UML-based Design Test Generation

Waldemar Neto
Department of Computer
Science, Federal University of
Campina Grande
58.109-970, Campina Grande,
PB, Brazil

neto@dsc.ufcg.edu.br

ABSTRACT

In this paper we investigate and propose a fully automated
technique to perform conformance checking of Java imple-
mentations against UML class diagrams. In our approach,
we reused the DesignWizard Java API that allows us to
write design rules as JUnit tests, i.e., to write them as code
directly in the programming language. We fully pursued
MDA as the approach for generating the design tests and
hence we used several MDA artifacts, such as metamodels,
models and transformations. A proof of concept of the tech-
nique has been implemented and evaluated. We performed
several experiments on simple scenarios. Simple designs in-
volving classes, associations, inheritance have been checked.
Compared to previous related work, the advantage of our
approach lies in the fact that we automatically generate de-
sign tests from UML class diagrams to Java code that play
the dual role of design test and implementation language.
Thus, we check the conformance between the design and
the implementation.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
Testing Tools

General Terms
Design, Reliability, Verification

Keywords
Design Test, code generation, MDA, UML Class Diagram

1. INTRODUCTION

Design conformance checking, or conformance checking
for short, is the process of checking whether an implemen-
tation complies with a given design. It is especially relevant
in development processes that promote a clear distinction
of design and implementation activities like RUP. And, in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’08 March 16-20, 2008, Fortaleza, Ceara, Brazil

Copyright 2008 ACM 978-1-59593-753-7/08/0003 ...$5.00.

Joédo Arthur
Department of Computer
Science, Federal University of
Campina Grande
58.109-970, Campina Grande,
PB, Brazil

jarthur@dsc.ufcg.edu.br

Franklin Ramalho
Department of Computer
Science, Federal University of
Campina Grande
58.109-970, Campina Grande,
PB, Brazil

franklin@dsc.ufcg.edu.br

particular, if different teams develop design and implemen-
tation. Even in agile processes, some level of conformance
checking is necessary to keep implementation in shape with
design and architectural rules or guidelines. In current prac-
tice, however, conformance checking is performed manually
through code and design reviews (or, at some extent, with
pair programming in the case of agile processes). In this pa-
per we investigate and propose a fully automated technique
to perform conformance checking of Java implementations
against UML class diagrams.

In a previous work, we developed the concept of design
tests [7]. A design test is an automated test that checks
conformance of implementation code against an explicitly
programmed design rule (in Section 3 we detail the concept).
We developed a simple to use API, named DesignWizard
[7], which allows us to write design rules as JUnit tests. In
such approach, design rules must be written as code directly
in the programming language. It can be very attractive
and adequate to programmers and agile teams because it
allows the application of the technique in an incremental
and partial way. It is incremental because the designer needs
not write a big up front design - he can evolve from a few
architectural rules or no rule at all to a completely detailed
low level design. It is partial because it does not impose that
all aspects of a design be specified/checked - one can decide
to focus on critical aspects of the design and ignore all others
completely. There are development processes, on the other
hand, in which design and implementation are not so close.
In this case, design models are considered as mandatory
specifications that must be followed during implementation.
In this scenario, however, the code based technique of design
tests to write design rules can be cumbersome because it
implies the duplication of work: all rules must be derived
from the models. Clearly, it also introduces the problem
to keep consistency between design models and code based
design rules.

In this work we propose an MDA-based technique to au-
tomatically generate design tests from design models. We
specifically concentrate on Java implementations and UML
models. The technique allows the designer to develop plain
UML models and derive design tests to check implementa-
tions against the given design. Whenever the design evolves,
all design tests can be fully regenerated with no cost, elimi-
nating the effort required to synchronize artifacts.

Another important property of this approach is that no
additional language is required in the process to express de-
sign rules. Even if customized rules are needed to further
adjust the conformance checking, they can be entirely writ-

ten in Java.

A proof of concept of the technique has been implemented
and evaluated. We performed several experiments on sim-
ple scenarios. Simple designs involving classes, associations,
inheritance and specified attributes and methods have been
checked. We have been able to generate design tests to check
the design of small applications. Both conforming and not
conforming implementations have been fully automatically
verified against their UML specifications using DesignWiz-
ard with no effort to write code based design rules. Despite
the simplicity of the scenarios, the architecture of the tool
is flexible enough to be evolved to cope with further aspects
of UML. In fact, it can be evolved to include customized
understandings of UML specifications to support different
expectations of development teams like OCL constraints.

It is important to observe that our approach does not
validate, verify or test the UML models. It considers that
the models are correct and that the implementation must
reflect the models. In other words, it checks whether the
code is in conformance with the previously created design.

In Section 2 of this document we elaborate on the concept
of design tests and the DesignWizard API that supports it,
showing a few examples of design rules. In Section 3 we go
into details of how code for DesignWizard is derived from
UML models using an MDA-based technique - we cover the
concept of MDA, the architecture of the tool, details of the
transformation rules. In Section 4 we relate our work to ex-
isting approaches to code conformance and design checking.
We conclude our paper in Section 6.

2. DESIGN TEST

Unit test examines the behavior of a distinct unit of work.
Within a Java application, the distinct unit of work is often
(but not always) a single method. This kind of test often
focuses on testing whether a method is following the terms
of its API contract [17]. The fact of the code has been tested
using unit test does not mean that its design is in confor-
mance with the specified design. The problem of testing the
design has not been well addressed. There is no natural way
to verify the design an automated manner.

When people make changes in the code without a full
comprehension of its design, the code loses its structure. It
becomes harder to see the design by reading the code. Loss
of code structure has a cumulative effect. The harder it is to
see the design in the code, the harder is to preserve it, and
the more rapidly it decays [11]. For this reason, it is neces-
sary to create a mechanism to accomplish automatically the
verification of the design code.

To address the problem described above, we present a test
based approach that assures that a program conforms to its
design/architecture. The approach is based on the assump-
tion that writing design rules in the target programming lan-
guage is appealing to developers as it has an attractive learn-
ing curve and can be easily understood by both designers
and programmers. We also show that the approach can be
integrated with most development processes, because con-
formance checking is performed during test execution and
no additional activities must be added to the process.

The key concern of our approach is the construction of the
design test, which is a kind of test for specifying the desired
design of the code to be implemented. Design rules must
be described considering structural information about the
entities of the code and their relationships. The main goal of

constructing design tests is to check code conformance using
software testing, assuring quality in software evolution and
avoiding software erosion.

A simple example of a design test is one that specifies the
desired behavior for communication between classes. Let
A and B be classes from a given project. Assume that the
designer from the project does not want to allow that class A
uses class B, that is, there must not exist any call of method
or access to any attribute from class B in class A. If this
restriction is implemented as a test, the designer can find
automatically, by executing the design test, any violation of
the specified rule.

We advocate that by adding design tests on the develop-
ment process, such as XP [5] does with unit tests, improves
the quality of software and the comprehension of the code
by programmers. Keeping the structure of the code in con-
formance with the specified design assures that the code
developed does not break any rule described as design tests.
Hence, this process improves the reliability of the code.

In order to describe the expected structure of the design,
a design test needs to know structural information about
relationships of the entities from the code to be tested.

2.1 Design Wizard

Design Wizard (DW) is a library that provides a pow-
erful Java API which offers services to acquire structural
information about the code. For instance, it provides which
methods from code are static. DW gives support to the de-
signer on the task of composing design tests without adding
any effort to learn a new language to specify the expected
design. Design tests can use the API from DW to collect
information about entities from the code and use them to
test its structure.

In order to achieve static analysis of the code, DW reads
the classes of a java code by using the ASM bytecode manip-
ulation framework [6]. The information about the structure
of the code is extracted and modeled in classes, methods,
fields and their relationships.

The usage of DW is very simple, it is only necessary put
the designwizard.jar on the classpath, compose the design
tests and execute them. For this reason, the tool is entirely
independent of any Integrated Development Environment
(IDE) or platform. We have already tested its behavior on
Eclipse and NetBeans. And both on UNIX and Windows
operating systems.

The process of testing the design happens as follows. The
designers compose the design test with support from DW
API. In the meantime, programmers are coding the sys-
tems. Then, the tests are executed to verify whether the
code wrote by the programmers is in conformance with the
design test. In this case, the framework JUnit [16] has been
used to run the tests and report failures. The output of the
verification is the same output from JUnit framework, that
is, failures are reported with red bar while the successful is
reported with a green bar.

Let us get back to the example of previous section and
try to write it with support of DW and JUnit framework.
There is a simple and natural way to compose a test for
the restriction of the designer by using the API from DW,
as shown in Code 1. For instance, in this Code we can see
some methods: (1) DesignWizard(“project.jar”) at line 3;(2)
getClass(“A”) at line 5;(3) getClassesUsedBy() at line 7.

Line 3 creates a new instance of DW passing as a param-

© 00O Ut W

eter the path of the jar file from the project to be tested.
At this moment, DW extracts structural information from
the classes within the jar file. At line 5, the method get-
Class(“A”) is called and returns the representation for class
A. With the object that represents class A (clazz), the de-
signer now can invoke the method getClassesUsedBy() to
list all classes that are used by A on the code tested. After
that, the designer must only to make sure that class B is
not within the set of classes called by class A.

Code 1: DesignTest

public void testCommunication () {
DesignWizard dw;
dw = new DesignWizard (‘‘project.jar’’);
designwizard . ui.Class clazz;
clazz = dw.getClass (‘‘A’7);
Set<String> usedBy;
usedBy = clazz.getClassesUsedBy ()
assertFalse (usedBy.contains (‘‘B’’

))

3. STRUCTURE

3.1 MDA

MDA is a software engineering approach defined by the
OMG. Its represents just one view of MDD (Model-Driven
Development), though it is perhaps the most prevalent at
present [13]. The key idea of the MDA is to shift the em-
phasis in effort and time during the software life cycle away
from implementation towards modeling, meta-modeling and
model transformations. In order to reach this goal, MDA
prescribes the elaboration of a set of standard models. The
first one is the CIM (Computational Independent Model)
that captures an organizations ontology and activities inde-
pendently of the requirements of a computational system.
The CIM is used as input for the elaboration of the PIM
(Platform Independent Model), which captures the require-
ments and design of a computational system independently
of any targets implementation platform. In turn, the PIM
serves as input for the elaboration of the PSM (Platform
Specific Model), a translation of the PIM geared towards a
specific platform. Finally, the PSM serves as input to the
implementation code.

The MDA potential for automation is fully reached through
transformations that must be specified between the above
mentioned models. In this sense, there are a set of transfor-
mation languages, such as QVT [20] or ATL [2], supported
by their respective transformation engines responsible for
executing them.

In this work we pursued MDA as the approach for gen-
erating design test because: (1) UML models are in fact
PIMs; and (2) Java or JUnit code are in fact PSMs. Thus,
by reusing the MDA standards and frameworks (widely used
at the industry and academy) and additionally by specifying
the transformations from (1) to (2), we take profit from the
MDA benefits aforementioned.

3.2 Architecture

We propose a MDA-based architecture for automatic gen-
eration of design test with DW. An overview of this archi-
tecture is shown in Figure 1.

The architecture consists of pivotal MDA elements that
are briefly described as follows:

1

Java Abstract Syntax Metamodel

Metamodels
UML2 Metamodel

|
|
RS R R AE R LR, G A A i P AT I T AR (R R R 1Y

Models

wimports

Class Diagram Model

XMI Files

JUnit Design Wizard

L)

Java Files

Transformation

Figure 1: The propose MDA-based Architecture.

e Metamodels: The MDA transformations are based
on metamodels that describe how a model must be
formed. Since we generate Java/JUnit code from UML
models, two metamodels are required: (1) source UML
metamodel stated at top left in Fig. 1; and (2) tar-
get Java metamodel, at top right in Fig. 1. We have
reused both. The former is provided by the OMG con-
sortium [21]. The latter is the Java Abstract Syntax
(JAS) metamodel [14], a complete Java code represen-
tation fully adopted by the Eclipse IDE;

e Models: The models are instances of metamodels. In
our architecture, we have two kinds of models: UML
class diagrams and Java/JUnit models. The former is
the input model and the latter is the output model;

e Transformations: Rules that specify how the input
models are transformed to target models according to
their respective metamodels.

In order to build and validate our approach according to
the architecture shown in Fig. 1 we have adopted the ATL-
DT [4] framework. It is an Eclipse plugin that allows in an
integrated way: (1) specifying and validating metamodels;
(2) creating and validating models in conformance with their
provided metamodels; (3) specifying and executing model
transformations based on metamodels and applied to valid
models. ATL-DT supports a set of formats, including the
standard proposed by the OMG, such as: XMI (XML Meta-
data Interchange) for exchanging metadata information; and
MOF (Meta Object Facility), for specifying metamodels. By
adopting a framework that fully supports most of the OMG
standards, we facilitate the integration of our work with ex-
isting tools, such as model or code editors.

It is important to emphasize that following a MDA ap-
proach, transformations may be defined from any kind of
UML diagram specified at the design phase. This paper is
focused on the transformations from UML class diagrams to
Java/JUnit code, as shown in Fig. 1.

3.3 Transformation Rules

Although QVT [20] is the current OMG’s purpose for
specifying transformations in the MDA vision, we have ado-
pted ATL for specifying our transformations. This is due
main because QVT tools have still low robustness and its use
is not widely disseminated. On the other hand, ATL has a

framework widely used by an increasing and enthusiast com-
munity, with full support to model operations, where, in an
integrated way, one can specify and instantiate metamodels
as well as specify and execute transformations on them. In
addition, ATL has a wide set of transformation examples
available at the literature and discussion lists, in contrast of
QVT, whose documentation is poor and not didactic.

Therefore, our transformations from UML class diagrams
patterns to the Java/JUnit patterns are implemented as
ATL rules. In essence, they are rewrite rules that match
input models patterns, also expressed as UML class dia-
gram elements on the input metamodel and produce output
patterns, expressed as Java/JUnit patterns.

Our set of ATL transformation rules generates design tests
to verify some UML class diagram artifacts, such as classes,
generalizations and associations. However, due to lack of
space, we show in this paper details about the design test
generation only for simple classes.

Consider the UML class pattern shown in Fig. 2. From
each occurrence of this class pattern, we must generate a
design test pattern as shown in Code 2.

In fact, the first six lines shown in Code 2 are responsible
for initializing and configuring the design wizard and are
not dependable of any element from the source metamodel.
This test verifies the attribute and method signatures of the
matched class.

ClassHame

-attribute] © Typedttr

_attributer] | Typeattributer]
rmethod (] TypeMethod

+

ey
+methodi() - TypehethodN

Figure 2: UML Class Pattern.

We show in Code 3 an excerpt of the ATL transformation
named ClassDesignTestGeneration that is able to automat-
ically generate the design test code shown in Code 2 from
the UML class diagram shown in Fig. 2. In this rule, lines
1-2 define the name of the ATL transformation module (one
ATL module may contain one or more ATL rules) and the
input and output model variables, respectively. Line 3 de-
fines the name of the ATL rule, whereas line 4 states that
the Class element is that one from the source UML meta-
model to be transformed. The remaining lines specify which
Java/JUnit elements have to be transformed to. Due to lack
of space, we just show how to generate the target elements
shown at lines 5 of Code 2 that indicate the execution of a
specific method of the DW framework. This method ver-
ifies the existence of a given class whose name is taken as
parameter. It returns an associated ClassNode instance if
the parameter is an existing class. Otherwise, it throws an
exception InexistentEntityException.

© 00O ULk W+

© 00O ULk WN -

29
30
31

Lines 7-37 create the whole assignment from the (1) methodgg

invocation getClass from the instance dw taking the input
class name as parameter lines 25-37; to the (2) variable dec-
laration statement declaring the variable ¢ (lines 7-24).
Concerning the generalization test, we check whether the
super class and their children classes exist. In addition, we

verify if the children classes actually extend the super class,
through the method isSuperClass of ClassNode.

Code 2: General Design Test for Class

public void testEntityClass () throws
IOException, InexistentEntityException{
DesignWizard dw = new DesignWizard (
¢¢/ClassRootFolder’’);
ClassNode ¢ = dw. getClass (‘‘ClassName’’);
String [][] attributes = {
{ ‘‘atrributel’’, ‘‘TypeAttrl’’ },

{ ‘‘atrributeN’’, ‘‘TypeAttrN’’ } };

String [][] methods = {

{ ‘‘methodl’’, ¢‘TypeMethodl’’ },

{ ¢‘methodN’’, ‘‘TypeMethodN’’ } };
for (int i=0; i>attributes.length; i++){

FieldNode n = dw. getField (
c.getName() + ‘.7’ 4+ attributes[i][0]);
assertEquals (attributes[i][1],
n.getDeclaredType ().getName ());
}

for (int i=0; i>methods.length;
MethodNode n = dw.getMethod (
c.getName () + ““.77 4+ methods[i][0]);
assertEquals (methods[i][1],
n.getReturnType ().getName ());

i++){

Code 3: Stretch Transforation to ClassNode

module UML2TestClass;

create J: JavaAbstractSyntax from U:
rule ClassDesignTestGeneration {
from class:uml2! Class

to

uml2;

declarationClassNode: JavaAbstractSyntax
! VariableDeclarationStatement (
type <— classNodeType,
fragments <— Set{classNodeVariable}),
classNodeType: JavaAbstractSyntax
!SimpleType (

name <— nameClassNode),
nameClassNode: JavaAbstractSyntax
! SimpleName (

identifier <—
’desingwizard . main. ClassNode’),
classNodeVariable: JavaAbstractSyntax
! VariableDeclarationFragment (
name <— simpleNameVarClassNode,

initializer <— classNodeCreator),
simpleNameVarClassNode: JavaAbstractSyntax
! SimpleName (
identifier <— ’c’)

classNodeCreator: JavaAbstractSyntax
! MethodInvocation (
expression <—nameVarDZ2NodeCreator ,
name <— methodName,
arguments <— Set{parameterClassNode}),
nameVarDZ2NodeCreator: JavaAbstractSyntax
! SimpleName (
identifier <— ’dw’),
methodName: JavaAbstractSyntax ! SimpleName (
identifier <— ’getClass’),
parameterClassNode: JavaAbstractSyntax
I'StringLiteral (
escapedValue <— class.name),

Concerning the association test, we verify the existence of
the participating classes. However, since there is no direct
Java counterpart for UML associations we follow the ap-
proach of Gonzalo et al. [12], because it is simpler and some
important tools implement this approach [15]. According to
this approach, an association in the input UML model (with
or no aggregation and composition) is mapped to a Java at-
tribute of the corresponding generated Java class. Thus,
we verify whether there is an attribute with same name of
the association role and additionally we verify whether this
attribute has the same type of the class to which the associ-
ation targets. For bi-directional association, this test must
create this verification for both classes participating in the
association.

Although the design tests are different, the MDA trans-
formations for generalization test and association test are
similar to the class test transformation illustrated above.

3.4 A Simple Verification Scenario

Our approach, detailed in previous sessions, was devel-
oped for general UML class digram. In order to illustrate
its application, consider the class Person shown in Fig. 3. It
has three 3 attributes: (1) String name; (2) String id; and
(3) int phone. In addition, this class has two methods: (1)
int getName(); and (2) boolean fire().

By applying the rule ClassDesignTest Generation, we fully
automatically generate the class design test shown in Code
4. For instance, lines 9-10 in Code 4 are generated by ap-
plying the lines 7-37 of the DesingTestGeneration Transfor-
mation rule shown in Code 3.

The design tests generated from the Class Person arte
shown in Code 4 where we illustrate design tests ranging
class as well as its attribute and method signatures. Lines
5-6 configure the framework DW. Line 7 verifies the exis-
tence of the class Person - whether it does not exist the
exception InexistentEntityException will be thrown. Lines
8-11 define the class attributes whose signatures are later
checked at lines 15-20, whereas lines 12-14 define the class
methods whose signatures are later checked at lines 21-26.
In both cases, the properties to be checked are obtained
from the UML class diagrams. For instance, in case of the
attribute signature not being the same obtained from the
UML model, an exception InexistentEntityException will
be thrown at lines 16-17. In addition, in case of the class
having an attribute with same name but different type from
that specified on the UML model, the assert at lines 18-19
will fail.

Perszon

-nams : Siring
-id - String
-phaone ;@ int

+gethlamed) ; Sirng
+fired) ; boolean

Figure 3: Class Person.

4. RELATED WORK

Previous research related to our approach can be grouped
in two lines of work. The first one focuses on generating
design test from UML structural and behavioral diagrams.

© 00O Utk W+

The second one advocates that design defects, named code
smells [11], must be detected and removed from code.

Code 4: Design Test for Class Person

public class AllClassesInSuiteTest
extends TestCase {
public void testClassPerson () throws
IOException , InexistentEntityException{
DesignWizard dw = new DesignWizard
(“¢“/HumanResoucesProject’’);
ClassNode ¢ = dw.getClass (‘‘Person’’);

String [][] attributes = {
{‘‘name’’, ‘‘String’’},
{K(id777 “String77}’
{‘LphOHe”7 LLint77} };
String [][] methods = {
{¢“String’’, ‘‘getName’’},
{‘‘boolean’’, ‘‘fire’’} };
for (int i=0; i>attributes.length; i++){

FieldNode n = dw.getField (c.getName()+
4.7 +attributes [1][0]);

assertEquals (attributes[i][1],
n.getDeclaredType ().getName ());

for (int i=0; i>methods.length; i++4){
MethodNode n = dw. getMethod (c.getName()+
¢ 7 +methods[i][0]);
assertEquals (methods[i][1],
n.getReturnType ().getName ());

Following the first line of related work, Design Peer Re-
view [1] has surged as one process widely used on software
companies. It consists of a mechanism for ensuring design
standards by separating the team in groups and making
them analyze the code of each other. Design Review is a
manual process that may lead the team to errors during the
analysis. In addition, the process may take much time to
complete, since analyzing several classes from a big project
may take several hours. Another design test approach is
defined by Trung T. et al.[8]. They generate inputs and ex-
ercises executable UML diagrams generated from class di-
agrams and activity diagrams. After that, it compares the
expected behavior of a design with the detected behavior
during the test execution. Then, failures are reported if the
observed behavior differs from the expected behavior. This
approach differs from ours due to the fact that they test the
behavior of the program but not its structure. A similar ap-
proach is encoded in PTIDEJ [18], a tool suite that builds
program representations from static and dynamic models of
Java programs. The suite purpose is to accomplish identi-
fication of Design Patterns and Design Defects using a lan-
guage and framework. However, the focus of this suite is
on identifying design defects and encouraging the usage of
them. Furthermore, it requires an additional intermediate
language to express the design test.

Following the second line of related work, the Find Bugs
[10] tool uses static analysis to automatically discover bugs
on java code. It analyzes the bytecode of a java application
and generates a report containing the probable bugs found
on the analysis. Another similar tool LClint [9] has been
used on code wrote in C language. As we can see, these
tools focus on detecting low-level problems in source code
such as possible null pointer references and unused code.
However, we focus on design level and our purpose is to de-

tect whether the code is in conformance with a given UML
design. The designer can implement a design test that spec-
ifies a good programming practice avoiding, through test,
bad smells on code developed. In this line of work, Moha
et al.[19] also proposes an approach to find design defects.
To achieve this, they defined BNF grammar based language
for specifying the defects to be found. They also developed
a framework for automatic generation of design defects de-
tection algorithms from the design rules.

It is important to emphasize that there is a set of tools
proposing code automatic generation from UML models,
such as AndroMDA [3] and OptimalJ [22]. However, they do
not generate a code that reflect exactly the UML2 diagrams
design and are focused on specific domain application. In
addition, they are not able to checking design rules.

Compared to all these proposals, the advantage of our ap-
proach lies in the fact that we automatically generate design
tests from UML class diagrams to Java code that play the
dual role of design test and implementation language. Thus,
we check the conformance between the design implementa-
tion and the design model, preserving the programmer from
the additional task of learning an additional intermediate
design test specification language.

5. CONCLUSIONS

In this paper, we introduced a MDA based approach to
automatically generate design tests from UML models. In
addition, we have built a tool for supporting the proposed
approach. This tool was developed itself by pursuing several
MDA artifacts, such as metamodels, models and transfor-
mations, all them illustrated in the tool’s architecture also
presented in this paper. We performed several experiments
on simple scenarios covering simple designs involving classes,
associations, inheritance, attribute and method signatures.

The current implementation of the tool consists of a set
of ATL rules that cover UML class, inheritance and associ-
ation design tests. In order to use our tool, one need only
downloading our plugin (on Eclipse) and thus perform the
transformations from UML models built in the Eclipse itself
or imported from other tools via XMI format.

With the proposed approach and tool, we have been able
to generate design tests to check the design of small appli-
cations. Both conforming and not conforming implementa-
tions have been fully automatically verified against its UML
specification using DesignWizard API with no effort to write
code based design rules. Despite the simplicity of scenarios,
the proposed design tests are very flexible and can be evolved
to cope with further details of UML.

UML diagrams, specially class diagrams, are widely used
in various software development processes, such as RUP
(where UML diagrams are strongly used) or even XP (where
UML class diagrams play the role of blueprint diagrams).
Therefore, our approach may be used in these processes for
checking that the design models are reflected in the code.

As future work, we intend to extend our approach for
covering additional design rules concerning other UML class
diagram artifacts, such as interfaces. In addition, we also
intend to verify behavioral design rules from dynamic UML
diagrams, such as interaction diagrams or activity diagrams.

We also intend to investigate the use of OCL expressions
as optional notation to express design tests. This would al-
low the user specifying additional design tests in a platform-
independent notation though still remaining with the object-

oriented flavor. However, an additional mapping from OCL
to Java/JUnit should be provided.

6. ACKNOWLEDGMENTS

This research was supported by grants from CAPES and
CNPq of the Brazilian Federal Government.

7. ADDITIONAL AUTHORS

Dalton Serey Guerrero, professor, Department of Com-
puter Science, Federal University of Campina Grande, Campina
Grande, Brazil. Email: dalton@dsc.ufcg.edu.br.

8. 4 REFERENCES

The peer-review process. Learned Publishing, 15:247-258,
Oct. 2002.

[2] AMMA Project. Atlas transformation language, 2005.
http://www.sciences.univ-nantes.fr/lina/atl/.

[3] Andromda. http://www.andromda.org/.

[4] Atl-dt. http://www.eclipse.org/m2m/atl/.

[5] K. Beck. Embracing change with Extreme Programming.
Computer, 32:70-77, Oct. 1999.

[6] E. Bruneton, R. Lenglet, and T. Coupaye. ASM: A code
manipulation tool to implement adaptable systems, Nov.
2002. in: Proceedings of Adaptable and extensible
component systems.

(7] Design wizard. http://www.designwizard.org.

[8] T. T. Dinh-Trong, N. Kawane, S. Ghosh, R. B. France, and
A. A. Andrews. A tool-supported approach to testing UML
design models. In ICECCS, pages 519-528. IEEE
Computer Society, 2005.

9] D. Evans, J. V. Guttag, J. J. Horning, and Y. M. Tan.
LCLint: A tool for using specifications to check code. In
Symposium on the Foundations of Software Engineering,
December 1994.

[10] Find bugs. http://findbugs.sourceforge.net/.

[11] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring: Improving the Design of Existing Code.
Addison Wesley, 1999.

[12] G. Génova, C. R. del Castillo, and J. Lloréns. Mapping
UML associations into java code. Journal of Object
Technology, 2(5):135-162, 2003.

[13] B. Hailpern and P. Tarr. Model-driven development: The
good, the bad, and the ugly. IBM Systems Journal,
45(3):451-461, 2006.

[14] Jas-metamodel.
http://www.eclipse.org/gmt/am3/zoos/atlanticZoo.

[15] Javagen and poseidon 3.0.
http://www.javagen.com/docs/class-diagram.html.

[16] JUnit. http://www.junit.org.

[17] V. Massol and T. Husted. JUnit in Action. Manning
Publications Co., Greenwich, CT, USA, 2003.

[18] N. Moha, Y.-G. Gueheneuc, and P. Leduc. Automatic
generation of detection algorithms for design defects. In
ASE ’06: Proceedings of the 21st IEEE International
Conference on Automated Software Engineering (ASE’06),
pages 297-300, Washington, DC, USA, 2006. IEEE
Computer Society.

[19] N. Moha, Y.-G. Guéhéneuc, and P. Leduc. Automatic
generation of detection algorithms for design defects. In
ASE, pages 297-300. IEEE Computer Society, 2006.

[20] Object Management Group. Mof, 2006.
http://www.omg.org/cgi-bin/doc?ptc/2005-11-01.

[21] Object Manegement Group. Uml 2.0 specification, 2006.
http://www.omg.org/technology/documents/formal/uml.htm.

[22] Optimalj.
http://www.compuware.com/products/optimalj/.

