
WebManager: Transforming a Network Management Application
Into a Component-Based Framework

Jacques Philippe Sauvé
Antonio A. T. R. Coutinho, Rodrigo R. de Almeida, Ayla D. D. de Souza, Alexandre N. Duarte

Departamento de Sistemas e Computação - UFPB/Campus II
Rua Aprígio Veloso, CEP 58109-970, Campina Grande - PB

Telephone: +55 (83) 310-1120 Fax: +55 (83) 310-1124
{jacques, coutinho, rodrigor, ayla, alex}@dsc.ufpb.br

Abstract
This paper describes a network management tool. Visits to organizations of all sizes reveal
that more than 95% of them are empty-handed as far as network management tools are
concerned and pursue ad hoc management techniques. We argue that this sad state of affairs is
due to the lack of cheap, easy to use tools. Although we don't solve the problem completely
by providing such a tool, we show how a black-box component-oriented framework can be
the basis for constructing it. We report on results of actual use of the tool to manage a small
network and show that the postulated requirements (flexibility, scalability, ease of use and
portability) are met.

1 Motivation
This paper describes a network management tool. Like all tool builders, we build new

tools because we think adequate tools are missing for a particular purpose. But do we really
need new tools for network management? Are current tools not adequate? In this section, we
explain why we believe new tools are needed. Sections 2 and 3 describe the tool we built from
the perspective of Goals and Requirements and Architectural Design. Results are presented in
section 4 and future work is described in section 5.

Why do we say that adequate tools are missing for network management? Are not
mature platforms such as HP's Open View or Cabletron's Spectrum, coupled with the plethora
of plugin applications adequate to manage current networks? A short answer is "yes and no",
but we will concentrate on the "no" aspects in what follows. As part of our day-to-day
activities, we have been in contact with many organizations over the years and certain facts
have become clear concerning these organizations' networks and management policies. We
summarize: A quick head count reveals that well over 95% of organizations lack adequate
network management. As network management professionals, it behooves us to find reasons
for this dramatic situation. We think that tools, or the lack thereof, is at the heart of the
problem. Are there no tools for network management? There are, of course, but the
calamitous situation outlined above is primarily due to the two following tool-related factors:

 Good network management tools are too expensive; and/or
 Network management tools are hard to use; that is, they require hard-to-find expertise to

be useful.

The last statement is generally true of all network management tools. Installing and
configuring the tools is difficult, at least for the level of expertise shown by typical network
support personnel. Also, tools are either not extensible or very hard to extend. As an example,
how would you extend your current network management tool to provide full end-to-end e-
commerce site management? It is probably impossible, or very hard, or very expensive.

We have started a project aiming to produce very-easy-to-use network management
tools. In our experience, producing really easy-to-use software is difficult. The model we aim
at is what we call the "big red button". Ideally, network personnel should see a network
management tool as a big red button. Push the button and the tool will work on its own and
provide painless network management. This is obviously a tall order, undoubtedly
unattainable, but the metaphor serves well to show what we are aiming for. We also
understand that, if we are successful, the final tools will probably only be adequate for small
networks (of hundreds of managed nodes).

A first tool, called WebManager, was developed [Sauvé 1999] and is currently being
used to manage 6 networks, ranging from a tens to hundreds of managed nodes, including
campus and wide area networks. We do not claim that WebManager, Version 1 (wmv1) is
easy to use. However, we have gathered experience through the tool, especially in the areas of
performance and fault management. The success we have had with this tool has prompted us
to pursue our efforts further and improve it. Specifically, wmv1 suffers from the following
major shortcomings:

 The tool is difficult to install and configure. A text-based configuration file must be edited

with full details about network topology, interface descriptions and management policies.
 The tool is not scalable and barely has the performance to manage a network consisting of

a few hundred managed nodes, using a run-of-the-mill Pentium computer.
 The tool is not extensible. Factoring in new functionality requires an understanding of all

the source code and can currently only be done by the tool's creators.

2 Goals and Requirements
We want to solve two important problems: scalability and extensibility. Why are these

two immediate goals more important than others? First, it has become clear that the final goal
- the "big red button", extremely easy-to-use network management tools - will not be achieved
with wmv2. Very easy-to-use network management software is very difficult to produce. It
may require 10 or more versions to reasonably approach that goal. Many modifications will
occur over time and it is therefore imperative that intermediate steps be based on an extremely
flexible and extensible architecture, able to accommodate change. Secondly, we believe that
scalability is achieved by good architectural design and not by tweaking badly designed
software after it is found not to be scalable. It is thus also imperative to include scalability
since the beginning so that adequate architectures may be tested as early as possible. Finally, a
third major goal is to make wmv2 substantially easier to use than wmv1. In fact, it is a
permanent goal of the overall project that ease of use should steadily increase from version to
version, even as functionality increases.

This said, we may now list our major requirements:
1. All functionality available in the previous tool (wmv1) must be available. Details

ate available in [Sauvé 1999]. This includes:
 A Web interface;
 Support for SNMP versions 1 to 3;
 Navigation using hierarchical network maps;
 Color-coded device status available on the network maps;
 Ease of generating historical performance graphs for any MIB variable;
 Configurable alarms with alarm logging, and notification through mail

messages or similar mechanism.
2. The tool should be much more scalable. It should be possible to manage thousands

of network elements using standard PC hardware (not multi-processed, not

clustered, run-of-the-mill Pentium-based PCs with a standard memory
configuration of, say, 64 MBytes to 128 Mbytes.)

3. The tool should have an extensible architecture, allowing the addition of
functionality by a third party without requiring the tool's source code. As an
example of extensibility, it should be straightforward to introduce new event
correlation algorithms and generate alarms accordingly.

4. The tool should be much easier to install and configure;
5. The tool should be portable and should run unaltered on Linux and Windows NT

platforms.
6. The tool should be freely available and thus should use freely distributable

accessory software. Cost should not be an issue.

3 The Proposed Architecture
Our solution to the problems outlined above can be described at several levels of

detail. However, due to the nature of the three major goals (extensibility, scalability and ease-
of-use), we deem it sufficient to outline the architecture of the tool, without delving into
detailed design issues.

3.1 Extensibility through a component-based framework
Let's tackle the first and most difficult requirement: extensibility. It is a difficult

requirement because, by its very nature, it refers to unknown future functionality. Planning for
the unknown is always tricky. Over the past few years the discipline of software engineering
has shown several ways to achieve extensibility, one of the most important of which is, in our
opinion, the use of component-based frameworks [Fayad 1998, Szyperski 1999].

Frameworks can be classified as white-box and black-box frameworks. White-box
frameworks rely on class inheritance to complete the framework. The programmer extends
certain abstract classes provided by the framework in order to provide the missing pieces. By
contrast, a black-box framework relies on object composition to plug in missing pieces and
complete the applications. In a fully mature black-box framework, the composition would be
done using a visual builder [Roberts 1997] and without needing access to the objects' source
code. Also, objects would be configured declaratively (that is, without programming). In such
a situation, we say that the objects being composed are components. In other words,
components are configured and composed together using a visual tool to form complete
applications.

We want wmv2 to be a component-oriented-framework. This provides a very flexible
and extensible architecture for two reasons:
 The selection of which components to plug into the framework, where to plug them in,

and how to configure them provides the flexibility to build different applications;
 Extensibility is achieved by simply producing new components. For example, new event

correlators or "e-commerce management components" could be produced and plugged
into the framework, as long as the components' functionality can seamlessly be integrated
into the architecture.

3.2 The overall n-tier architecture
Before delving into the design of the framework itself, it is important to decide exactly

what aspects of the overall solution the framework will cover. We chose to remove any
consideration of user interface from the framework so as to maintain simplicity and the
flexibility of providing any type of interface, including an HTML/XML Web browser-based
interface, very thin clients such as WAP-enabled devices, GUI consoles, etc. We therefore

base the solution on a standard n-tier architecture, as shown in figure 1. The only other major
decision also taken at this point is to leverage Java technologies to gain portability and ease of
development. This implies that framework components will be JavaBeans.

In figure 1, presentation services rely on browsers, WAP-enabled clients, etc. in the
first tier. The second tier would typically be a Web server serving HTML, XML or WML
pages produced from Java Server Pages (JSPs). These pages instantiate components called
Proxy View Components. They are proxy components since their function is merely to
communicate with the true view components running on the Network Management Station
through Remote Method Invocation (RMI). The framework itself, in the third tier, offers view
components that provide "object-oriented views" into the network management information
available. These components exist only to provide information to be displayed to the user
through the chosen interface. The framework obtains information from the network (which we
may consider to be another tier) and keeps management data in yet another tier, the persistent
data store. This overall architecture thus retains the ability to deal with thick, thin and very
thin clients, thus providing the required flexibility in user interface.

Web ServerWAP-enabled

device

Browser

GUI console

Java Server
Pages (JSP)

Network Management
Station running
Management
Framework

NETWORK

WML

HTML/XML

Proxy View Components View Components

Management Data

RMI

RMI

Figure 1. The overall n-tier architecture for WebManager, Version 2
We now describe the management framework itself, the most important part of the

architecture.

3.3 The problem domain model
First, we emphasize that the framework is aimed specifically at the areas of

performance and fault management, which are of particular interest to us.
Let us look at a general model for fault management, in figure 2, adapted from

[Huntington-Lee, 1997]. The figure shows clearly that the structure of a fault management
solution is essentially a pipeline of information, where the type of information flowing in the
pipeline depends on the particular location. In the figure, we can identify:

 Network activity, as a result of SNMP polling or trap reception, for example;

 Network events, indicating special conditions such as a particular management variable
crossing a preset threshold;

 Network alarms, obtained after filtering events, such as would be done by an event
correlator;

 Trouble tickets, representing alarms that must be tracked until the problem is resolved.
We may now ask: what would change in figure 2 if performance management were

included? Performance management deals with two major issues: performance problems and
trending for capacity planning. Identifying performance problems requires no change to figure
2: it is simply a matter of defining appropriate threshold and grouping filters. In order to allow
trending to be done, it is sufficient to log network activity (and not only network events as
shown in figure 2) and make it available to trending analysis modules. We may therefore
adopt figure 2, along with a network activity log, as the problem domain model that must be
captured in the framework we wish to design.

Agents
Solicited
information

Unsolicited
information

Network Activity

Threshold filters

Event correlation
(Grouping filters)

Network events

Priority filter

Network problems
(Generating alarms)

3

1

2 Prioritized alarms

Alarm notification

Event
Log

Policies

Topology

FAX

NMS

MAPTROUBLE
TICKETS

USER

CELL PHONE

E-MAIL

Figure 2. A model for fault management
Having decided on a problem domain model, we may now proceed to the design of the

desired management framework.

3.4 Information producers and consumers
In transforming the problem domain model to a software architecture, we again

observe that the model is essentially a pipeline of information with elements performing the
transformation of information from one form to another along the pipeline. We may thus
think of producers and consumers of information and use these basic entities in the software
architecture. As an example, a threshold filter is a consumer of information (representing
network activity) and also a producer of information (representing network events). The basic
architectural decision is to represent each information producer and consumer as a software
component (a JavaBean).

Information producers and consumers must be connected to one another. In other
words, the information produced by one component (such as a threshold filter) will usually be
sent to one or more components (such as event correlators) which will consume the
information and possibly produce new information for yet more consumers. Exactly which
components will be connected to which others is totally dependent on management policies
that must be implemented by the framework. Since management policies are established by
the organization, and since they also depend on the network topology, they are dynamic and
the framework must therefore support ways of connecting the components at run-time rather
than at compile-time. This, essentially, is what a black-box component-based framework
allows us to do. But we still have to decide on the way in which components are made aware
of one another.

An object-oriented design pattern called Observer is ideally suited to the situation
[Gamma 1995]. Using this design pattern, an object that is interested in an event produced by
another object registers its interest in the event with the producing object. Any object that
produces events has an interface (a set of methods) through which it accepts the registration of
interested objects. When an event occurs in this producer object, it promises to inform all
interested objects by calling an appropriate method. The advantage of the Observer design
pattern is that the coupling between objects is not statically coded but established at run-time
and may be dynamically altered. This is ideal for our situation, since we will be able to design
and code all components without regard to the final connections they will have with other
components. This yields an extremely flexible architecture.

We use even more powerful way of establishing component connections. It resembles
the Observer pattern and decouples components even more. We call it the Databus
architecture, similar to Sun's Infobus [Sun 1999]. A Databus is a software bus that works
similarly to a hardware bus: any information put on the bus is distributed to all components
connected to the bus as receivers (consumers). Thus, instead of connecting components to one
another, producers will put information on an Databus and interested consumers will connect
themselves to the Databus and receive the information. This minimizes coupling still further,
since components are no longer coupled to one another but to Databusses.

Many Databusses may exist in a typical instance of the management framework. Some
will be present in any application based on the framework. Details will be given in the next
section. However, it is important to observe that there must be a simple way of creating new
Databusses, rather than having only fixed Databusses in the framework. There must also be a
way of dynamically connecting components to the appropriate Databusses, either as producers
or as consumers. In order to achieve this effect, each Databus has a name and any component
can define any number of Databus interfaces. An Databus interface has two attributes: the
name of the Databus to which it should connect and a type (PRODUCE or CONSUME) either
to produce on the bus or consume from it. Figure 3 shows a component receiving information
from an Databus called "EVENT" through a CONSUME-type interface and producing
information on another Databus called "ALARM" through a PRODUCE-type interface.
Observe that a component may have fewer or more than two Databus interfaces. Typical
components will have one Databus interface (sources and sinks) or two Databus interfaces
(filters).

3.5 The framework
The framework is shown in figure 4. All circles are components (JavaBeans). Three

standard Databusses are always part of the framework, although more can be created for
special situations. The standard Databusses are used to distribute Network Activity
information, Network Event information and Network Alarm information. Databusses are

also JavaBeans so that the whole framework really consists of pluggable components. This
fact is what makes the framework of the black-box type.

Databus "EVENTS"

Databus "ALARMS"

Databus interface
name = "EVENTS", type = "RECEIVE"

Databus interface
name = "ALARMS", type = "PRODUCE"

ComponentInformation flow

Figure 3. A component with two Databus interfaces

Network Activity Databus ("ACTIVITY")

Threshold filter beans

Network being
managed

Network Events Databus ("EVENTS")

Network Alarms Databus ("ALARMS")

Event correlator beans

Network
Activity Log

View bean

Network
Events Log

View bean

Network
Alarms Log

View bean

Logger bean

Logger bean

Logger bean

Configuration
beans

Mailer bean

Cell phone Short Message
Service (SMS) bean

Other alarm notification bean

View bean

Monitor beans

Figure 4. The network management framework
Producers for the "ACTIVITY" Databus are Monitor beans. These components are

responsible for obtaining management information from the network and making it available
on the Databus. All Monitor beans have a single Databus interface. We have developed three
types of Monitor beans. One uses SNMP to monitor SNMP variables, another receives SNMP
traps, while the last monitors round-trip time using the ICMP protocol (as the ping command
does). Other types of Monitor beans could be develop, as discussed in the Results section.

The next major type of bean represents threshold filters. These beans have two
Databus interfaces, one to consume from the ACTIVITY Databus and one to produce
information on the EVENTS Databus. We have implemented a single type of threshold filter,
one that uses hysteresis (with a fire threshold and a rearm threshold). Properly setting the two
threshold values and whether events are produced as each threshold is crossed allows one to
adequately treat all conditions necessary for fault and performance management.

Also shown in figure 4 are event correlator beans with two Databus interfaces
(between the EVENTS and ALARMS Databusses). This is where the real intelligence of
network management can reside. So far, we have produced few such components. One is a
pass-through component that is used when each event should generate an alarm. Another is a
component used for preventive network maintenance that inhibits event generation between
two instants in time.

Logger beans possess a single Databus interface and are used to log Databus
information to a file or database. Three different logger beans are necessary since the
information flowing on each Databus is different. Logged information is important to supply
the user interface with appropriate values of historical data, device status, alarm tracking, etc.

Notification of network alarms can be done in several ways. We have developed two
notification beans, one which sends e-mail when an alarm occurs (Mailer bean) and one
which send a message to a cell phone using the Short Message Service (SMS) available from
phone companies. Currently, our SMS bean sends a DigiMemo to any BCP-owned cell phone
in Brazil.

Topological information is contained in beans stored in a configuration database.
There is basically one bean per network equipment being managed.

Notification can also be performed by changing the information on network maps.
However, since network maps are generated by a pull model (browsing to a particular JSP
page will pull information from the server to the browser), we cannot use the same solution as
other notification beans which operate on a push model. This is the reason for the existence of
View beans. These beans are passive in the sense that they do not push information further
down the pipeline. Their methods are called by the JSP pages (or other clients) that provide a
graphical user interface for the application and access the appropriate databases to return the
required information. In this sense, they furnish an "object-oriented view" of all management
data. They are accessed indirectly through Proxy View beans, as shown in figure 1, since
clients are running in a different Java Virtual Machine than the framework (in a Web server,
for example). We have developed several types of View beans, as described below:

 Status bean: this bean knows the current status (up/down) of all managed devices and may

be queried to update network maps with the appropriate color coded information (red for
down, green for up, and so on)

 Config bean: providing configuration information such as a list of network elements, their
network interfaces, descriptions, names, polling intervals, community names, etc.

 Map bean: capable of drawing network maps and generating GIF-format files for network
navigation in a browser or WAP client environment.

 Graph bean: capable of drawing statistical graphs of management information versus time.
These graphs can be used for trending or to obtain a vision of network operation over
time.

3.6 Scalability considerations
One of the major goals of this version of WebManager is to achieve a scalable

architecture. In our view, achieving scalability requires two conditions to be met. First, in a
centralized architecture, heavy use of threads is necessary to avoid sequential execution. In

our architecture, every managed element has a Monitor bean associated with it to monitor the
element's agent and each Monitor runs in a separate thread. Thus, network monitoring is not
sequential but done independently for each element.

3.7 Application assembly: configuring the framework
We have briefly described a component-based framework for creating network

management applications. Summarizing, we have a set of components and an architecture for
connecting these components to one another to perform a particular management task. We
now have to discuss how application assembly is done. When using a black-box component-
based framework, applications are created by assembly, that is by instantiating components
and plugging them into the framework. This means that we have to decide:

 Which components exist;
 What their properties are (a property is a component attribute that may be altered

declaratively, without programming, usually through a Visual Application Builder); for
example, a Monitor bean has a property called "Polling frequency", another called
"Community name", and so on.

 How components are connected to Databusses;
Since the connection of components to Databusses is done merely by setting the

component's properties (the Databus name and interface type - CONSUME or PRODUCE),
we must therefore indicate which components to instantiate and what values their properties
should assume. We stress that this is all that must be done to produce a full network
management application.

We have chosen to represent this information through an XML configuration file. The
use of XML makes the configuration information easy to edit, generate automatically, store,
browse, etc. Figure 5 shows a small part of an XML configuration file. We do not give a full
example due to space restrictions. For ease of use, the configuration file is edited with a
graphical XML editor.
 <NetEquipment>

 <name>sw8273</name>
 <hardwareDescription>RouterSwitch IBM 8273</hardwareDescription>
 <functionalDescription>POP-PB main router</functionalDescription>
 <criticality>9</criticality>
 <host>sw1.pop-pb.rnp.br</host>
 <port>161</port>
 <protocol>0</protocol>
 <retries>0</retries>
 <timeout>4000</timeout>
 <pollInterval>5</pollInterval>
 <pollsToSave>3</pollsToSave>
 <community>RNP</community>
 <writeCommunity>private</writeCommunity>
 <instanceIndex>0</instanceIndex>
 <statusOID>.webmngr.ping.PingUp</statusOID>
 <allGraphics>
 <variableGraphic>
 <title>Ping time</title>
 <oid>.webmngr.ping.PingTime</oid>
 <label>ms</label>
 <limit>1000</limit>
 </variableGraphic>
 </allGraphics>

 <NetEquipment>

Figure 5. Application configuration in XML

When the framework's main method starts, it reads the XML configuration file,
instantiates all components, sets their properties according to the XML tags found in the file,
and connects them together according to the Databus interfaces defined in the properties.
Most of this work is done by another framework (called JCONFIG) specially created to ease
the configuration of component-based applications.

3.8 Application installation and deployment
Installing an application based on an n-tier architecture can be complex. Not only must

the framework-based application be installed and configured but the other tiers must also be
configured. This is especially tricky since we need a Web server with support for JSP and all
this must be properly configured. Remembering that we have a major requirement to enhance
ease-of-use, we have elected to package all needed modules in a single installation package
and not depend on external Web servers, JSP plug ins, etc. Currently, a single installation
script installs and configures everything, including a Jakarta Tomcat servlet/JSP server
[Apache 2000] listening on a special port.

4 Results
We have implemented the framework in Java and are currently using it to manage a

small network consisting of about 10 managed nodes. We are substituting wmv2 for wmv1
for all 6 networks still being managed with WebManager, Version 1. Figure 6 shows six
screen shots of our application when managing a small network. Figure 6.1 is the main
network map; clicking on the red spot (indicating a severe problem) yields figure 6.2. By
further clicking on the red trouble spot, we reach, in succession, figures 6.3, 6.4 and 6.5. This
figure is no longer a network map but a detailed view of statistical information available about
the network equipment. Clicking on a particular graph yields figure 6.6. Several types of
reports may easily be generated using JSP pages such as a list of managed elements together
with their status, an alarm browser, etc. We also have an operational WAP version but space
restrictions prohibit use from showing screen shots.

How do we validate our work? How do we measure success, or lack thereof? We must
turn to our requirements and see how fully they were attained.

4.1 Portability
The requirement for portability was fully achieved, mainly thanks to Java and to the

portability of the Jakarta Tomcat server. The solution is working under Linux and Windows
NT. It will probably easily work under other platforms, although this has not been tested.

6.1 Main network map for managing a small network

6.2 Detailed network map for a small network

6.3 Detailed network map for Web proxy

6.4 Detailed network map for a switch

6.5 Detailed information about a network switch

6.6 Statistical time lime graph for round-trip time

Figure 6. Web Interface for managing a small network

4.2 Ease of use
We understand that we have not achieved the "big red button" simplicity we

mentioned in the introduction, nor was this meant to happen in this version of the tool. That
level of ease-of-use will be very difficult to attain. However, wmv2 is much easier to
configure than wmv1, even though it is much more powerful. That is a step forward.

More important, we must verify that very easy configuration will eventually be
achievable without changing the architecture. We believe this is possible. We will need to
provide more components and an intelligent auto-discovery module that will not only
discover devices and topology but automatically choose which components to include in the
configuration, and what properties they should have. This would also have to include network
maps. Although this is not a simple task, it is achievable and does not affect the architecture.
On the contrary, the framework's highly modular architecture eases the task.

4.3 Scalability
Using a 300 MHz Pentium machine with 64 Mbytes running Linux and Java

Development Kit 1.2.2, our tests indicate that 100 network elements can be polled in 5
seconds. Up to this number of elements, performance is strictly linear. Although we have not
yet confirmed the saturation point where a linear performance behavior stops, we believe that

our solution will easily allow the polling of thousands of elements in a 15-minute time frame,
commonly used in network management, using standard, inexpensive, PC hardware.

4.4 Extensibility
The last major requirement is especially important since it is what will let us easily

evolve toward our final goal: very easy-to-use tools. Since the goal is still distant, we need
flexibility and extensibility. We have achieved tremendous success with this requirement.
Any change we have thought of implementing is easy to merge into the framework. Consider
how easy it is to implement the following extensions:
 Trouble ticketing: in order to interface our applications with a trouble ticketing system, all

we need to do is implement a new notification bean that would consume events on the
ALARMS Databus and interface to the trouble ticketing system.

 Non-SNMP agents. As an example, we currently are implementing a new Monitor bean
that interfaces to an ATM switch through a telnet interface to gather information through
"screen scraping". This is necessary since the desired information is not available in the
switch's MIBs.

 Notification of alarms on network maps is currently done through a pull model (the JSP
servlet calls a proxy view bean that obtains the information from the management station).
We could easily implement a push-model notification by having a new notification bean,
similar to the Mailer bean.

5 Future development
Although much remains to be done to achieve our final goals for WebManager, the

tool is already useful and can, in fact, be employed to manage small networks. We intend to
pursue further work in the following areas:
 Ease of use. We are still pursuing the "big red button" metaphor. This will involve the

creation of many new components and, most important, auto-configuration algorithms.
We will also probably need to design a user interface framework, since, in the current
version, there is a lot of manual work involved in creating the JSP-based interface.

 Service management. We have concentrated our efforts in managing the network
infrastructure. However, we believe that the framework is also applicable to manage
services. We will validate this idea by building a full E-commerce management solution.

 Distributed management. As the tool improves, it may eventually be used to manage large
networks (thousands of nodes). This situation leads us to examine a distributed Databus.

6 References
[Apache 2000] Apache Software Foundation, Jakarta Project, On-line: http://jakarta.apache.org/
[Fayad 1998] Fayad, M. E., D. C. Schmidt, Johnson, R. E., Building Application Frameworks -
Object-Oriented Foundation of Framework Design, Wiley, 1999.
[Gamma 1995] Gamma, Helm, Johnson, Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1995.
[Huntington-Lee, 1997] Huntington-Lee, J. D. Case, HP's OpenView, McGraw Hill, 1997.
[Roberts 1997] Roberts, D., R. Johnson, Evolving Frameworks: A Pattern Language for Developing
Frameworks, Addison-Wesley, 1997.
[Sauvé, 1999] Sauvé, J. P., WebManager: A Web-Based Network Management Application.
LANOMS – Latin American Network Operations and Management Symposium, Rio de Janeiro,
Brazil, December 1999.
[Sun 1999] Sun Microsystems Inc., On-line: http://www.javasoft.com/beans/infobus.
[Szyperski 1999] Szyperski, C., Component Software - Beyond Object-Oriented Programming,
Addison-Wesley, 1999.

	1 Motivation
	2 Goals and Requirements
	3 The Proposed Architecture
	3.1 Extensibility through a component-based framework
	3.2 The overall n-tier architecture
	3.3 The problem domain model
	3.4 Information producers and consumers
	3.5 The framework
	3.6 Scalability considerations
	3.7 Application assembly: configuring the framework
	3.8 Application installation and deployment

	4 Results
	4.1 Portability
	4.2 Ease of use
	4.3 Scalability
	4.4 Extensibility

	5 Future development
	6 References

