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1. Introduction 

The focus of this chapter is on facilities and network access-control applications of 
speaker recognition. Speech processing is a diverse field with many applications. 
Figure 8.1 shows a few of these areas and how speaker recognition relates to the rest 
of the field. This chapter will emphasize the speaker recognition applications shown 
in the boxes of Figure 8.1. 

Speaker recognition encompasses verification and identification. Automatic 
speaker verification (ASV) is the use of a machine to verify a person’s claimed 
identity from his voice. The literature abounds with different terms for speaker 
verification, including voice verification, speaker authentication, voice authentication, 
talker authentication, and talker verification. In automatic speaker identification 
(ASI), there is no a priori identity claim, and the system decides who the person is, 
what group the person is a member of, or (in the open-set case) that the person is 
unknown. General overviews of speaker recognition have been given by Atal, 
Doddington, Furui, O’Shaughnessy, Rosenberg, Soong, Sutherland, and Jack 
[2,9,13,28,38,39,46]. 

Abstract A tutorial on the design and development of automatic 
speaker recognition systems is presented. Automatic speaker 
recognition is the use of a machine to recognize a person from a 
spoken phrase. These systems can operate in two modes: to 
identify a particular person or to verify a person’s claimed 
identity. Speech processing and the basic components of 
automatic speaker recognition systems are shown and design 
tradeoffs are discussed. The performances of various systems are 
compared. 
Keywords: Access control, authentication, biometrics, 
biomedical measurements, biomedical signal processing, 
biomedical transducers, communication system security, computer 
network security, computer security, corpus, databases, 
identification of persons, public safety, site security monitoring, 
speaker recognition, speech processing, verification. 
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Figure 8.1 Speech processing. 

Speaker verification is defined as deciding if a speaker is who he claims to be. This 
is different than the speaker identification problem, which is deciding if a speaker is a 
specific person or is among a group of persons. In speaker verification, a person 
makes an identity claim (e.g., entering an employee number or presenting his smart 
card). In text-dependent recognition, the phrase is known to the system and it can be 
fixed or not fixed and prompted (visually or orally). The claimant speaks the phrase 
into a microphone. This signal is analyzed by a verification system that makes the 
binary decision to accept or reject the user’s identity claim or possibly to report 
insufficient confidence and request additional input before making the decision. 

A typical ASV setup is shown in Figure 8.2. The claimant, who has previously 
enrolled in the system, presents an encrypted smart card containing his identification 
information. He then attempts to be authenticated by speaking a prompted phrase(s) 
into the microphone. There is generally a tradeoff between recognition accuracy and 
the test-session duration of speech. In addition to his voice, ambient room noise and 
delayed versions of his voice enter the microphone via reflective acoustic surfaces. 
Prior to a verification session, users must enroll in the system (typically under 
supervised conditions). During this enrollment, voice models are generated and stored 
(possibly on a smart card) for use in later verification sessions. There is also generally 
a tradeoff between recognition accuracy and the enrollment-session duration of 
speech and the number of enrollment sessions. 

Many factors can contribute to verification and identification errors. Table 8.1 lists 
some of the human and environmental factors that contribute to these errors, a few of 
which are shown in Figure 8.2. These factors are generally outside the scope of 
algorithms or are better corrected by means other than algorithms (e.g., better 
microphones). However, these factors are important because, no matter how good a 
speaker recognition algorithm is, human error (e.g., misreading or misspeaking) 
ultimately limits its performance. 
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Misspoken or misread prompted phrases 
Extreme emotional states (e.g., stress or duress) 
Time varying (intra- or intersession) microphone placement 
Poor or inconsistent room acoustics (e.g., multipath and noise) 
Channel mismatch (e.g., using different microphones for enrollment and verification) 
Sickness (e.g., head colds can alter the vocal tract) 
Aging (the vocal tract can drift away from models with age) 

Table 8.1 Sources of verification error. 
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Figure 8.2 Typical speaker-verification setup. 

Motivation 

ASV and ASI are probably the most natural and economical methods for solving the 
problems of unauthorized use of computer and communications systems and 
multilevel access control. With the ubiquitous telephone network and microphones 
bundled with computers, the cost of a speaker recognition system might only be for 
the software for the recognition algorithm. 

Biometric systems automatically recognize a person using distinguishing traits (a 
narrow definition). Speaker recognition is a performance biometric; i.e., you perform 
a task to be recognized. Your voice, like other biometrics, cannot be forgotten or 
misplaced, unlike knowledge-based (e.g., password) or possession-based (e.g., key) 
access control methods. Speaker-recognition systems can be made somewhat robust 
against noise and channel variations [25,36], ordinary human changes (e.g., time-of-
day voice changes and minor head colds), and mimicry by humans and tape recorders 
[18]. 

 
Problem Formulation 

Speech is a complicated signal produced as a result of several transformations 
occurring at several different levels: semantic, linguistic, articulatory, and acoustic. 
Differences in these transformations appear as differences in the acoustic properties of 
the speech signal. Speaker-related differences are a result of a combination of 
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anatomical differences inherent in the vocal tract and the learned speaking habits of 
different individuals. In speaker recognition, all these differences can be used to 
discriminate between speakers. 

 
Generic Speaker Verification 

The general approach to ASV consists of five steps: digital speech data acquisition, 
feature extraction, pattern matching, making an accept/reject decision, and enrollment 
to generate speaker reference models. A block diagram of this procedure is shown in 
Figure 8.3. Feature extraction maps each interval of speech to a multidimensional 
feature space. (A speech interval typically spans 10 to 30 ms of the speech waveform 
and is referred to as a frame of speech.) This sequence of feature vectors xi  is then 
compared to speaker models by pattern matching. This results in a match score zi  for 
each vector or sequence of vectors. The match score measures the similarity of the 
computed input feature vectors to models of the claimed speaker or feature vector 
patterns for the claimed speaker. Last, a decision is made to either accept or reject the 
claimant according to the match score or sequence of match scores, which is a 
hypothesis-testing problem. 
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Figure 8.3 Generic speaker verification system. 

For speaker recognition, features that exhibit high speaker discrimination power, 
high interspeaker variability, and low intraspeaker variability are desired. Many forms 
of pattern matching and corresponding models are possible. Pattern matching methods 
include dynamic time warping (DTW), hidden Markov modeling (HMM), artificial 
neural networks, and vector quantization (VQ). Template models are used in DTW, 
statistical models are used in HMM, and codebook models are used in VQ. 

 
Previous Work 

Table 8.2 shows a sampling of the chronological advancement in speaker verification. 
The following terms are used to define the columns in Table 8.2: “Source” refers to a 
citation in the references, “org” is the company or school where the work was done, 
“features” are the signal measurements such as linear prediction (LP) and log area 
ratio (LAR), “input” is the type of input speech (laboratory, office quality, or 
telephone), “text” indicates whether text-dependent or text-independent mode of 
operation is used, “method” is the heart of the pattern-matching process, “pop” is the 
population size of the test (number of people), and “error” is the equal error 
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percentage for speaker verification systems “v” or the recognition error percentage for 
speaker identification systems “i” given the specified duration of test speech in 
seconds. This data is presented to give a simplified general view of past speaker-
recognition research. The references should be consulted for important distinctions 
that are not included; e.g., differences in enrollment, differences in cross-gender 
impostor trials, differences in normalizing “cohort” speakers [40], differences in 
partitioning the impostor and cohort sets, and differences in known versus unknown 
impostors [5]. It should be noted that it is difficult to make meaningful comparisons 
between the text-dependent and the generally more difficult text-independent tasks. 
Text-independent approaches, such as Gish’s segmental Gaussian model [15] and 
Reynolds’ Gaussian Mixture Model (GMM) [36] need to deal with unique problems 
(e.g., sounds or articulations present in the test material, but not in training). It is also 
difficult to compare between the binary-choice verification task and the generally 
more difficult multiple-choice identification task [9,29]. 

There are over a dozen commercial ASV systems, including those from ITT, 
Lernout & Hauspie, T-NETIX, Veritel, and Voice Control Systems. Perhaps the 
largest scale deployment of any biometric to date is Sprint’s Voice FONCARD®, 
which uses TI’s voice-verification engine. Speaker verification applications include 
access control, telephone banking, and telephone credit cards. The accounting firm of 
Ernst and Young estimates that high-tech computer thieves in the U.S. steal $3 to $5 
billion annually. Automatic speaker-recognition technology could substantially reduce 
this crime by reducing these fraudulent transactions. It takes a pair of subjects to make 
a false acceptance error: an impostor and a target. Because of this hunter and prey 
relationship, in this work, the impostor is referred to as a wolf and the target as a 
sheep. False acceptance errors are the ultimate concern of high-security speaker-
verification applications; however, they can be traded off for false rejection errors. 

The following section contains an overview of digital signal acquisition, speech 
production, speech signal processing, and speaker characterization based on linear 
prediction and mel cepstra modeling. 

2. Speech processing 

Speech processing extracts the desired information from a speech signal. To process a 
signal by a digital computer, the signal must be represented in digital form so that it 
can be used by a digital computer. 
 
Speech Signal Acquisition 

Initially, the acoustic sound pressure wave is transformed into a digital signal suitable 
for voice processing. A microphone or telephone handset can be used to convert the 
acoustic wave into an analog signal. This analog signal is conditioned with 
antialiasing filtering (and possibly additional filtering to compensate for any channel  
impairments). The  antialiasing  filter limits the  bandwidth  of the   signal  to 
approximately the Nyquist rate (half the sampling rate) before sampling. The 
conditioned analog signal is then sampled to form a digital signal by an analog-to-
digital (A/D)  converter.  Today’s  A/D  converters  for  speech  applications  typically  
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Source Org Features Method Input Text Pop Error 

Atal [1] AT&T Cepstrum Pattern Match Lab Dependent 10 i: 2%@0.5s 
v: 2%@1s 

Markel and Davis 
[26] 

STI LP Long Term 
Statistics 

Lab Independent 17 i: 2%@39s 

Furui [12] AT&T Normalized 
Cepstrum 

Pattern Match Tele-
phone 

Dependent 10 v: 0.2%@3s 

Schwartz, et al.  
[43] 

BBN LAR Nonparametric pdf Tele-
phone 

Independent 21 i: 2.5%@2s 

Li and Wrench  
[23] 

ITT LP, Cepstrum Pattern Match Lab Independent 11 i: 21%@3s 
i: 4%@10s 

Doddington  [9] TI Filter-bank DTW Lab Dependent 200 v: 0.8%@6s 

Soong, et al. [44] AT&T LP VQ (size 64) 
Likelihood Ratio 

distortion 

Tele-
phone 

10 isolated 
digits 

100 i: 5%@1.5s 
i: 
1.5%@3.5s 

Higgins and 
Wohlford [19] 

ITT Cepstrum DTW 
Likelihood 

Scoring 

Lab Independent 11 v: 
10%@2.5s 
v: 
4.5%@10s 

Attili, et al. [3] RPI Cepstrum, 
LP, Autocorr 

Projected Long 
Term Statistics 

Lab Dependent 90 v: 1%@3s 

Higgins, et al. [18] ITT LAR,  
LP-Cepstrum 

DTW 
Likelihood 

Scoring 

Office Dependent 186 v: 
1.7%@10s 

Tishby [47] AT&T LP HMM 
(AR mix) 

Tele-
phone 

10 isolated 
digits 

100 v: 
2.8%@1.5s 
v: 
0.8%@3.5s 

Reynolds [34]; 
Reynolds and 
Carlson [35] 

MIT-LL Mel-
Cepstrum 

HMM 
(GMM) 

Office Dependent 138 i: 
0.8%@10s 
v: 
0.12%@10s 

Che and Lin [7] Rutgers Cepstrum HMM Office Dependent 138 i: 0.56% 
@2.5s 
i: 
0.14%@10s 
v: 0.62% 
@2.5s 

Table 8.2 Selected chronology of speaker-recognition progress. 
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Source Org Features Method Input Text Pop Error 

Tishby [47] AT&T LP HMM 
(AR mix) 

Tele-
phone 

10 isolated 
digits 

100 v: 
2.8%@1.5s 
v: 
0.8%@3.5s 

Colombi, et al. [8] AFIT Cep, Eng 
dCep, ddCep 

HMM 
monophone 

Office Dependent 138 i: 
0.22%@10s  
v: 
0.28%@10s 

Reynolds [37] MIT-LL Mel-
Cepstrum, 

Mel-
dCepstrum 

HMM 
 (GMM) 

Tele-
phone 

Independent 416 v: 11%/16% 
@3s 
v: 6%/8% 
@10s 
v: 3%/5% 
@30s 
matched/ 
mismatched 
handset 

Table 8.2 Selected chronology of speaker-recognition progress (contd.). 

 
sample with 12 to 16 bits of resolution at 8,000 to 20,000 samples per second. 
Oversampling is commonly used to allow a simpler analog antialiasing filter and to 
control the fidelity of the sampled signal precisely (e.g., sigma-delta converters). 

In local speaker-verification applications, the analog channel is simply the 
microphone, its cable, and analog signal conditioning. Thus, the resulting digital 
signal can be very high quality, lacking distortions produced by transmission of 
analog signals over telephone lines. 

 
YOHO Speaker-Verification Corpus 

The work presented here is based on high-quality signals for benign-channel speaker 
verification applications. The primary database for this work is known as the YOHO 
Speaker Verification Corpus, which was collected by ITT under a U.S. Government 
contract. The YOHO database was the first large-scale, scientifically controlled and 
collected, high-quality speech database for speaker-verification testing at high 
confidence levels. Table 8.3 describes the YOHO database [17]. YOHO is available 
from the Linguistic Data Consortium (University of Pennsylvania) and test plans have 
been developed for its use [5]. This database already is in digital form, emulating the 
third generation Secure Terminal Unit’s (STU-III) secure voice telephone input 
characteristics, so the first signal processing block of the verification system in 
Figure 8.3 (signal conditioning and acquisition) is taken care of. 

In a text-dependent speaker-verification scenario, the phrases are known to the 
system (e.g., the claimant is prompted to say them). The syntax used in the YOHO 
database is “combination lock” phrases. For example, the prompt might read: “Say: 
twenty-six, eighty-one, fifty-seven.” 

YOHO was designed for U.S. Government evaluation of speaker-verification 
systems in “office” environments. In addition to office environments, there are 
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enormous consumer markets that must contend with noisy speech (e.g., telephone 
services) and far-field microphones (e.g., computer access). 

 
 “Combination lock” phrases (e.g., “twenty-six, eighty-one, fifty-seven”) 
138 subjects: 106 males, 32 females 
Collected with a STU-III electret-microphone telephone handset over 3 month period in 
a real-world office environment 
4 enrollment sessions per subject with 24 phrases per session 
10 verification sessions per subject at approximately 3-day intervals with 4 phrases per 
session 
Total of 1380 validated test sessions 
8 kHz sampling with 3.8 kHz analog bandwidth (STU-III like) 
1.2 gigabytes of data 

Table 8.3 The YOHO corpus [5]. 

 
Speech Production 

There are two main sources of speaker-specific characteristics of speech: physical and 
learned. Vocal tract shape is an important physical distinguishing factor of speech. 
The vocal tract is generally considered as the speech production organ above the vocal 
folds. As shown in Figure 8.4 [11], this includes the following: laryngeal pharynx 
(beneath epiglottis), oral pharynx (behind the tongue, between the epiglottis and 
velum), oral cavity (forward of the velum and bounded by the lips, tongue, and 
palate), nasal pharynx (above the velum, rear end of nasal cavity), and the nasal cavity 
(above the palate and extending from the pharynx to the nostrils). An adult male vocal 
tract is approximately 17 cm long [11]. 

The vocal folds (formerly known as vocal cords) are shown in Figure 8.4. The 
larynx is composed of the vocal folds, the top of the cricoid cartilage, the arytenoid 
cartilages, and the thyroid cartilage (also known as “Adam’s apple”). The vocal folds 
are stretched between the thyroid cartilage and the arytenoid cartilages. The area 
between the vocal folds is called the glottis. 

As the acoustic wave passes through the vocal tract, its frequency content 
(spectrum) is altered by the resonances of the vocal tract. Vocal tract resonances are 
called formants. Thus, the vocal tract shape can be estimated from the spectral shape 
(e.g., formant location and spectral tilt) of the voice signal. 

Voice verification systems typically use features derived only from the vocal tract. 
As seen in Figure 8.4, the human vocal mechanism is driven by an excitation source, 
which also contains speaker-dependent information. The excitation is generated by 
airflow from the lungs, carried by the trachea (also called the “wind pipe”) through 
the vocal folds (or the arytenoid cartilages). The excitation can be characterized as 
phonation, whispering, frication, compression, vibration, or a combination of these. 

For other aspects of speech production that could be useful for speaker recognition, 
please refer to [6]. 
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Figure 8.4 Human vocal system (reprinted with permission from J. Flanagan, Speech 
Analysis Synthesis and Perception, 2nd ed. New York and Berlin: Springer-Verlag, 
1972, p. 10, Fig. 2.1 © Springer-Verlag). 
 
Linear Prediction 

The all-pole LP models a signal sn  by a linear combination of its past values and a 
scaled present input [24] 

 s a s G un k
k

p

n k n= − ⋅ + ⋅
=

−�
1

                                (8.1) 

where sn  is the present output, p  is the prediction order, ak  are the model parameters 
called the predictor coefficients (PCs), sn k−  are past outputs, G  is a gain scaling 
factor, and un  is the present input. In speech applications, the input un  is generally 
unknown, so it is ignored. Therefore, the LP approximation �sn , depending only on 
past output samples, is 
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 �s a sn k
k

p

n k= − ⋅
=

−�
1

                                              (8.2) 

The source un , which corresponds to the human vocal tract excitation, is not modeled 
by these PCs. It is certainly reasonable to expect that some speaker-dependent 
characteristics are present in this excitation signal (e.g., fundamental frequency). 
Therefore, if the excitation signal is ignored, valuable speaker-verification 
discrimination information could be lost. 

Defining the prediction error en  (also known as the residual) as the difference 
between the actual value sn  and the predicted value �sn  yields 

 e s s s a sn n n n k
k

p

n k= − = + ⋅
=

−��

1

                         (8.3) 

Using the ak  model parameters, Eq. (8.4) represents the fundamental basis of LP 
representation. It implies that any signal is defined by a linear predictor and the 
corresponding LP error. Obviously, the residual contains all the information not 
contained in the predictor coefficients (PCs). 

 s a s en k
k

p

n k n= − ⋅ +
=

−�
1

                                     (8.4) 

From Eq. (8.1), the LP transfer function is defined as 

 H z
S z
U z

Z s
Z u

n

n

( )
( )
( )

[ ]
[ ]

≡ ≡                                       (8.5) 

which yields 

 H z
G

a z

G
A z

k
k

k

p( )
( )

=
+

≡
−

=�1
1

                       (8.6) 

where A z( )  is known as the pth-order inverse filter. 
LP analysis determines the PCs of the inverse filter A z( )  that minimize the 

prediction error en  in some sense. Typically, the mean square error (MSE) is 
minimized because it allows a simple, closed-form solution of the PCs. For example, 
an 8th-order 8 kHz LP analysis of the vowel /U/ (as in “foot”) had the predictor 
coefficients shown in Table 8.4. 

 
Power of z 0 –1 –2 –3 –4 –5 –6 –7 –8 
Predictor 
Coefficient 

1 –2.346 1.657 –0.006 0.323 –1.482 1.155 –0.190 –0.059 

Table 8.4 Example of 8th-order linear predictor coefficients for the vowel /U/ as in 
“foot”. 
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Evaluating the magnitude of the z transform of H(z) at equally spaced intervals on the 
unit circle yields the following power spectrum having formants (vocal tract 
resonances or spectral peaks) at 390, 870, and 3040 Hz (Figure 8.5). These resonance 
frequencies are in agreement with the Peterson and Barney formant frequency data for 
the vowel /U/ [33]. 
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Figure 8.5 Frequency response for the vowel /U/. 

Features are constructed from the speech model parameters; for example, the ak  
shown in Eq. (8.6). These LP coefficients are typically nonlinearly transformed into 
perceptually meaningful domains suited to the application. Some feature domains 
useful for speech coding and recognition include reflection coefficients (RCs); log-
area ratios (LARs) or arcsin of the RCs; line spectrum pair (LSP) frequencies 
[4,6,21,22,41]; and the LP cepstrum [33]. 

Reflection Coefficients and Log Area Ratios 
The vocal tract can be modeled as an electrical transmission line, a waveguide, or an 
analogous series of cylindrical acoustic tubes. At each junction, there can be an 
impedance mismatch or an analogous difference in cross-sectional areas between 
tubes. At each boundary, a portion of the wave is transmitted and the remainder is 
reflected (assuming lossless tubes). The reflection coefficients ki  are the percentage 
of the reflection at these discontinuities. If the acoustic tubes are of equal length, the 
time required for sound to propagate through each tube is equal (assuming planar 
wave propagation). Equal propagation times allow simple z transformation for digital 
filter simulation. For example, a series of five acoustic tubes of equal lengths with 
cross-sectional areas A1, …, A5 is shown in Figure 8.6. This series of five tubes 
represents a fourth-order system that might fit a vocal tract minus the nasal cavity. 
The reflection coefficients are determined by the ratios of the adjacent cross-sectional 
areas with appropriate boundary conditions [33]. For a pth-order system, the boundary 
conditions given in Eq. (8.7) correspond to a closed glottis (zero area) and a large area 
following the lips. 
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Figure 8.6 Acoustic tube model of speech production. 

Narrow bandwidth poles result in ki ≈ 1. An inaccurate representation of these 
RCs can cause gross spectral distortion. Taking the log of the area ratios results in 
more uniform spectral sensitivity. The LARs are defined as the log of the ratio of 
adjacent cross-sectional areas 
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Mel-Warped Cepstrum 

The mel-warped cepstrum is a very popular feature domain that does not require LP 
analysis. It can be computed as follows: 1) window the signal, 2) take the fast Fourier 
transform (FFT), 3) take the magnitude, 4) take the log, 5) warp the frequencies 
according to the mel scale, and 6) take the inverse FFT. A variation on the cepstrum is 
the LP-cepstrum, where steps 1 – 3 are replaced by the magnitude spectrum from LP 
analysis. The mel warping transforms the frequency scale to place less emphasis on 
high frequencies. It is based on the nonlinear human perception of the frequency of 
sounds [32]. The cepstrum can be considered as the spectrum of the log spectrum. 
Removing its mean reduces the effects of linear time-invariant filtering (e.g., channel 
distortion). Often, the time derivatives of the mel cepstra (also known as delta cepstra) 
are used as additional features to model trajectory information. The cepstrum’s 
density has the benefit of being modeled well by a linear combination of Gaussian 
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densities as used in the Gaussian Mixture Model [36]. Perhaps the most compelling 
reason for using the mel-warped cepstrum is that it has been demonstrated to work 
well in speaker-recognition systems [15] and, somewhat ironically, in speech-
recognition systems [32], too. Furui addresses this irony and other issues plaguing 
speaker recognition in his set of open questions [14]. 

The next section presents feature selection, estimation of mean and covariance, 
divergence, and Bhattacharyya distance. It is highlighted by the development of the 
divergence shape measure and the Bhattacharyya distance shape. 

3. Feature selection and measures 

To apply mathematical tools without loss of generality, the speech signal can be 
represented by a sequence of feature vectors. The selection of appropriate features and 
methods to estimate (extract or measure) them are known as feature selection and 
feature extraction, respectively. 

Traditionally, pattern-recognition paradigms are divided into three components: 
feature extraction and selection, pattern matching, and classification. Although this 
division is convenient from the perspective of designing system components, these 
components are not independent. The false demarcation among these components can 
lead to suboptimal designs because they all interact in real-world systems. 

In speaker verification, the goal is to design a system that minimizes the 
probability of verification errors. Thus, the underlying objective is to discriminate 
between the given speaker and all others. A comprehensive review of discriminant 
analysis is given in [16]. For an overview of the feature selection and extraction 
methods, please refer to [6]. The next section introduces pattern matching. 

4. Pattern matching 

The pattern-matching task of speaker verification involves computing a match score, 
which is a measure of the similarity between the input feature vectors and some 
model. Speaker models are constructed from the features extracted from the speech 
signal. To enroll users into the system, a model of the voice, based on the extracted 
features, is generated and stored (possibly on an encrypted smart card). Then, to 
authenticate a user, the matching algorithm compares/scores the incoming speech 
signal with the model of the claimed user. 

There are two types of models: stochastic models and template models. In 
stochastic models, the pattern matching is probabilistic and results in a measure of the 
likelihood, or conditional probability, of the observation given the model. For 
template models, the pattern matching is deterministic. The observation is assumed to 
be an imperfect replica of the template, and the alignment of observed frames to 
template frames is selected to minimize a distance measure d. The likelihood L can be 
approximated in template-based models by exponentiating the utterance match scores 

 L a= −exp d� �                                                 (8.9) 
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where a is a positive constant (equivalently, the scores are assumed to be proportional 
to log likelihoods). Likelihood ratios can then be formed using global speaker models 
or cohorts to normalize L. 

The template model and its corresponding distance measure is perhaps the most 
intuitive method. The template method can be dependent or independent of time. An 
example of a time-independent template model is VQ modeling [45]. All temporal 
variation is ignored in this model and global averages (e.g., centroids) are all that is 
used. A time-dependent template model is more complicated because it must 
accommodate human speaking rate variability. 
 
Template Models 

The simplest template model consists of a single template x , which is the model for a 
frame of speech. The match score between the template x  for the claimed speaker and 
an input feature vector xi  from the unknown user is given by d ix x,� � . The model 
for the claimed speaker could be the centroid (mean) of a set of N training vectors 

 x x= =
=
�����

1

1N i
i

N

                                            (8.10) 

Many different distance measures between the vectors xi  and x  can be expressed as 

 d i i ix x x x W x x, ( ) ( )� � = − −T                      (8.11) 

where W is a weighting matrix. If W is an identity matrix, the distance is Euclidean; 
if W is the inverse covariance matrix corresponding to mean x , then this is the 
Mahalanobis distance. The Mahalanobis distance gives less weight to the components 
having more variance and is equivalent to a Euclidean distance on principal 
components, which are the eigenvectors of the original space as determined from the 
covariance matrix [10]. 

Dynamic Time Warping 
The most popular method to compensate for speaking-rate variability in template-
based systems is known as DTW [42]. A text-dependent template model is a sequence 
of templates ( , , )x x1 � N  that must be matched to an input sequence ( , , )x x1 � M . 
In general, N is not equal to M because of timing inconsistencies in human speech. 
The asymmetric match score z is given by 

 z i j i
i

M

=
=
�d( , )x x � �

1

                                         (8.12) 

where the template indices j(i) are typically given by a DTW algorithm. Given 
reference and input signals, the DTW algorithm does a constrained, piecewise linear 
mapping of one (or both) time axis(es) to align the two signals while minimizing z. At 
the end of the time warping, the accumulated distance is the basis of the match score. 
This method accounts for the variation over time (trajectories) of parameters 
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corresponding to the dynamic configuration of the articulators and vocal tract. 
Figure 8.7 shows a warp path for two speech signals using their energies as warp 
features. 
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Figure 8.7 DTW  path for two energy signals. 

If the warp signals were identical, the warp path would be a diagonal line and the 
warping would have no effect. The Euclidean distance between the two signals in the 
energy domain is the accumulated deviation off the dashed diagonal warp path. The 
parallelogram surrounding the warp path represents the Sakoe slope constraints of the 
warp [42], which act as boundary conditions to prevent excessive warping over a 
given segment. 

Vector Quantization Source Modeling 
Another form of template model uses multiple templates to represent frames of speech 
and is referred to as VQ source modeling [45]. A VQ code book is a collection of 
codewords and it is typically designed by a clustering procedure. A code book is 
created for each enrolled speaker using his training data, usually based upon reading a 
specific text. A pattern match score can be formed as the distance between an input 
vector x j  and the minimum distance codeword x  in the claimant’s VQ code book C. 

This match score for L frames of speech is 

 z d
C

j

L

j=
∈

=
�min ,

x
x x

1
	 
� �                                    (8.13) 

The clustering procedure used to form the code book averages out temporal 
information from the codewords. Thus, there is no need to perform a time alignment. 
The lack of time warping greatly simplifies the system; however, it neglects speaker-
dependent temporal information that may be present in the prompted phrases. 
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Nearest Neighbors 
A technique combining the strengths of the DTW and VQ methods is called nearest 
neighbors (NN) [17,20]. Unlike the VQ method, the NN method does not cluster the 
enrollment training data to form a compact code book. Instead, it keeps all the training 
data and can, therefore, use temporal information. 

As shown in Figure 8.8, the claimant’s interframe distance matrix is computed by 
measuring the distance between test-session frames (the input) and the claimant’s 
stored enrollment-session frames. The NN distance is the minimum distance between 
a test-session frame and the enrollment frames. The NN distances for all the test-
session frames are then averaged to form a match score. Similarly, as shown in the 
rear planes of Figure 8.8, the test-session frames are also measured against a set of 
stored reference “cohort” speakers to form match scores. The match scores are then 
combined to form a likelihood ratio approximation [17]. 

The NN method is one of the most memory- and compute-intensive speaker-
verification algorithms. It is also one of the most powerful methods, as illustrated later 
in Figure 8.10. 
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Figure 8.8 Nearest neighbor method. 

 
Stochastic Models 

Template models dominated early work in text-dependent speaker recognition. This 
deterministic approach is intuitively reasonable, but stochastic models recently have 
been developed that can offer more flexibility and result in a more theoretically 
meaningful probabilistic likelihood score. 

Using a stochastic model, the pattern-matching problem can be formulated as 
measuring the likelihood of an observation (a feature vector of a collection of vectors 
from the unknown speaker) given the speaker model. The observation is a random 
vector with a conditional probability density function (pdf) that depends upon the 
speaker. The conditional pdf for the claimed speaker can be estimated from a set of 
training vectors and, given the estimated density, the probability that the observation 
was generated by the claimed speaker can be determined. 
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The estimated pdf can either be a parametric or a nonparametric model. From this 
model, for each frame of speech (or average of a sequence of frames), the probability 
that it was generated by the claimed speaker can be estimated. This probability is the 
match score. If the model is parametric, then a specific pdf is assumed and the 
appropriate parameters of the density can be estimated using the maximum likelihood 
estimate. For example, one useful parametric model is the multivariate normal model 
and it is parameterized by a mean vector µµµµ and a covariance matrix C. In this case, the 
probability that an observed feature vector xi  was generated by the model is 

p i
k

i i( ) ( ) | | exp ( ) ( )/ /x C x C xmodel = − − −− − −2 2 1 2 1
2

1π ���� ����
T �       (8.14) 

Hence, p i( )x model  is the match score. If nothing is known about the true densities, 
the unknown densities can be approximated by a GMM or nonparametric statistics 
can be used to find the match score. 

The match scores for text-dependent models are given by the probability of a 
sequence of frames without assuming independence of speech frames. Although a 
correlation of speech frames is implied by the text-dependent model, deviations of the 
speech from the model are usually assumed to be independent. This independence 
assumption enables estimation of utterance likelihoods by multiplying frame 
likelihoods. The model represents a specific sequence of spoken words. 

A stochastic model that is very popular for modeling sequences is the HMM. In 
conventional Markov models, each state corresponds to a deterministically observable 
event; thus, the output of such sources in any given state is not random and lacks the 
flexibility needed here. In an HMM, the observations are a probabilistic function of 
the state; i.e., the model is a doubly embedded stochastic process where the 
underlying stochastic process is not directly observable (it is hidden). The HMM can 
only be viewed through another set of stochastic processes that produce the sequence 
of observations [32]. The HMM is a finite-state machine, where a pdf (or feature 
vector stochastic model) p six|� �  is associated with each state si  (the main 
underlying model). The states are connected by a transition network, where the state 

transition probabilities are a p s sij i j= |	 
 . For example, a hypothetical three-state 

HMM is illustrated in Figure 8.9. 
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Figure 8.9 An example of a three-state HMM. 
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The probability that a sequence of speech frames was generated by this model can be 
found by Baum-Welch decoding [30,31]. This likelihood is the score for L frames of 
input speech given the model 

p L p s p s si i i i
i

L

( ( ; )| ) ( | ) ( | )x x1 1
1

model
all state
sequences

= −
=

∏�                   (8.15) 

This is a theoretically meaningful score. HMM-based methods have been shown to be 
comparable in performance to conventional VQ methods in text-independent testing 
[47] and more recently to outperform conventional methods in text-dependent testing 
(e.g., [35]). 

5. Classification and Decision Theory 

Having computed a match score between the input speech-feature vector and a model 
of the claimed speaker’s voice, a verification decision is made whether to accept or 
reject the speaker or request another utterance (or, without a claimed identity, an 
identification decision is made). If a verification system accepts an impostor, it makes 
a false acceptance (FA) error. If the system rejects a valid user, it makes a false 
rejection (FR) error. The FA and FR errors can be traded off by adjusting the decision 
threshold, as shown by a Receiver Operating Characteristic (ROC) curve. The 
operating point where the FA and FR are equal corresponds to the equal error rate.  

The accept or reject decision process can be an accept, continue, time-out, or reject 
hypothesis-testing problem. In this case, the decision making, or classification, 
procedure is a sequential hypothesis-testing problem [48]. For a brief overview of the 
decision theory involved, please refer to [6]. 

6. Performance 

Using the YOHO prerecorded speaker-verification database, the following results on 
wolves and sheep were measured. The impostor testing was simulated by randomly 
selecting a valid user (a potential wolf) and altering his/her identity claim to match 
that of a randomly selected target user (a potential sheep). Because the potential wolf 
is not intentionally attempting to masquerade as the potential sheep, this is referred to 
as the “casual impostor” paradigm. Testing the system to a certain confidence level 
implies a minimum requirement for the number of trials. In this testing, there were 
9,300 simulated impostor trials to test to the desired confidence [5,17]. 
 
DTW System 

The DTW ASV system tested here was created by Higgins, et al. [18]. This system is 
a variation on a DTW approach that introduced likelihood ratio scoring via cohort 
normalization in which the input utterance is compared with the claimant’s voice 
model and with an alternate model composed of models of other users with similar 
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voices. Likelihood ratio scoring allows for a fixed, speaker-independent, phrase-
independent acceptance criterion. Pseudorandomized phrase prompting, consistent 
with the YOHO corpus, is used in combination with speech recognition to reduce the 
threat of playback (e.g., tape recorder) attacks. The enrollment algorithm creates 
users’ voice models based upon subword models (e.g., “twen,” “ti,” and “six”). 
Enrollment begins with a generic male or female template for each subword and 
results in a speaker-specific template model for each subword. These models and their 
estimated word endpoints are successively refined by including more examples 
collected from the enrollment speech material [18]. 

Cross-speaker testing (casual impostors) was performed, confusion matrices for 
each system were generated, wolves and sheep of DTW and NN systems were 
identified, and errors were analyzed. 

Table 8.5 shows two measures of wolves and sheep for the DTW system: those 
who were wolves or sheep at least once and those who were wolves or sheep at least 
twice. Thus, FA errors occur in a very narrow portion of the 186-person population, 
especially if two errors are required to designate a person as a wolf or sheep. The 
difficulty in acquiring enough data to adequately represent the wolf and sheep 
populations makes it challenging to study these errors. 
 
 

186 Subjects of the YOHO Database 
At least one FA Error At least two FA Errors 
17 Wolves (9%) 2 Wolves (1%) 
11 Sheep (6%) 5 Sheep (3%) 

Table 8.5 Known wolves and sheep of the DTW system. 

The DTW system made 19 FA errors over the 9,300 impostor trials. Table 8.6 
shows that these 19 pairs of wolves and sheep have interesting characteristics. The 
database contains four times as many males as it does females, but the 18:1 ratio of 
male wolves to female wolves is disproportionate. It is also interesting to note that 
one male wolf successfully preyed upon three different female sheep. The YOHO 
corpus provides at least 19 pairs of wolves and sheep under the DTW ASV system for 
further investigation. 
 
 

19 FA errors across 9300 impostor trials 
Number of FA errors Wolf sex Sheep sex 
15 Males Males 
1 Female Female 
3 1 Male 3 Females 

 Table 8.6 Wolf and sheep distribution by sex. 

ROC of DTW and NN Systems 

Figure 8.10 shows the NN system’s ROC curve and a point on the ROC for the DTW 
system (ROCs of better systems are closer to the origin). The NN system was the first 
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one known to meet the 0.1% FA and 1% FR performance level at the 80% confidence 
level and it outperforms the DTW system by about half an order of magnitude. 

These overall error rates do not show the individual wolf and sheep populations of 
the two systems. As shown in Figures 8.11-8.14, the two systems commit different 
errors.  
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Figure 8.10 Receiver operating characteristics. 

 
Wolves and Sheep 

FA errors due to individual wolves and sheep are shown in the 3-D histogram plots of 
Figures 8.11 through 8.14. Figure 8.11 shows the individual speakers who were 
falsely accepted as other speakers by the DTW system. For example, the person with 
an identification number of 97328 is never a wolf and is a sheep once under the DTW 
system.  

The DTW system rarely has the same speaker as both a wolf and a sheep (there are 
only two exceptions in this data). These exceptions, called wolf-sheep, probably have 
poor models because they match a sheep’s model more closely than their own and a 
wolf’s model also matches their model more closely than their own. These wolf-sheep 
would likely benefit from retraining to improve their models. 

Now let us look at the NN system. Figure 8.12 shows the FA errors committed by 
the NN system. Two speakers, who are sheep, are seen to dominate the NN system’s 
FA errors. A dramatic performance improvement would result if these two speakers 
were recognized correctly by the system. 
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Figure 8.11 Speaker versus FA errors for the DTW system’s wolves and sheep. 

Now we will investigate the relations between the NN and DTW systems. 
Figure 8.13 shows the sheep of the NN and DTW systems. The two sheep that 
dominate the FA errors of the NN system are shown not to be sheep in the DTW 
system. This suggests the potential for making a significant performance 
improvement by combining the systems. 

Figure 8.14 shows that the wolves of the NN system are dominated by a few 
individuals who do not cause errors in the DTW system. Again, this suggests the 
potential for realizing a performance improvement by combining elements of the NN 
and DTW systems. Along these lines, a high-performance speaker detection system 
consisting of eight combined systems has been demonstrated recently [27]. 

7. Conclusions 

Automatic speaker recognition is the use of a machine to recognize a person from a 
spoken phrase. Speaker-recognition systems can be used to identify a particular person 
or to verify a person’s claimed identity. Speech processing, speech production, and 
features and pattern matching for speaker recognition were introduced. Recognition 
accuracy was shown by coarse-grain ROC curves and fine-grain histograms revealed 
the wolves and sheep of two example systems. Speaker recognition systems can 
achieve 0.5% equal error rates at the 80% confidence level in the benign real-world 
conditions considered here.  
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Figure 8.12 Speaker versus FA errors for NN system’s wolves and sheep. 
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Figure 8.13 Speaker versus FA errors for DTW and NN systems’ sheep. 
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Figure 8.14 Speaker versus FA errors for DTW and NN systems’ wolves. 
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