
Synchronizing Model and Program Refactoring
Technical Report

Tiago Massoni1, Rohit Gheyi1, and Paulo Borba2

1 Federal University of Campina Grande
{massoni,rohit}@dsc.ufcg.edu.br
2 Federal University of Pernambuco

phmb@cin.ufpe.br

Abstract. Object models provide abstract information about software struc-
ture, but their maintenance is difficult after refactoring takes place. In Model-
Driven Development (MDD), effective transferral of model refactoring changes
to programs is problematic, especially if these programs are subject to developer
manipulation. Consequently, code-driven approaches end up being adopted. We
formalize a theory of synchronizers, which are sequences of behavior-preserving
program transformations. This theory makes use of invariant-based refactoring,
the key idea behind synchronizers. We also establish and prove a soundness
theorem for synchronizers. By uncovering the formal requirements for correct
refactoring synchronization, the proved properties point out issues – regarding
consistency, refactoring automation and quality – that recur in several MDD
settings that employ object models.

1 Introduction

Refactoring [1,2] improves program structure while preserving behavior. Additional
benefits can be obtained from object model [3,4] refactoring, useful for restructuring
software abstractions and invariants, by means of semantics-preserving transforma-
tions. Synchronization of these transformations to source code is essential [5] in Model-
Driven Development (MDD) contexts [6].

However, this is an open problem in the MDD community, especially when both
models and programs are manipulated [7]. Automatic generation of artifacts has long
been known for their limitations – automation is hard to achieve [8]. In fact, the rela-
tionship between object model and object-oriented (OO) program constructs may be
complex to deal with, and tools often fail to deal with the desired abstraction gap. As
a consequence, many projects abandon models early in the life cycle, adhering to code-
driven approaches. Methods and tools for – at least partially – removing human interac-
tion in the process are invaluable to the refactoring practice. Several approaches try to
deal with the relationship between model and program transformations [9,10,11,12,13],
although, to the best of our knowledge, none has analyzed specific aspects of refactoring
and synchronization issues between object models and source code.

This article presents a formal model for synchronized refactoring of object model
and programs by means of proven primitive semantics-preserving transformations. In
particular, our theory is centered on a model-driven approach on which each model
transformation is associated with a synchronizer, a sequence of program transforma-
tions, which (1) updates code declarations and (2) adapts statements according to the
modified declarations – as explained in Section 3. This unidirectional (model to code)

2

approach to synchronization presents a fundamental effect: it allows powerful program
refactoring directly from abstract information provided by object model invariants.
Previous publications delineate the model-driven approach to refactoring [14], and pre-
liminary conclusions on the use of invariants as basis for automatic refactoring [15].
Those contributions are extended in this paper with a description of synchronizers,
soundness proofs and discussion (Sections 3, 4 and 5, respectively).

We establish our theory on previous work in primitive model [16] and program
transformations [17,18]. Object models in Alloy [3] express objects, relations and in-
variants equivalently to the core concepts of UML class diagrams. For programs, we
consider a Java-like language [19]. These languages are explained in Section 2. A general
soundness theorem is defined and proved for synchronizers (Section 4); in this proof,
we ensure that synchronizers are program refinements (preserving behavior) and the
refactored program is consistent with the refactored model. Consistency is defined in
terms of syntax and semantics; only the syntactic consistency must be adjusted for
other languages – the semantic mapping is language independent. The need for the
proved properties unveils issues that will recur in several MDD contexts that employ
object models, related to automation and refactoring quality (Section 5).

2 Languages

In our theory, we consider object models in Alloy [3], and programs in a Java-like
language, developed for reasoning about object-oriented programming [19].

2.1 Model refactoring

Alloy [3] presents formal type system and semantics for writing object models. An
Alloy model contains a sequence of paragraphs; a signature defines a new type. A
signature paragraph introduces a basic type and a collection of relations, along with
their types and constraints on their values. For instance, an object model for a file
system defines signatures for FSObject and Name – set defines unconstrained relations.
In Alloy version 3, one signature can extend another, establishing that the extended
signature is a subset of its supersignature (File). In addition, facts are used to package
model invariants. In the following fragment, the formula states that, from all file system
objects, only directories may contain other objects. The join operator ‘.’ represents
relational dereference, and FSObject - Dir expresses all FSObjects instances that are
not directories (set difference has the conventional meaning).

sig Name {}
sig FSObject { name: set Name, contents: set FSObject }
fact { (FSObject-Dir).contents = {} }
sig File extends FSObject {}

Regarding model transformations in Alloy, a catalog of primitive transformations was
proposed [16]. Algebraic laws formalize two primitive transformations; equivalence al-
lows application of the law in both directions. As an example of a law, a new subsig-
nature can be introduced or removed from an existing hierarchy (Law 1). An empty
subsignature X can be introduced if declared with a fresh name. After this transforma-
tion, the supersignature U becomes abstract (defining no direct instances), as denoted
by the invariant denoting the objects in X are the objects in U , except those in S

3

or T (X = U − S − T). Similarly, X can be removed if it is not being used and no
expression exp of its type exists (exp ≤ U , but exp 6≤ S and exp 6≤ T), where ≤ denotes
subtyping. Some meta-variables are useful as notation: rs represents relations, while
forms represents a set of formulas. Each box represents a template with which actual
Alloy declarations can match (ps denotes the paragraphs that are not showed in the
template). Additionally, below the templates, provisos that ensure transformation cor-
rectness are established. (←) defines provisos for application from Left-to-Right (L-R),
while (→) defines provisos for applying the law from Right-to-Left (R-L).

Alloy Law 1 〈introduce subsignature〉
ps
sig U { rsU }
sig S extends U{ rsS }
sig T extends U{ rsT }
fact F {forms} =

ps
sig U {rsU}
sig S extends U{ rsS }
sig T extends U{ rsT }
sig X extends U{}
fact F {

forms
X = U − S − T
}

provided

(→) (1) ps does not declare any paragraph named X; (2) there is no signature in ps that extends U ;

(←) X does not appear in ps, rsU , rsS, rsT and forms; (2) there is no expression exp, where exp ≤ U and

exp 6≤ S and exp 6≤ T , in ps or forms.

The equivalence respects the notion proposed for Alloy [20]. The catalog of Alloy
laws has been proven sound and complete in a theorem prover [21]. Furthermore, these
laws can be used as basis for several applications that require semantics-preserving
transformations, such as model refactorings. Since primitive laws are simpler – dealing
with a few language constructs – they can be more easily proven sound. By construction,
a composition of laws is also correct, providing safe refactorings for object models.

2.2 Program Refactoring

The Java-like language is inspired by Banerjee and Naumann’s work [19]; it does not
consider interfaces, multithreading or library classes. A program is a set of classes,
a class table CT , which always includes a class named Main, with a main method
as the starting point of execution. A generic class declaration is defined as follows:
class C extends D { T̄ f̄ ; M̄ }. , where T̄ f̄ stands for typed fields in the class, while M̄
represents a list of methods.

Only bool and unit (the empty type) are predefined as primitive types in the
language; from these types, other primitives may be built. Furthermore, expressions do
not have side effects; object construction occurs only as a command. Similarly, method
calls occur in special assignments x:= e.m(ē) defining both side effect and a return
value. Methods can be defined recursively, so loops are omitted.

We adapted to this language a complete set of laws of programming [18]. The
following law, for instance, establishes that instantiations of a class B can be replaced by
instantiations of its superclass A, as long as B is an empty class. This replacement can
occur either in the body of A’s methods or any method in the set of class declarations
CT (a class table). CT [exp′/exp] denotes a substitution. Replacement is applicable
when expressions of type A are not cast with B and B instances are assigned only to

4

A-typed variables. The opposite application is constrained by a proviso: tests involving
A-typed variables with B may not work if A’s instances become B instances. fds and
mts represent, respectively, fields and methods. A primed metavariable, like mts′, is a
transformed version of the unprimed one, as defined in the where clause. A sample of
other laws used in this paper are presented in Appendix A.

Law 1 〈new superclass〉
class A extends C {

fds
mts
}
class B extends A { }
CT

=

class A extends C {
fds
mts′

}
class B extends A { }
CT ′

where
CT ′ = CT [new A/new B]
mts′ = mts[new A/new B]
provided
(→) (1) B is not used in type casts or tests in CT or mts for expressions of type A;
(2) x := new B only appears if type(x) ≤ A;
(←) Variables of type T ≤ A are not involved in tests with type B.

In addition to equivalence laws, there are laws for class refinement that involve
internal representation changes such as addition and removal of private fields. In these
laws, simulation is established within a class by a constructor making the coupling
invariant true and every method executing on a valid state and resulting in another
valid state, as they are based on Morgan’s refinement notion [22]. These laws have been
proven sound and complete as well, although within a language lacking object refer-
ences [18]. In order to avoid this limitation in work, we guarantee modular reasoning
by using confinement as a requirement for programs.

Ownership confinement [23] is a discipline for controlling aliasing in object-oriented
languages, restricting access to designated representation objects (reps), except through
their owners, to avoid representation exposure [19]. An owner is a class that maintains
representation objects stored in the fields of its objects. Banerjee and Naumann [19]
present a number of static analysis rules for ensuring a property called by them safety,
which is shown in their work to imply confinement. The input is a class table and its
division into three sets of classes: Own and Rep, defining the possibly non-disjoint sets
of owner and representation classes, respectively, and Client with all other classes. The
analysis is modular, as only Own and Rep code is constrained (with one exception, for
new commands). They present the rules showed in Table 1, as adopted in this work.

3 Synchronization

Given a specific consistency relationship between object models and programs, we for-
malize a unidirectional approach in which model refactoring changes are transferred to
a consistent program through the application of a synchronizer. In order to investigate
how this consistency can be maintained throughout refactoring tasks, the consistency
relationship is also described.

5

Table 1. Confinement Rules [19]

1. Public methods declared in Own or subclasses cannot return Rep types; otherwise, references to internal objects
might leak to clients;

2. Methods inherited or declared by Own cannot have parameters of Rep types; otherwise, non-owner subclasses
might have access to Rep instances;

3. Rep classes cannot inherit any methods from non-Rep superclasses; for instance, a method could return self
to a client, which is highly undesirable;

4. For any field access e.f , if e is of type Own, it cannot access fields of type Rep, unless e is self ; this rule must
be checked only for public fields, as it is guaranteed by type safety for private fields;

5. For assignments x:= new B in Client, B cannot be Rep or any of its subclasses; otherwise, these clients would
have direct access to Rep instances;

6. For method calls x:= e.m(ē): (1) if e is a Client object, and the call is within Own or Rep (or subclasses), m
cannot have Rep parameters (otherwise Rep instances could leak); also, (2) if the call is within Own, m is declared
in Own, and e is self , parameters and return may be Rep type. The second case in fact weakens the confinement
constraints with a condition that can be detected by static analysis.

3.1 Synchronizers

For object models, we adopt the approach of primitive transformations being composed
into refactorings. To each Alloy law from the catalog we associate a synchronizer – set
of conditional program transformations disciplined by laws of programming – to be
applied to a program, making it consistent with the transformed object model. The
mechanics of the synchronization is depicted in Figure 1, where OM represents an
object model, and P a program. The first step is the application of a model refactoring
(a) – in this case, made up of two Alloy laws, X and Y, applied from L-R. Next, each
applied law is associated with a synchronizer (depicted as “corresponds” in Figure 1;
for instance, Law X corresponds to Sync X), applied to P. The sequential application
of the synchronizers in (b) results in a synchronized program.

Fig. 1. Model-driven refactoring with synchronizers

6

A synchronizer carries out program refactoring by applying a sequence of law appli-
cations, on the assumption of the consistency relationship defined in the next section.
The only preconditions for the application of synchronizers is that the program must
have confinement for a subset Own of classes and in syntactic and semantic consistency
with the previous version of the model. Therefore, the synchronizers are especially con-
ceived to exploit the model invariants that are known to be met by the program; pro-
gram transformations are specialized with high-level assumptions about the program.
In fact, we analyzed each Alloy law and conceived synchronizers for both application
directions.

A synchronizer must then exhibit the following characteristics: it rewrites programs
for updating corresponding abstractions that were refactored in the object model, and
preserves program behavior. Therefore, every synchronizer fulfills a few requirements:
its application results in programs that refine the previous version and establish con-
sistency with the refactored model, syntactically and semantically, as explained next.
In addition, confinement is maintained.

3.2 Consistency Relationship

A desirable property of object models is abstraction; ideally, they can be implemented
by several structurally-distinct programs, as long as the invariants hold during their
executions. Structures in the model must be somehow implemented in the program,
offering a basis for evaluating whether the modeled constraints are met. We call this
correspondence syntactic consistency. Given a syntactic consistency relationship, fulfill-
ment of model invariants by the executions of a given program is regarded as semantic
consistency.

We chose a particular syntactic consistency: there must be one direct class for each
signature declared in the model (for simplicity, this specification relies on the equality
between names, although a mapping between names could be easily established as
well). Also, all supersignatures of a signature must have corresponding superclasses
of class S, indicating that more superclasses may be declared in the program, but
the modeled hierarchy is maintained. Likewise, every relation is mapped to one field
with an exactly matching type, with one additional constraint: relations with single
multiplicity (yielding a scalar value) are mapped to single field, whereas relations with
set multiplicity must be mapped to collection-type fields. Additional classes, fields or
methods can be freely declared in the program.

Regarding semantics, an Alloy model defines valid states for a given system – in-
terpretations [16] – that contain mappings of signatures and relation names to sets
of object values. Object values may be single objects for sets and pairs of objects for
relations. We consider the semantics of an object model in Alloy as the set of all valid
interpretations satisfying all modeled invariants. Each of these interpretations consists
of all valid assignments of values to signatures and the relation names. All modeled
invariants – implicit or explicit [16] – are satisfied. Invariants are implicit when they
constrain the model but are not declared in facts, such as implicit constraints from
extends.

For programs, states are formalized as heaps of object values, mapping class names
to sets of objects and field names to pairs of object values (references). If an object in
a heap contains a field storing a null value, no pair of values exists with that object
as the first member. The semantics of a program is given by the set of sequences of

7

heaps resulting from all possible execution traces – depending on the possible program
inputs.

It would be straightforward to consider all heaps from every execution trace; how-
ever, this approach does not truly reflect the real intentions of consistency checking,
since some heaps may be acceptably invalid at some well-defined points of the program.
We adopt a specification methodology by Barnett et al. [24], in which every object is
added a special validity field. If this field has a true value, the invariants over its state
should hold, and consistency checking is only performed when all objects are valid.
This field can only be modified through the use of two special statements, unpack
and pack. The command unpack obj sets the field to false, while pack obj does the
opposite.

Our semantic consistency regards solely valid heaps (which we call heaps of interest).
A program is in semantic consistency with a model if, and only if, it is in syntactic
consistency, and, for every valid heap from its execution, there is a corresponding
interpretation from the semantics of the model.

3.3 Examples of Synchronizers

For each applied Alloy law, two synchronizers are defined. In this paper we show
two synchronizers associated with Law 1: introduce and remove subclass. We define
synchronizers in a notation for refinement tactics, based on the Angel language [25].
Angel constructs are appropriate for describing law applications, with the needed ar-
guments. Tactics may be a simple law applications, with the law name with argu-
ments. A law application may have two possible outcomes: if all provisos are satisfied,
then program is transformed. Otherwise, the application of the law fails. For instance,
law newSuperclass(U, X,→) applies Law A (new superclass) to the program, with
three arguments: the superclass (U), the subclass (X) and the application direction
(→: from L-R). A special atomic tactic, skip, always succeeds, leaving the program
unchanged.

In order to sequentially composing two tactics, the t1; t2 construct can be used.
Similarly, tactics combined in alternation have the form (t1|t2). First, t1 is applied
to the program; if this application is successful, then the composite tactic succeeds.
Otherwise t2 is applied. Finally, if t2 fails, then the whole tactic aborts (which is a more
critical situation than failure). When the tactic contains many choices, the first choice
that succeeds is selected. In addition, the language allows us to define pattern matching
within a program, with the constraint applies to. For instance, applies to cmd[(X)e]
do t applies the t tactic to every command in the program that includes an expression
cast with X.

Introduce Subclass Law 1(L-R) introduces a subsignature for one of the declared
signatures. This makes U abstract according to the modeled invariant (X=U-S-T). Here
we show the associated synchronizer, that accepts a consistent program. However ad-
ditional classes can be declared in the program hierarchy.

Tactic introduceSubclass(X, U : Class)
(law rename(X, X′) | skip);
law classElimination(setExtends(X, U),←);
law newSuperclass(U, X,→);

end

8

The trivial law rename(X, X ′) renames the X class. If it fails (for the case in which
the class is not declared), nothing happens (skip). If class X is already present, it
is freely renamed to X’, because X is considered in this case an implementation detail
that was not modeled. This action does not have impact on the consistency, as renamed
declarations are not in the model. Next, the synchronizer introduces the new class X as
a direct subclass of U, with Law class elimination (Appendix A). setExtends makes
X a direct subclass of U . Other subsignatures of U will be declared as classes, although
their inheritance relationship with U may be indirect – implementation-only subclasses
are allowed. Finally, every U object creation in the entire program is replaced by X
instantiations, by Law 1 from L-R ([new X/new U]).

The synchronizer provides evidence on how model-driven refactoring can improve
tool support for refactoring, since the semantic properties from object models can aid
refactoring automation. In introduceSubclass, the program is refactored to a specific
configuration of U objects, making them X instances. This information cannot be
obtained solely from the source code, then introducing a plain subclass would not
include the changes applied by the synchronizer.

Remove Subclass The opposite transformation given by Law 1 removes subsignature
X assuming the invariant (X=U-S-T); S and T become the U’s only subsignatures. The
synchronizer removes the corresponding X class, although, differently from the model,
the program class may declare fields and methods, and may have implementation-only
subclasses. These implementation details must be rearranged, as showed in Figure 2.

Fig. 2. Remove subclass synchronizer

The following definition uses several auxiliary tactics, which are informally shown
in this paper; their complete definitions are described in [17].

Tactic removeSubclass(X : Class)
tactic moveUpFields(X);

9

tactic moveUpMethods(X);
tactic changeDeclarationsTypetoSuper(X);
applies to cmd[(X)e] do law eliminateCastExpressions(cmd[(X)e],→);

tactic eliminateTypeTests(X, ‘‘bool isX(){ result := self is X }”);
tactic eliminateNew(X);
law changeSuperfromEmptyToImmediateSuperclass(immedSubs(X),

super(X),→);
law classElimination(X,→);

end

The auxiliary tactic moveUpFields pulls up the fields declared in X to the immediate
superclass. If the target superclass has any other subclass declaring the moved field,
the tactic moves two or more fields with the same name to the superclass in one
step; if it is not the case, the single field is moved to the superclass, with Law move
field to superclass in Appendix A). Next, X’s methods are pulled up as well, with the
auxiliary tactic moveUpMethods. In this case, the synchronizer must deal with two
cases: redefined and non-redefined methods:

– The redefined methods are removed from X and the corresponding method body in
the superclass is modified with an if command that adds the body of the moved
method, using Law move redefined method to superclass. Also within the tactic,
super method calls are eliminated by inlining from object to X, top-down in the
hierarchy (Law eliminate super in Appendix A); for this, all private fields in this
hierarchy are first made public;

– The non-redefined methods must be copied to other subclasses of B, with an empty
body, so no type errors occur with the new method in B.

After removing its fields and methods, X is replaced by its superclass on declara-
tions over the program, with changeDeclarationsTypetoSuper; in this tactic, Law
change field type and analogous laws are applied. Next, In the main tactic, casts
to X are removed with another law (eliminate casts of expressions). Consecutively,
eliminateTypeTests removes type tests involving X, with the following steps:

1. A boolean method isX is declared within B and its subclasses. This method is a
surrogate for the type tests that are going to be eliminated.
The method body returns the value of testing self with X and subclasses (in this
example, Z);

class B { . .
bool isX (){ result := s e l f i s X ∨ s e l f i s Z} }

2. Every occurrence of x is X must be replaced by a special statement, a parameter-
ized command [18]. A parameterized command of the form test:= (result:= x
is X) is then be replaced by a method call to isX. For avoiding null pointer errors,
we introduce an if statement for ensuring that the expression being tested is not
null;

i f (x=null) then t e s t := f a l s e else t e s t := x . isX ()

3. Additional changes are performed for backing up the isX test. Field type is in-
troduced and initializations to this field are added to X’s constructor and every
constructor in X’s subclasses;

class X extends B { constr { . . ; s e l f . type := "X"} }
class Z extends X { constr { . . ; s e l f . type := "Z"} }

10

4. Within overriding isX implementations, expression self is X is replaced with the
equivalent expression self.type = "X";

Regarding constructors, X declares a constructor that must be replaced, as ev-
ery new X will be rewritten as new B. Hereafter, we consider a command of type
x:= newX to be a syntactic sugar for the following sequential composition: x:= new’ X;
x.newX(), in which new’ is the regular instantiation of an object, whose reference is

assigned to x. It is followed by a call to newX, a method of class X containing the actual
constructor body, used for initializing fields. After defining this replacement for every
X instantiation, the synchronizer moves newX to the superclass B (which contains the
initialization for the type field). After this, the new’ X commands can be replaced by
new’ B commands in the whole program, with Law A. An excerpt of the result can
be seen next.

class B { . . string type ; . .
bool isX () { result := s e l f . type="X" ∨ s e l f i s Z }
unit newX() { { . . s e l f . type := "X"} } }

class X extends B { } . .
B x:= new ’ B; x . newX () ; . .

Finally, the extends clause of X’s subclasses, then X can be eliminated. In general,
automated refactorings only remove subclasses when they are not used anywhere in
the program. In contrast, this synchronizer can prepare programs when removal of the
given subclass is desirable. It replaces all uses of this subclass by the correspondents
given by an invariant (stating that class U is abstract).

The defined synchronizers follow the correspondence in Table 2. Other laws of mod-
eling do not have corresponding synchronizers, as they deal with syntactic sugar in the
model, which does not affect the syntactic consistency.

Table 2. Synchronizers corresponding to Alloy laws

Alloy Law synchronizer → synchronizer ←
1.Introduce Relation introduceField removeField

2.Introduce Subsignature introduceSubclass removeSubclass

3.Introduce Signature introduceClass removeClass

4.Introduce Generalization introduceSuperclass removeSuperclass

5.Split Relation splitField removeIndirectReference

6.Remove Lone Relation fromOptionalToSetField fromSetToOptionalField

7.Remove One Relation fromSingleToSetField fromSetToSingleField

4 Soundness

A soundness theorem is established for synchronizers. The rationale behind this theo-
rem is the set of conditions for a sound synchronized refactoring. Given these condi-
tions, the compromises for automating the involved transformations can be analyzed
in depth, showing issues that will recur in several MDD contexts. Thus, proofs for
synchronizers constitutes the core of our approach. Sound synchronizers depend on the
defined consistency relationship and two additional properties: (1) they must express
refinements and (2) preserve program confinement.

11

Theorem 1 is defined for an arbitrary object model (OM), and an arbitrary program
(P), in which the application of a law to OM results in OM ′, and a synchronizer applied
to P results in P ′. We define additional predicates from law definitions: Refines(P’,P),
in which the second argument refines the first, and Confined(P), stating that P satisfies
the static analysis confinement rules from Table 1, for a subset Own of the class table.
premises(OM, OM ′, P) states the conditions before the application of a synchronizer,
as defined in Appendix B – an Alloy law applied to OM results in OM’, and consistency
and confinement constraints apply to OM and P.
Theorem 1. ∀ OM, OM ′, P , P ′ • premises(OM, OM ′, P ′) ⇒

syntConsistency(OM ′, P ′) ∧ Confined(P ′) ∧
Refines(P ′, P) ∧ semanticConsistency(OM ′, P ′)

The proof of each synchronizer is split in four supporting lemmas. The theorem’s
meta-variables OM , OM ′, P and P ′ are concretized for each synchronizer.

Lemma 1. ∀OM, OM ′, P, P ′ • premises(OM, OM ′, P)⇒ syntConsistency(OM ′, P ′)
Lemma 2. ∀OM, OM ′, P, P ′ • premises(OM, OM ′, P)⇒ Confined(P ′)
Lemma 3. ∀OM, OM ′, P, P ′ • premises(OM, OM ′, P)⇒ Refines(P ′, P)
Lemma 4. ∀OM, OM ′, P, P ′ • premises(OM, OM ′, P)⇒ semanticConsistency(OM ′, P ′)

We proved the synchronizers listed in Table 2, as detailed in [17]; for illustration,
here we present the proof for removeSubclass. Model and program definitions for the
proof are shown in Appendix B. Assuming premises(OM, OM ′, P), we now prove the
four previous lemmas.

Proof for Lemma 1. Since no relations are added or removed, the mapping between
relations and fields is unchanged. Regarding signatures, X is removed, which is the only
class that is removed from the program, establishing the conformance. The hierarchy
remains unchanged. Thus syntConsistency(OM ′, P ′) follows from the premises.

Proof for Lemma 2. By case analysis on P ′ for the six static analysis rules of
confinement from Table 1. For each rule, we justify its maintenance in terms of the
premises and P ′. In this case, X /∈ Rep.

1. Class B is the only one to receive new methods. If B ∈ Own, then from premise(OM,
OM ′, P) methods previously in X could never have Rep return types;

2. No inherited methods are added, thus from premise(OM, OM ′, P) no inherited
methods have Rep parameters;

3. Same as above, thus from premise(OM, OM ′, P), Rep classes do not inherit meth-
ods from non-Rep classes;

4. No public fields of Own classes are used outside their declaring module, thus from
premise(OM, OM ′, P) no e.f is seen, unless e is self ;

5. From premise, if x:=new X was outside Own classes, X /∈ Rep. Assuming the
command is outside Own, it is impossible to have X /∈ Rep and B ∈ Rep, since all
subclasses of Rep classes are also included. Therefore, property is maintained;

6. From premise, e.m(..) within Own or Rep does not have Rep parameters; no
changes in parameters or Rep are made, so property is maintained.

Proof for Lemma 3. Since the synchronizer steps are exclusively defined as law
applications and class refinement [18], P refines P ′. Some of the applied laws can be
seen in Appendix A3.
3 The laws have been proven semantics preserving for a programming language without ref-

erences [18]. However, we have proven that these laws are still correct in the presence of
confinement [17]

12

Proof for Lemma 4. First, any interpretation can be reduced without the mappings
to X. This is possible since values of X cannot be interpreted alone, from the given
invariant X = U −S−T . Consequently, semantics of OM ′ is the set of interpretations
from the semantics of OM , with mapping from X removed. Likewise, for P and P ′,
the valid heaps of P ′ are the valid heaps of P reduced in mappings from the X class;
this conclusion is implied from the invariant that is assumed in the program. Also, the
changed commands (type casts and tests) do not add or remove new possible heaps;
all X instances that are not B instances are still mapped by U in the heap.

5 Discussion

In this section, the contributions and limitations of our synchronization model are
discussed, especially topics related to automation and quality of refactorings.

5.1 Invariants as Basis for Refactoring Automation

The practice of refactoring has been improved by supporting tools, avoiding manual
work and increasing trust on semantics preservation. Usually a catalog of refactorings is
offered, from which developers can choose the desired transformation for the problem in
context. These automated refactorings present preconditions that are checked against
the code subject to refactoring, in order to ensure correctness. While being effective
to ensure safe refactorings – at least in theory – it leads to prevention of refactoring
on programs that would be eligible if some semantic assumptions about the program
behavior were considered.

Semantic assumptions about the program can be provided by object models, then
synchronizers exploit invariants to increase the applicability of some automated refac-
torings. Transformations based on these invariants can be applied to programs that
would not be eligible for refactoring using the current tools. When removing a sub-
class, for example, the synchronizer assumes the invariant X = U − S − T as true in
every reachable program state outside a unpack/pack block. In this case, the subclass
X can be removed, given that U is an abstract class.

Certainly there are several open questions. For instance, it is not clear how invari-
ants will be automatically identified by a refactoring tool for the application of specific
refactorings. Our intuition is that catalogs of program refactorings could be extended
with improvements based on invariants, conditionally applied based on a set of in-
variants. Also, consistency is the enabling condition of synchronizers, which is hard to
verify in some scenarios (especially semantic consistency).

5.2 Quality of refactorings

With formal synchronizers, quality factors such as cohesion and legibility still requires
some improvement in the resulting program. For instance, the successive application of
removeSubclass may result in numerous implementations of methods for eliminating
type tests, which is clearly amenable to simplification. Therefore, additional refactoring
might be necessary, such as inlining these calls and removing methods. These transfor-
mations are also formalizable as laws of programming. Although theoretically feasible,
these law applications could not be automatically applied in the formal model, since

13

our initial assumption is that each synchronizer is recorded and independently applied
in order, disregarding the composed refactoring that was applied to the model.

In this scenario, we envisage developer feedback as a possible answer to this chal-
lenge, in addition to complementary synchronizers. In this case, the application of
the model refactoring could bring additional information that is then applied in the
program refactoring, according to feedback from the developer of a supporting tool.
If the developer agrees, a complementary synchronizer, containing the additional law
applications, is automatically applied. The outcome of the complementary synchro-
nizer is an improved program, yet still conforming, syntactically and semantically, to
the refactored model. This additional synchronizer is conditional to the employment
of the specific model refactoring for introducing several fields at the same time, not
independent of isolated synchronizers.

Furthermore, due to the independence of synchronizer applications, information
regarding the composed model refactoring as a whole is not used for improving the re-
sulting program, often missing the refactoring’s original goal. An alternative for dealing
with this problem is to refactor programs exclusively based on the refactoring’s initial
and final models, ignoring the intermediate law applications. For such approach, we see
two possible alternatives: (1) a fixed catalog of major refactorings, whose corresponding
synchronizers would be tailored for these refactorings; and (2) automatically generate
a synchronizer from the applied model refactoring. The first option seems to be easier,
but likely to end up with the same issue. The second option is visibly more complex.

5.3 Consistency and Synchronizers

The required consistency relationship was adjusted during the formalization of syn-
chronizers. Several choices have been considered and this scenario allowed us to gather
evidences on how the chosen consistency affects the final results of model-driven pro-
gram refactorings.

The rule of thumb states that, the more abstract are the models, the looser (differ-
ent possible implementations for the same object model) is the syntactic consistency
relationship. The syntactic mappings between model and program declarations drive
the freedom of implementation for modeled signatures and relations. At the end, we
adopted a tighter consistency relationship than initially expected: signatures must be
implemented as classes and relations as fields in the corresponding class. Nevertheless,
the required consistency relationship still preserves some abstraction: methods and ad-
ditional classes can be freely implemented, and hierarchies can contain more classes
than modeled. In addition, the modeled signatures and relations must be implemented
in a uniform way, so the synchronization is still compelling for the user. As refactoring
is a structural modification, the declarations in the model must be reflected in the
source code for desired transformation; otherwise, the task would be rather pointless.

In addition, the looser is the syntactic consistency, the more complex become the
program transformations needed to refactor the program. When giving more freedom
of implementation to a specific model declaration, synchronizers must consider every
implementation option for this declaration, in order to achieve automation. In this
context, synchronizers must be more elaborate, which often clutters the program, de-
creasing quality. This is certainly a trade-off for any synchronization approach.

14

6 Related Work

Co-evolution between models and programs is dealt with by several related approaches.
For instance, Harrison et al. [9] show a method for maintaining conformance between
models (UML class diagrams) and Java programs, by advanced code generation from
models at a higher level of abstraction, compared to simple graphical code visualization.
This decision is consonant to our choices, as the relationship between model and source
code avoids round-tripping. Their consistency relationship is more flexible; we formal-
ized a more strict structural similitude between the artifacts. No details are offered on
how their consistency mappings will consistently evolve.

The concept of coupled transformation in Lammel’s overview [10] has a close corre-
spondence to our approach. Coupled transformations occur when “two or more artifacts
of potentially different types are involved, while transformation at one end necessitates
reconciling transformations at other ends such global consistency is reestablished” [10],
which is the scenario for model-driven refactoring. This type of synchronization seem to
fit into the “symmetric reconciliation” category, in which two distinct transformations
– for model and program – are defined for a given consistency relationship, adapting
changes according to the specific level of abstraction for which they are defined.

Bidirectional model transformations (bx) [11,12] have the purpose of formalizing
synchronization between changed artifacts during the software life cycle (in this ap-
proach, model is a comprehensive concept, which includes programs). The proposal
includes an abstract definition of synchronizers, which may even be bidirectional (up-
dating both artifacts). Several concepts are similarly formulated – such as unidirectional
synchronizers – but no particular approaches of bx are defined for object models and
programs. Therefore, our results could be confirmed in such scenario by concretizing
bx.

The Harmony tool [13], for instance, is based on the concept of bx. The authors
introduce the concept of relational lenses, which are pairs of transformation functions,
namely get and putback, between source and target artifacts. The get function trans-
forms a source artifact into a target artifact. Updates can be performed on the target
artifacts, then an updated source artifact can be obtained with the putback function,
with information from the original source artifact and the updated target artifact.
Analogously, in our theory get is similar to the required consistency relationship, al-
though we avoid generation of artifacts. The source artifact can be a program, and the
target can be an object model.

Another related study is carried out by Antiewicz and Czarnecki [26], which formally
defines several synchronization alternatives between software artifacts. Their synchro-
nization definitions are applied with the help of formal operators. Several elements
are common with our approach, for instance developer feedback for automation and
related and independent transformations. Since we focus on a specific type of synchro-
nization (object models to programs), our theory is able to reveal detailed issues about
consistency and transformation.

7 Conclusions

In this paper, we formalized a synchronization theory from object model refactor-
ing to object-oriented programs. The theory is backed by a formal infrastructure of
primitive transformations proved to be semantics preserving, both for object models

15

and programs, and a specific consistency relationship. Synchronizers are formalized
as a sequence of primitive program transformations, explicitly avoiding generation
of programs from object models. The investigation unveils several issues concerning
consistency, refactoring automation and behavior preservation and quality, providing
evidence over the challenges that effective MDD methodologies will face in order to
support evolution. Potential improvements for refactoring tools are identified, since
the semantic properties from object models can aid refactoring automation. In our
synchronizers the invariants expressed in the object model offer semantic information
to extend its automatic refactoring capabilities.

The level of abstraction is a key aspect. First, useful model refactoring requires that
the main structures be maintained. Second, less restrictions to the source code imple-
mentation imply in more transformations required to make the source code conforming
to the refactored model, which would lower the quality of the outcome. Assumptions
include reliance on the maturity of consistency checking tool support in practice and
a closed-world context in which we have access to the full source code of a program.

The theory described in this paper is language specific, although the formalization
is amenable to adaptation to other object-oriented languages. In addition, our approach
supports only refactoring; dealing with generic evolution in MDD is a challenge for fu-
ture research. A potential solution might rely on primitive transformations for standard
evolution, and model invariants could be used to transform programs accordingly.

Acknowledgment

We’d like to thank Augusto Sampaio, Alexandre Mota, Ana Cristina de Melo, Marcel
Oliveira, Juliano Iyoda, and all anonymous reviewers for the relevant comments. This
work was partially supported by the National Institute of Science and Technology for
Software Engineering (INES4), funded by CNPq, grant 573964/2008-4.

References

1. Fowler, M.: Refactoring—Improving the Design of Existing Code. Addison Wesley (1999)
2. Opdyke, W.: Refactoring Object-Oriented Frameworks. PhD thesis, UIUC (1992)
3. Jackson, D.: Software Abstractions: Logic, Language and Analysis. MIT Press (2006)
4. Liskov, B., Guttag, J.: Program Development in Java. Addison Wesley (2001)
5. Mens, T., Tourwe, T.: A survey of software refactoring. IEEE Transactions on Software

Engineering 30(2) (2004) 126–139
6. Greenfield, J., Short, K., Cook, S., Kent, S.: Software Factories: Assembling Applications

with Patterns, Models, Frameworks, and Tools. Wiley (2004)
7. France, R.B., Rumpe, B.: Model-driven development of complex software: a research

roadmap. In: FOSE ’07. (2007) 37–54
8. Hettel, T., Lawley, M., Raymond, K.: Model synchronisation: Definitions for round-trip

engineering. In: Theory and Practice of Model Transformations. (2008) 31–45
9. Harrison, W., Barton, C., Raghavachari, M.: Mapping UML Designs to Java. In: Pro-

ceedings of OOPSLA 2000. (2000) 178–187
10. Lammel, R.: Coupled software transformations. (In: SET 2004) 31–35
11. Diskin, Z.: Algebraic models for bidirectional model synchronization. In: MoDELS 2008.

(2008) 21–36

4 www.ines.org.br

16

12. Stevens, P.: A Landscape of Bidirectional Model Transformations. GTTSE 2007 (2008)
408–424

13. Bohannon, A., Pierce, B., Vaughan, J.: Relational lenses: a language for updatable views.
In: PODS 2006. (2006) 338–347

14. Massoni, T., Gheyi, R., Borba, P.: Formal model-driven program refactoring. In: FASE-
ETAPS 2008. (2008) 362–376

15. Massoni, T., Gheyi, R., Borba, P.: An approach to invariant-based program refactoring.
In: Setra Workshop 2006. (2006) 91–101

16. Gheyi, R., Massoni, T., Borba, P.: A static semantics for alloy and its impact in refactor-
ings. ENTCS 184 (2007) 209–233

17. Massoni, T.: A Model-Driven Approach to Formal Refactoring. PhD thesis, UFPE (2008)
18. Borba, P., Sampaio, A., Cavalcanti, A., Cornélio, M.: Algebraic Reasoning for Object-

Oriented Programming. Science of Computer Programming 52 (2004) 53–100
19. Banerjee, A., Naumann, D.A.: Ownership confinement ensures representation indepen-

dence for object-oriented programs. Journal of the ACM 52(6) (2005) 894–960
20. Gheyi, R., Massoni, T., Borba, P.: An abstract equivalence notion for object models.

ENTCS 130 (2005) 3–21
21. Gheyi, R., Massoni, T., Borba, P.: A Complete Set of Object Modeling Laws for Alloy.

In: SBMF. (2009) 204–219
22. Morgan, C.: Programming from Specifications. Second edn. Prentice Hall (1998)
23. Clarke, D.: Object Ownership and Containment. PhD thesis, UNSW (2001)
24. Barnett, M., DeLine, R., Fähndrich, M., Leino, K.R.M., Schulte, W.: Verification of

Object-Oriented Programs with Invariants. Journal of Object Technology 3(6) (2004)
27–56

25. Martin, A.: Machine-Assisted Theorem-Proving for Software Engineering. PhD thesis,
Penbroke College (1994)

26. Antkiewicz, M., Czarnecki, K.: Design space of heterogeneous synchronization. GTTSE,
Braga, Portugal (2008) 3–46

A Additional Laws of Programming

Law 2 〈class elimination〉

CT cd1 = CT

provided
(↔) cd1 6= Main;
(→) name(cd1) is not used in CT ;
(←) (1) cd1 is a distinct name;
(2) Field, method and superclass types in cd1 are declared in CT .

Law 3 〈move field to superclass〉
class B extends A{

fds
mts
}
class C extends B{

pub T a; fds′

mts′

}

=

class B extends A{
pub T a; fds
mts
}
class C extends B{

fds′

mts′

}

provided

(→) The field name a is not declared by the subclasses of B in CT ;
(←) D.a, for any D ≤ B and D 6≤ C, does not appear in CT, c, mts, or mts′.

17

Law 4 〈move redefined method to superclass〉

class B extends A {
ads
T m(T̄ x̄) {S}
mts
}
class C extends B {

ads′

T m(T̄ x̄) {S′}
mts′

}

=cds,

class B extends A {
ads
T m(T̄ x̄) {

if ¬(self is C)
then S
else S′

}
mts
}
class C extends B {

ads′

mts′

}
provided
(↔) (1) super and private fields do not appear in S′; (2) super.m do not appear in mts′;
(→) S′ does not contain uncast ocurrences of self ;
(←) m is not declared in mts′.

Law 5 〈eliminate super〉
Consider that CDS is a set of two class declarations as follows.
class B extends A{

fds
T m (T̄ x̄) { pc }
mts
}

class C extends B{
fds′

mts′

}
Then we have that

CT CDS, CB super.m = pc

provided
(→) super and the private fields in fds do not appear in pc.

Law 6 〈eliminate cast of expressions〉
If CT, ABle : B, e : B′, C ≤ B′ and B′ ≤ B, then

CT, ABle := (C)e = {e is C}le := e

Law 7 〈change field type〉
class C extends D{

pub T a; fds
mts
}

=

class C extends D{
pub T ′ a; fds
mts
}

provided
(↔) T ≤ T ′ and every non-assignable occurrence of a in expressions of mts, CT and c is cast with T or
any subtype of T declared in CT .
(←) (1) every expression assigned to a, in mts, CT and c, is of type T or any subtype of T ;
(2) every use of a as return value is for a corresponding formal parameter of type T or any subtype of T .a

a Almost identical laws are defined for parameters, return values and local variables.

18

B Proof Definitions

B.1 Premises of the main theorem

premises(OM, OM ′, P ′) = syntConsistency(OM, P) ∧ Confined(P) ∧
Refines(OM ′, OM) ∧ semanticConsistency(OM, P)

The formal definition of Refines(OM ′, OM) is fully shown in related work [16]. In
summary, it establishes that the refined object model’s instances (assignments of values
to signatures and relations) make a subset of the more abstract model’s instances. The
whole catalog of Alloy laws is proven to respect this refinement notion.

B.2 Definitions for proving removeSubclass

Program templates are assembled directly from the synchronizer; in those, classes may
extend another class. Let OM, OM ′ be any two object models and P, P ′ two programs
as follows. The where clause declaratively define the program constructs that are
rewritten by the synchronizer. Special functions are used in quantifications, such as
hierarchy(X, object), which yields a set of classes from X to object, hierarchically.
Similarly, meths yields all methods from a list of classes, and body(m) gives the com-
mands within method m. A boolean expression within braces ({exp.isX()}) indicates
an assertion, that must be fulfilled by the execution before the succeeding command.

OM OM ′

ps
sig U { rsU }
sig S extends U{ rsS }
sig T extends U{ rsT }
sig X extends U{}
fact F {

forms
X = U − S − T

}

ps
sig U { rsU }
sig S extends U{ rsS }
sig T extends U{ rsT }
fact F { forms }

P P ′

CT
class U [extends]{..mtsU}
class S [extends]{..mtsS}
class T [extends]{..mtsT}
class B [extends]{

adsB;
mtsB}

class X extends B{
adsX;
mtsX;
constr {c}
}
class Z extends X{

..mtsZ′}
constr {b}
}

CT ′

class U [extends]{..mtsU ′}
class S [extends]{..mtsS′}
class T [extends]{..mtsT ′}
class B [extends]{

adsB; adsX;
pub String type;
mtsB′; mtsX;
bool isX(){

result := (self .type = ”X” ∨
self .type = ”Z”)
}
void newX(){

c; self .type := ”X”
}
}
class Z extends B{

..mtsZ′;
constr {b; self .type := ”Z” }
}

where:
S, T, B ≤ U ;
CT ′ = rewrite(CT); the rewrite function performs the following substitutions:

19

[unpack x; x := new B; x.newX(); pack x / x := new X];
[{exp.isX()}cmd[exp]/cmd[(X)exp]];
[exp.isX()/exp is X];
[B id/X id], and id is any declared identifier;
A′ = A[pub Type f/pri Type f]|A ∈ hierarchy(X, object);
mt′ = mt[body(m)/super.m()],mt ∈ meths(hierarchy(X, object)),
and m is a method called within mt;
mtB′ = mtB[if ¬(self is X) then b else b′],

mtB ∈ name(mtsX ∩mtsB), b = body(B.m), b′ = body(X.m)

