suggests a possible method for
image compression.

During the subsequent analysis, we shall work with a standard test image that is often used
in image processing and image compression. It is a greyscale picture of a butterfly, and is
displayed in Figure 5. We will use MATLAB to perform the following analysis, though the
principles can be applied in other computational packages.

Figure 5: The ’Butterfly’ greyscale test image

MATLAB considers greyscale images as ’objects’ consisting of two components, a matrix of
pixels, and a colourmap. The ’Butterfly’ image above is stored in a 512 × 512 matrix (and
therefore has this number of pixels). The colourmap is a 512 × 3 matrix. For RGB colour
images, each image can be stored as a single 512×512×3 matrix, where the third dimension
stores three numbers in the range [0, 1] corresponding to each pixel in the 512×512 matrix,

11

representing the intensity of the red, green and blue components.

For a greyscale image such as the one we are dealing with, the colourmap matrix has three
identical columns with a scale representing intensity on the one dimensional grey scale.
Each element of the pixel matrix contains a number representing a certain intensity of grey
scale for an individual pixel. MATLAB displays all of the 512 × 512 pixels simultaneously
with the correct intensity and the greyscale image that we see is produced.
The 512×512 matrix containing the pixel information is our data matrix, X. We will perform
a principal component analysis of this matrix, using the SVD method outlined above. The
steps involved are exactly as described above and summarised in the following MATLAB
code.

1 [fly,map] = imread('butterfly.gif'); % load image into MATLAB
2 fly=double(fly); % convert to double precision
3 image(fly),colormap(map); % display image
4 axis off, axis equal
5 [m n]=size(fly);
6 mn = mean(fly,2); % compute row mean
7 X = fly − repmat(mn,1,n); % subtract row mean to obtain X
8 Z=1/sqrt(n −1) * X'; % create matrix, Z
9 covZ=Z' * Z; % covariance matrix of Z

10 %% Singular value decomposition
11 [U,S,V] = svd(covZ);
12 variances=diag(S). * diag(S); % compute variances
13 bar(variances(1:30)) % scree plot of variances
14 %% Extract first 20 principal components
15 PCs=40;
16 VV=V(:,1:PCs);
17 Y=VV' * X; % project data onto PCs
18 ratio=256/(2 * PCs+1); % compression ratio
19 XX=VV* Y; % convert back to original basis
20 XX=XX+repmat(mn,1,n); % add the row means back on
21 image(XX),colormap(map),axis off; % display results

Figure 6: MATLAB code for image compression PCA

In this case, we have chosen to use the first 40 (out of 512) principal components. What
compression ratio does this equate to? To answer this question, we need to compare the
amount of data we would have needed to store previously, with what we can now store.
Without compression, we would still have our 512 × 512 matrix to store. After selecting
the first 40 principal components, we have the two matrices Ṽ and Ỹ (VV and YY) in the
above MATLAB code) from which we can obtain a 512 × 512 pixel matrix by computing
the matrix product.

Matrix Ṽ is 512 × 40, whilst matrix Ỹ is 40 × 512. There is also one more matrix that
we must use if we wish to display our image - the vector of means which we add back on
after converting back to the original basis (this is just a 512 × 1 matrix which we can later
copy into a larger matrix to add to X̃). We therefore have reduced the number of columns
needed from 512 to 40 + 40 + 1 = 41 and the compression ratio is then calculated in the
following way:

512 : 81 i.e. approximately 6.3 : 1 compression

A decent ratio it seems, however what does the compressed image look like? The image for
40 principal components (6.3:1 compression) is displayed in Figure 7.

12

Figure 7: 40 principal components (6.3:1 compression)

The loss in quality is evident (after all, this lossy compression, as opposed to lossless

compression), however considering the compression ratio, the trade off seems quite good.
Let’s look next at the eigenspectrum, in Figure 8.

Figure 8: Eigenspectrum (first 20 eigenvalues)

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3
x 10

10

eigenvector number

ei
ge

nv
al

ue

The first principal component accounts for 51.6% of the variance, the first two account for
69.8%, the first six 93.8%. This type of plot is not so informative here, as accounting for
93.8% of the variance in the data does not correspond to us seeing a clear image, as is shown
in Figure 9.

Figure 9: Image compressed using 6 principal components

On the next page, in Figure 5, a selection of images is shown with an increasing number
of principal components retained. In Table 5, the cumulative sum of the contribution from
the first 10 variances is displayed.

13

Eigenvector Number Cumulative proportion of variance

1 0.5160
2 0.6979
3 0.7931
4 0.8794
5 0.9130
6 0.9378
7 0.9494
8 0.9596
9 0.9678
10 0.9732

Table 2: Cumulative variance accounted for by PCs

102.4:1 compression
2 principal components

39.4:1 compression
6 principal components

24.4:1 compression
10 principal components

17.7:1 compression
14 principal components

12.5:1 compression
20 principal components

8.4:1 compression
30 principal components

6.3:1 compression
40 principal components

4.2:1 compression
60 principal components

2.8:1 compression
90 principal components

2.1:1 compression
120 principal components

1.7:1 compression
150 principal components

1.4:1 compression
180 principal components

Figure 10: The visual effect of retaining principal components

14

6 Blind Source Separation

The final application of PCA in this report is motivated by the ’cocktail party problem’, a
diagram of which is displayed in Figure 11. Imagine we have N people at a cocktail party.
The N people are all speaking at once, resulting in a mixture of all the voices. Suppose that
we wish to obtain the individual monologues from this mixture - how would we go about
doing this?

Figure 11: The cocktail party problem (image courtesy of Gari Clifford, MIT)

The room has been equipped with exactly n microphones, spread around at different points
in the room. Each microphone thus records a slightly different version of the combined
signal, together with some random noise. By analysing these n combined signals, suing
PCA, it is possible to both de-noise the group signal, and to separate out the original
sources. A formal statement of this problem is:

• Matrix Z ∈ R
m×n consists of m samples of n independent sources

• The signals are mixed together linearly using a matrix, A ∈ R
n×n

• The matrix of observations is represented as the product XT = AZT

• We attempt to demix the observations by finding W ∈ R
n×n s.t. YT = WXT

• The hope is that Y ≈ Z, and thus W ≈ A−1

These points reflect the assumptions of the blind source separation (BSS) problem:

1. The mixture of source signals must be linear

2. The source signals are independent

3. The mixture (the matrix A) is stationary (constant)

4. The number of observations (microphones) is the same as the number of sources

In order to use PCA for BSS, we need to define independence in terms of the variance of
the signals. In analogy with the previous examples and discussion of PCA in Section 3, we
assume that we will be able to de-correlate the individual signals by finding the (orthogonal)

15

directions of maximal variance for the matrix of observations, Z. It is therefore possible to
again use the SVD for this analysis. Consider the ’skinny’ SVD of X ∈ R

m×n:

X = UΣVT where U ∈ R
m×n, Σ ∈ R

n×n, V ∈ R
n×n

Comparing the the skinny SVD with the full SVD, in both cases, the n×n matrix V is the
same. Assuming that m ≥ n, the diagonal matrix of singular values, Σ, is square (n × n)
in the skinny case, and rectangular (m×n) in the full case, with the additional m−n rows
being ’ghost’ rows (i.e. have entries that are all zero). The first n columns of the matrix
U in the full case are identical to the n columns of the skinny case U, with the additional
m − n columns being arbitrary orthogonal appendments.

Recall that we are trying to approximate the original signals matrix (Z ≈ Y) by trying to
find a matrix (W ≈ A−1) such that:

YT = WXT

This matrix is obtained by rearranging the equation for the skinny SVD.

X = UΣVT ⇒ XT = VΣTUT

⇒ UT = Σ−TVTXT

Thus, we identify our approximation to the de-mixing matrix as W = Σ−TVT , and our
de-mixed signals are therefore the columns of the matrix U. Note that since the matrix Σ is
square and diagonal, Σ−T = Σ−1, which is computed by simply taking the reciprocal value
of each diagonal entry of Σ. However, if we are using the SVD method, it is not necessary
to worry about explicitly calculating the matrix W, since the SVD automatically delivers
us the de-mixed signals.

To illustrate this, consider constructing the matrix Z ∈ R
2001×3 consisting of the following

three signals (the columns) sampled at 2001 equispaced points on the interval [0, 2000] (the
rows).

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

sin(x)
2mod(x/10,1)−1
−sign(sin(πx/4))*0.5

Figure 12: Three input signals for the BSS problem

We now construct a 3 × 3 mixing matrix, A by randomly perturbing the 3 × 3 identity
matrix. The MATLAB code A=round((eye(M)+0.01*randn(3,3))*1000)/1000 achieves
this. To demonstrate, an example mixing matrix could be therefore be:

A =

1.170 −0.029 0.089
−0.071 1.115 −0.135
−0.165 0.137 0.806

To simulate the cocktail party, we will also add some noise to the signals before the mix (for
this, we use the MATLAB code Z=Z+0.02*randn(2001,3)). After adding this noise and
mixing the signals to obtain X via XT = AZT , we obtain the following mixture of signals:

16

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

Figure 13: A mixture of the three input signals, with noise added

This mixing corresponds to each of the three microphones in the example above being
close to a unique guest of the cocktail party, and therefore predominantly picking up what
that individual is saying. We can now go ahead and perform a (skinny) singular value
decomposition of the matrix, X, using the command, [u,s,v]=svd(X,0). Figure 14 shows
the separated signals (the columns of U) plotted together, and individually.

0 500 1000 1500 2000
−0.05

0

0.05

x

y

0 500 1000 1500 2000
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

x

y

0 500 1000 1500 2000
−0.05

0

0.05

x

y

0 500 1000 1500 2000
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

x

y

Figure 14: The separated signals plotted together, and individually

We observe that the extracted signals are quite easily identifiable representations the three
input signals, however note that the sin and sawtooth functions have been inverted, and that
the scaling is different to that of the inputted signals. The performance of PCA for blind
source separation is good in this case because the mixing matrix was close to the identity.
If we generate normally distributed random numbers for the elements of the mixing matrix,
we can get good results, but we can also get poor results.

In the following figures, the upper left plot shows the three mixed signals and the subsequent
3 plots are the SVD extractions. Figures 15, 16 and 17 show examples of relatively good
performance in extracting the original signals from the randomly mixed combination, whilst
18 shows a relatively poor performance.

17

0 500 1000 1500 2000
−20

−10

0

10

20

x

y

0 500 1000 1500 2000
−0.05

0

0.05

x

y

0 500 1000 1500 2000
−0.05

0

0.05

x

y

0 500 1000 1500 2000
−0.05

0

0.05

x

y

Figure 15:

0 500 1000 1500 2000
−50

0

50

x

y

0 500 1000 1500 2000
−0.05

0

0.05

x

y

0 500 1000 1500 2000
−0.05

0

0.05

x

y

0 500 1000 1500 2000
−0.05

0

0.05

x

y

Figure 16:

0 500 1000 1500 2000
−50

0

50

x

y

0 500 1000 1500 2000
−0.05

0

0.05

x

y

0 500 1000 1500 2000
−0.05

0

0.05

x

y

0 500 1000 1500 2000
−0.05

0

0.05

x

y

Figure 17:

0 500 1000 1500 2000
−50

0

50

x

y

0 500 1000 1500 2000
−0.1

−0.05

0

0.05

0.1

x

y

0 500 1000 1500 2000
−0.1

−0.05

0

0.05

0.1

x

y

0 500 1000 1500 2000
−0.05

0

0.05

x

y

Figure 18:

18

7 Conclusions

My aim in writing this article was that somebody with a similar level of mathematical
knowledge as myself (i.e. early graduate level) would be able to gain a good introductory
understanding of PCA by reading this essay. I hope that they would understand that it is a
diverse tool in data analysis, with many applications, three of which we have covered in de-
tail here. I would also hope that they would gain an good understanding of the surrounding
mathematics, and the close link that PCA has with the singular value decomposition.

I embarked upon writing this essay with only one application in mind, that of Blind Source
Separation. However, when it came to researching the topic in detail, I found that there
were many interesting applications of PCA, and I identified dimensional reduction in multi-
variate data analysis and image compression as being two of the most appealing alternative
applications. Though it is a powerful technique, with a diverse range of possible applica-
tions, it is fair to say that PCA is not necessarily the best way to deal with each of the
sample applications that I have discussed.

For the multivariate data analysis example, we were able to identify that the inhabitants
of Northern Ireland were in some way different in their dietary habits to those of the other
three countries in the UK. We were also able to identify particular food groups with the
eating habits of Northern Ireland, yet we were limited in being able to make distinctions
between the dietary habits of the English, Scottish and Welsh. In order to explore this
avenue, it would perhaps be necessary to perform a similar analysis on just those three
countries.

Image compression (and more generally, data compression) is by now getting to be a ma-
ture field ,and there are many sophisticated technologies available that perform this task.
JPEG is an obvious and comparable example that springs to mind (JPEG can also involve
lossy compression). JPEG utilises the discrete cosine transform to convert the image to
a frequency-domain representation and generally achieves much higher quality for similar
compression ratios when compared to PCA. Having said this, PCA is a nice technique in
its own right for implementing image compression and it is nice to find such a pleasing
implementation.

As we saw in the last example, Blind Source Separation can cause problems for PCA
under certain circumstances. PCA will not be able to separate the individual sources if the
signals are combined nonlinearly, and can produce spurious results even if the combination
is linear. PCA will also fail for BSS if the data is non-Gaussian. In this situation, a
well known technique that works is called Independent Component Analysis (ICA). The
main philosophical difference between the two methods is that PCA defines independence
using variance, whilst ICA defines independence using statistical independence - it identifies
the principal components by maximising the statistical independence between each of the
components.

Writing the theoretical parts of this essay (Sections 3 and 4) was a very educational expe-
rience and I was aided in doing this by the excellent paper by Jonathon Shlens, ’A Tutorial
on Principal Component Analysis’[2], and the famous book on Numerical Linear Algebra
by Lloyd N. Trefethen and David Bau III[4]. However, the original motivation for writing
this special topic was from the excellent lectures in Signals Processing delivered by Dr. I
Drobnjak and Dr. C. Orphinadou during Hilary term of 2008, at the Oxford University
Mathematical Institute.

19

8 Appendix - MATLAB

Figure 19: MATLAB code: Data Analysis

1 X = [105 103 103 66; 245 227 242 267; 685 803 750 586;
2 147 160 122 93; 193 235 184 209; 156 175 147 139;
3 720 874 566 1033; 253 265 171 143; 488 570 418 355;
4 198 203 220 187; 360 365 337 334; 1102 1137 957 674;
5 1472 1582 1462 1494; 57 73 53 47; 1374 1256 1572 1506;
6 375 475 458 135; 54 64 62 41];
7 covmatrix=X * X'; data = X; [M,N] = size(data); mn = mean(data,2);
8 data = data − repmat(mn,1,N); Y = data' / sqrt(N −1); [u,S,PC] = svd(Y);
9 S = diag(S); V = S . * S; signals = PC' * data;

10 plot(signals(1,1),0, 'b.' ,signals(1,2),0, 'b.' , ...
11 signals(1,3),0, 'b.' ,signals(1,4),0, 'r.' , 'markersize' ,15)
12 xlabel('PC1')
13 text(signals(1,1) −25, −0.2, 'Eng'),text(signals(1,2) −25, −0.2, 'Wal'),
14 text(signals(1,3) −20, −0.2, 'Scot'),text(signals(1,4) −30, −0.2, 'N Ire')
15 plot(signals(1,1),signals(2,1), 'b.' ,signals(1,2),signals(2,2), 'b.' , ...
16 signals(1,3),signals(2,3), 'b.' ,signals(1,4),signals(2,4), 'r.' , ...
17 'markersize' ,15)
18 xlabel('PC1'),ylabel('PC2')
19 text(signals(1,1)+20,signals(2,1), 'Eng')
20 text(signals(1,2)+20,signals(2,2), 'Wal')
21 text(signals(1,3)+20,signals(2,3), 'Scot')
22 text(signals(1,4) −60,signals(2,4), 'N Ire')
23

24 plot(PC(1,1),PC(1,2), 'm.' ,PC(2,1),PC(2,2), 'm.' , ...
25 PC(3,1),PC(3,2), 'm.' ,PC(4,1),PC(4,2), 'm.' , ...
26 PC(5,1),PC(5,2), 'm.' ,PC(6,1),PC(6,2), 'm.' , ...
27 PC(7,1),PC(7,2), 'm.' ,PC(8,1),PC(8,2), 'm.' , ...
28 PC(9,1),PC(9,2), 'm.' ,PC(10,1),PC(10,2), 'm.' , ...
29 PC(11,1),PC(11,2), 'm.' ,PC(12,1),PC(12,2), 'm.' , ...
30 PC(13,1),PC(13,2), 'm.' ,PC(14,1),PC(14,2), 'm.' , ...
31 PC(15,1),PC(15,2), 'm.' ,PC(16,1),PC(16,2), 'm.' , ...
32 PC(17,1),PC(17,2), 'm.' , 'markersize' ,15)
33

34 xlabel('effect(PC1)'),ylabel('effect(PC2)')
35

36 text(PC(1,1),PC(1,2) −0.1, 'Cheese'),text(PC(2,1),PC(2,2) −0.1, 'Carcass meat')
37 text(PC(3,1),PC(3,2) −0.1, 'Other meat'),text(PC(4,1),PC(4,2) −0.1, 'Fish')
38 text(PC(5,1),PC(5,2) −0.1, 'Fats and oils'),text(PC(6,1),PC(6,2) −0.1, 'Sugars')
39 text(PC(7,1),PC(7,2) −0.1, 'Fresh potatoes')
40 text(PC(8,1),PC(8,2) −0.1, 'Fresh Veg')
41 text(PC(9,1),PC(9,2) −0.1, 'Other Veg')
42 text(PC(10,1),PC(10,2) −0.1, 'Processed potatoes')
43 text(PC(11,1),PC(11,2) −0.1, 'Processed Veg')
44 text(PC(12,1),PC(12,2) −0.1, 'Fresh fruit'),
45 text(PC(13,1),PC(13,2) −0.1, 'Cereals'),text(PC(14,1),PC(14,2) −0.1, 'Beverages')
46 text(PC(15,1),PC(15,2) −0.1, 'Soft drinks'),
47 text(PC(16,1),PC(16,2) −0.1, 'Alcoholic drinks')
48 text(PC(17,1),PC(17,2) −0.1, 'Confectionery')
49 %%
50 bar(V)
51 xlabel('eigenvector number'), ylabel('eigenvalue')
52 %%
53 t=sum(V);cumsum(V/t)

20

Figure 20: MATLAB code : Image Compression

1 clear all;close all;clc,
2

3 [fly,map] = imread('butterfly.gif');
4 fly=double(fly);
5 whos
6

7 image(fly)
8 colormap(map)
9 axis off, axis equal

10

11 [m n]=size(fly);
12 mn = mean(fly,2);
13 X = fly − repmat(mn,1,n);
14

15 Z=1/sqrt(n −1) * X';
16 covZ=Z' * Z;
17

18 [U,S,V] = svd(covZ);
19

20 variances=diag(S). * diag(S);
21 bar(variances, 'b')
22 xlim([0 20])
23 xlabel('eigenvector number')
24 ylabel('eigenvalue')
25

26 tot=sum(variances)
27 [[1:512]' cumsum(variances)/tot]
28

29 PCs=40;
30 VV=V(:,1:PCs);
31 Y=VV' * X;
32 ratio=512/(2 * PCs+1)
33

34 XX=VV* Y;
35

36 XX=XX+repmat(mn,1,n);
37

38 image(XX)
39 colormap(map)
40 axis off, axis equal
41

42 z=1;
43 for PCs=[2 6 10 14 20 30 40 60 90 120 150 180]
44 VV=V(:,1:PCs);
45 Y=VV' * X;
46 XX=VV* Y;
47 XX=XX+repmat(mn,1,n);
48 subplot(4,3,z)
49 z=z+1;
50 image(XX)
51 colormap(map)
52 axis off, axis equal
53 title({[num2str(round(10 * 512/(2 * PCs+1))/10) ':1 compression']; ...
54 [int2str(PCs) ' principal components'] })
55 end

21

Figure 21: MATLAB code : Blind Source Separation

1 clear all; close all; clc;
2

3 set(0, 'defaultfigureposition' ,[40 320 540 300], ...
4 'defaultaxeslinewidth' ,0.9, 'defaultaxesfontsize' ,8, ...
5 'defaultlinelinewidth' ,1.1, 'defaultpatchlinewidth' ,1.1, ...
6 'defaultlinemarkersize' ,15), format compact, format short
7

8 x=[0:0.01:20]';
9 signalA = @(x) sin(x);

10 signalB = @(x) 2 * mod(x/10,1) −1;
11 signalC = @(x) −sign(sin(0.25 * pi * x)) * 0.5;
12 Z=[signalA(x) signalB(x) signalC(x)];
13

14 [N M]=size(Z);
15 Z=Z+0.02 * randn(N,M);
16 [N M]=size(Z);
17 A=round(10 * randn(3,3) * 1000)/1000
18 X0=A* Z';
19 X=X0';
20

21 figure
22 subplot(2,2,1)
23 plot(X, 'LineWidth' ,2)
24 xlim([0,2000])
25 xlabel('x'),ylabel('y' , 'Rotation' ,0)
26

27 [u,s,v] = svd(X,0);
28

29 subplot(2,2,2)
30 plot(u(:,1), 'b' , 'LineWidth' ,2)
31 xlim([0,2000])
32 xlabel('x'),ylabel('y' , 'Rotation' ,0)
33

34 subplot(2,2,3)
35 plot(u(:,2), 'g' , 'LineWidth' ,2)
36 xlim([0,2000])
37 xlabel('x'),ylabel('y' , 'Rotation' ,0)
38

39 subplot(2,2,4)
40 plot(u(:,3), 'r' , 'LineWidth' ,2)
41 xlim([0,2000])
42 xlabel('x'),ylabel('y' , 'Rotation' ,0)

22

References

[1] UMETRICS
Multivariate Data Analysis
http://www.umetrics.com/default.asp/pagename/methods MVA how8/c/1#

[2] Jonathon Shlens
A Tutorial on Principal Component Analysis
http://www.brainmapping.org/NITP/PNA/Readings/pca.pdf

[3] Soren Hojsgaard
Examples of multivariate analysis Principal component analysis (PCA)
Statistics and Decision Theory Research Unit, Danish Institute of Agricultural Sciences

[4] Lloyd Trefethen & David Bau
Numerical Linear Algebra
SIAM

[5] Signals and Systems Group
Uppsala University
http://www.signal.uu.se/Courses/CourseDirs/...

...DatoriseradMI/DatoriseradMI05/instrPCAlena.pdf

[6] Dr. I. Drobnjak
Oxford University
MSc MMSC Signals Processing Lecture Notes (PCA/ICA)

[7] Gari Clifford
MIT
Blind Source Separation: PCA & ICA

23

