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Bag-of-Tasks (BoT) applications are those parallel applications whose tasks are independent of each other. 

Despite their simplicity, BoT applications are used in a variety of scenarios, including data mining, massive searches 

(such as key breaking), parameter sweeps [1], simulations, fractal calculations, computational biology [26], and 

computer imaging [23] [24]. Moreover, due to the independence of their tasks, BoT applications can be successfully 

executed over widely distributed computational grids, as has been demonstrated by SETI@home [2]. In fact, one can 

argue that BoT applications are the applications most suited for computational grids, where communication can eas-

ily become a bottleneck for tightly-coupled parallel applications.  

However, few users of BoT applications are currently using computational grids, despite the potential dra-

matic increase in resources grids can bring to bear for problem resolution. We believe that this state of affairs is due 

to (i) the complexities involved in using grid technology, and (ii) the slow deployment of existing grid infrastructure. 

Today, one must commit considerable effort to make an application run efficiently on a grid. The user, who is ulti-

mately interested in getting the application’s results, seldom has the training or the inclination to deal with the level 

of detail needed to use current grid infrastructure. Furthermore, the existing grid infrastructure is not ubiquitously 

installed yet. Users often have access to resources that are not grid-ready. 

In this paper we present MyGrid, a system designed to change this state of affairs. MyGrid aims to �����0 

enable the execution of BoT application on $�������	���������	���	����	���	������ ��. MyGrid chooses a different 

trade-off compared to existing grid infrastructure. It forfeits supporting arbitrary applications in favor of supporting 

only BoT applications (which are relevant and amenable to execution on grids). By focusing on BoT applications, 

MyGrid can be kept simple to use, simple enough to be a solution for ����	�����, who want to run their applications 

����0 and don’t really care for the underlying grid support they might use. 

This is not to say, however, that MyGrid is a replacement for existing grid infrastructure. MyGrid uses grid 

infrastructure whenever available. It simply does not depend on it. MyGrid can be seen more as a representative of 

the user in the grid. It provides simple abstractions through which the user can easily deal with the grid, abstracting 

away the non-essential details (as we shall see in Section 4). It schedules the application over whatever resources the 

user has access to, whether this access is through some grid infrastructure (such as Globus [18]) or via simple remote 

login (such as ���). MyGrid’s scheduling solution is a particularly interesting contribution because it uses task repli-

cation to achieve good performance relying on no information about the grid or the application (as we will see on 



 3 

Section 5). Note that not needing information for scheduling simplifies MyGrid usage. MyGrid is open source soft-

ware, available at ����  ��������������� �!����. 

This paper is structured as follow. Section 2 presents the goals that drove MyGrid’s design. Section 3 de-

scribes the architecture created to achieve such goals. Sections 4 and 5 describe the major contributions of MyGrid to 

Grid Computing state of art. Section 4 describes MyGrid’s working environment, which hides details of individual 

machines from the user.  Section 5 presents MyGrid’s scheduling strategy, which attains good performance without 

relying on information about the grid or the application. Section 6 describes MyGrid’s implementation, whereas 

Section 7 presents some experiments that evaluate its performance in practice. Section 8 compares MyGrid against 

related work. Finally, Section 9 closes the paper with final remarks and delineation of future work. 

�� ������������

We intend MyGrid to be a production-quality solution for users who want to execute BoT applications on 

computational grids today. Note that “today” implies that we cannot assume that some new software will be widely 

deployed. Our design goals were thus established with this vision in mind. We want MyGrid to be ��+(��, ��+(����, 

����+(�����%, and ������.  

By ��+(��, we imply that MyGrid should be as close as possible to an out-of-the-box solution. The user 

wants to run her application. The least she gets involved into grid details, the better. Towards this goal, we worked 

on minimizing the installation effort. This is important because if the user had to manually install MyGrid on many 

machines, the simplicity of the solution would suffer.  


�+(���� means that MyGrid must cover the whole production cycle, from development to execution, pass-

ing through deployment and manipulation of input and output. This goal is key for MyGrid to be useful in practice. 

In order to support all activities within the production cycle of a BoT application, MyGrid provides the notion of 

$��'��%	�������+���, which consists of a small set of abstraction that enables the user to manipulate her files on the 

Grid. 

Due to their loosely coupled nature, BoT applications can potentially use a very large number of processors. 

Therefore, we do not want MyGrid to preclude the user from using a given processor. We want MyGrid to be ���

��+(�����%, in the sense that all machines the user has access to can be utilized to run her BoT applications. An 

important consequence of this goal is that MyGrid must be an user-centric solution, i.e. MyGrid cannot assume that 
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some given software is installed in a machine for it to be employed in the computation. That is, we cannot assume 

that a particular grid infrastructure (e.g. Globus [18]) is ubiquitously installed on all machines a user has access to. 

Note also that, simplified installation also helps here. It does not suffice that the user potentially can employ all ma-

chines she has access to. It has to be simple to do so. 

MyGrid should not weaken the user’s security; otherwise it probably will not be used. Consequently, we 

want MyGrid to be ������ in the sense that the user’s security will not be compromised by a security problem in one 

of the many machines that compose the user’s Grid. 

�� ��
����
�	���

We assume the user has a machine that coordinates the execution of BoT applications through MyGrid. This 

machine is called ��+�	+������. The user submits the tasks that compose the application to the home machine, 

which is responsible for farming out the tasks in the user’s grid. We assume that the user has good access to her 

home machine, having set up a comfortable working environment on it. Moreover, the user has no problems install-

ing software on the home machine. We envision that the home machine will oftentimes be the user’s desktop. 

The home machine schedules tasks to run on %���	+������� (see Section 5 for a discussion of scheduling in 

MyGrid). In contrast to the home machine, we assume that grid machines have not been wholly customized by the 

user to create a familiar working environment. Moreover, grid machines do not necessarily share file systems with 

the home machine, nor do they have the same software installed on them (even the operating system can differ). 

Ideally, the user does not want to treat grid machines individually. For example, the user should not have to install 

MyGrid software on them. The idea is that grid machines are dealt with through MyGrid abstractions (see Section 4). 

Note that the differentiation between home and grid machines makes our design goals (see Section 2) more 

concrete. Our security concerns, for example, can be phrased as “compromising a grid machine should not give the 

intruder the ability to compromise the home machine”. Also, easy installation applies solely to grid machines. On the 

home machine, MyGrid is software as any other and must be installed and configured. Likewise, simplicity implies 

that grid machines are dealt with through abstractions that hide their heterogeneity in hardware, software and con-

figuration.  

However, enabling the user to benefit from “whatever resources she has access to” is essentially impossible 

in the sense that we do have to assume something about a grid machine in order to be able to use it. Therefore, our 
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design tries to get as close as possible to this goal. This is done by defining the 2���	1������	5�������� as the mini-

mal set of services that must be available in a machine for it to be used as a grid machine. These services are: 

 

��������

Task start-up on a grid machine (remote execution) 

Cancellation of a running task 

File transfer from the grid machine to the home machine 

File transfer from the home machine to the grid machine 

�	
������������	������������	���

As illustrated by Figure 1, there can be many ways to implement the Grid Machine Interface. Actually, Grid 

Machine Interface is a ��������������	[19] of the access services to a grid machine. One way to implement the Grid 

Machine Interface lets the user furnish MyGrid with scripts that implement the four services listed in Table 1. In this 

case, MyGrid uses the 2���	����(� module to access the machine. Note that Grid Script enables the user to inform 

MyGrid on how to access a given machine in a very flexible way. As long as the user is able to translate “having 

access to a given machine” into “providing scripts that encapsulate such access”, MyGrid will be able to use the 

machine. 

Other ways to implement the Grid Machine Interface rely on access methods that are known to MyGrid. For 

example, we are currently implementing 102���6�	2�� ��	���-0. The idea is that if a grid machine can be accessed 

through Globus’ GSI, GRAM, and GridFTP [18], then the user does not need to supply scripts, but simply indicate 

that the access is to be done via MyGrid’s Globus Proxy. MyGrid also provides its own access mechanism, called 

7���	"%���. The User Agent is useful when no service that implements the operations described by the Grid Machine 

Interface (see Table 1) is available.  

In addition to hiding the grid machine access mechanism from the scheduler, the Grid Machine Interface 

provides a clean and elegant way (i) to deal with communication restrictions, and (ii) to support space-shared ma-

chines (i.e. parallel supercomputers). 

Communication restrictions are a fact in today’s Internet [25], where firewalls and private IP addresses are 

commonplace. Communication restrictions have great practical impact on MyGrid because sometimes the home 

machine cannot freely communicate (i.e. open a TCP socket) with a grid machine. We deal with this problem by 

using the 2���	1������	2���$�0. The Grid Machine Gateway is an application-level relay. It runs on a machine 
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accessible to both home and grid machines (e.g. in a NAT converter) and forwards Grid Machine Interface services 

requests (see Table 1). In design pattern terminology [20], the Grid Machine Gateway is a ��������� in the sense that 

it implements and uses the interface, namely the Grid Machine Interface.  

 

�������������������	�������������������	������������	���

Space-shared machines (such as parallel supercomputers) are powerful resources the user might have access 

to. Using a space-shared computer, however, is different than using a time-shared workstation. In order to run a job 

in a space-shared computer, the user typically must submit a job request specifying how many processors are needed 

and the time they are to be available for the job. When no resources are currently available to fulfill the request, it 

sits in a wait queue until it can run.  

Having to deal with two kinds of resources would complicate scheduling. In particular, directly submitting 

requests to a space-shared machine would imply in crafting good requests (number of processor and execution time), 

a non-trivial task [11]. We introduced the �(����������	2���$�0 to address this issue. Whenever MyGrid needs 

space-shared processors, the Space-Shared Gateway submits the largest request that can be fulfilled immediately, a 

technique introduced in [23]. Instead of submitting application’s tasks, however, the Space-Shared Gateway submits 
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instances of the User Agent, much like Condor-G’s GlideIn [16]. The scheduler then farms out tasks on the space-

shared processors via the User Agent. In short, the Space-Shared Gateway transforms space-shared resources in 

timed-shared resources that appear and leave the system, simplifying the overall system design. We should also men-

tion that the Space-Shared Gateway is often used in conjunction with the Grid Machine Gateway. This happens be-

cause the processors of a space-shared machine typically cannot directly communicate with the outside world. 

Figure 2 exemplifies a small but somewhat complex grid. The grid in question is composed by 18 machines, 

9 of which are directly accessed by the home machine. The other 9 machines cannot be directly accessed. Communi-

cation to those machines is achieved with the help of the Grid Machine Gateway. Of the 9 directly accessed grid 

machines, 4 employ User Agent to implement the Grid Machine Interface, 3 use Globus Proxy, and 2 use Grid 

Script. Eight of the machines accessed via Grid Machine Gateway utilize User Agent. The other machine uses Grid 

Script. Note also that 5 machines accessed via Grid Machine Gateway are part of a space-shared machine and thus 

have their User Agent started by the Space-Shared Gateway. 

 

������������	��������	�� ������

One salient feature of the architecture presented here is that the home machine is a centralized component of 

the system. Therefore, concerns about the scalability of our design arise naturally. Our hope is that, despite the cen-

tralization of the home machine, MyGrid is going to be able to efficiently support most BoT applications. Such a 

hope is based (i) on experiments we performed (see Section 6), and (ii) on the fact that Condor, a successfully and 

mature system for the execution of BoT applications, also uses centralized job control [21]. But, of course, we intend 

to eventually remove such an architectural restriction from our design. The Grid Machine Gateway would be a natu-

Scheduler (Home Machine) 

User Agent 

Grid Script 

Globus Proxy 

Grid Machine Gateway 

Space-Shared Gateway 
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ral place for leveraging towards a more scalable design. The challenge is to keep the view the user has from the sys-

tem. 

�� ��������������������

The user needs a grid-wide $��'��%	�������+���, i.e. a set of abstractions that enable her to conveniently 

use her grid, in the same way that files and processes make it convenient to use a single computer. MyGrid’s work-

ing environment provides a common denominator that users can rely upon when programming for grids, despite 

differences in the configuration of the multiple resources that comprise the grid. Moreover, a working environment is 

crucial in providing a ��+(����	 solution, one that eases managing input and output files, distributing application 

code, and otherwise carrying on daily computational activities, now based on a computational grid.  

A MyGrid task is formed by �������, %���, and ����� subtasks, which are executed sequentially in this order. 

Subtasks are external commands invoked by MyGrid. Consequently, any program, written in any language, can be a 

subtask. The initial and final subtasks are executed on the home machine. The initial subtask is meant to set up the 

task’s environment by, for instance, transferring the input data to the grid machine. The final subtask is typically 

used to collect the task’s results back to the home machine. The grid subtask runs on a grid machine and performs 

the computation per se. Besides its subtasks, a task definition also includes the (��0(��	���� and the %���	+������	

�������+����, as we shall shortly see. 

MyGrid abstractions allow for writing the subtasks without knowing details about the grid machine used 

(such as file systems organization). The abstractions are +�����, (��0(��, and ����	��������. Mirroring enables replica-

tion of home machine files on grid machines. Mirrored files are put in the directory "#$%%&%, which is defined by 

MyGrid taking into account the local file system organization. Therefore, a grid subtask refers to mirrored file ' 

through "#$%%&%/', without having to know details about the grid machine file system. Mirroring is useful for 

distributing files that are going to be used more than once, such as program binaries. In fact, to ease mirroring bina-

ries, "#$%%&% is automatically included in the ()*+ by MyGrid. Mirroring is implemented efficiently by using the 

modification date and a hash of mirrored files, avoiding unnecessary file transfers. 

���0(���	provide temporary disk space independently of the local file system arrangements of a given grid 

machine. Playpens are directories created automatically to serve as the working directory of the grid subtask. Besides 

the initial working directory, a grid subtask can also refer to its playpen via the "(,)-(./ environment variable. 
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MyGrid creates the playpen in a file system that can hold the amount of data specified by the user as the task’s (��0�

(��	 ����. (If there is no such file system in a given grid machine, the task cannot be scheduled to this machine.) 

Unlike mirroring, playpens are meant to store temporary files as well as input and output data. 

Note that the name playpen makes greater sense from the grid machine viewpoint. We envision that the 

playpen implementer may want to protect the grid machine from a malicious task. This could be done by isolating 

the files that can be accessed, perfectly matching the playpen abstraction. 

File transfer allows for sending files between grid machines and the home machine. They are typically used 

for the initial subtask to send input data to the playpen, and for the final subtask to collect output data from the play-

pen. In order to ease writing the initial and final subtasks, MyGrid automatically defines the environment variables 

"(%&0, "(,)-(./ and "*)12. They respectively contain the grid machine chosen to run the task, the directory 

created as the playpen, and the unique task number. 

For example, suppose we want to run the binary ������, which has the file ./*%)3) as input and the file 

1)43) as output. The initial subtask would then be: 

��5��������������	���"(%&0���������
��5��������������"(%&0��./*%)3)��"(,)-(./�

The grid subtask would be simply: 

��������6��./*%)3)��7��1)43)�

And the final subtask would collect 1)43) to the ������� directory, renaming the file by appending the unique 

task number to its name. 

��5���������������"(%&0��"(,)-(./ 1)43)��������� 1)43)5"*)12�

Appending the task number to a file is useful for the quite common case where the tasks that compose the application 

produce output with the same name. Appending the task number ensures the uniqueness of each output. 

The final component of a task is its %���	+������	�������+����. In MyGrid, grid machines are labeled by ���

��� ����. Attributes are user-defined strings that express the characteristics of a grid machine. For example, the user 

can assign attributes ����8 and ��� to �������������������� to denote that such a machine runs Linux and is located at 

LSD (Laboratório de Sistemas Distribuídos). A task’s grid machine requirement consists of a boolean expression 

involving grid machines attributes. For example ����8������	����� denotes machines that have been labeled with the 

attribute ����8 but not with the attribute ��� (�������������������� would not qualify). 
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Any subtask can also determine the attributes of a grid machine. This makes it possible for the subtasks to 

adapt to different kinds of grid machines. Refining the above example, suppose that ������ has binaries for Linux 

and Solaris, placed respectively at ����8 and �	����� directories. Assuming that the user has labeled each grid machine 

with its operating system, the initial subtask could then use attributes to mirror the right binary. 

������5������������������"(%&0������89�������
��5��������������	���"(%&0������8 �������

�����
��5��������������	���"(%&0���	����� �������

������
��5��������������"(%&0��./*%)3)��"(,)-(./�

�� �
���	�����

Another key component of MyGrid is the Scheduler. The Scheduler receives from the user the description 

of the tasks that compose the application, chooses which machine runs each task, submits the tasks for execution, and 

monitors their progress. However, scheduling BoT applications on grids is not as easy as it might look at first. Good 

scheduling requires good information about the tasks that compose the application and the capabilities of grid re-

sources. Requiring information about tasks (such as expected execution time) would make MyGrid harder to use. 

Information about grid resources (such as speed and load) is often difficult to obtain due to the grid’s distributed and 

multi-institutional nature. Moreover, we would need a richer definition of the Grid Machine Interface (see Table 1) 

in order to obtain information about grid resources. A richer definition of the Grid Machine Interface would of 

course be harder to implement, negatively affecting our goal of using whatever resources the user has access to.  

An alternative is to use a scheduler that does not rely on information � ��� tasks or resources, such as 

���'�����. Workqueue only uses information absolutely necessary to schedule the application, namely the tasks to 

run, and the processors available to execute the tasks. In Workqueue, yet-to-execute tasks are chosen in an arbitrary 

order and sent to the processors, as soon as they become available. After the completion of a task, the processor 

sends back the results and the scheduler assigns a new task to the processor. That is, the scheduler starts by sending a 

task to every available host. Once a host finishes its task, the scheduler assigns another task to the host, as long as 

there are still tasks to be executed. Unfortunately, knowledge-free schedulers (as Workqueue) do not attain perform-

ance comparable to schedulers based on full knowledge about the environment (provided that these schedulers are 

fed with good information) [22]. 



 11

We developed the ���'�����	$���	4�(�������� (WQR) algorithm to deal with this problem. WQR delivers 

good performance without using any kind of information about the resources or tasks. Initially, WQR behaves as the 

conventional Workqueue. The difference appears when there are no more tasks to execute. At this time, a machine 

that finishes its tasks would become idle during the rest of the application execution in Workqueue. Using replica-

tion, such a machine is assigned to execute a replica of an unfinished task. Tasks are replicated until a predefined 

maximum number of replicas is achieved. When a task is replicated, the first replica that finishes is considered as the 

valid execution of the task and the other replicas are cancelled. Of course, WQR assumes that tasks are idempotent, 

i.e. can be re-executed with no side effects. Since MyGrid’s abstractions encourage the use of file transfer to deal 

with input and output, this assumption seems appropriate. 

WQR minimizes the effects of the dynamic machine load, machine heterogeneity and task heterogeneity, 

and does so without relying on information on machines or tasks. It improves performance in situations where tasks 

are delaying the application execution because they were assigned to slow hosts. When a task is replicated, there is a 

greater chance that some replica is assigned to a fast host. A way to think about WQR is that it trades off additional 

CPU cycles for the need of information about the grid and the application. Moreover, BoT applications often use 

cycles that would otherwise go idle [21]. Thus, trading CPU cycles for the need of information can be advantageous 

in practice.  

We investigated the performance of WQR in a variety of scenarios, in which we varied the granularity of 

the application, the heterogeneity of the application, and the heterogeneity of the grid [22]. Table 2 summarizes the 

results of 7,885 simulations. Sufferage and Dynamic FPLTF (Fastest Processor to Largest Task First) are known 

scheduling algorithm that were fed with perfect knowledge in the simulations. The qualifier to WQR (i.e. 2x, 3x, 4x) 

denotes the maximum replication allowed. For example, WQR 2x allows only 2 replicas of each task (or the original 

and the replica, if you will).  

 

 
������	��� ! �	����

�"#���
$��%&����� $'(���� $'(�)�� $'(�*��

��	�� 13530.26 12901.78 23066.99 12835.70 12123.66 11652.80 ����������
�����+���,� ����!��� 9556.55 9714.08 32655.85 10739.50 9434.70 8603.06 

��	�� N/A N/A N/A 23.55 36.32 48.87 $	�����
-".�+/,� ���0�!��� N/A N/A N/A 22.29 34.79 48.94 

�	
������$'(������	�������������
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Overall, the performance of WQR appeared to be equivalent to solutions that have perfect knowledge about 

the environment (which is not feasible to obtain in practice), even when we were limited to two replicas of each task. 

In average, the wasted CPU varied from 23.5% (when using only 2 replicas) to 48.9% (when using 4 replicas, the 

maximum we tried).  

Note also that the high values of the standard deviation suggest a great deal of variability in the results. In 

fact, we found that application granularity (the relation machines by tasks) has a strong impact on the results. As can 

be seen in Figure 3, WQR attains good performance, except for applications with very large granularity (where there 

are more machines than tasks). The difficulty faced by WQR when there are more machines than tasks is that the 

application execution takes only one “round” of tasks to processors assignments. Therefore, assigning a large task to 

a slow machine has great impact on the application execution time. Algorithms based on knowledge about the appli-

cation and the grid (Sufferage and Dynamic FPLTF) can avoid such bad assignments. Replication helps (as can be 

seen comparing WQR to Workqueue) but not enough to overcome the problem totally. Not surprisingly, much more 

cycles are wasted when only a single round to tasks to processors assignments, as shown by Figure 4. Consequently, 

when there are more machines than tasks, one might want to limit cycles waste by limiting replication to 2 (i.e. by 

using WQR 2x). Performance is still reasonable (although not as good as what achieved by scheduling algorithms 

with perfect knowledge of the application and the grid). Application and grid heterogeneity also influence WQR 

performance, but to a smaller degree. We refer the reader to [22] for a complete performance analysis of WQR. 

 

 

�������)�����������������
 �	�����	�������	���	��� �
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�������*��$	������ �����
 �	�����	�������	���	��� �

1� ���������	�����

MyGrid implementation consists of two major components: the Scheduler (which runs on the home ma-

chine) and the User Agent (one of the implementations of the Grid Machine Interface). Both were written in Java and 

using XP as development methodology [3].  

There is not much to say about the implementation of the Scheduler. The only important point that comes to 

mind is that we found it very hard to write automated tests for the Scheduler. This is because the Scheduler is multi-

threaded and its actions must be carried out in a distributed system, therefore introducing non-determinism in the 

Scheduler execution and making automated testing much harder. 

The implementation of the User Agent provided a much richer experience. In short, we found out that it is 

nowadays very hard to develop global distributed applications. Major problems are heterogeneity (which makes 

installation and portability very tough) and lack of point-to-point connectivity (due to widespread firewalls and pri-

vate IP addresses).  

The User Agent is implemented in Java, which certainly helped to make it portable. However, being written 

in Java makes the User Agent dependent on the Java Virtual Machine (JVM). This is an annoyance because we find 

machines with no JVM installed, JVM not present on the ()*+, and obsolete JVMs. We are now working on adding 

JVM detection (and eventual installation) as part of the User Agent’s self-installation process.  
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The Scheduler and the User Agent communicate via Remote Method Invocation (RMI), what brought two 

concerns. First, we needed a way to authenticate the invoker of remote methods, otherwise anyone could invoke the 

services defined in the Grid Machine Interface, performing remote execution and file transfers as the MyGrid user. 

We closed this security breach by using Java’s own public key authentication within RMI’s socket factory. Second, 

we avoided using ����������!� in order to make it easier configuring firewalls to let MyGrid traffic pass. To access 

an RMI service, one needs to contact two TCP ports, the well-known ����������! port, which informs the service 

port, and then the service port itself. But we found firewall managers somehow more reluctant in opening two ports 

than opening one. (Maybe that is because most services only need a single port, and hence asking to free traffic for 

two ports sounds suspicious.) We addressed this by writing our own implementation of :������%��	��&�����, 

which can be contacted directly by providing only machine IP and port number. (Many say “Computer Science is the 

science that solves problems by adding indirection levels”. This is the first time we see something being solved in 

Computer Science by ��+����% an indirection level.) 

It is also worth mentioning that we found Grid Scripts to be a source of headaches. The problem is related to 

the lack of strongly-typed interfaces in human-oriented commands. The interfaces of commands like ��� are de-

signed for software-human interaction, not for software-software interaction. It is common to find different versions 

of the same command with subtle variations. A human would have no problem in understanding these differences 

(for instance, a 5� option becoming ;*), but this is enough to break our scripts. 

Without standard strongly-typed software-oriented interfaces, this problem is very hard to solve completely. 

We tried to minimize it by using self-installation. (Actually, this very problem was a major motivation for self-

installation.) Self-installation consists of using Grid Scripts solely to install the User Agent (i.e. to transfer the soft-

ware to the grid machine and start it remotely). This is not always possible (e.g. there might be a firewall that blocks 

User Agent traffic), but when it is, it reduces the problems caused by Grid Script, because it is much less used (only 

to bring the User Agent up). 

��  ��!�����
������	������

We ran three experiments to evaluate MyGrid’s performance in practice. The first two experiments are 

proof of concept demonstrations. They consist of using MyGrid to run two real applications on real grids and show 

that MyGrid can be useful in practice. The first experiment ran a series of simulations designed to investigate how to 
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leverage the fact that most supercomputer jobs are moldable to improve their performance [11]. The second experi-

ment uses MyGrid to run multiple instances of THOR, a dynamic molecular application, and investigates the impact 

of AIDS drugs on regional mutants of the HIV-1 virus. The third experiment is different in nature in the sense that it 

does not execute a real application. Instead, it runs a benchmark application designed to investigate the performance 

bottleneck due to MyGrid’s architecture, which is centralized around the home machine. 

�����	����������������������2�
��

In 2000, we have run a large-scale experiment using Open Grid [10], a MyGrid predecessor that used tradi-

tional Workqueue (instead of WQR) for scheduling and had only Grid Script to access grid machines. We conducted 

around 600,000 simulations to study scheduling of moldable supercomputer jobs [11] using 178 processors located 

in 6 different administrative domains (4 at University of California San Diego, 1 at San Diego Supercomputer Center 

and 1 at Northwestern University). The processors were in normal production (i.e., they were not dedicated to us at 

any point in time). The processors were either Intel machines running Linux or Sparc machines running Solaris.  

The 600,000 simulations took 16.7 days, distributed over a 40-day period (the remaining time was used to 

analyze the latest results and plan the next simulations). In contrast, our desktop machine (an UltraSparc running at 

200MHz) would have taken about 5.3 years to complete the 600,000 simulations (had it been dedicated only to that 

task). Nevertheless, even more important than the achieved speed-up is the fact that we were able to use everyday 

machines located in different administrative domains as the platform for our application. In fact, we were required to 

run at lower priority in four of the administrative domains. 

It is also important to stress that the machines we used shared no common software except ubiquitous Unix 

utilities such as �����, ���, and ���. In particular, Grid Computing software (more precisely, Globus [18]) was only 

installed in a single administrative domain. Moreover, access mechanisms varied from one administrative domain to 

another. For example, one of the domains had machines with private IP (we accessed these machines via Grid Script 

using double ���, i.e. ����6������!7�����6����5�������7�6�	�����7). 

���������3�!��

MyGrid is being currently used by Paulo Bisch’s group at UFRJ to support a research on how the protease 

of mutants of the HIV-1 virus interact with protease inhibitors (i.e. AIDS drugs). A single mutant × protease inhibitor 

interaction is performed using THOR, a package for modeling and molecular dynamics developed at UFRJ. Since 
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many interactions must be tried whenever the biologist wants to examine a conjecture, the problem is amenable to 

run on MyGrid. 

A typical execution involves around 50 10-minute tasks, where each task demands the transfer of around 

4MB. For a simple test, we have submitted 60 tasks to MyGrid. Each task reads a 3.3 MB input file and writes a 

200KB output file. The grid consisted of 58 processors, distributed throughout the following 7 independent comput-

ing sites: 

• Carcara/LNCC/Petropolis/Brazil - 1 linux processor 

• ApeLab/USCD/San Diego/USA - 20 solaris procecessors 

• LSD/UFCG/Campina Grande/Brazil - 8 linux processors 

• NACAD/UFRJ/Rio de Janeiro/Brazil - 1 linux processor 

• NCE/UFRJ/Rio de Janeiro/Brazil  - 4 linux processors 

• LCP/UFRJ/Rio de Janeiro/Brazil - 14 linux processors 

• GridLab/UCSD/San Diego/USA - 10 linux processors 

There were no dedicated processors on the grid. Moreover, each task was submitted using ���� (i.e. with 

low priority). Each task executed from 4 minutes at the fastest machine from the grid, up to 33 minutes, at the slow-

est machine on the grid. We performed a total of 20 executions. The total average execution time on the grid was 43 

minutes.  

�	����������4�����	������5��������%�

MyGrid architecture, although simple and effective, raises concerns about its scalability. Since the home 

machine is a centralized component, it will become a performance bottleneck sooner or latter. We here describe an 

experiment we devised to determine whether such a bottleneck would appear in the execution of a typical CPU-

bound BoT application, composed of 100 tasks. 

Our experiment used three administrative domains: LSD (at UFCG, with  8 machines), APE Lab (at UCSD, 

with 23 machines), and Grid Lab (at UCSD, with 12 machines). The home machine was at LSD. The home machine 

was dedicated to the experiment, but all grid machines were dealing with their normal loads. Three kinds of tasks 

were used: small, medium and large. Each task was a dummy loop, which received an input determining how long 

the loop would run. We set up the input such that the fastest machine in our grid (AMD Athlon XP 1800) would 
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finish tasks in 10, 100 and 1000 CPU seconds, thus creating small, medium and large tasks. Note that tasks were 

essentially CPU-bound. File transfer was done only for the task code, whose size was of  4 KB. 

Besides task size, we had three choices for the location of the grid machines, namely at LSD (i.e. in the 

same LAN as the home machine), at APE Lab, and at Grid Lab. The purpose of location variation was to understand 

MyGrid behavior in presence of different network connectivity and machine speed (the different domain have ma-

chines of different age and architecture, and thus different speed). 

Combining %���	+������	�������� and ���'	����, 9 different scenarios were investigated. For each scenario, 

we run a 100-task application 10 times. It is important to point out that the applications ran back-to-back in an at-

tempt to give similar grid conditions to the different scenarios. That is, we would run an application for scenario 1, 

then scenario 2, ... then scenario 9 before repeating the executions 10 times. 

In order to determine MyGrid performance in these scenarios, we defined a task’s ���������0 and ��������,	

Let ��, %� and �� be the initial, grid and final execution times of a task, respectively. Consequently, the task total execu-

tion time �� is given by �� = �� + %� + ��. Efficiency � denotes the fraction of the total execution that was effectively 

spent on the grid subtask, i.e. � = %� / ��. Overhead � is the time spent in the initial and final subtasks, i.e. � = �� + ��. 

Figure 5 shows efficiency as a function of task size. As one would expect, due to the local connection be-

tween home and grid machines, efficiency at LSD was excellent. Also very good, efficiencies at Grid Lab and APE 

Lab display an interesting effect. APE Lab and Grid Lab have basically the same connectivity to LSD (where the 

home machine is located). However, Grid Lab machines are faster than APE Lab machines (as can be seen in Figure 

5). Consequently tasks finish quicker when using Grid Lab resources, thus generating greater demand on the home 

machine, therefore reducing task efficiency. 

Figure 6 shows the overhead results. For Grid Lab, overhead decreases somewhat as task size grows. For 

LSD and APE Lab, overhead appears to be very stable. These results indicate that MyGrid has not reached the home 

machine bottleneck for the scenarios here explored. 

 



 18

 

�������6����������� ����	�%���7��

 

 

����������8�����	�����	�%���7��



 19

However, an analysis of home machine’s CPU usage during the experiment showed that CPU consumption 

peaked at 87.1% for small tasks when using LSD grid machines, indicating the bottleneck is close (at least for this 

scenario). A closer analysis at the CPU usage logs revealed that most of the CPU was spent starting new processes 

(especially the JVM). We then realized that our design decision of implementing the initial and final subtasks as 

invocations of external processes, while very flexible, has serious performance consequences. Since the initial and 

final subtasks run at the home machine, they not only have to be forked, but also need to fork a JVM every time they 

use a MyGrid service. For example, in the little initial subtask presented at the end of Section 4, there are 3 invoca-

tions of a JVM (not exactly a lightweight operation). 

In virtue of this problem, we are currently working in providing an alternative to running initial and final 

subtasks as external processes. The idea is to embed in MyGrid a very simple script language to enable simple file 

transfer based on the processor’s attributes, a functionality that should be enough for most applications. 

After this modification, we are going to reassess when the centralization of the home machine functionality 

becomes a bottleneck. We hope that this point will not be reached by most applications. Nevertheless, there will be 

applications to be affected by the centralized home machine. To address this issue, we intend to investigate how to 

distribute the home machine functions to Grid Machine Gateways. The challenge is to do so without affecting the 

view the user has from the system. 

"� #������������

Grid computing is a very active area of research [17]. There are important efforts, both in academia and in-

dustry, that aim to provide generic software infrastructure for grid computing. In academia, the project with greatest 

impact and visibility is Globus [18]. In industry, Entropia [15] appears to have built the largest commercial grid so 

far. 

Closer to our work, there are systems that target BoT applications, such as APST [7] [8], Nimrod/G [1] and 

Condor [16] [21]. In particular, APST and Nimrod/G are similar to MyGrid in intent and architecture. However, they 

are more specialized than MyGrid in the sense that they target parameter-sweep applications, a sub-class of BoT 

applications. Also, both APST and Nimrod/G require much more information than MyGrid for scheduling. Besides 

depending on rich information for scheduling, APST and Nimrod/G also differ from MyGrid in the assumptions 

about the application and the grid. APST targets divisible workloads, whereas in MyGrid the user is the responsible 
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for breaking the application’s work into task. Nimrod/G assumes that the user is going to pay for resources and hence 

scheduling is based on a grid economy model [5]. 

Condor was initially conceived for campus-wide networks [21], but has been extended to run on grids [16]. 

Condor’s main difference to MyGrid is the fact that Condor is system-centric, whereas MyGrid is user-centric. That 

is, Condor is installed and configured by a system administrator who controls the resources that form the Condor 

Pool, which provides service for its users. In MyGrid, conversely, each user creates her own grid with all resources 

she has access to. One’s MyGrid can thus use resources via Condor, Globus, Unix and other systems. Besides, Con-

dor and MyGrid take different approaches regarding hiding grid machines’ configuration heterogeneity from the 

users. Condor redirects systems calls to the home machine, creating the illusion that all tasks run at the home ma-

chine. MyGrid provides working environment abstractions that enable describing the tasks without knowing details 

about the configuration of the grid machines. 

Other efforts that relate to MyGrid aim to scheduling BoT applications on grid and report experiences of 

running their applications. Casanova et al. describe a very interesting scheduling heuristics for BoT applications that 

process large amounts of data [6]. The proposed heuristics exploits the grid topology (i.e. the fact that a grid is com-

posed by sites whose machines have local connectivity) to improve application’s performance. Still on applications 

that process large amounts of data, Elwasif et al. investigate the impact of data staging (i.e. the previous transfer of 

data to selected places on the grid) on the performance of such applications [14]. 

Reports of the execution of BoT applications on grids include SETI@home [2] and GTOMO [23] [24]. 

SETI@home is probably the largest application to have run on grids. SETI@home does not separate the grid infra-

structure from the application, whereas MyGrid focuses on the infrastructure, providing support for any BoT applica-

tion. In fact, MyGrid can be thought as a framework to build SETI@home-like applications. GTOMO is a tomogra-

phy application that runs over Globus and combines time- and space-shared machines to deliver good and consistent 

performance [23] [24]. 

$� %��
�	����������&	�	��������

MyGrid is a complete solution for running Bag-of-Tasks (BoT) applications on all resources one has avail-

able. MyGrid represents a different trade-off in designing grid infrastructure. Traditional grid infrastructure, such as 

Globus [18], aims to support arbitrary applications. Arbitrary applications may of course have complex requirements. 
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In order to be flexible enough to deal with such potential complexity, traditional grid infrastructure leaves decisions 

and tasks to the user, making it hard to use the grid. That is, the grid infrastructure typically solves only part of the 

problem, leaving user to complement the solution by writing, for example, the application scheduler [4] [12]. My-

Grid, on the other hand, is specific (provides support solely for BoT applications) but complete (the user does not 

have to add anything but the application itself). We hope that a complete solution will help to make grid technology 

more used in practice, to real users. MyGrid is open-source and can be downloaded from 

����  ��������������� �!����. 

From the grid research viewpoint, MyGrid’s main contributions are two-fold. First, we introduce a schedul-

ing heuristics (denominated Work Queue with Replication) that achieves good performance without relying on in-

formation about the grid state or the tasks execution times. Having a scheduler algorithm that works well without 

information about the grid or the tasks is important because such information is hard to obtain in practice. Moreover, 

it keeps the system easy to use (by not requiring the user to provide task execution time estimates). Second, MyGrid 

hides the configuration heterogeneity of the machines that compose the grid by providing working environment 

abstraction that are easy to use and efficiently implemented on grids. 

MyGrid has currently a dozen of real users and we learned a couple of lessons from working with our users. 

One lesson is that today’s Internet connectivity is very complex and must be taken into account when designing any 

widely distributed system such as grid infrastructure. The nice end-to-end connectivity implied by socket abstraction 

no longer works in today’s Internet [25]. Firewalls, gateways and private IPs are commonplace. This complexity has 

worked against our goal of creating a user-level grid infrastructure. We did our best to supply work-around solutions 

such as tunneling support and application gateways, but there are still situations where the user needs to involve the 

system administrator to make MyGrid work.  

Another lesson was that, if we do not hear the user, we might create solutions for problems that do not pre-

sent themselves in practice. For example, we have implemented the proportional-share ticket-based scheduler intro-

duced in [9]. Such a scheduler is technically very interesting. It allows the user that runs more than one application 

simultaneously to define what fraction of her grid’s resources should be allocated to each application. A bit to our 

dismay, however, so far none of our users found this capability useful. 

As far as future work, we plan to pursue three lines of research and development. The first line is more de-

velopmental, but very important for the practical success of MyGrid. Since we experienced problem with Grid Script 
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(out generic mechanism of accessing a grid machine), we intend to extend MyGrid to directly support other kinds of 

resources. OGSA [19] and vCluster [13] resources are our next targets. Condor would also be a natural choice to 

directly support.  

Second, we would like to have more efficient support for BoT applications that process large amounts of 

data. Of course, MyGrid currently runs data intensive BoT applications, but it does not attempt to reduce the impact 

large data transfers have on the execution time of these applications. For example, MyGrid at this time does not 

exploit grid topology as in [6]. One challenge here is how to have better support for data intensive BoT applications 

without making the system harder to use and/or install (by making it dependent on information about grid state, for 

example). 

Our third future effort comes as an answer to our user community. People are not satisfied just with good 

grid infrastructure. They actually want the resources on which to use the infrastructure, i.e. they want a grid. We 

hence intend to create OurGrid, a peer-to-peer resource sharing system targeted to BoT applications. OurGrid is 

thought as a favor-based community, where each peer offers access to its idle resources. In return, when there is 

work that exceeds local capacity, a peer expects to gain access to other people’s resources. The challenge is doing so 

in a decentralized manner. A decentralized solution is key to keep OurGrid simple, not dependent on centralized 

services that might be hard to deploy, scale and trust. 
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